
A Categorizing Popular Ranking Losses

Table 1: Categorizing Popular Ranking Losses.

Loss Loss Family

Sum Loss@p L(`@p
sum)

Precision Loss@p L(`@p
prec)

Average Precision L(`@K
sum )

Area Under the Curve L(`@K
sum )

Reciprocal Rank L(`@1
prec)

Pairwise Rank Loss L(`@K
sum )

Discounted Cumulative Loss L(`@K
sum )

Discounted Cumulative Loss@p L(`@p
sum)

In this section, we show that our loss families L(`@p
sum) and L(`@p

prec) are general and capture many of
the popular ranking loss functions used in practice. We summarize the results in Table 1.

Recall that

L(`@p
sum) = {` 2

SK⇥Y : ` = 0 if and only if `@p
sum = 0}\{` 2 SK⇥Y : ⇡

[p]
= ⇡̂ =) `(⇡, y) = `(⇡̂, y)},

where

`
@p
sum(⇡, y) =

KX

i=1

min(⇡i, p+ 1)yi � Z
p
y .

Note that the normalization constant is defined as Zp
y := min⇡2SK

PK
i=1 min(⇡i, p+ 1)yi and thus

only depends on y. Furthermore,

L(`@p
prec) = {` 2

SK⇥Y : ` = 0 if and only if `@p
prec = 0}\{` 2 SK⇥Y : ⇡

p
= ⇡̂ =) `(⇡, y) = `(⇡̂, y)}.

where

`
@p
prec(⇡, y) = Z

p
y �

KX

i=1

{⇡i  p}y
i
.

As before, the normalization constant Zp
y := max⇡2SK

PK
i=1 {⇡i  p}y

i only depends on y.

In ranking literature, many evaluation metrics are often stated in terms of gain functions. However,
these can be easily converted into loss functions by subtracting the gain from the maximum possible
value of the gain. When relevance scores are restricted to be binary (i.e. Y = {0, 1}K ), the Average
Precision (AP) metric is a gain function defined as

AP(⇡, y) =
1

kyk1

X

i2{⇡m:ym=1}

PK
j=1 {⇡j  i}y

j

i
.

Since the maximum value AP can take is 1, we can define its loss function variant as:

`AP(⇡, y) = 1� AP(⇡, y).

Note that `AP(⇡, y) = 0 if and only if ⇡ ranks all labels where yi = 1 in the top kyk1. Therefore,
`AP(⇡, y) 2 L(`@K

sum ).

Another useful metric for binary relevance feedback is the Area Under the Curve (AUC) loss
function:

`AUC(⇡, y) =
1

kyk1 (K � kyk1)

KX

i=1

KX

j=1

{⇡i < ⇡j} {y
i
< y

j
}.
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The AUC computes the fraction of “bad pairs" of labels (i.e those pairs of labels where i was more
relevant than j, but i was ranked lower than j). Again, note that `AUC(⇡, y) = 0 if and only if ⇡ ranks
all labels where y

i = 1 in the top kyk1. Therefore, `AP(⇡, y) 2 L(`@K
sum ).

Lastly, the Reciprocal Rank (RR) metric is another important gain function for binary relevance
score feedback,

RR(⇡, y) =
1

mini:yi=1 ⇡i
.

Its loss equivalent can be written as:

`RR(⇡, y) = 1� RR(⇡, y).

Since `RR(⇡, y) only cares about the relevance of the top-ranked label, we have that `RR(⇡, y) 2

L(`@1
prec).

Moving onto non-binary relevance scores, we start with the Pairwise Rank Loss (PL):

`PL(⇡, y) =
KX

i=1

KX

j=1

{⇡i < ⇡j} {y
i
< y

j
}.

The Pairwise Ranking loss is the analog of AUC for non-binary relevance scores and thus `PL(⇡, y) 2
L(`@K

sum ).

Finally, we have the Discounted Cumulative Gain (DCG) metric, defined as:

DCG(⇡, y) =
KX

i=1

2y
i

� 1

log2(1 + ⇡i)
.

For an appropriately chosen normalizing constant Zy , we can define its associated loss:

`DCG(⇡, y) = Zy � DCG(⇡, y).

Like `@K
sum , `DCG(⇡, y) is 0 if and only if ⇡ ranks the K labels in increasing order of relevance, breaking

ties arbitrarily. Thus, `DCG(⇡, y) 2 L(`@K
sum ). If one only cares about the top-p ranked results, then

the DCG@p loss function evaluates only the top-p ranked labels:

`
@p
DCG(⇡, y) = Z

p
y �

KX

i=1

2y
i

� 1

log2(1 + ⇡i)
{⇡i  p} = Z

p
y � DCG@p(⇡, y).

Analogously, we have that `@p
DCG(⇡, y) 2 L(`@p

sum).

B Agnostic PAC Learnability of Score-based Rankers

In this section, we apply our results in the main paper to give sufficient conditions for the agnostic
PAC learnability of score-based ranking hypothesis classes. A score-based ranking hypothesis
h : X ! SK first maps an input x 2 X to a vector in K representing the “score" for each label.
Then, it outputs a ranking (permutation) over the labels in [K] by sorting the real-valued vector in
decreasing order of score.

More formally, let F ✓ ( K)X denote a set of functions mapping elements from the input space
X to score-vectors in K . For each f 2 F , define the score-based ranking hypothesis hf (x) =
argsort(f(x)) which first computes the score-vector f(x) 2

K , and then outputs a ranking by
sorting f(x) in decreasing order, breaking ties by giving the smaller label the higher rank. That
is, if f1(x) = f2(x), then label 1 will be ranked higher than label 2. Given F , define its induced
score-based ranking hypothesis class as H = {hf : f 2 F}. Since our characterization of ranking
learnability relates the learnability of H to the learnability of the binary threshold-restricted classes
H

j
i = {h

j
i : h 2 H}, it suffices to consider an arbitrary threshold-restricted class Hj

i and bound its
VC dimension. Before we do so, we need some more notation regarding F .

For each k 2 [K], define the scalar-valued function class Fk = {fk | (f1, . . . , fK) 2 F} by
restricting each function in F to its kth coordinate output. Here, each Fk ✓

X and we can write
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F = (F1, . . . ,FK). For a function f 2 F , we will use fk(x) to denote the k
th coordinate output of

f(x). For every (i, j) 2 [K]⇥ [K], define the function class Fi � Fj = {fi � fj : f 2 F} where
we let fi � fj : X ! denote a function such that (fi � fj)(x) = fi(x) � fj(x). Subsequently,
for any (i, j) 2 [K] ⇥ [K], define the binary hypothesis classes Gi,j = { {(fi � fj)(x) < 0} :
fi � fj 2 Fi � Fj} and G̃i,j = { {(fi � fj)(x)  0} : fi � fj 2 Fi � Fj}. Finally, let
Cj : {0, 1}K ! {0, 1} be the K-wise composition s.t. Cj(b) = {

PK
i=1 bi  j} and define

Cj(G1, ...,GK) = {Cj(g1, ..., gK) : (g1, ..., gK) 2 G1 ⇥ ... ⇥ GK}. In other words, Cj(G1, ...,GK)
is the binary hypothesis class constructed by taking all combinations of binary classifiers from
G1, ...,GK , summing them up, and thresholding the sum at j. We are now ready to bound the VC
dimension of an arbitrary threshold-restricted class Hj

i .

Consider an arbitrary threshold-restricted class H
j
i and hypothesis h 2 H. By definition, hj

i 2

H
j
i . Let f 2 F denote the function associated with h. Given an instance x 2 X , recall that

h
j
i (x) = {hi(x)  j} where hi(x) is the rank that h gives to the label i for instance x. Since

h(x) = argsort(f(x)), we have

hi(x) = argsort(f(x))[i]

=
iX

m=1

{fi(x)  fm(x)}+
KX

m=i+1

{fi(x) < fm(x)}

=
iX

m=1

{(fi � fm)(x)  0}+
KX

m=i+1

{(fi � fm)(x) < 0}

Thus, we can write:

h
j
i (x) =

( 
iX

m=1

{(fi � fm)(x)  0}+
KX

m=i+1

{(fi � fm)(x) < 0}

!
 j

)
.

Note that hj
i 2 Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K) by construction. Since h, and therefore h

j
i , was

arbitrary, it further follows that Hj
i ✓ Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K). Therefore,

VC(Hj
i )  VC(Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K)).

Since Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K) is some K-wise composition of binary
classes G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K , standard VC composition guarantees that
VC(Cj(G̃i,1, ..., G̃i,i,Gi,i+1, ...,Gi,K)) = Õ(VC(G̃i,1) + ... + VC(G̃i,i) + VC(Gi,i+1) + ... +
VC(Gi,K)), where we hide log factors of K and the VC dimensions [Dudley, 1978, Alon et al.,
2020]. Putting things together, we have that

VC(Hj
i )  Õ(VC(G̃i,1) + ...+ VC(G̃i,i) + VC(Gi,i+1) + ...+ VC(Gi,K)).

An identical analysis can also be used to give sufficient conditions for the online learnability of
score-based rankers in terms of the Littlestone dimensions of Hi

j .

Now, we consider the special class of linear score-based ranker and prove Lemma 4.6.

Proof. (of Lemma 4.6) Let X = d and F = {fW : W 2
K⇥d

} s.t. fW (x) = Wx. Consider
the class of linear score-based rankers H = {hfW : fW 2 F} where hfW (x) = argsort(fW (x)) =
argsort(Wx) breaking ties in the same way mentioned above. Note for all i 2 [K], Fi = {fw : w 2

d
} where fw(x) = w

T
x. Furthermore, Fi�Fj = Fi = Fj . Therefore, for any (i, j) 2 [K]⇥ [K],

Gi,j = { {(fi � fj)(x) < 0} : fi � fj 2 Fi � Fj} = { {fw(x) < 0} : w 2
d
}

and
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G̃i,j = { {(fi � fj)(x)  0} : fi � fj 2 Fi � Fj} = { {fw(x)  0} : w 2
d
}

are the set of half-space classifiers passing through the origin with dimension d. Since for all
(i, j) 2 [K]⇥ [K], VC(G̃i,j) = VC(Gi,j) = d, we get that VC(Hj

i )  Õ(Kd).

C Proofs for Batch Multilabel Ranking

Since many of the ranking losses we consider map to values in , the empirical Rademacher
complexity will be a useful tool for proving learnability in the batch setting.

Definition 3 (Empirical Rademacher Complexity of Loss Class). Let `(·, ·) be a loss function,

S = {(x1, y1), ..., (xn, yn)} 2 (X ⇥ Y)⇤ be a set of examples, and ` �H = {(x, y) 7! `(h(x), y) :
h 2 H} be a loss class. The empirical Rademacher complexity of ` �H is defined as

R̂n(` �H) = �

"
sup
h2H

 
1

n

nX

i=1

�i`(h(xi), yi)

!#

where �1, ...,�n are independent Rademacher random variables.

In particular, a standard result relates the empirical Rademacher complexity to the generalization
error of hypotheses in H with respect to a real-valued bounded loss function `(h(x), y) [Bartlett and
Mendelson, 2002].

Proposition C.1 (Rademacher-based Uniform Convergence). Let D be a distribution over X ⇥ Y

and `(·, ·)  c be a bounded loss function. With probability at least 1� � over the sample S ⇠ D
n

,

for all h 2 H simultaneously,

��� D[`(h(x), y)]� ˆ
S [`(h(x), y)]

���  2R̂n(F) +O

0

@c

s
ln( 1� )

n

1

A

where ˆ
S [`(h(x), y)] =

1
|S|

P
(x,y)2S `(h(x), y) is the empirical average of the loss over S.

When the empirical Rademacher complexity of the loss class `�H = {(x, y) 7! `(h(x), y) : h 2 H}

is o(1), we state that H enjoys the uniform convergence property w.r.t `. If H enjoys the uniform
convergence property w.r.t. a loss `, a standard result shows that H is learnable according to Definition
1 via Empirical Risk Minimization (ERM) (Theorem 26.5 in Shalev-Shwartz and Ben-David [2014]).

C.1 Proof of Lemma 4.3

Proof. Let H ✓ S
X

K be an arbitrary ranking hypothesis class. We need to show that if Hj
i is agnostic

PAC learnable w.r.t to 0-1 loss for all (i, j) 2 [K]⇥ [p], then ERM is an agnostic PAC learnable w.r.t
`
@p
sum. By Proposition C.1, it suffices to show that the empirical Rademacher complexity of the loss

class `@p
sum �H vanishes as n increases. This will imply that `@p

sum enjoys the uniform convergence
property, and therefore ERM is an agnostic PAC learner for H w.r.t `@p

sum. By definition, we have that
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R̂n(`
@p
sum �H) = �⇠{±1}n

"
sup
h2H

1

n

nX

i=1

�i`
@p
sum(h(xi), yi))

#

= �⇠{±1}n

"
sup
h2H

1

n

nX

i=1

 
KX

m=1

�i min(hm(xi), p+ 1)ymi � �iZ
p
yi

!#

= �⇠{±1}n

"
sup
h2H

1

n

nX

i=1

KX

m=1

�i min(hm(xi), p+ 1)ymi

#



KX

m=1

�⇠{±1}n

"
sup
h2H

1

n

nX

i=1

�i min(hm(xi), p+ 1)ymi

#

 B

KX

m=1

�⇠{±1}n

"
sup
h2H

1

n

nX

i=1

�i min(hm(xi), p+ 1)

#

where the second inequality follows from the fact that ymi  B and Talagrand’s Contraction Lemma
Ledoux and Talagrand [1991].

Next note that min(hm(xi), p+ 1) = (p+ 1)�
Pp

j=1 {hm(xi)  j} = (p+ 1)�
Pp

j=1 h
j
m(xi).

Substituting and getting rid of constant factors, we have that

R̂n(`
@p
sum �H)  B

KX

m=1

�⇠{±1}n

2

4 sup
hm2Hm

1

n

nX

i=1

�i

pX

j=1

h
j
m(xi)

3

5

 B

KX

m=1

pX

j=1

�⇠{±1}n

"
sup

hm2Hm

1

n

nX

i=1

�ih
j
m(xi)

#

= B

KX

m=1

pX

j=1

R̂n(H
j
m).

Since for H
j
m is agnostic PAC learnable w.r.t 0-1 loss, by Theorem 6.5 in Shalev-Shwartz and

Ben-David [2014], limn!1 R̂n(Hj
m) = 0. Since p,K and B are finite,

lim
n!1

R̂n(`
@p
sum �H) = lim

n!1

B

KX

m=1

pX

j=1

R̂n(H
j
m) = 0

.

By Proposition C.1, this implies that `@p
sum enjoys the uniform convergence property, and therefore

ERM using `
@p
sum is an agnostic PAC learner for H.

C.2 Proof of Lemma 4.5

Proof. Fix ` 2 L(`@p
sum) and (i, j) 2 [K] ⇥ [p]. Let a = min⇡,y{`(⇡, y) | `(⇡, y) 6= 0}. Let H be

an arbitrary ranking hypothesis class and A be an agnostic PAC learner for H w.r.t `. Our goal will
be to use A to construct an agnostic PAC learner for Hj

i .

Let D be distribution over X ⇥ {0, 1} and h
?,j
i = argminhj

i2H
j
i

D

h
{h

j
i (x) 6= y}

i
be the optimal

hypothesis. Let h?
2 H be any valid completion of h?,j

i . Our goal will be to show that Algorithm 4
is an agnostic PAC learner for Hj

i w.r.t 0-1 loss.

Consider the sample S
h?

U and let g = A(Sh?

U ). We can think of g as the output of A run over
an i.i.d sample S drawn from D

?, a joint distribution over X ⇥ Y defined procedurally by first
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Algorithm 4 Agnostic PAC learner for Hj
i w.r.t. 0-1 loss

Input: Agnostic PAC learner A for H w.r.t `, unlabeled samples SU ⇠ D
n
X

, and labeled samples
SL ⇠ D

m

1 For each h 2 H|SU
, construct a dataset

S
h
U = {(x1, ỹ1), ..., (xn, ỹn)} s.t. ỹi = BinRel(h(xi), j)

2 Run A over all datasets to get C(SU ) :=
�
A
�
S
h
U

�
| h 2 H|SU

 

3 Define C
j
i (SU ) = {g

j
i |g 2 C(SU )}

4 Return ĝ
j
i 2 C

j
i (SU ) with the lowest empirical error over SL w.r.t. 0-1 loss.

sampling x ⇠ DX and then outputting the labeled sample (x,BinRel(h?(x), j)). Note that D? is a
realizable distribution (realized by h

?) w.r.t `@p
sum and therefore also `. Let mA(✏, �,K) be the sample

complexity of A. Since A is an agnostic PAC learner for H w.r.t `, we have that for sample size
n � mA(

a✏
2 , �/2,K), with probability at least 1� �

2 ,

D? [`(g(x), y)]  inf
h2H

D? [`(h(x), y)] +
a✏

2
=

a✏

2
.

Furthermore, by definition of D?, D? [`(g(x), y)] = x⇠DX [`(g(x),BinRel(h?(x), j))]. There-
fore, x⇠DX [`(g(x),BinRel(h?(x), j))]  a✏

2 . Next, using Lemma E.3, we have pointwise that

{g
j
i (x) 6= h

?,j
i (x)}  {`

@p
sum(g(x),BinRel(h?(x), j)) > 0}

= {`(g(x),BinRel(h?(x), j)) > 0}


1

a
`(g(x),BinRel(h?(x), j)).

Taking expectations on both sides gives,

D

h
{g

j
i (x) 6= h

?,j
i (x)}

i


1

a
D [`(g(x),BinRel(h?(x), j))] 

✏

2
,

where in the last inequality we use the fact that x⇠DX [`(g(x),BinRel(h?(x), j))]  a✏
2 . Finally,

using the triangle inequality, we have that

D

h
{g

j
i (x) 6= y}

i
 D

h
{h

?,j
i (x) 6= y}

i
+ D

h
{g

j
i (x) 6= h

?,j
i (x}

i

 D

h
{h

?,j
i (x) 6= y}

i
+

✏

2

= argmin
hj
i2H

j
i

D

h
{h

j
i (x) 6= y}

i
+

✏

2
.

Since g
j
i 2 C

j
i (SU ), we have shown that Cj

i (SU ) contains a hypothesis that generalizes well w.r.t
D. Now we want to show that the predictor ĝji returned in step 4 also generalizes well. Crucially,
observe that Cj

i (SU ) is a finite hypothesis class with cardinality at most Kjn. Therefore, by standard
Chernoff and union bounds, with probability at least 1� �/2, the empirical risk of every hypothesis
in C

j
i (SU ) on a sample of size �

8
✏2 log

4|Cj
i (SU )|
� is at most ✏/4 away from its true error. So, if

m = |SL| �
8
✏2 log

4|Cj
i (SU )|
� , then with probability at least 1� �/2, we have

1

|SL|

X

(x,y)2SL

{g
j
i (x) 6= y}  ED

h
{g

j
i (x) 6= y}

i
+

✏

4


3✏

4
.
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Since ĝ
j
i is the ERM on SL over C

j
i (SU ), its empirical risk can be at most 3✏

4 . Given that the
population risk of ĝji can be at most ✏/4 away from its empirical risk, we have that

ED[ {ĝ
j
i (x) 6= y}]  argmin

hj
i2H

j
i

D

h
{h

j
i (x) 6= y}

i
+ ✏.

Applying union bounds, the entire process succeeds with probability 1 � �. We can compute the
upper bound on the sample complexity of Algorithm 4, denoted n(✏, �,K), as

n(✏, �,K)  mA(
a✏

2
, �/2,K) +O

✓
1

✏2
log

|C(SU )|

�

◆

 mA(
a✏

2
, �/2,K) +O

✓
KmA(

a✏
2 , �/2,K) + log 1

�

✏2

◆
,

where we use |C(SU )|  2KmA( a✏
2 ,�/2,K). This shows that Algorithm 4 is an agnostic PAC learner

for Hj
i w.r.t 0-1 loss. Since our choice of loss ` 2 L(`@p

sum) and indices (i, j) were arbitrary, agnostic
PAC learnability of H w.r.t ` implies agnostic PAC learnability of H

j
i w.r.t the 0-1 loss for all

(i, j) 2 [K]⇥ [p].

C.3 Characterizing Batch Learnability of L(`@p
prec)

In this section, we prove Theorem 4.2 which characterizes the agnostic PAC learnability of an
arbitrary hypothesis class H ✓ S

X

K w.r.t losses in L(`@p
prec). Our proof will again be in three parts.

First, we will show that if for all i 2 [K], Hp
i is agnostic PAC learnable w.r.t the 0-1 loss, then ERM

is an agnostic PAC learnable w.r.t `@p
prec. Next, we show that if H is agnostic PAC learnable w.r.t `@p

prec,
then H is agnostic PAC learnable w.r.t any loss ` 2 L(`@p

prec). Finally, we prove the necessity direction
- if H is agnostic PAC learnable w.r.t an arbitrary ` 2 L(`@p

prec), then for all i 2 [K], Hp
i is agnostic

PAC learnable w.r.t the 0-1 loss.

We begin with Lemma C.2 which asserts that if for all i 2 [K], Hp
i is agnostic PAC learnable, then

ERM is an agnostic PAC learner for H w.r.t `@p
prec.

Lemma C.2. If for all i 2 [K], Hp
i is agnostic PAC learnable w.r.t the 0-1 loss, then ERM is an

agnostic PAC learner for H ✓ S
X

K w.r.t `
@p
prec

The proof of Lemma C.2 is similar to the proof of Lemma 4.3 and involves bounding the empirical
Rademacher complexity of the loss class `

@p
prec � H. This will imply that `@p

prec enjoys the uniform
convergence property, and therefore ERM is an agnostic PAC learner for H w.r.t `@p

prec. The key insight
is that we can write `@p

prec(h(x), y) = Z
p
y �

PK
i=1 {hi(x)  p}y

i = Z
p
y �

PK
i=1 h

p
i (x)y

i. Since Zp
y

does not depend on h(x) and y
i
 B, we can upperbound the empirical Rademacher complexity in

terms of the empirical Rademacher complexities of Hp
i using Talagrand’s contraction.

Proof. Let H ✓ S
X

K be an arbitrary ranking hypothesis class. Similar to the proof of Lemma 4.3, it
suffices to show that the empirical Rademacher complexity of the loss class `@p

prec �H vanishes. By
Proposition C.1, this will imply that `@p

prec enjoys the uniform convergence property, and therefore
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ERM is an agnostic PAC learner for H w.r.t `@p
prec. By definition, we have that

R̂n(`
@p
prec �H) = �⇠{±1}n

"
sup
h2H

1

n

nX

i=1

�i`
@p
prec(h(xi), yi))

#

= �⇠{±1}n

"
sup
h2H

1

n

nX

i=1

 
�iZ

p
yi
�

KX

m=1

�i {hm(xi)  p}y
m
i

!#

= �⇠{±1}n

"
sup
h2H

1

n

nX

i=1

KX

m=1

�ih
p
m(xi)y

m
i

#



KX

m=1

�⇠{±1}n

"
sup
h2H

1

n

nX

i=1

�ih
p
m(xi)y

m
i

#

 B

KX

m=1

�⇠{±1}n

"
sup
h2H

1

n

nX

i=1

�ih
p
m(xi)

#

= B

KX

m=1

R̂n(H
p
m),

where the second inequality follows from Talagrand’s Contraction Lemma and the fact that ymi  B

for all i,m. Since for all m 2 [K], Hp
m is agnostic PAC learnable w.r.t 0-1 loss, by Theorem 6.7 in

Shalev-Shwartz and Ben-David [2014], limn!1 R̂n(Hp
m) = 0. Since K and B are finite,

lim
n!1

R̂n(`
@p
prec �H) = lim

n!1

B

KX

m=1

R̂n(H
p
m) = 0

.

By Proposition C.1, this implies that `@p
prec enjoys the uniform convergence property, and therefore

ERM using `
@p
prec is an agnostic PAC learner for H.

Next, Lemma C.3 extends the learnability of `@p
prec to the learnability of any loss ` 2 L(`@p

prec). In
particular, Lemma C.3 asserts that if H is agnostic PAC learnable w.r.t `@p

prec then H is also agnostic
PAC learnable w.r.t any ` 2 L(`@p

prec).

Lemma C.3. If a hypothesis class H ✓ S
X

K is agnostic PAC learnable w.r.t `
@p
prec

, then H is agnostic

PAC learnable w.r.t any ` 2 L(`@p
prec

).

The proof of Lemma C.3 follows the same the exact same strategy used in proving Lemma 4.4. More
specifically, given an agnostic PAC learner A for H w.r.t. `

@p
prec, we first create a realizable PAC

learner for H w.r.t ` 2 L(`@p
prec). Then, we use a similar realizable-to-agnostic conversion technique

as in the proof of Lemma 4.4 to convert the realizable PAC learner into an agnostic PAC learner for
H w.r.t `.

Proof. Fix ` 2 L(`@p
prec). Let a = min⇡,y{`(⇡, y) | `(⇡, y) 6= 0} and b = max⇡,y `(⇡, y). We need

to show that if H is agnostic PAC learnable w.r.t `@p
prec, then H is agnostic PAC learnable w.r.t `. We

will do so in two steps. First, we will show that if A is an agnostic PAC learner for H w.r.t. `@p
prec, then

A is also a realizable PAC learner for H w.r.t `. Next, we will show how to convert the realizable
PAC learner w.r.t ` into an agnostic PAC learner w.r.t ` in a black-box fashion. The composition of
these two pieces yields an agnostic PAC learner for H w.r.t `.

If H is agnostic PAC learnable w.r.t `@p
prec, then there exists a learning algorithm A with sample

complexity m(✏, �,K) s.t. for any distribution D over X ⇥ Y , with probability 1� � over a sample
S ⇠ D

n of size n � m(✏, �,K), the output g = A(S) achieves
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D

⇥
`
@p
prec(g(x), y))

⇤
 inf

h2H
D

⇥
`
@p
prec(h(x), y))

⇤
+ ✏.

If D is realizable w.r.t `, then we are guaranteed that there exists a hypothesis h
?

2 H s.t.

D [`(h?(x), y)] = 0. Since ` 2 L(`@p
prec), this also means that D

h
`
@p
prec(h?(x), y)

i
= 0. Fur-

thermore, since ` 2 L(`@p
prec), `  b`

@p
prec. Together, this means we have D [`(g(x), y)]  b✏ showing

have that A is also a realizable PAC learner for H w.r.t ` with sample complexity m( ✏b , �,K). This
completes the first part of the proof.

Now, we show how to convert the realizable PAC learner A for ` into an agnostic PAC learner for `
in a black-box fashion. For this step, we will use a similar algorithm as in the proof of Lemma 4.4.
That is, we will show that Algorithm 5 below is an agnostic PAC learner for H w.r.t `.

Algorithm 5 Agnostic PAC learner for H w.r.t. `
Input: Realizable PAC learner A for H w.r.t `, unlabeled samples SU ⇠ D

n
X

, and labeled samples
SL ⇠ D

m

1 For each h 2 H|SU
, construct a dataset

S
h
U = {(x1, ỹ1), ..., (xn, ỹn)} s.t. ỹi = BinRel(h(xi), p)

2 Run A over all datasets to get C(SU ) :=
�
A
�
S
h
U

�
| h 2 H|SU

 

3 Return ĝ 2 C(SU ) with the lowest empirical error over SL w.r.t. `.

Let D be any (not necessarily realizable) distribution over X ⇥ Y . Let h
? =

argminh2H D [`(h(x), y))] denote the optimal predictor in H w.r.t D. Consider the sample S
h?

U

and let g = A(Sh?

U ). We can think of g as the output of A run over an i.i.d sample S drawn from D
?,

a joint distribution over X ⇥ Y defined procedurally by first sampling x ⇠ DX , and then outputting
the labeled sample (x,BinRel(h?(x), p)). Note that D? is indeed a realizable distribution (realized
by h

?) w.r.t both ` and `
@p
prec. Recall that mA(

✏
b , �,K) is the sample complexity of A. Since A is

a realizable learner for H w.r.t `, we have that for n � mA(
a✏
2b2 , �/2,K), with probability at least

1� �
2 ,

D? [`(g(x), y)] 
a✏

2b
.

By definition of D?, it further follows that D? [`(g(x), y)] = x⇠DX [`(g(x),BinRel(h?(x), p))].
Therefore,

x⇠DX [`(g(x),BinRel(h?(x), p))] 
a✏

2b
.

Next, by Lemma E.2, we have pointwise that:

`(g(x), y)  `(h?(x), y) +
b

a
`(g(x),BinRel(h?(x), p)).

Taking expectations on both sides of the inequality gives:

D [`(g(x), y)]  D [`(h?(x), y)] + D


b

a
`(g(x),BinRel(h?(x), p))

�

= D [`(h?(x), y)] +
b

a
x⇠DX [`(g(x),BinRel(h?(x), p))]

 D [`(h?(x), y)] +
✏

2
.
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Therefore, we have shown that C(SU ) contains a hypothesis g that generalizes well with respect to
D. The remaining proof follows exactly as in the proof of Lemma 4.4. We include them here for the
sake of completeness.

Now we want to show that the predictor ĝ returned in step 4 also has good generalization. Crucially,
observe that C(SU ) is a finite hypothesis class with cardinality at most Kpn. Therefore, by standard
Chernoff and union bounds, with probability at least 1� �/2, the empirical risk of every hypothesis
in C(SU ) on a sample of size �

8
✏2 log

4|C(SU )|
� is at most ✏/4 away from its true error. So, if

m = |SL| �
8
✏2 log

4|C(SU )|
� , then with probability at least 1� �/2, we have

1

|SL|

X

(x,y)2SL

`(g(x), y)  ED [`(g(x), y)] +
✏

4
 D [`(h?(x), y)] +

3✏

4
.

Since ĝ is the ERM on SL over C(S), its empirical risk can be at most D [`(h?(x), y)] + 3✏
4 . Given

that the population risk of ĝ can be at most ✏/4 away from its empirical risk, we have that

ED[`(ĝ(x), y)]  D [`(h?(x), y)] + ✏.

Applying union bounds, the entire process succeeds with probability 1� �. We can upper bound the
sample complexity of Algorithm 1, denoted n(✏, �,K), as

n(✏, �,K)  mA(
a✏

2b2
, �/2,K) +O

✓
1

✏2
log

|C(SU )|

�

◆

 mA(
a✏

2b2
, �/2,K) +O

✓
pmA(

a✏
2b2 , �/2,K) log(K) + log 1

�

✏2

◆
,

where we use |C(SU )|  K
pmA( a✏

2b2
,�/2,K). This shows that Algorithm 1, given as input an realizable

PAC learner for H w.r.t `, is an agnostic PAC learner for H w.r.t `. Using the realizable learner we
constructed before this step as the input completes this proof as we have constructively converted an
agnostic PAC learner for `@p

prec into an agnostic PAC learner for `.

Lemma C.2 and C.3 together complete the proof of sufficiency in Theorem 4.2. Finally, Lemma C.4
below shows that the agnostic PAC learnability of Hp

i for all i 2 [K] is necessary for the agnostic
PAC learnability of H w.r.t any ` 2 L(`@p

prec). Like before, the proof of Lemma C.4 is constructive
and follows exactly the same strategy as Lemma 4.5. That is, given as input a learner for `, we will
convert it into an agnostic learner for Hp

i . In fact, the conversion is exactly the same as in the proof of
Lemma 4.5 and just requires running Algorithm 4 with an input learner for ` 2 L(`@p

prec) and setting
j = p.
Lemma C.4. If a function class H ✓ S

X

K is agnostic PAC learnable w.r.t ` 2 L(`@p
prec

), then H
p
i is

agnostic PAC learnable w.r.t the 0-1 loss for all i 2 [K].

Proof. Fix ` 2 L(`@p
prec) and i 2 [K]. Let a = min⇡,y{`(⇡, y) | `(⇡, y) 6= 0}. Let H be an arbitrary

ranking hypothesis class and A be an agnostic PAC learner for H w.r.t `. Our goal will to be to use A
to construct an agnostic PAC learner for Hp

i .

Let D be any distribution over X ⇥ {0, 1}, h?,p
i = argminh2H

p
i

D [ {h(x) 6= y}] the optimal
hypothesis, and h

?
2 H be any valid completion of h?,p

i . We will now show that Algorithm 4 from
the proof of Lemma 4.5 is an agnostic PAC learner for Hp

i if we set j = p and give it as input an
agnostic PAC learner A for H w.r.t. ` 2 L(`@p

prec).

Consider the sample S
h?

U and let g = A(Sh?

U ). We can think of g as the output of A run over an i.i.d
sample S drawn from D

?, a joint distribution over X ⇥ Y defined procedurally by first sampling
x ⇠ DX and then outputting the labeled sample (x,BinRel(h?(x), p)). Note that D? is a realizable
distribution (realized by h

?) w.r.t `@p
prec and therefore also `. Let mA(✏, �,K) be the sample complexity

of A.

Since A is an agnostic PAC learner for H w.r.t `, we have that for sample size n � mA(
a✏
2 , �/2,K),

with probability at least 1� �
2 ,
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D? [`(g(x), y)]  inf
h2H

D? [`(h(x), y)] +
a✏

2
=

a✏

2
.

Furthermore, by definition of D?, D? [`(g(x), y)] = x⇠DX [`(g(x),BinRel(h?(x), p))]. There-
fore, x⇠DX [`(g(x),BinRel(h?(x), p))]  a✏

2 . Next, using Lemma E.4, we have pointwise that

{g
p
i (x) 6= h

?,p
i (x)}  {`

@p
prec(g(x),BinRel(h?(x), p)) > 0}

= {`(g(x),BinRel(h?(x), p)) > 0}


1

a
`(g(x),BinRel(h?(x), p)).

Taking expectations on both sides gives,

D

⇥
{g

p
i (x) 6= h

?,p
i (x)}

⇤


1

a
D [`(g(x),BinRel(h?(x), p))] 

✏

2
,

where in the last inequality we use the fact that x⇠DX [`(g(x),BinRel(h?(x), p))]  a✏
2 . Finally,

using the triangle inequality, we have that

D [ {g
p
i (x) 6= y}]  D

⇥
{h

?,p
i (x) 6= y}

⇤
+ D

⇥
{g

p
i (x) 6= h

?,p
i (x}

⇤

 D

⇥
{h

?,p
i (x) 6= y}

⇤
+

✏

2

= argmin
hp
i 2H

p
i

D [ {h
p
i (x) 6= y}] +

✏

2
.

Since g
p
i 2 C

p
i (SU ), we have shown that Cp

i (SU ) contains a hypothesis that generalizes well w.r.t
D. Now we want to show that the predictor ĝpi returned in step 4 also generalizes well. Crucially,
observe that Cp

i (SU ) is a finite hypothesis class with cardinality at most Kpn. Therefore, by standard
Chernoff and union bounds, with probability at least 1� �/2, the empirical risk of every hypothesis
in C

p
i (SU ) on a sample of size �

8
✏2 log

4|Cj
i (SU )|
� is at most ✏/4 away from its true error. So, if

m = |SL| �
8
✏2 log

4|Cj
i (SU )|
� , then with probability at least 1� �/2, we have

1

|SL|

X

(x,y)2SL

{g
p
i (x) 6= y}  ED [ {g

p
i (x) 6= y}] +

✏

4


3✏

4
.

Since ĝ
p
i is the ERM on SL over Cp

i (SU ), its empirical risk can be at most 3✏
4 . Given that the

population risk of ĝpi can be at most ✏/4 away from its empirical risk, we have that

ED[ {ĝ
p
i (x) 6= y}]  argmin

hp
i 2H

p
i

D [ {h
p
i (x) 6= y}] + ✏.

Applying union bounds, the entire process succeeds with probability 1 � �. We can compute the
upper bound on the sample complexity of Algorithm 4, denoted n(✏, �,K), as

n(✏, �,K)  mA(
a✏

2
, �/2,K) +O

✓
1

✏2
log

|C(SU )|

�

◆

 mA(
a✏

2
, �/2,K) +O

✓
p mA(

a✏
2 , �/2,K) log(K) + log 1

�

✏2

◆
,

where we use |C(SU )|  K
pmA( a✏

2 ,�/2,K). This shows that Algorithm 4 is an agnostic PAC learner
for Hp

i w.r.t 0-1 loss. Since our choice of loss ` 2 L(`@p
prec) and index i were arbitrary, agnostic PAC

learnability of H w.r.t ` implies agnostic PAC learnability of Hp
i w.r.t the 0-1 loss for all i 2 [K].

Combining Lemma C.2, C.3 and C.4 gives Theorem 4.2.

23



D Proofs for Online Multilabel Ranking

D.1 Proof of necessity in Theorem 5.1

Proof. Fix ` 2 L(`@p
sum) and (i, j) 2 [K]⇥ [p]. Given an online learner A for H w.r.t `, our goal is to

construct an agnostic online learner Aj
i for Hj

i . To that end, let (x1, y1), ..., (xT , yT ) 2 (X⇥{0, 1})T

denote a stream of labeled instances. Define h
?,j
i = argminhj

i2H
j
i

PT
t=1 {h

j
i (xt) 6= yt} to be the

optimal function in H
j
i and h

? be an arbitrary completion of h?,j
i . As in the sufficiency proof, our

construction of the online learner for Hj
i will run REWA over a set of experts we construct below.

For any bitstring b 2 {0, 1}T , let � : {t 2 [T ] : bt = 1} ! SK denote a function mapping time
points where bt = 1 to permutations. Let �b = S

{t2[T ]:bt=1}
K denote all such functions �. For

every h 2 H, there exists a �
h
b 2 �b such that for all t 2 {t : bt = 1}, �h

b (t) = h(xt). Let
|b| = |{t 2 [T ] : bt = 1}|. For every b 2 {0, 1}T and � 2 �b, define an Expert Eb,�. Expert Eb,�,
formally presented in Algorithm 6, uses A to make predictions in each round. For every b 2 {0, 1}T ,
let Eb =

S
�2�b

{Eb,�} denote the set of all Experts parameterized by functions � 2 �b. As before,
we will actually define Eb = {E0} [

S
�2�b

{Eb,�}, where E0 is the expert that never updates A and
only uses it to make predictions in each round. Note that 1  |Eb|  (K!)|b|  K

K|b|.

Algorithm 6 Expert (b,�)
Input: Independent copy of online learner A for H

1 for t = 1, ..., T do
2 Receive example xt

3 Predict {⇡̂i  j} where ⇡̂ = A(xt)
4 if bt = 1 then
5 Update A by passing (xt,BinRel(�(t), j))
6 end

We are now ready to give the agnostic online learner for H
j
i , henceforth denoted by Q. Our

online learner Q is very similar to Algorithm 3. First, it will sample a B 2 {0, 1}T s.t. Bt ⇠

Bernoulli(T �
/T ). Then, it will construct a set of experts EB using Algorithm 6. Finally, it will run

REWA, denoted by P , on the 0-1 loss over the stream (x1, y1), ..., (xT , yT ). As before, let A and
P be the random variables denoting internal randomness of the algorithm A and P . Using REWA
guarantees and following exactly the same calculation as in the sufficiency proof, we arrive at

"
TX

t=1

{Q(xt) 6= yt}

#


"
TX

t=1

{EB,�h?
B
(xt) 6= yt}

#
+

p

2T 1+�K lnK.

The inequality above is the adaptation of Equation (1) for this proof. Recall that h?,j
i is the optimal

function in hindsight for the stream and h
? is a completion of h?,j

i . Since {EB,�h?
B
(xt) 6= yt} 

{h
?,j
i (xt) 6= yt} + {EB,�h?

B
(xt) 6= h

?,j
i (xt)}, the inequality above reduces to

"
TX

t=1

{Q(xt) 6= yt}

#


TX

t=1

{h
?,j
i (xt) 6= yt}+

"
TX

t=1

{EB,�h?
B
(xt) 6= h

?,j
i (xt)}

#
+
p

2T 1+�K lnK.

It now suffices to show that
hPT

t=1 {EB,�h?
B
(xt) 6= h

?,j
i (xt)}

i
is sub-linear function of T .

Given an online learner A for H, an instance x 2 X , and an ordered finite sequence of labeled
examples L 2 (X ⇥ Y)⇤, let A(x|L) be the random variable denoting the prediction of A on
the instance x after running and updating on L. For any b 2 {0, 1}T , h 2 H, and t 2 [T ], let
L
h
b<t

= {(xi,BinRel(h(xs), j)) : s < t and bs = 1} denote the subsequence of the sequence of
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labeled instances {(xs,BinRel(h(xs), j))}
t�1
s=1 where bs = 1. Thus, using Lemma E.3, we have

{EB,�h?
B
(xt) 6= h

?,j
i (xt)}  {`

@p
sum(A(xt | L

h?

B<t
),BinRel(h?(xt), j)) > 0}

= {`(A(xt | L
h?

B<t
),BinRel(h?(xt), j)) > 0}


1

a
`(A(xt | L

h?

B<t
),BinRel(h?(xt), j),BinRel(h?(xt), j)),

where equality follows from the fact that ` 2 L(`@p
sum). Here, a is the lower bound whenever it is

non-zero. Taking expectations of both sides and summing over t 2 [T ] gives

"
TX

t=1

{EB,�h?
B
(xt) 6= h

?,j
i (xt)}

#


1

a

"
TX

t=1

`(A(xt | L
h?

B<t
),BinRel(h?(xt), j))

#
.

To upperbound the right-hand side, we will again use the fact that the prediction A(xt | L
h?

B<t
) only

depends on (B1, . . . , Bt�1), but is independent of Bt. The details of this calculation are omitted
because they are identical to that of the sufficiency proof. Using independence of A(xt | L

h?

B<t
) and

Bt, we obtain
"

TX

t=1

`(A(xt | L
h?

B<t
),BinRel(h?(xt), j))

#
=

T

T �

"
X

t:Bt=1

`(A(xt | L
h?

B<t
),BinRel(h?(xt), j))

#

=
T

T �

" "
X

t:Bt=1

`(A(xt | L
h?

B<t
),BinRel(h?(xt), j))

�����B
##


T

T �
E [R(|B|,K)] ,

where R(|B|,K) is the regret of the algorithm A, a sub-linear function of |B|. In the last step,
we use the fact that A is a (realizable) online learner for H w.r.t. ` and the feedback that the
algorithm received was (xt,BinRel(h?(xt), j)) in the rounds whenever Bt = 1. Again, Lemma
5.17 from Ceccherini-Silberstein et al. [2017] guarantees an existence of a concave sublinear up-
perbound R̃(|B|,K) of R(|B|,K). Then, applying Jensen’s inequality yields [R(|B|,K)] h

R̃(|B|,K)
i
 R̃(T �

,K), a concave sub-linear function of T � . Combining everything, we get

"
TX

t=1

{Q(xt) 6= yt}

#


TX

t=1

{h
?,j
i (xt) 6= yt}+

T

aT �
R̃(T �

,K) +
p

2T 1+�K lnK

= argmin
hj
i2H

j
i

TX

t=1

{h
j
i (xt) 6= yt}+

T

aT �
R̃(T �

,K) +
p

2T 1+�K lnK

For any choice of � 2 (0, 1), the regret above is a sub-linear function of T . Therefore, we have
shown that Q is an agnostic learner for Hj

i w.r.t. 0-1 loss.

D.2 Proof of Theorem 5.2

Proof. (of sufficiency in Theorem 5.2) Fix ` 2 L(`@p
prec) and let M = max⇡,y `(⇡, y). This proof is

virtually identical to the proof of sufficiency in Theorem 4.1. However, we provide the full details
here for completion. Our proof is also based on reduction. That is, given realizable learners Ap

i of
H

p
i ’s for i 2 [K] w.r.t. 0-1 loss, we will construct an agnostic learner Q for H w.r.t. `. We will

construct a set of experts E that uses Ap
i to make predictions and run the REWA algorithm using

these experts.

Let (x1, y1), ..., (xT , yT ) 2 (X⇥Y)T denote the stream of points to be observed by the online learner.
As before, we will assume an oblivious adversary. Define h? = argminh2H

PT
t=1 `(h(xt), yt) to be

the optimal hypothesis in hindsight.
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For any bitstring b 2 {0, 1}T , let � : {t 2 [T ] : bt = 1} ! SK denote a function mapping time
points where bt = 1 to permutations. Let �b = S

{t2[T ]:bt=1}
K denote all such functions �. For

every h 2 H, there exists a �
h
b 2 �b such that for all t 2 {t : bt = 1}, �h

b (t) = h(xt). Let
|b| = |{t 2 [T ] : bt = 1}|. For every b 2 {0, 1}T and � 2 �b, we will define an Expert Eb,�. Expert
Eb,�, formally presented in Algorithm 3, uses Ap

i ’s to make predictions in each round. However,
Eb,� only updates the Ap

i ’s on those rounds where bt = 1, using � to compute a labeled instance. For
every b 2 {0, 1}T , let Eb =

S
�2�b

{Eb,�} denote the set of all Experts parameterized by functions
� 2 �b. If b is the bitstring with all zeros, then Eb will be empty. Therefore, we will actually define
Eb = {E0} [

S
�2�b

{Eb,�}, where E0 is the expert that never updates Aj
i ’s and only uses them for

predictions in all t 2 [T ]. Note that 1  |Eb|  (K!)|b|  K
K|b|. Using these experts, Algorithm 3

is our agnostic online learner Q for H w.r.t ` 2 L(`@p
prec).

Algorithm 7 Expert (b,�)
Input: Independent copy of realizable learners Ap

i of Hp
i for i 2 [K]

1 for t = 1, ..., T do
2 Receive example xt

3 Define a binary vote vector vt 2 {0, 1}K such that vt[i] = A
p
i (xt)

4 Predict ⇡̂t 2 argmin⇡2SK
h⇡, vti

5 if bt = 1 then
6 Let ⇡ = �(t) and for each i 2 [K], update A

p
i by passing (xt,⇡

p
i )

7 end

Using REWA guarantees and following exactly the same calculation as in the proof of Theorem 5.1
we immediately arrive at

"
TX

t=1

`(Q(xt), yt)

#


"
TX

t=1

`(EB,�h?
B
(xt), yt)

#
+M

p

2T 1+�K lnK,

the analog of Equation (1) for this setting. Using Lemma E.2, we have

`(EB,�h?
B
(xt), yt)  `(h?(xt), yt) +

M

a
`(EB,�h?

B
(xt),BinRel(h?(xt), p))

pointwise, where a = min⇡,y{`(⇡, y) | `(⇡, y) 6= 0}. By definition of M , we further get

`(EB,�h?
B
(xt),BinRel(h?(xt), p))  M {`(EB,�h?

B
(xt),BinRel(h?(xt), p)) > 0}

= M {`
@p
prec(EB,�h?

B
(xt),BinRel(h?(xt), p)) > 0},

where the equality follows from the fact that ` 2 L(`@p
prec).

In order to upperbound the indicator above, we need some more notations. Given the realizable
online learner Ap

i for i 2 [K] ⇥ [p], an instance x 2 X , and an ordered finite sequence of labeled
examples L 2 (X ⇥ {0, 1})⇤, let Ap

i (x|L) be the random variable denoting the prediction of Ap
i

on the instance x after running and updating on L. For any b 2 {0, 1}T , h 2 H, and t 2 [T ], let
L
h
b<t

(i, p) = {(xs, h
p
i (xs)) : s < t and bs = 1} denote the subsequence of the sequence of labeled

instances {(xs, h
p
i (xs))}

t�1
s=1 where bs = 1. Then, we have

{`
@p
prec(EB,�h?

B
(xt),BinRel(h?(xt), p)) > 0} 

KX

i=1

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)}.

To prove this claimed inequality, consider the case when
PK

i=1 {A
p
i (xt | L

h?

B<t
(i, p)) 6=

h
?,p
i (xt)} = 0 because the inequality is trivial otherwise. Then, we must have Ap

i (xt | L
h?

B<t
(i, p)) =

h
?,p
i (xt) for all i 2 [K]. Let vt 2 {0, 1}K such that vt[i] = A

p
i (xt | L

h?

B<t
(i, p)) be a binary

vote vector that the expert EB,�h?
B

constructs in round t. Since h
?(xt) is a permutation, the vote

vector vt must contain exactly p labels with 1 vote and K � p labels with 0 votes. Thus, every
⇡̂t 2 argmin⇡2SK

h⇡, vti must rank labels with 1 vote in top p and labels with 0 votes outside top p.
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In other words, we must have ⇡̂t
p
= h

?(xt), and thus `@p
prec(⇡̂t,BinRel(h?(xt), p)) = 0 by definition

of `@p
prec. Our claim follows because EB,�h?

B
(xt) 2 argmin⇡2SK

h⇡, vti.

Combining everything, we obtain

`(EB,�h?
B
(xt), yt)  `(h?(xt), yt) +

M
2

a

KX

i=1

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)}.

Taking expectations on both sides and summing over all t 2 [T ] yields

E
"

TX

t=1

`(EB,�h?
B
(xt), yt)

#


TX

t=1

`(h?(xt), yt)+
M

2

a

KX

i=1

E
"

TX

t=1

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)}

#
.

So, it now suffices to show that E
hPT

t=1 {A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)}

i
is a sub-linear func-

tion of T . Again, using the independence of Bt and the algorithm’s prediction in round t, we can
write

E
"

TX

t=1

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)}

#
=

TX

t=1

E
h

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)}

i P [Bt = 1]

P [Bt = 1]

=
T

T �

TX

t=1

E
h

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)}

i
E [ {Bt = 1}]

=
T

T �

TX

t=1

E
h

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)} {Bt = 1}

i
.

Next, we can use the regret guarantee of the algorithm A
p
i on the rounds it was updated. That is,

TX

t=1

E
h

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)} {Bt = 1}

i
= E

"
X

t:Bt=1

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)}

#

= E
"
E
"
X

t:Bt=1

{A
p
i (xt | L

h?

B<t
(i, p)) 6= h

?,p
i (xt)}

�����B
##

 EB [Rp
i (|B|)] ,

where R
p
i (|B|) is the regret of Ap

i , a sub-linear function of |B|. In the last step, we use the fact that
A

p
i is a realizable algorithm for Hp

i and the feedback that the algorithm received was (xt, h
?,p
i (xt))

in the rounds whenever Bt = 1. By Lemma 5.17 from Ceccherini-Silberstein et al. [2017], there
exists a concave sub-linear function R̃

p
i (|B|) that upperbounds R

p
i (|B|). By Jensen’s inequality,

B [Rp
i (|B|)]  R̃

p
i (T

�), a sub-linear function of T � .

Putting everything together, we obtain
"

TX

t=1

`(Q(xt), yt)

#


TX

t=1

`(h?(xt), yt) +
M

2

a

KX

i=1

T

T �
R̃

p
i (T

�) +M

p

2T 1+�K lnK

= inf
h2H

TX

t=1

`(h(xt), yt) +
pM

2

a

KX

i=1

T

T �
R̃

p
i (T

�) +M

p

2T 1+�K lnK.

Since R̃
p
i (T

�) is a sublinear function of T � , we have that T
T� R̃

p
i (T

�) is a sublinear function of T .
As the sum of sublinear functions is sublinear, the second term above must be a sublinear function of
T . Thus, the regret is sub-linear for any choice of � 2 (0, 1). This completes our proof as we have
shown that the algorithm Q achieves sub-linear regret in T .

We will now show that the online learnability of H w.r.t ` implies that Hp
i for each i 2 [K] is online

learnable w.r.t 0-1 loss.

27



Proof. (of necessity in Theorem 5.2)

Fix ` 2 L(`@p
prec) and let M = max⇡,y `(⇡, y). Given an online learner A for H w.r.t `, our goal is to

construct an agnostic online learner Ap
i for Hp

i for a fixed i 2 [K]. One can construct agnostic online
learners for Hp

i for all i 2 [K] by symmetry. Our construction uses the REWA and is similar to the
sufficiency proof above.

Let us define function �’s, the collection of functions �b for every b in the same way we did before.
For every b 2 {0, 1}T and � 2 �b, define an Expert Eb,�. Expert Eb,� is the expert presented in
Algorithm 6 after setting j = p and uses A to make predictions in each round. For every b 2 {0, 1}T ,
let Eb =

S
�2�b

{Eb,�} denote the set of all Experts parameterized by functions � 2 �b. As before,
we will actually define Eb = {E0} [

S
�2�b

{Eb,�}, where E0 is the expert that never updates A and
only uses it to make predictions in each round. Note that 1  |Eb|  (K!)|b|  K

K|b|.

The online learner for Hp
i , henceforth denoted by Q, is similar to Algorithm 3. First, it samples a

B 2 {0, 1}T s.t. Bt ⇠ Bernoulli(T �
/T ), constructs a set of experts EB using Algorithm 6 and runs

REWA, denoted by P , on the 0-1 loss over the stream (x1, y1), ..., (xT , yT ) 2 (X ⇥ {0, 1})T . Let
h
?,p
i = argminhp

i 2H
p
i

PT
t=1 {h

p
i (xt) 6= yt} be the optimal function in hindsight and h

? be any
arbitrary completion of h?,p

i .

Using REWA guarantees and following exactly the same calculation as in the sufficiency proof, we
arrive at

"
TX

t=1

{Q(xt) 6= yt}

#


"
TX

t=1

{EB,�h?
B
(xt) 6= yt}

#
+

p

2T 1+�K lnK.

The inequality above is the adaptation of Equation (1) for this proof. Since {EB,�h?
B
(xt) 6= yt} 

{h
?,p
i (xt) 6= yt} + {EB,�h?

B
(xt) 6= h

?,p
i (xt)}, the inequality above reduces to

"
TX

t=1

{Q(xt) 6= yt}

#


TX

t=1

{h
?,p
i (xt) 6= yt}+

"
TX

t=1

{EB,�h?
B
(xt) 6= h

?,p
i (xt)}

#
+
p

2T 1+�K lnK.

It now suffices to show that
hPT

t=1 {EB,�h?
B
(xt) 6= h

?,p
i (xt)}

i
is sub-linear in T .

Given an online learner A for H, an instance x 2 X , and an ordered finite sequence of labeled
examples L 2 (X ⇥ Y)⇤, let A(x|L) be the random variable denoting the prediction of A on
the instance x after running and updating on L. For any b 2 {0, 1}T , h 2 H, and t 2 [T ], let
L
h
b<t

= {(xi,BinRel(h(xs), p)) : s < t and bs = 1} denote the subsequence of the sequence of
labeled instances {(xs,BinRel(h(xs), p))}

t�1
s=1 where bs = 1. Using Lemma E.4, we have

{EB,�h?
B
(xt) 6= h

?,p
i (xt)}  {`

@p
prec(A(xt | L

h?

B<t
),BinRel(h?(xt), p)) > 0}

= {`(A(xt | L
h?

B<t
),BinRel(h?(xt), p)) > 0}


1

a
`(A(xt | L

h?

B<t
),BinRel(h?(xt), p)),

where the equality follows from the definition of the loss class. Here, a is the lower bound on `

whenever it is non-zero. Thus, we obtain

"
TX

t=1

{EB,�h?
B
(xt) 6= h

?,p
i (xt)}

#


1

a

"
TX

t=1

`(A(xt | L
h?

B<t
),BinRel(h?(xt), p))

#
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Now, we will again use the fact that the prediction A(xt | L
h?

B<t
) only depends on (B1, . . . , Bt�1),

but is independent of Bt. Using this independence, we obtain
"

TX

t=1

`(A(xt | L
h?

B<t
),BinRel(h?(xt), p))

#
=

T

T �

"
X

t:Bt=1

`(A(xt | L
h?

B<t
),BinRel(h?(xt), p))

#

=
T

T �

" "
X

t:Bt=1

`(A(xt | L
h?

B<t
),BinRel(h?(xt), p))

�����B
##


T

T �
E [R(|B|,K)] ,

where R(|B|,K) is the regret of the algorithm A and is a sub-linear function of |B|. In the last step,
we use the fact that A is a (realizable) online learner for H w.r.t. ` and the feedback that the algorithm
received was (xt,BinRel(h?(xt), p)) in the rounds whenever Bt = 1. Again, using Lemma 5.17 from
Ceccherini-Silberstein et al. [2017] and Jensen’s inequality yields B [R(|B|,K)]  R̃(T �

,K), a
concave, sub-linear function of T � . Combining everything, we get
"

TX

t=1

{Q(xt) 6= h
?,p
i (xt)}

#


TX

t=1

{h
?,p
i (xt) 6= yt}+

T

aT �
R̃(T �

,K) +
p

2T 1+�K lnK

 inf
hp
i 2H

p
i

TX

t=1

{h
p
i (xt) 6= yt}+

T

aT �
R̃(T �

,K) +
p

2T 1+�K lnK

For any choice of � 2 (0, 1), the regret above is a sub-linear function of T . Therefore, we have
shown that Q is an agnostic learner for Hp

i w.r.t. 0-1 loss. This completes our proof.

E Technical Lemmas

Throughout this section, for any ranking (permutation) ⇡ 2 SK , we let ⇡j
i = {⇡i  j} for all

(i, j) 2 [K].

Lemma E.1. For any y 2 Y , (⇡, ⇡̂) 2 Sk, and ` 2 L(`@p
sum

)

`(⇡, y)  `(⇡̂, y) + c p j⇠Unif([p]) [`(⇡,BinRel(⇡̂, j))] .

where c = max⇡̃,y `(⇡̃,y)
min⇡̃,y{`(⇡̃,y) | `(⇡̃,y) 6=0} .

Proof. Assume that `(⇡, y) > `(⇡̂, y) � 0 (as otherwise the inequality trivially holds). Then, since

` 2 L(`@p
sum), it must be the case that ⇡̂

[p]

6= ⇡. That is, ⇡̂ and ⇡ assign different ranks to the labels in
the top p. Therefore, there exists i 2 [p] s.t. `@p

sum(⇡,BinRel(⇡̂, i)) > 0. Since ` 2 L(`@p
sum), for this

same i 2 [p], `(⇡,BinRel(⇡̂, i)) > 0. Therefore, we have

c p j⇠Unif([p]) [`(⇡,BinRel(⇡̂, j))] � c`(⇡,BinRel(⇡̂, i))

=
max⇡̃,y `(⇡̃, y)

min⇡̃,y{`(⇡̃, y) | `(⇡̃, y) 6= 0}
`(⇡,BinRel(⇡̂, i))

� max
⇡̃,y

`(⇡̃, y)

� `(⇡, y).

Combining the upperbounds in both cases gives the desired inequality.

Lemma E.2. For any y 2 Y , (⇡, ⇡̂) 2 Sk, and ` 2 L(`@p
prec

)

`(⇡, y)  `(⇡̂, y) + c `(⇡,BinRel(⇡̂, p)).

where c = max⇡̃,y `(⇡̃,y)
min⇡̃,y{`(⇡̃,y) | `(⇡̃,y) 6=0} .
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Proof. Assume that `(⇡, y) > `(⇡̂, y) � 0 (as otherwise the inequality trivially holds). Then, since

` 2 L(`@p
prec), it must be the case that ⇡̂

p

6= ⇡. That is, ⇡̂ and ⇡ assign different labels in the top p.
Therefore, `@p

prec(⇡,BinRel(⇡̂, p)) > 0. Since ` 2 L(`@p
prec), `(⇡,BinRel(⇡̂, p)) > 0. Therefore, we

have

c `(⇡,BinRel(⇡̂, p)) =
max⇡̃,y `(⇡̃, y)

min⇡̃,y{`(⇡̃, y) | `(⇡̃, y) 6= 0}
`(⇡,BinRel(⇡̂, p))

� max
⇡̃,y

`(⇡̃, y)

� `(⇡, y).

Combining the upperbounds in both cases gives the desired inequality.

Lemma E.3. Let ⇡, ⇡̂ 2 Sk. Then, for all (i, j) 2 [K]⇥ [p], `@p
sum

(⇡,BinRel(⇡̂, j)) � {⇡
j
i 6= ⇡̂

j
i }.

Proof. Fix label i? 2 [K] and threshold j
?
2 [p]. Our goal is to show that `@p

sum(⇡,BinRel(⇡̂, j?)) �
{⇡

j?

i? 6= ⇡̂
j?

i? }. Recall that BinRel(⇡̂, j?)[i?] = {⇡̂i?  j
?
} by definition. Since

`
@p
sum(⇡̂,BinRel(⇡̂, j?)) = 0, we have that

`
@p
sum(⇡,BinRel(⇡̂, j?)) = `

@p
sum(⇡,BinRel(⇡̂, j?))� `

@p
sum(⇡̂,BinRel(⇡̂, j?))

=
KX

i=1

min(⇡i, p+ 1)BinRel(⇡̂, j?)[i]�
KX

i=1

min(⇡̂i, p+ 1)BinRel(⇡̂, j?)[i]

=
KX

i=1

min(⇡i, p+ 1) {⇡̂i  j
?
}�

KX

i=1

min(⇡̂i, p+ 1) {⇡̂i  j
?
}

=
KX

i=1

min(⇡i, p+ 1) {⇡̂i  j
?
}�

KX

i=1

⇡̂i {⇡̂i  j
?
}

Let I ✓ [K] s.t. for all i 2 I, ⇡̂j?

i = {⇡̂i  j
?
} = 1. Then, we have that

`
@p
sum(⇡,BinRel(⇡̂, j?)) =

X

i2I

min(⇡i, p+ 1)�
X

i2I

⇡̂i

=
X

i2I

min(⇡i, p+ 1)�
j?X

i=1

i

Suppose that {⇡
j?

i? 6= ⇡̂
j?

i? } = 1. It suffices to show that `@p
sum(⇡,BinRel(⇡̂, j?)) � 1. There are

two cases to consider. Suppose i
?
2 I. Then, it must be the case that {⇡i?  j

?
} = ⇡

j?

i? = 0,
implying that ⇡i? � j

? + 1. It then follows that in the best case
P

i2I
min(⇡i, p+ 1) �

Pj?�1
i=1 i+

(j? + 1) >
Pj?

i=1 i showcasing that indeed `
@p
sum(⇡,BinRel(⇡̂, j)) � 1. Now, suppose i

?
/2 I. Then,

{⇡̂i?  j
?
} = 0, which means that {⇡i?  j

?
} = 1. Accordingly, while ⇡̂ did not rank label i? in

the top j
?, ⇡ did rank label i? in the top j

?. Since |I| = j
?, there must exist an label î 2 I which ⇡

does not rank in the top j
?. That is, there exists î 2 I s.t. ⇡î � j

?+1. Using the same logic, in the best
case

P
i2I

min(⇡i, p+ 1) �
Pj�1

i=1 i+ (j? + 1) showcasing that again `
@p
sum(⇡,BinRel(⇡̂, j?)) � 1.

Thus, we have shown that when {⇡
j?

i? 6= ⇡̂
j?

i? } = 1, `@p
sum(⇡,BinRel(⇡̂, j?)) � 1. Since i

? and j
?

were arbitrary, this must be true for any (i, j) 2 [K]⇥ [p], completing the proof.

Lemma E.4. Let ⇡, ⇡̂ 2 Sk. Then, for all i 2 [K], `@p
prec

(⇡,BinRel(⇡̂, p)) � {⇡
p
i 6= ⇡̂

p
i }.

30



Proof. Fix label i? 2 [K]. Our goal is to show that `@p
prec(⇡,BinRel(⇡̂, p)) � {⇡

p
i? 6= ⇡̂

p
i?}. Recall

that BinRel(⇡̂, p)[i?] = {⇡̂i?  p} by definition. Since `
@p
prec(⇡̂,BinRel(⇡̂, p)) = 0, we have that

`
@p
prec(⇡,BinRel(⇡̂, p)) = `

@p
prec(⇡,BinRel(⇡̂, p))� `

@p
prec(⇡̂,BinRel(⇡̂, p))

=
KX

i=1

{⇡̂i  p}BinRel(⇡̂, p)[i]�
KX

i=1

{⇡i  p}BinRel(⇡̂, p)[i]

= p�

KX

i=1

{⇡i  p} {⇡̂i  p}

Let I ✓ [K] s.t. for all i 2 I, ⇡̂p
i = {⇡̂i  p} = 1. Then, we have that

`
@p
prec(⇡,BinRel(⇡̂, p)) = p�

X

i2I

{⇡i  p}.

Suppose that {⇡
p
i? 6= ⇡̂

p
i?} = 1. It suffices to show that `@p

prec(⇡,BinRel(⇡̂, p)) � 1. There are
two cases to consider. Suppose i

?
2 I. Then, it must be the case that {⇡i?  p} = ⇡

p
i? = 0,

implying that ⇡i? � p + 1. It then follows that in the best case
P

i2I
{⇡i  p}  p � 1 < p

showcasing that indeed `
@p
sum(⇡,BinRel(⇡̂, p)) � 1. Now, suppose i

?
/2 I. Then, {⇡̂i?  p} = 0,

which means that {⇡i?  p} = 1. Accordingly, while ⇡̂ did not rank label i? in the top p, ⇡ did

rank label i? in the top p. Since |I| = p, there must exist an label î 2 I which ⇡ does not rank
in the top p. That is, there exists î 2 I s.t. ⇡î � p + 1. Using the same logic, in the best caseP

i2I
{⇡i  p}  p � 1 < p showcasing that again `

@p
prec(⇡,BinRel(⇡̂, p)) � 1. Thus, we have

shown that when {⇡
p
i? 6= ⇡̂

p
i?} = 1, `@p

prec(⇡,BinRel(⇡̂, p)) � 1. Since i
? was arbitrary, this must be

true for any i 2 [K], completing the proof.

31


	Introduction
	Preliminaries and Notation
	Ranking Loss Families
	Batch Multilabel Ranking
	Online Multilabel Ranking
	Discussion
	Categorizing Popular Ranking Losses
	Agnostic PAC Learnability of Score-based Rankers
	Proofs for Batch Multilabel Ranking 
	Proof of Lemma 4.3
	Proof of Lemma 4.5
	Characterizing Batch Learnability of L(@pprec)

	Proofs for Online Multilabel Ranking
	Proof of necessity in Theorem 5.1
	Proof of Theorem 5.2

	Technical Lemmas

