Α **Categorizing Popular Ranking Losses**

Loss	Loss Family
Sum Loss@p	$\mathcal{L}(\ell_{ ext{sum}}^{@p})$
Precision Loss@p	$\mathcal{L}(\ell_{ ext{prec}}^{@p})$
Average Precision	$\mathcal{L}(\ell_{ ext{sum}}^{@K})$
Area Under the Curve	$\mathcal{L}(\ell_{ ext{sum}}^{@K})$
Reciprocal Rank	$\mathcal{L}(\ell_{ m prec}^{@1})$
Pairwise Rank Loss	$\mathcal{L}(\ell_{\mathrm{sum}}^{@K})$
Discounted Cumulative Loss	$\mathcal{L}(\ell_{ ext{sum}}^{@K})$
Discounted Cumulative Loss@p	$\mathcal{L}(\ell_{ ext{sum}}^{@p})$

Table 1: Categorizing Popular Ranking Losses.

In this section, we show that our loss families $\mathcal{L}(\ell_{sum}^{\otimes p})$ and $\mathcal{L}(\ell_{prec}^{\otimes p})$ are general and capture many of the popular ranking loss functions used in practice. We summarize the results in Table 1.

Recall that

$$\mathcal{L}(\ell_{\text{sum}}^{\otimes p}) = \{\ell \in \mathbb{R}^{\mathcal{S}_{K} \times \mathcal{Y}} : \ell = 0 \text{ if and only if } \ell_{\text{sum}}^{\otimes p} = 0\} \cap \{\ell \in \mathbb{R}^{\mathcal{S}_{K} \times \mathcal{Y}} : \pi \stackrel{[p]}{=} \hat{\pi} \implies \ell(\pi, y) = \ell(\hat{\pi}, y)\},$$

where

$$\ell_{\text{sum}}^{@p}(\pi, y) = \sum_{i=1}^{K} \min(\pi_i, p+1) y^i - Z_y^p$$

Note that the normalization constant is defined as $Z_y^p := \min_{\pi \in S_K} \sum_{i=1}^K \min(\pi_i, p+1)y^i$ and thus only depends on y. Furthermore,

 $\mathcal{L}(\ell_{\mathrm{prec}}^{@p}) = \{\ell \in \mathbb{R}^{\mathcal{S}_K \times \mathcal{Y}} : \ell = 0 \text{ if and only if } \ell_{\mathrm{prec}}^{@p} = 0\} \cap \{\ell \in \mathbb{R}^{\mathcal{S}_K \times \mathcal{Y}} : \pi \stackrel{p}{=} \hat{\pi} \implies \ell(\pi, y) = \ell(\hat{\pi}, y)\}.$ where

$$\ell_{\text{prec}}^{@p}(\pi, y) = Z_y^p - \sum_{i=1}^K \mathbb{1}\{\pi_i \le p\} y^i.$$

As before, the normalization constant $Z_y^p := \max_{\pi \in \mathcal{S}_K} \sum_{i=1}^K \mathbb{1}\{\pi_i \leq p\} y^i$ only depends on y.

In ranking literature, many evaluation metrics are often stated in terms of *gain* functions. However, these can be easily converted into loss functions by subtracting the gain from the maximum possible value of the gain. When relevance scores are restricted to be binary (i.e. $\mathcal{Y} = \{0, 1\}^{K}$), the Average Precision (AP) metric is a gain function defined as

$$\operatorname{AP}(\pi, y) = \frac{1}{\|y\|_1} \sum_{i \in \{\pi_m : y^m = 1\}} \frac{\sum_{j=1}^K \mathbb{1}\{\pi_j \le i\} y^j}{i}.$$

Since the maximum value AP can take is 1, we can define its loss function variant as:

$$\ell_{\mathrm{AP}}(\pi, y) = 1 - \mathrm{AP}(\pi, y).$$

Note that $\ell_{AP}(\pi, y) = 0$ if and only if π ranks all labels where $y_i = 1$ in the top $||y||_1$. Therefore, $\ell_{\rm AP}(\pi, y) \in \mathcal{L}(\ell_{\rm sum}^{@K}).$

Another useful metric for binary relevance feedback is the Area Under the Curve (AUC) loss function:

$$\ell_{\text{AUC}}(\pi, y) = \frac{1}{\|y\|_1 (K - \|y\|_1)} \sum_{i=1}^K \sum_{j=1}^K \mathbb{1}\{\pi_i < \pi_j\} \mathbb{1}\{y^i < y^j\}.$$

The AUC computes the fraction of "bad pairs" of labels (i.e those pairs of labels where *i* was more relevant than *j*, but *i* was ranked lower than *j*). Again, note that $\ell_{AUC}(\pi, y) = 0$ if and only if π ranks all labels where $y^i = 1$ in the top $||y||_1$. Therefore, $\ell_{AP}(\pi, y) \in \mathcal{L}(\ell_{sum}^{@K})$.

Lastly, the **Reciprocal Rank** (RR) metric is another important *gain* function for binary relevance score feedback,

$$\operatorname{RR}(\pi, y) = \frac{1}{\min_{i:y^i = 1} \pi_i}.$$

Its loss equivalent can be written as:

$$\ell_{\mathrm{RR}}(\pi, y) = 1 - \mathrm{RR}(\pi, y).$$

Since $\ell_{\text{RR}}(\pi, y)$ only cares about the relevance of the top-ranked label, we have that $\ell_{\text{RR}}(\pi, y) \in \mathcal{L}(\ell_{\text{prec}}^{\otimes 1})$.

Moving onto non-binary relevance scores, we start with the Pairwise Rank Loss (PL):

$$\ell_{\rm PL}(\pi, y) = \sum_{i=1}^{K} \sum_{j=1}^{K} \mathbb{1}\{\pi_i < \pi_j\} \mathbb{1}\{y^i < y^j\}.$$

The Pairwise Ranking loss is the analog of AUC for non-binary relevance scores and thus $\ell_{PL}(\pi, y) \in \mathcal{L}(\ell_{sum}^{@K})$.

Finally, we have the **Discounted Cumulative Gain** (DCG) metric, defined as:

$$DCG(\pi, y) = \sum_{i=1}^{K} \frac{2^{y^{i}} - 1}{\log_{2}(1 + \pi_{i})}$$

For an appropriately chosen normalizing constant Z_y , we can define its associated loss:

$$\ell_{\mathrm{DCG}}(\pi, y) = Z_y - \mathrm{DCG}(\pi, y).$$

Like $\ell_{\text{sum}}^{@K}$, $\ell_{\text{DCG}}(\pi, y)$ is 0 if and only if π ranks the K labels in increasing order of relevance, breaking ties arbitrarily. Thus, $\ell_{\text{DCG}}(\pi, y) \in \mathcal{L}(\ell_{\text{sum}}^{@K})$. If one only cares about the top-p ranked results, then the DCG@p loss function evaluates only the top-p ranked labels:

$$\ell_{\text{DCG}}^{@p}(\pi, y) = Z_y^p - \sum_{i=1}^K \frac{2^{y^i} - 1}{\log_2(1 + \pi_i)} \mathbb{1}\{\pi_i \le p\} = Z_y^p - \text{DCG}^{@p}(\pi, y).$$

Analogously, we have that $\ell_{\text{DCG}}^{@p}(\pi, y) \in \mathcal{L}(\ell_{\text{sum}}^{@p})$.

B Agnostic PAC Learnability of Score-based Rankers

In this section, we apply our results in the main paper to give sufficient conditions for the agnostic PAC learnability of score-based ranking hypothesis classes. A score-based ranking hypothesis $h: \mathcal{X} \to \mathcal{S}_K$ first maps an input $x \in \mathcal{X}$ to a vector in \mathbb{R}^K representing the "score" for each label. Then, it outputs a ranking (permutation) over the labels in [K] by sorting the real-valued vector in decreasing order of score.

More formally, let $\mathcal{F} \subseteq (\mathbb{R}^K)^{\mathcal{X}}$ denote a set of functions mapping elements from the input space \mathcal{X} to score-vectors in \mathbb{R}^K . For each $f \in \mathcal{F}$, define the score-based ranking hypothesis $h_f(x) = \operatorname{argsort}(f(x))$ which first computes the score-vector $f(x) \in \mathbb{R}^K$, and then outputs a ranking by sorting f(x) in decreasing order, breaking ties by giving the smaller label the higher rank. That is, if $f_1(x) = f_2(x)$, then label 1 will be ranked higher than label 2. Given \mathcal{F} , define its induced score-based ranking hypothesis class as $\mathcal{H} = \{h_f : f \in \mathcal{F}\}$. Since our characterization of ranking learnability relates the learnability of \mathcal{H} to the learnability of the *binary* threshold-restricted classes $\mathcal{H}_i^j = \{h_i^j : h \in \mathcal{H}\}$, it suffices to consider an arbitrary threshold-restricted class \mathcal{H}_i^j and bound its VC dimension. Before we do so, we need some more notation regarding \mathcal{F} .

For each $k \in [K]$, define the scalar-valued function class $\mathcal{F}_k = \{f_k \mid (f_1, \ldots, f_K) \in \mathcal{F}\}$ by restricting each function in \mathcal{F} to its k^{th} coordinate output. Here, each $\mathcal{F}_k \subseteq \mathbb{R}^{\mathcal{X}}$ and we can write

 $\mathcal{F} = (\mathcal{F}_1, \dots, \mathcal{F}_K).$ For a function $f \in \mathcal{F}$, we will use $f_k(x)$ to denote the k^{th} coordinate output of f(x). For every $(i, j) \in [K] \times [K]$, define the function class $\mathcal{F}_i - \mathcal{F}_j = \{f_i - f_j : f \in \mathcal{F}\}$ where we let $f_i - f_j : \mathcal{X} \to \mathbb{R}$ denote a function such that $(f_i - f_j)(x) = f_i(x) - f_j(x)$. Subsequently, for any $(i, j) \in [K] \times [K]$, define the *binary* hypothesis classes $\mathcal{G}_{i,j} = \{\mathbb{1}\{(f_i - f_j)(x) < 0\} : f_i - f_j \in \mathcal{F}_i - \mathcal{F}_j\}$ and $\tilde{\mathcal{G}}_{i,j} = \{\mathbb{1}\{(f_i - f_j)(x) \leq 0\} : f_i - f_j \in \mathcal{F}_i - \mathcal{F}_j\}$. Finally, let $C_j : \{0, 1\}^K \to \{0, 1\}$ be the K-wise composition s.t. $C_j(b) = \mathbb{1}\{\sum_{i=1}^K b_i \leq j\}$ and define $C_j(\mathcal{G}_1, \dots, \mathcal{G}_K) = \{C_j(g_1, \dots, g_K) : (g_1, \dots, g_K) \in \mathcal{G}_1 \times \dots \times \mathcal{G}_K\}$. In other words, $C_j(\mathcal{G}_1, \dots, \mathcal{G}_K)$ is the *binary* hypothesis class constructed by taking all combinations of binary classifiers from $\mathcal{G}_1, \dots, \mathcal{G}_K$, summing them up, and thresholding the sum at j. We are now ready to bound the VC dimension of an arbitrary threshold-restricted class \mathcal{H}_i^j .

Consider an arbitrary threshold-restricted class \mathcal{H}_i^j and hypothesis $h \in \mathcal{H}$. By definition, $h_i^j \in \mathcal{H}_i^j$. Let $f \in \mathcal{F}$ denote the function associated with h. Given an instance $x \in \mathcal{X}$, recall that $h_i^j(x) = \mathbb{1}\{h_i(x) \leq j\}$ where $h_i(x)$ is the rank that h gives to the label i for instance x. Since $h(x) = \operatorname{argsort}(f(x))$, we have

$$\begin{split} h_i(x) &= \operatorname{argsort}(f(x))[i] \\ &= \sum_{m=1}^i \mathbbm{1}\{f_i(x) \le f_m(x)\} + \sum_{m=i+1}^K \mathbbm{1}\{f_i(x) < f_m(x)\} \\ &= \sum_{m=1}^i \mathbbm{1}\{(f_i - f_m)(x) \le 0\} + \sum_{m=i+1}^K \mathbbm{1}\{(f_i - f_m)(x) < 0\} \end{split}$$

Thus, we can write:

$$h_i^j(x) = \mathbb{1}\left\{ \left(\sum_{m=1}^i \mathbb{1}\{(f_i - f_m)(x) \le 0\} + \sum_{m=i+1}^K \mathbb{1}\{(f_i - f_m)(x) < 0\} \right) \le j \right\}.$$

Note that $h_i^j \in C_j(\tilde{\mathcal{G}}_{i,1}, ..., \tilde{\mathcal{G}}_{i,i}, \mathcal{G}_{i,i+1}, ..., \mathcal{G}_{i,K})$ by construction. Since h, and therefore h_i^j , was arbitrary, it further follows that $\mathcal{H}_i^j \subseteq C_j(\tilde{\mathcal{G}}_{i,1}, ..., \tilde{\mathcal{G}}_{i,i}, \mathcal{G}_{i,i+1}, ..., \mathcal{G}_{i,K})$. Therefore,

$$\operatorname{VC}(\mathcal{H}_{i}^{j}) \leq \operatorname{VC}(C_{j}(\tilde{\mathcal{G}}_{i,1},...,\tilde{\mathcal{G}}_{i,i},\mathcal{G}_{i,i+1},...,\mathcal{G}_{i,K})).$$

Since $C_j(\tilde{\mathcal{G}}_{i,1},...,\tilde{\mathcal{G}}_{i,i},\mathcal{G}_{i,i+1},...,\mathcal{G}_{i,K})$ is some *K*-wise composition of binary classes $\tilde{\mathcal{G}}_{i,1},...,\tilde{\mathcal{G}}_{i,i},\mathcal{G}_{i,i+1},...,\mathcal{G}_{i,K}$, standard VC composition guarantees that $VC(C_j(\tilde{\mathcal{G}}_{i,1},...,\tilde{\mathcal{G}}_{i,i},\mathcal{G}_{i,i+1},...,\mathcal{G}_{i,K})) = \tilde{O}(VC(\tilde{\mathcal{G}}_{i,1}) + ... + VC(\tilde{\mathcal{G}}_{i,i}) + VC(\mathcal{G}_{i,i+1}) + ... + VC(\mathcal{G}_{i,K}))$, where we hide log factors of *K* and the VC dimensions [Dudley, 1978] Alon et al., 2020]. Putting things together, we have that

$$\mathrm{VC}(\mathcal{H}_{i}^{j}) \leq \tilde{O}(\mathrm{VC}(\tilde{\mathcal{G}}_{i,1}) + \ldots + \mathrm{VC}(\tilde{\mathcal{G}}_{i,i}) + \mathrm{VC}(\mathcal{G}_{i,i+1}) + \ldots + \mathrm{VC}(\mathcal{G}_{i,K}))$$

An identical analysis can also be used to give sufficient conditions for the *online* learnability of score-based rankers in terms of the Littlestone dimensions of \mathcal{H}_i^i .

Now, we consider the special class of *linear* score-based ranker and prove Lemma 4.6

Proof. (of Lemma 4.6) Let $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{F} = \{f_W : W \in \mathbb{R}^{K \times d}\}$ s.t. $f_W(x) = Wx$. Consider the class of linear score-based rankers $\mathcal{H} = \{h_{f_W} : f_W \in \mathcal{F}\}$ where $h_{f_W}(x) = \operatorname{argsort}(f_W(x)) =$ $\operatorname{argsort}(Wx)$ breaking ties in the same way mentioned above. Note for all $i \in [K]$, $\mathcal{F}_i = \{f_w : w \in \mathbb{R}^d\}$ where $f_w(x) = w^T x$. Furthermore, $\mathcal{F}_i - \mathcal{F}_j = \mathcal{F}_i = \mathcal{F}_j$. Therefore, for any $(i, j) \in [K] \times [K]$,

$$\mathcal{G}_{i,j} = \{\mathbb{1}\{(f_i - f_j)(x) < 0\} : f_i - f_j \in \mathcal{F}_i - \mathcal{F}_j\} = \{\mathbb{1}\{f_w(x) < 0\} : w \in \mathbb{R}^d\}$$

and

$$\tilde{\mathcal{G}}_{i,j} = \{\mathbb{1}\{(f_i - f_j)(x) \le 0\} : f_i - f_j \in \mathcal{F}_i - \mathcal{F}_j\} = \{\mathbb{1}\{f_w(x) \le 0\} : w \in \mathbb{R}^d\}$$

are the set of half-space classifiers passing through the origin with dimension d. Since for all $(i, j) \in [K] \times [K], \operatorname{VC}(\tilde{\mathcal{G}}_{i,j}) = \operatorname{VC}(\mathcal{G}_{i,j}) = d$, we get that $\operatorname{VC}(\mathcal{H}_i^j) \leq \tilde{O}(Kd)$.

C Proofs for Batch Multilabel Ranking

Since many of the ranking losses we consider map to values in \mathbb{R} , the *empirical* Rademacher complexity will be a useful tool for proving learnability in the batch setting.

Definition 3 (Empirical Rademacher Complexity of Loss Class). Let $\ell(\cdot, \cdot)$ be a loss function, $S = \{(x_1, y_1), ..., (x_n, y_n)\} \in (\mathcal{X} \times \mathcal{Y})^*$ be a set of examples, and $\ell \circ \mathcal{H} = \{(x, y) \mapsto \ell(h(x), y) : h \in \mathcal{H}\}$ be a loss class. The empirical Rademacher complexity of $\ell \circ \mathcal{H}$ is defined as

$$\hat{\mathfrak{R}}_n(\ell \circ \mathcal{H}) = \mathbb{E}_{\sigma} \left[\sup_{h \in \mathcal{H}} \left(\frac{1}{n} \sum_{i=1}^n \sigma_i \ell(h(x_i), y_i) \right) \right]$$

where $\sigma_1, ..., \sigma_n$ are independent Rademacher random variables.

In particular, a standard result relates the empirical Rademacher complexity to the generalization error of hypotheses in \mathcal{H} with respect to a real-valued bounded loss function $\ell(h(x), y)$ [Bartlett and Mendelson] [2002].

Proposition C.1 (Rademacher-based Uniform Convergence). Let \mathcal{D} be a distribution over $\mathcal{X} \times \mathcal{Y}$ and $\ell(\cdot, \cdot) \leq c$ be a bounded loss function. With probability at least $1 - \delta$ over the sample $S \sim \mathcal{D}^n$, for all $h \in \mathcal{H}$ simultaneously,

$$\mathbb{E}_{\mathcal{D}}[\ell(h(x), y)] - \hat{\mathbb{E}}_{S}[\ell(h(x), y)] \le 2\hat{\Re}_{n}(\mathcal{F}) + O\left(c\sqrt{\frac{\ln(\frac{1}{\delta})}{n}}\right)$$

where $\hat{\mathbb{E}}_{S}[\ell(h(x), y)] = \frac{1}{|S|} \sum_{(x,y) \in S} \ell(h(x), y)$ is the empirical average of the loss over S.

When the empirical Rademacher complexity of the loss class $\ell \circ \mathcal{H} = \{(x, y) \mapsto \ell(h(x), y) : h \in \mathcal{H}\}$ is o(1), we state that \mathcal{H} enjoys the uniform convergence property w.r.t ℓ . If \mathcal{H} enjoys the uniform convergence property w.r.t ℓ . If \mathcal{H} enjoys the uniform convergence property w.r.t a loss ℓ , a standard result shows that \mathcal{H} is learnable according to Definition 1 via Empirical Risk Minimization (ERM) (Theorem 26.5 in Shalev-Shwartz and Ben-David [2014]).

C.1 Proof of Lemma 4.3

Proof. Let $\mathcal{H} \subseteq \mathcal{S}_K^{\mathcal{X}}$ be an arbitrary ranking hypothesis class. We need to show that if \mathcal{H}_i^j is agnostic PAC learnable w.r.t to 0-1 loss for all $(i, j) \in [K] \times [p]$, then ERM is an agnostic PAC learnable w.r.t $\ell_{\text{sum}}^{@p}$. By Proposition C.1, it suffices to show that the empirical Rademacher complexity of the loss class $\ell_{\text{sum}}^{@p} \circ \mathcal{H}$ vanishes as *n* increases. This will imply that $\ell_{\text{sum}}^{@p}$ enjoys the uniform convergence property, and therefore ERM is an agnostic PAC learner for \mathcal{H} w.r.t $\ell_{\text{sum}}^{@p}$. By definition, we have that

$$\begin{aligned} \hat{\mathfrak{R}}_{n}(\ell_{\operatorname{sum}}^{\otimes p} \circ \mathcal{H}) &= \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell_{\operatorname{sum}}^{\otimes p}(h(x_{i}), y_{i})) \right] \\ &= \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{m=1}^{K} \sigma_{i} \min(h_{m}(x_{i}), p+1) y_{i}^{m} - \sigma_{i} Z_{y_{i}}^{p} \right) \right] \\ &= \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{K} \sigma_{i} \min(h_{m}(x_{i}), p+1) y_{i}^{m} \right] \\ &\leq \sum_{m=1}^{K} \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \min(h_{m}(x_{i}), p+1) y_{i}^{m} \right] \\ &\leq B \sum_{m=1}^{K} \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \min(h_{m}(x_{i}), p+1) \right] \end{aligned}$$

where the second inequality follows from the fact that $y_i^m \leq B$ and Talagrand's Contraction Lemma [Ledoux and Talagrand] [1991].

Next note that $\min(h_m(x_i), p+1) = (p+1) - \sum_{j=1}^p \mathbb{1}\{h_m(x_i) \le j\} = (p+1) - \sum_{j=1}^p h_m^j(x_i)$. Substituting and getting rid of constant factors, we have that

$$\hat{\mathfrak{R}}_{n}(\ell_{\operatorname{sum}}^{\otimes p} \circ \mathcal{H}) \leq B \sum_{m=1}^{K} \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h_{m} \in \mathcal{H}_{m}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \sum_{j=1}^{p} h_{m}^{j}(x_{i}) \right]$$
$$\leq B \sum_{m=1}^{K} \sum_{j=1}^{p} \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h_{m} \in \mathcal{H}_{m}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h_{m}^{j}(x_{i}) \right]$$
$$= B \sum_{m=1}^{K} \sum_{j=1}^{p} \hat{\mathfrak{R}}_{n}(\mathcal{H}_{m}^{j}).$$

Since for \mathcal{H}_m^j is agnostic PAC learnable w.r.t 0-1 loss, by Theorem 6.5 in Shalev-Shwartz and Ben-David [2014], $\lim_{n\to\infty} \hat{\mathfrak{R}}_n(\mathcal{H}_m^j) = 0$. Since p, K and B are finite,

$$\lim_{n \to \infty} \hat{\mathfrak{R}}_n(\ell_{\text{sum}}^{@p} \circ \mathcal{H}) = \lim_{n \to \infty} B \sum_{m=1}^K \sum_{j=1}^p \hat{\mathfrak{R}}_n(\mathcal{H}_m^j) = 0$$

By Proposition C.1, this implies that $\ell_{sum}^{@p}$ enjoys the uniform convergence property, and therefore ERM using $\ell_{sum}^{@p}$ is an agnostic PAC learner for \mathcal{H} .

C.2 Proof of Lemma 4.5

Proof. Fix $\ell \in \mathcal{L}(\ell_{\text{sum}}^{\otimes p})$ and $(i, j) \in [K] \times [p]$. Let $a = \min_{\pi, y} \{\ell(\pi, y) \mid \ell(\pi, y) \neq 0\}$. Let \mathcal{H} be an arbitrary ranking hypothesis class and \mathcal{A} be an agnostic PAC learner for \mathcal{H} w.r.t ℓ . Our goal will be to use \mathcal{A} to construct an agnostic PAC learner for \mathcal{H}_i^j .

Let \mathcal{D} be distribution over $\mathcal{X} \times \{0, 1\}$ and $h_i^{\star, j} = \arg \min_{h_i^j \in \mathcal{H}_i^j} \mathbb{E}_{\mathcal{D}} \left[\mathbbm{1}\{h_i^j(x) \neq y\} \right]$ be the optimal hypothesis. Let $h^{\star} \in \mathcal{H}$ be any valid completion of $h_i^{\star, j}$. Our goal will be to show that Algorithm 4 is an agnostic PAC learner for \mathcal{H}_i^j w.r.t 0-1 loss.

Consider the sample $S_U^{h^*}$ and let $g = \mathcal{A}(S_U^{h^*})$. We can think of g as the output of \mathcal{A} run over an i.i.d sample S drawn from \mathcal{D}^* , a joint distribution over $\mathcal{X} \times \mathcal{Y}$ defined procedurally by first

Algorithm 4 Agnostic PAC learner for \mathcal{H}_i^j w.r.t. 0-1 loss

Input: Agnostic PAC learner \mathcal{A} for \mathcal{H} w.r.t ℓ , unlabeled samples $S_U \sim \mathcal{D}_{\mathcal{X}}^n$, and labeled samples $S_L \sim \mathcal{D}^m$

1 For each $h \in \mathcal{H}_{|S_U}$, construct a dataset

$$S_{U}^{h} = \{(x_{1}, \tilde{y}_{1}), ..., (x_{n}, \tilde{y}_{n})\}$$
 s.t. $\tilde{y}_{i} = \text{BinRel}(h(x_{i}), j)$

- 2 Run \mathcal{A} over all datasets to get $C(S_U) := \{\mathcal{A}(S_U^h) \mid h \in \mathcal{H}_{|S_U}\}$
- **3** Define $C_i^j(S_U) = \{g_i^j | g \in C(S_U)\}$
- 4 Return $\hat{g}_i^j \in C_i^j(S_U)$ with the lowest empirical error over S_L w.r.t. 0-1 loss.

sampling $x \sim \mathcal{D}_{\mathcal{X}}$ and then outputting the labeled sample $(x, \operatorname{BinRel}(h^{\star}(x), j))$. Note that \mathcal{D}^{\star} is a realizable distribution (realized by h^{\star}) w.r.t $\ell_{\operatorname{sum}}^{\otimes p}$ and therefore also ℓ . Let $m_{\mathcal{A}}(\epsilon, \delta, K)$ be the sample complexity of \mathcal{A} . Since \mathcal{A} is an agnostic PAC learner for \mathcal{H} w.r.t ℓ , we have that for sample size $n \geq m_{\mathcal{A}}(\frac{a\epsilon}{2}, \delta/2, K)$, with probability at least $1 - \frac{\delta}{2}$,

$$\mathbb{E}_{\mathcal{D}^{\star}}\left[\ell(g(x), y)\right] \leq \inf_{h \in \mathcal{H}} \mathbb{E}_{\mathcal{D}^{\star}}\left[\ell(h(x), y)\right] + \frac{a\epsilon}{2} = \frac{a\epsilon}{2}$$

Furthermore, by definition of \mathcal{D}^{\star} , $\mathbb{E}_{\mathcal{D}^{\star}} \left[\ell(g(x), y) \right] = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\ell(g(x), \operatorname{BinRel}(h^{\star}(x), j)) \right]$. Therefore, $\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\ell(g(x), \operatorname{BinRel}(h^{\star}(x), j)) \right] \leq \frac{a\epsilon}{2}$. Next, using Lemma E.3, we have pointwise that

$$\begin{split} \mathbb{1}\{g_i^j(x) \neq h_i^{\star,j}(x)\} &\leq \mathbb{1}\{\ell_{\text{sum}}^{@p}(g(x), \text{BinRel}(h^\star(x), j)) > 0\} \\ &= \mathbb{1}\{\ell(g(x), \text{BinRel}(h^\star(x), j)) > 0\} \\ &\leq \frac{1}{a}\,\ell(g(x), \text{BinRel}(h^\star(x), j)). \end{split}$$

Taking expectations on both sides gives,

$$\mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\{g_i^j(x) \neq h_i^{\star,j}(x)\}\right] \leq \frac{1}{a} \mathbb{E}_{\mathcal{D}}\left[\ell(g(x), \operatorname{BinRel}(h^{\star}(x), j))\right] \leq \frac{\epsilon}{2},$$

where in the last inequality we use the fact that $\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\ell(g(x), \operatorname{BinRel}(h^{\star}(x), j)) \right] \leq \frac{a\epsilon}{2}$. Finally, using the triangle inequality, we have that

$$\begin{split} \mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\{g_{i}^{j}(x)\neq y\}\right] &\leq \mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\{h_{i}^{\star,j}(x)\neq y\}\right] + \mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\{g_{i}^{j}(x)\neq h_{i}^{\star,j}(x\}\right] \\ &\leq \mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\{h_{i}^{\star,j}(x)\neq y\}\right] + \frac{\epsilon}{2} \\ &= \mathop{\arg\min}_{h_{i}^{j}\in\mathcal{H}_{i}^{j}}\mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\{h_{i}^{j}(x)\neq y\}\right] + \frac{\epsilon}{2}. \end{split}$$

Since $g_i^j \in C_i^j(S_U)$, we have shown that $C_i^j(S_U)$ contains a hypothesis that generalizes well w.r.t \mathcal{D} . Now we want to show that the predictor \hat{g}_i^j returned in step 4 also generalizes well. Crucially, observe that $C_i^j(S_U)$ is a finite hypothesis class with cardinality at most K^{jn} . Therefore, by standard Chernoff and union bounds, with probability at least $1 - \delta/2$, the empirical risk of every hypothesis in $C_i^j(S_U)$ on a sample of size $\geq \frac{8}{\epsilon^2} \log \frac{4|C_i^j(S_U)|}{\delta}$ is at most $\epsilon/4$ away from its true error. So, if $m = |S_L| \geq \frac{8}{\epsilon^2} \log \frac{4|C_i^j(S_U)|}{\delta}$, then with probability at least $1 - \delta/2$, we have

$$\frac{1}{|S_L|} \sum_{(x,y)\in S_L} \mathbb{1}\{g_i^j(x) \neq y\} \le \mathbb{E}_{\mathcal{D}}\left[\mathbb{1}\{g_i^j(x) \neq y\}\right] + \frac{\epsilon}{4} \le \frac{3\epsilon}{4}.$$

Since \hat{g}_i^j is the ERM on S_L over $C_i^j(S_U)$, its empirical risk can be at most $\frac{3\epsilon}{4}$. Given that the population risk of \hat{g}_i^j can be at most $\epsilon/4$ away from its empirical risk, we have that

$$\mathbb{E}_{\mathcal{D}}[\mathbb{1}\{\hat{g}_{i}^{j}(x)\neq y\}] \leq \operatorname*{arg\,min}_{h_{i}^{j}\in\mathcal{H}_{i}^{j}} \mathbb{E}_{\mathcal{D}}\left[\mathbb{1}\{h_{i}^{j}(x)\neq y\}\right] + \epsilon.$$

Applying union bounds, the entire process succeeds with probability $1 - \delta$. We can compute the upper bound on the sample complexity of Algorithm 4, denoted $n(\epsilon, \delta, K)$, as

$$n(\epsilon, \delta, K) \le m_{\mathcal{A}}(\frac{a\epsilon}{2}, \delta/2, K) + O\left(\frac{1}{\epsilon^2} \log \frac{|C(S_U)|}{\delta}\right)$$
$$\le m_{\mathcal{A}}(\frac{a\epsilon}{2}, \delta/2, K) + O\left(\frac{Km_{\mathcal{A}}(\frac{a\epsilon}{2}, \delta/2, K) + \log \frac{1}{\delta}}{\epsilon^2}\right),$$

where we use $|C(S_U)| \leq 2^{Km_{\mathcal{A}}(\frac{a\epsilon}{2},\delta/2,K)}$. This shows that Algorithm 4 is an agnostic PAC learner for \mathcal{H}_i^j w.r.t 0-1 loss. Since our choice of loss $\ell \in \mathcal{L}(\ell_{sum}^{@p})$ and indices (i, j) were arbitrary, agnostic PAC learnability of \mathcal{H} w.r.t ℓ implies agnostic PAC learnability of \mathcal{H}_i^j w.r.t the 0-1 loss for all $(i, j) \in [K] \times [p]$.

C.3 Characterizing Batch Learnability of $\mathcal{L}(\ell_{\text{prec}}^{@p})$

In this section, we prove Theorem 4.2 which characterizes the agnostic PAC learnability of an arbitrary hypothesis class $\mathcal{H} \subseteq \mathcal{S}_K^{\mathcal{X}}$ w.r.t losses in $\mathcal{L}(\ell_{\text{prec}}^{@p})$. Our proof will again be in three parts. First, we will show that if for all $i \in [K]$, \mathcal{H}_i^p is agnostic PAC learnable w.r.t the 0-1 loss, then ERM is an agnostic PAC learnable w.r.t $\ell_{\text{prec}}^{@p}$. Next, we show that if \mathcal{H} is agnostic PAC learnable w.r.t $\ell_{\text{prec}}^{@p}$, then \mathcal{H} is agnostic PAC learnable w.r.t $\ell_{\text{prec}}^{@p}$. Finally, we prove the necessity direction - if \mathcal{H} is agnostic PAC learnable w.r.t an arbitrary $\ell \in \mathcal{L}(\ell_{\text{prec}}^{@p})$, then for all $i \in [K]$, \mathcal{H}_i^p is agnostic PAC learnable w.r.t the 0-1 loss.

We begin with Lemma C.2 which asserts that if for all $i \in [K]$, \mathcal{H}_i^p is agnostic PAC learnable, then ERM is an agnostic PAC learner for \mathcal{H} w.r.t $\ell_{\text{prec}}^{@p}$.

Lemma C.2. If for all $i \in [K]$, \mathcal{H}_i^p is agnostic PAC learnable w.r.t the 0-1 loss, then ERM is an agnostic PAC learner for $\mathcal{H} \subseteq \mathcal{S}_K^{\mathcal{X}}$ w.r.t $\ell_{prec}^{@p}$

The proof of Lemma C.2 is similar to the proof of Lemma 4.3 and involves bounding the empirical Rademacher complexity of the loss class $\ell_{\text{prec}}^{@p} \circ \mathcal{H}$. This will imply that $\ell_{\text{prec}}^{@p}$ enjoys the uniform convergence property, and therefore ERM is an agnostic PAC learner for \mathcal{H} w.r.t $\ell_{\text{prec}}^{@p}$. The key insight is that we can write $\ell_{\text{prec}}^{@p}(h(x), y) = Z_y^p - \sum_{i=1}^K \mathbb{1}\{h_i(x) \leq p\}y^i = Z_y^p - \sum_{i=1}^K h_i^p(x)y^i$. Since Z_y^p does not depend on h(x) and $y^i \leq B$, we can upperbound the empirical Rademacher complexity in terms of the empirical Rademacher complexities of \mathcal{H}_i^p using Talagrand's contraction.

Proof. Let $\mathcal{H} \subseteq \mathcal{S}_K^{\mathcal{X}}$ be an arbitrary ranking hypothesis class. Similar to the proof of Lemma 4.3 it suffices to show that the empirical Rademacher complexity of the loss class $\ell_{\text{prec}}^{@p} \circ \mathcal{H}$ vanishes. By Proposition C.1 this will imply that $\ell_{\text{prec}}^{@p}$ enjoys the uniform convergence property, and therefore

ERM is an agnostic PAC learner for \mathcal{H} w.r.t $\ell_{\text{prec}}^{@p}$. By definition, we have that

$$\begin{aligned} \hat{\mathfrak{R}}_{n}(\ell_{\text{prec}}^{\otimes p} \circ \mathcal{H}) &= \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell_{\text{prec}}^{\otimes p}(h(x_{i}), y_{i})) \right] \\ &= \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left(\sigma_{i} Z_{y_{i}}^{p} - \sum_{m=1}^{K} \sigma_{i} \mathbb{1}\{h_{m}(x_{i}) \leq p\} y_{i}^{m} \right) \right] \\ &= \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{K} \sigma_{i} h_{m}^{p}(x_{i}) y_{i}^{m} \right] \\ &\leq \sum_{m=1}^{K} \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h_{m}^{p}(x_{i}) y_{i}^{m} \right] \\ &\leq B \sum_{m=1}^{K} \mathbb{E}_{\sigma \sim \{\pm 1\}^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h_{m}^{p}(x_{i}) \right] \\ &= B \sum_{m=1}^{K} \hat{\mathfrak{R}}_{n}(\mathcal{H}_{m}^{p}), \end{aligned}$$

where the second inequality follows from Talagrand's Contraction Lemma and the fact that $y_i^m \leq B$ for all i, m. Since for all $m \in [K]$, \mathcal{H}_m^p is agnostic PAC learnable w.r.t 0-1 loss, by Theorem 6.7 in Shalev-Shwartz and Ben-David [2014], $\lim_{n\to\infty} \hat{\mathfrak{R}}_n(\mathcal{H}_m^p) = 0$. Since K and B are finite,

$$\lim_{n \to \infty} \hat{\mathfrak{R}}_n(\ell_{\mathrm{prec}}^{@p} \circ \mathcal{H}) = \lim_{n \to \infty} B \sum_{m=1}^K \hat{\mathfrak{R}}_n(\mathcal{H}_m^p) = 0$$

By Proposition C.1, this implies that $\ell_{\text{prec}}^{@p}$ enjoys the uniform convergence property, and therefore ERM using $\ell_{\text{prec}}^{@p}$ is an agnostic PAC learner for \mathcal{H} .

Next, Lemma C.3 extends the learnability of $\ell_{\text{prec}}^{@p}$ to the learnability of any loss $\ell \in \mathcal{L}(\ell_{\text{prec}}^{@p})$. In particular, Lemma C.3 asserts that if \mathcal{H} is agnostic PAC learnable w.r.t $\ell_{\text{prec}}^{@p}$ then \mathcal{H} is also agnostic PAC learnable w.r.t any $\ell \in \mathcal{L}(\ell_{\text{prec}}^{@p})$.

Lemma C.3. If a hypothesis class $\mathcal{H} \subseteq \mathcal{S}_K^{\mathcal{X}}$ is agnostic PAC learnable w.r.t $\ell_{prec}^{\otimes p}$, then \mathcal{H} is agnostic PAC learnable w.r.t any $\ell \in \mathcal{L}(\ell_{prec}^{\otimes p})$.

The proof of Lemma C.3 follows the same the exact same strategy used in proving Lemma 4.4. More specifically, given an agnostic PAC learner \mathcal{A} for \mathcal{H} w.r.t. $\ell_{\text{prec}}^{@p}$, we first create a *realizable* PAC learner for \mathcal{H} w.r.t $\ell \in \mathcal{L}(\ell_{\text{prec}}^{@p})$. Then, we use a similar realizable-to-agnostic conversion technique as in the proof of Lemma 4.4 to convert the realizable PAC learner into an agnostic PAC learner for \mathcal{H} w.r.t ℓ .

Proof. Fix $\ell \in \mathcal{L}(\ell_{\text{prec}}^{\otimes p})$. Let $a = \min_{\pi,y} \{\ell(\pi, y) \mid \ell(\pi, y) \neq 0\}$ and $b = \max_{\pi,y} \ell(\pi, y)$. We need to show that if \mathcal{H} is agnostic PAC learnable w.r.t $\ell_{\text{prec}}^{\otimes p}$, then \mathcal{H} is agnostic PAC learnable w.r.t ℓ . We will do so in two steps. First, we will show that if \mathcal{A} is an agnostic PAC learner for \mathcal{H} w.r.t $\ell_{\text{prec}}^{\otimes p}$, then \mathcal{A} is also a *realizable* PAC learner for \mathcal{H} w.r.t ℓ . Next, we will show how to convert the realizable PAC learner w.r.t ℓ into an agnostic PAC learner w.r.t ℓ in a black-box fashion. The composition of these two pieces yields an agnostic PAC learner for \mathcal{H} w.r.t ℓ .

If \mathcal{H} is agnostic PAC learnable w.r.t $\ell_{\text{prec}}^{@p}$, then there exists a learning algorithm \mathcal{A} with sample complexity $m(\epsilon, \delta, K)$ s.t. for any distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, with probability $1 - \delta$ over a sample $S \sim \mathcal{D}^n$ of size $n \geq m(\epsilon, \delta, K)$, the output $g = \mathcal{A}(S)$ achieves

$$\mathbb{E}_{\mathcal{D}}\left[\ell_{\mathrm{prec}}^{\otimes p}(g(x), y))\right] \leq \inf_{h \in \mathcal{H}} \mathbb{E}_{\mathcal{D}}\left[\ell_{\mathrm{prec}}^{\otimes p}(h(x), y))\right] + \epsilon.$$

If \mathcal{D} is realizable w.r.t ℓ , then we are guaranteed that there exists a hypothesis $h^* \in \mathcal{H}$ s.t. $\mathbb{E}_{\mathcal{D}}\left[\ell(h^{\star}(x), y)\right] = 0.$ Since $\ell \in \mathcal{L}(\ell_{\text{prec}}^{@p})$, this also means that $\mathbb{E}_{\mathcal{D}}\left[\ell_{\text{prec}}^{@p}(h^{\star}(x), y)\right] = 0.$ Furthermore, since $\ell \in \mathcal{L}(\ell_{\text{prec}}^{\otimes p}), \ell \leq b \ell_{\text{prec}}^{\otimes p}$. Together, this means we have $\mathbb{E}_{\mathcal{D}}[\ell(g(x), y)] \leq b\epsilon$ showing have that \mathcal{A} is also a realizable PAC learner for \mathcal{H} w.r.t ℓ with sample complexity $m(\frac{\epsilon}{b}, \delta, K)$. This completes the first part of the proof.

Now, we show how to convert the realizable PAC learner \mathcal{A} for ℓ into an agnostic PAC learner for ℓ in a black-box fashion. For this step, we will use a similar algorithm as in the proof of Lemma 4.4That is, we will show that Algorithm 5 below is an agnostic PAC learner for \mathcal{H} w.r.t ℓ .

Algorithm 5 Agnostic PAC learner for \mathcal{H} w.r.t. ℓ

Input: Realizable PAC learner \mathcal{A} for \mathcal{H} w.r.t ℓ , unlabeled samples $S_U \sim \mathcal{D}_{\mathcal{X}}^n$, and labeled samples $S_L \sim \mathcal{D}^m$ 1 For each $h \in \mathcal{H}_{|S_U}$, construct a dataset

 $S_{U}^{h} = \{(x_{1}, \tilde{y}_{1}), ..., (x_{n}, \tilde{y}_{n})\}$ s.t. $\tilde{y}_{i} = \text{BinRel}(h(x_{i}), p)$

2 Run \mathcal{A} over all datasets to get $C(S_U) := \{\mathcal{A}(S_U^h) \mid h \in \mathcal{H}_{|S_U}\}$

3 Return $\hat{g} \in C(S_U)$ with the lowest empirical error over S_L w.r.t. ℓ .

Let \mathcal{D} be any (not necessarily realizable) distribution over $\mathcal{X} \times \mathcal{Y}$. Let h^* $\arg\min_{h\in\mathcal{H}}\mathbb{E}_{\mathcal{D}}\left[\ell(h(x),y)\right]$ denote the optimal predictor in \mathcal{H} w.r.t \mathcal{D} . Consider the sample $S_{II}^{h^*}$ and let $g = \mathcal{A}(S_{I_{I}}^{h^{\star}})$. We can think of g as the output of \mathcal{A} run over an i.i.d sample S drawn from \mathcal{D}^{\star} , a joint distribution over $\mathcal{X} \times \mathcal{Y}$ defined procedurally by first sampling $x \sim \mathcal{D}_{\mathcal{X}}$, and then outputting the labeled sample $(x, BinRel(h^*(x), p))$. Note that \mathcal{D}^* is indeed a realizable distribution (realized by h^*) w.r.t both ℓ and $\ell_{\text{prec}}^{@p}$. Recall that $m_{\mathcal{A}}(\frac{\epsilon}{b}, \delta, K)$ is the sample complexity of \mathcal{A} . Since \mathcal{A} is a realizable learner for \mathcal{H} w.r.t ℓ , we have that for $n \geq m_{\mathcal{A}}(\frac{a\epsilon}{2b^2}, \delta/2, K)$, with probability at least $1 - \frac{\delta}{2}$,

$$\mathbb{E}_{\mathcal{D}^{\star}}\left[\ell(g(x), y)\right] \le \frac{a\epsilon}{2b}$$

By definition of \mathcal{D}^* , it further follows that $\mathbb{E}_{\mathcal{D}^*}[\ell(g(x), y)] = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}[\ell(g(x), \text{BinRel}(h^*(x), p))].$ Therefore,

$$\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}\left[\ell(g(x), \operatorname{BinRel}(h^{\star}(x), p))\right] \leq \frac{a\epsilon}{2b}.$$

Next, by Lemma E.2, we have pointwise that:

$$\ell(g(x),y) \leq \ell(h^{\star}(x),y) + \frac{b}{a}\ell(g(x),\operatorname{BinRel}(h^{\star}(x),p)).$$

Taking expectations on both sides of the inequality gives:

$$\mathbb{E}_{\mathcal{D}}\left[\ell(g(x), y)\right] \leq \mathbb{E}_{\mathcal{D}}\left[\ell(h^{\star}(x), y)\right] + \mathbb{E}_{\mathcal{D}}\left[\frac{b}{a}\ell(g(x), \operatorname{BinRel}(h^{\star}(x), p))\right]$$
$$= \mathbb{E}_{\mathcal{D}}\left[\ell(h^{\star}(x), y)\right] + \frac{b}{a}\mathbb{E}_{x\sim\mathcal{D}_{\mathcal{X}}}\left[\ell(g(x), \operatorname{BinRel}(h^{\star}(x), p))\right]$$
$$\leq \mathbb{E}_{\mathcal{D}}\left[\ell(h^{\star}(x), y)\right] + \frac{\epsilon}{2}.$$

Therefore, we have shown that $C(S_U)$ contains a hypothesis g that generalizes well with respect to \mathcal{D} . The remaining proof follows exactly as in the proof of Lemma 4.4. We include them here for the sake of completeness.

Now we want to show that the predictor \hat{g} returned in step 4 also has good generalization. Crucially, observe that $C(S_U)$ is a finite hypothesis class with cardinality at most K^{pn} . Therefore, by standard Chernoff and union bounds, with probability at least $1 - \delta/2$, the empirical risk of every hypothesis in $C(S_U)$ on a sample of size $\geq \frac{8}{\epsilon^2} \log \frac{4|C(S_U)|}{\delta}$ is at most $\epsilon/4$ away from its true error. So, if $m = |S_L| \geq \frac{8}{\epsilon^2} \log \frac{4|C(S_U)|}{\delta}$, then with probability at least $1 - \delta/2$, we have

$$\frac{1}{|S_L|} \sum_{(x,y)\in S_L} \ell(g(x),y) \le \mathbb{E}_{\mathcal{D}} \left[\ell(g(x),y) \right] + \frac{\epsilon}{4} \le \mathbb{E}_{\mathcal{D}} \left[\ell(h^{\star}(x),y) \right] + \frac{3\epsilon}{4}.$$

Since \hat{g} is the ERM on S_L over C(S), its empirical risk can be at most $\mathbb{E}_{\mathcal{D}}\left[\ell(h^*(x), y)\right] + \frac{3\epsilon}{4}$. Given that the population risk of \hat{g} can be at most $\epsilon/4$ away from its empirical risk, we have that

$$\mathbb{E}_{\mathcal{D}}[\ell(\hat{g}(x), y)] \le \mathbb{E}_{\mathcal{D}}\left[\ell(h^{\star}(x), y)\right] + \epsilon.$$

Applying union bounds, the entire process succeeds with probability $1 - \delta$. We can upper bound the sample complexity of Algorithm 1, denoted $n(\epsilon, \delta, K)$, as

$$n(\epsilon, \delta, K) \le m_{\mathcal{A}}(\frac{a\epsilon}{2b^2}, \delta/2, K) + O\left(\frac{1}{\epsilon^2} \log \frac{|C(S_U)|}{\delta}\right)$$
$$\le m_{\mathcal{A}}(\frac{a\epsilon}{2b^2}, \delta/2, K) + O\left(\frac{p m_{\mathcal{A}}(\frac{a\epsilon}{2b^2}, \delta/2, K) \log(K) + \log \frac{1}{\delta}}{\epsilon^2}\right)$$

where we use $|C(S_U)| \leq K^{pm_A(\frac{a\epsilon}{2b^2},\delta/2,K)}$. This shows that Algorithm 1 given as input an realizable PAC learner for \mathcal{H} w.r.t ℓ , is an agnostic PAC learner for \mathcal{H} w.r.t ℓ . Using the realizable learner we constructed before this step as the input completes this proof as we have constructively converted an agnostic PAC learner for $\ell_{\text{prec}}^{@p}$ into an agnostic PAC learner for ℓ .

Lemma C.2 and C.3 together complete the proof of sufficiency in Theorem 4.2 Finally, Lemma C.4 below shows that the agnostic PAC learnability of \mathcal{H}_i^p for all $i \in [K]$ is necessary for the agnostic PAC learnability of \mathcal{H} w.r.t any $\ell \in \mathcal{L}(\ell_{\text{prec}}^{\otimes p})$. Like before, the proof of Lemma C.4 is constructive and follows exactly the same strategy as Lemma 4.5 That is, given as input a learner for ℓ , we will convert it into an agnostic learner for \mathcal{H}_i^p . In fact, the conversion is exactly the same as in the proof of Lemma 4.5 and just requires running Algorithm 4 with an input learner for $\ell \in \mathcal{L}(\ell_{\text{prec}}^{\otimes p})$ and setting j = p.

Lemma C.4. If a function class $\mathcal{H} \subseteq \mathcal{S}_K^{\mathcal{X}}$ is agnostic PAC learnable w.r.t $\ell \in \mathcal{L}(\ell_{prec}^{\otimes p})$, then \mathcal{H}_i^p is agnostic PAC learnable w.r.t the 0-1 loss for all $i \in [K]$.

Proof. Fix $\ell \in \mathcal{L}(\ell_{\text{prec}}^{\otimes p})$ and $i \in [K]$. Let $a = \min_{\pi, y} \{\ell(\pi, y) \mid \ell(\pi, y) \neq 0\}$. Let \mathcal{H} be an arbitrary ranking hypothesis class and \mathcal{A} be an agnostic PAC learner for \mathcal{H} w.r.t ℓ . Our goal will to be to use \mathcal{A} to construct an agnostic PAC learner for \mathcal{H}_i^p .

Let \mathcal{D} be any distribution over $\mathcal{X} \times \{0,1\}$, $h_i^{\star,p} = \arg\min_{h \in \mathcal{H}_i^p} \mathbb{E}_{\mathcal{D}} [\mathbbm{1}\{h(x) \neq y\}]$ the optimal hypothesis, and $h^{\star} \in \mathcal{H}$ be any valid completion of $h_i^{\star,p}$. We will now show that Algorithm 4 from the proof of Lemma 4.5 is an agnostic PAC learner for \mathcal{H}_i^p if we set j = p and give it as input an agnostic PAC learner \mathcal{A} for \mathcal{H} w.r.t. $\ell \in \mathcal{L}(\ell_{prec}^{\otimes p})$.

Consider the sample $S_U^{h^*}$ and let $g = \mathcal{A}(S_U^{h^*})$. We can think of g as the output of \mathcal{A} run over an i.i.d sample S drawn from \mathcal{D}^* , a joint distribution over $\mathcal{X} \times \mathcal{Y}$ defined procedurally by first sampling $x \sim \mathcal{D}_{\mathcal{X}}$ and then outputting the labeled sample $(x, \text{BinRel}(h^*(x), p))$. Note that \mathcal{D}^* is a realizable distribution (realized by h^*) w.r.t $\ell_{\text{prec}}^{\otimes p}$ and therefore also ℓ . Let $m_{\mathcal{A}}(\epsilon, \delta, K)$ be the sample complexity of \mathcal{A} .

Since \mathcal{A} is an agnostic PAC learner for \mathcal{H} w.r.t ℓ , we have that for sample size $n \ge m_{\mathcal{A}}(\frac{a\epsilon}{2}, \delta/2, K)$, with probability at least $1 - \frac{\delta}{2}$,

$$\mathbb{E}_{\mathcal{D}^{\star}}\left[\ell(g(x), y)\right] \leq \inf_{h \in \mathcal{H}} \mathbb{E}_{\mathcal{D}^{\star}}\left[\ell(h(x), y)\right] + \frac{a\epsilon}{2} = \frac{a\epsilon}{2}$$

Furthermore, by definition of \mathcal{D}^{\star} , $\mathbb{E}_{\mathcal{D}^{\star}} \left[\ell(g(x), y) \right] = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\ell(g(x), \operatorname{BinRel}(h^{\star}(x), p)) \right]$. Therefore, $\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\ell(g(x), \operatorname{BinRel}(h^{\star}(x), p)) \right] \leq \frac{a\epsilon}{2}$. Next, using Lemma E.4, we have pointwise that

$$\begin{split} \mathbbm{1}\{g_i^p(x) \neq h_i^{\star,p}(x)\} &\leq \mathbbm{1}\{\ell_{\text{prec}}^{@p}(g(x), \text{BinRel}(h^{\star}(x), p)) > 0\} \\ &= \mathbbm{1}\{\ell(g(x), \text{BinRel}(h^{\star}(x), p)) > 0\} \\ &\leq \frac{1}{a}\,\ell(g(x), \text{BinRel}(h^{\star}(x), p)). \end{split}$$

Taking expectations on both sides gives,

$$\mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\left\{g_{i}^{p}(x)\neq h_{i}^{\star,p}(x)\right\}\right] \leq \frac{1}{a} \mathbb{E}_{\mathcal{D}}\left[\ell(g(x),\operatorname{BinRel}(h^{\star}(x),p))\right] \leq \frac{\epsilon}{2}$$

where in the last inequality we use the fact that $\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\ell(g(x), \operatorname{BinRel}(h^{\star}(x), p)) \right] \leq \frac{a\epsilon}{2}$. Finally, using the triangle inequality, we have that

$$\begin{split} \mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\left\{g_{i}^{p}(x)\neq y\right\}\right] &\leq \mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\left\{h_{i}^{\star,p}(x)\neq y\right\}\right] + \mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\left\{g_{i}^{p}(x)\neq h_{i}^{\star,p}(x)\right\}\right] \\ &\leq \mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\left\{h_{i}^{\star,p}(x)\neq y\right\}\right] + \frac{\epsilon}{2} \\ &= \mathop{\arg\min}_{h_{i}^{p}\in\mathcal{H}_{i}^{p}}\mathbb{E}_{\mathcal{D}}\left[\mathbbm{1}\left\{h_{i}^{p}(x)\neq y\right\}\right] + \frac{\epsilon}{2}. \end{split}$$

Since $g_i^p \in C_i^p(S_U)$, we have shown that $C_i^p(S_U)$ contains a hypothesis that generalizes well w.r.t \mathcal{D} . Now we want to show that the predictor \hat{g}_i^p returned in step 4 also generalizes well. Crucially, observe that $C_i^p(S_U)$ is a finite hypothesis class with cardinality at most K^{pn} . Therefore, by standard Chernoff and union bounds, with probability at least $1 - \delta/2$, the empirical risk of every hypothesis in $C_i^p(S_U)$ on a sample of size $\geq \frac{8}{\epsilon^2} \log \frac{4|C_i^j(S_U)|}{\delta}$ is at most $\epsilon/4$ away from its true error. So, if $m = |S_L| \geq \frac{8}{\epsilon^2} \log \frac{4|C_i^j(S_U)|}{\delta}$, then with probability at least $1 - \delta/2$, we have

$$\frac{1}{|S_L|} \sum_{(x,y)\in S_L} \mathbb{1}\{g_i^p(x) \neq y\} \le \mathbb{E}_{\mathcal{D}}\left[\mathbb{1}\{g_i^p(x) \neq y\}\right] + \frac{\epsilon}{4} \le \frac{3\epsilon}{4}.$$

Since \hat{g}_i^p is the ERM on S_L over $C_i^p(S_U)$, its empirical risk can be at most $\frac{3\epsilon}{4}$. Given that the population risk of \hat{g}_i^p can be at most $\epsilon/4$ away from its empirical risk, we have that

$$\mathbb{E}_{\mathcal{D}}[\mathbb{1}\{\hat{g}_{i}^{p}(x)\neq y\}] \leq \operatorname*{arg\,min}_{h_{i}^{p}\in\mathcal{H}_{i}^{p}} \mathbb{E}_{\mathcal{D}}\left[\mathbb{1}\{h_{i}^{p}(x)\neq y\}\right] + \epsilon.$$

Applying union bounds, the entire process succeeds with probability $1 - \delta$. We can compute the upper bound on the sample complexity of Algorithm 4 denoted $n(\epsilon, \delta, K)$, as

$$n(\epsilon, \delta, K) \le m_{\mathcal{A}}(\frac{a\epsilon}{2}, \delta/2, K) + O\left(\frac{1}{\epsilon^2} \log \frac{|C(S_U)|}{\delta}\right)$$
$$\le m_{\mathcal{A}}(\frac{a\epsilon}{2}, \delta/2, K) + O\left(\frac{p \ m_{\mathcal{A}}(\frac{a\epsilon}{2}, \delta/2, K) \log(K) + \log \frac{1}{\delta}}{\epsilon^2}\right),$$

where we use $|C(S_U)| \leq K^{pm_{\mathcal{A}}(\frac{a\epsilon}{2},\delta/2,K)}$. This shows that Algorithm 4 is an agnostic PAC learner for \mathcal{H}_i^p w.r.t 0-1 loss. Since our choice of loss $\ell \in \mathcal{L}(\ell_{\text{prec}}^{@p})$ and index *i* were arbitrary, agnostic PAC learnability of \mathcal{H} w.r.t ℓ implies agnostic PAC learnability of \mathcal{H}_i^p w.r.t the 0-1 loss for all $i \in [K]$. \Box

Combining Lemma C.2, C.3 and C.4 gives Theorem 4.2

D Proofs for Online Multilabel Ranking

D.1 Proof of necessity in Theorem 5.1

Proof. Fix $\ell \in \mathcal{L}(\ell_{\text{sum}}^{\otimes p})$ and $(i, j) \in [K] \times [p]$. Given an online learner \mathcal{A} for \mathcal{H} w.r.t ℓ , our goal is to construct an agnostic online learner \mathcal{A}_i^j for \mathcal{H}_i^j . To that end, let $(x_1, y_1), ..., (x_T, y_T) \in (\mathcal{X} \times \{0, 1\})^T$ denote a stream of labeled instances. Define $h_i^{\star,j} = \arg \min_{h_i^j \in \mathcal{H}_i^j} \sum_{t=1}^T \mathbb{1}\{h_i^j(x_t) \neq y_t\}$ to be the optimal function in \mathcal{H}_i^j and h^{\star} be an arbitrary completion of $h_i^{\star,j}$. As in the sufficiency proof, our construction of the online learner for \mathcal{H}_i^j will run REWA over a set of experts we construct below.

For any bitstring $b \in \{0,1\}^T$, let $\phi : \{t \in [T] : b_t = 1\} \to \mathcal{S}_K$ denote a function mapping time points where $b_t = 1$ to permutations. Let $\Phi_b = \mathcal{S}_K^{\{t \in [T]:b_t=1\}}$ denote all such functions ϕ . For every $h \in \mathcal{H}$, there exists a $\phi_b^h \in \Phi_b$ such that for all $t \in \{t : b_t = 1\}$, $\phi_b^h(t) = h(x_t)$. Let $|b| = |\{t \in [T] : b_t = 1\}|$. For every $b \in \{0, 1\}^T$ and $\phi \in \Phi_b$, define an Expert $E_{b,\phi}$. Expert $E_{b,\phi}$, formally presented in Algorithm 6 uses \mathcal{A} to make predictions in each round. For every $b \in \{0, 1\}^T$, let $\mathcal{E}_b = \bigcup_{\phi \in \Phi_b} \{E_{b,\phi}\}$ denote the set of all Experts parameterized by functions $\phi \in \Phi_b$. As before, we will actually define $\mathcal{E}_b = \{E_0\} \cup \bigcup_{\phi \in \Phi_b} \{E_{b,\phi}\}$, where E_0 is the expert that never updates \mathcal{A} and only uses it to make predictions in each round. Note that $1 \leq |\mathcal{E}_b| \leq (K!)^{|b|} \leq K^{K|b|}$.

```
\begin{array}{l} \label{eq:constraint} \begin{array}{l} \mbox{Algorithm 6 Expert } (b,\phi) \\ \hline \mbox{Input: Independent copy of online learner $\mathcal{A}$ for $\mathcal{H}$} \\ \mbox{I for } t=1,...,T \ \mbox{do} \\ \mbox{I for } t=1,...,T \ \mbox{do} \\ \mbox{2 learner learner $\mathcal{A}$} \\ \mbox{3 learner learner learner $\mathcal{A}$} \\ \mbox{3 learner learner $\mathcal{A}$} \\ \mbox{3 learner learner $\mathcal{A}$} \\ \mbox{3 learner learner learner $\mathcal{A}$} \\ \mbox{3 learner learner learner $\mathcal{A}$} \\ \mbox{3 learner learner learner learner $\mathcal{A}$} \\ \mbox{3 learner learner
```

We are now ready to give the agnostic online learner for \mathcal{H}_i^j , henceforth denoted by \mathcal{Q} . Our online learner \mathcal{Q} is very similar to Algorithm 3. First, it will sample a $B \in \{0, 1\}^T$ s.t. $B_t \sim$ Bernoulli (T^β/T) . Then, it will construct a set of experts \mathcal{E}_B using Algorithm 6. Finally, it will run REWA, denoted by \mathcal{P} , on the 0-1 loss over the stream $(x_1, y_1), ..., (x_T, y_T)$. As before, let A and P be the random variables denoting internal randomness of the algorithm \mathcal{A} and \mathcal{P} . Using REWA guarantees and following exactly the same calculation as in the sufficiency proof, we arrive at

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\{\mathcal{Q}(x_t) \neq y_t\}\right] \leq \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\{E_{B,\phi_B^{h^*}}(x_t) \neq y_t\}\right] + \sqrt{2T^{1+\beta}K\ln K}$$

The inequality above is the adaptation of Equation (1) for this proof. Recall that $h_i^{\star,j}$ is the optimal function in hindsight for the stream and h^{\star} is a completion of $h_i^{\star,j}$. Since $\mathbb{1}\{E_{B,\phi_B^{h^{\star}}}(x_t) \neq y_t\} \leq \mathbb{1}\{h_i^{\star,j}(x_t) \neq y_t\} + \mathbb{1}\{E_{B,\phi_B^{h^{\star}}}(x_t) \neq h_i^{\star,j}(x_t)\}$, the inequality above reduces to

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\{\mathcal{Q}(x_t) \neq y_t\}\right] \le \sum_{t=1}^{T} \mathbb{1}\{h_i^{\star,j}(x_t) \neq y_t\} + \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\{E_{B,\phi_B^{h^\star}}(x_t) \neq h_i^{\star,j}(x_t)\}\right] + \sqrt{2T^{1+\beta}K\ln K}$$

It now suffices to show that $\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{E_{B,\phi_B^{h^{\star}}}(x_t) \neq h_i^{\star,j}(x_t)\right\}\right]$ is sub-linear function of T.

Given an online learner \mathcal{A} for \mathcal{H} , an instance $x \in \mathcal{X}$, and an ordered finite sequence of labeled examples $L \in (\mathcal{X} \times \mathcal{Y})^*$, let $\mathcal{A}(x|L)$ be the random variable denoting the prediction of \mathcal{A} on the instance x after running and updating on L. For any $b \in \{0,1\}^T$, $h \in \mathcal{H}$, and $t \in [T]$, let $L_{b_{<t}}^h = \{(x_i, \operatorname{BinRel}(h(x_s), j)) : s < t \text{ and } b_s = 1\}$ denote the subsequence of the sequence of labeled instances $\{(x_s, BinRel(h(x_s), j))\}_{s=1}^{t-1}$ where $b_s = 1$. Thus, using Lemma E.3, we have

$$\begin{split} \mathbb{1}\{E_{B,\phi_B^{h^\star}}(x_t) \neq h_i^{\star,j}(x_t)\} &\leq \mathbb{1}\{\ell_{\text{sum}}^{@p}(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^\star}), \text{BinRel}(h^\star(x_t), j)) > 0\} \\ &= \mathbb{1}\{\ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^\star}), \text{BinRel}(h^\star(x_t), j)) > 0\} \\ &\leq \frac{1}{a}\,\ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^\star}), \text{BinRel}(h^\star(x_t), j), \text{BinRel}(h^\star(x_t), j)) \end{split}$$

where equality follows from the fact that $\ell \in \mathcal{L}(\ell_{\text{sum}}^{\otimes p})$. Here, *a* is the lower bound whenever it is non-zero. Taking expectations of both sides and summing over $t \in [T]$ gives

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{E_{B,\phi_B^{h^\star}}(x_t) \neq h_i^{\star,j}(x_t)\right\}\right] \leq \frac{1}{a} \mathbb{E}\left[\sum_{t=1}^{T} \ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^\star}), \operatorname{BinRel}(h^\star(x_t), j))\right]$$

To upperbound the right-hand side, we will again use the fact that the prediction $\mathcal{A}(x_t \mid L_{B_{< t}}^{h^*})$ only depends on (B_1, \ldots, B_{t-1}) , but is independent of B_t . The details of this calculation are omitted because they are identical to that of the sufficiency proof. Using independence of $\mathcal{A}(x_t \mid L_{B_{< t}}^{h^*})$ and B_t , we obtain

$$\begin{split} \mathbb{E}\left[\sum_{t=1}^{T} \ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^{\star}}), \operatorname{BinRel}(h^{\star}(x_t), j))\right] &= \frac{T}{T^{\beta}} \mathbb{E}\left[\sum_{t:B_t=1} \ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^{\star}}), \operatorname{BinRel}(h^{\star}(x_t), j))\right] \\ &= \frac{T}{T^{\beta}} \mathbb{E}\left[\mathbb{E}\left[\sum_{t:B_t=1} \ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^{\star}}), \operatorname{BinRel}(h^{\star}(x_t), j)) \left|B\right]\right] \\ &\leq \frac{T}{T^{\beta}} \mathbb{E}\left[R(|B|, K)\right], \end{split}$$

where R(|B|, K) is the regret of the algorithm \mathcal{A} , a sub-linear function of |B|. In the last step, we use the fact that \mathcal{A} is a (realizable) online learner for \mathcal{H} w.r.t. ℓ and the feedback that the algorithm received was $(x_t, \text{BinRel}(h^*(x_t), j))$ in the rounds whenever $B_t = 1$. Again, Lemma 5.17 from [Ceccherini-Silberstein et al.] [2017] guarantees an existence of a concave sublinear upperbound $\tilde{R}(|B|, K)$ of R(|B|, K). Then, applying Jensen's inequality yields $\mathbb{E}[R(|B|, K)] \leq \mathbb{E}[\tilde{R}(|B|, K)] \leq \tilde{R}(T^{\beta}, K)$, a concave sub-linear function of T^{β} . Combining everything, we get

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{\mathcal{Q}(x_t) \neq y_t\right\}\right] \leq \sum_{t=1}^{T} \mathbb{1}\left\{h_i^{\star,j}(x_t) \neq y_t\right\} + \frac{T}{aT^{\beta}}\tilde{R}(T^{\beta},K) + \sqrt{2T^{1+\beta}K\ln K}$$
$$= \underset{h_i^j \in \mathcal{H}_i^j}{\operatorname{arg\,min}} \sum_{t=1}^{T} \mathbb{1}\left\{h_i^j(x_t) \neq y_t\right\} + \frac{T}{aT^{\beta}}\tilde{R}(T^{\beta},K) + \sqrt{2T^{1+\beta}K\ln K}$$

For any choice of $\beta \in (0, 1)$, the regret above is a sub-linear function of T. Therefore, we have shown that Q is an agnostic learner for \mathcal{H}_i^j w.r.t. 0-1 loss.

D.2 Proof of Theorem 5.2

Proof. (of sufficiency in Theorem 5.2) Fix $\ell \in \mathcal{L}(\ell_{\text{prec}}^{\otimes p})$ and let $M = \max_{\pi, y} \ell(\pi, y)$. This proof is virtually identical to the proof of sufficiency in Theorem 4.1] However, we provide the full details here for completion. Our proof is also based on reduction. That is, given realizable learners \mathcal{A}_i^p of \mathcal{H}_i^p 's for $i \in [K]$ w.r.t. 0-1 loss, we will construct an agnostic learner \mathcal{Q} for \mathcal{H} w.r.t. ℓ . We will construct a set of experts \mathcal{E} that uses \mathcal{A}_i^p to make predictions and run the REWA algorithm using these experts.

Let $(x_1, y_1), ..., (x_T, y_T) \in (\mathcal{X} \times \mathcal{Y})^T$ denote the stream of points to be observed by the online learner. As before, we will assume an oblivious adversary. Define $h^* = \arg \min_{h \in \mathcal{H}} \sum_{t=1}^T \ell(h(x_t), y_t)$ to be the optimal hypothesis in hindsight. For any bitstring $b \in \{0,1\}^T$, let $\phi : \{t \in [T] : b_t = 1\} \to \mathcal{S}_K$ denote a function mapping time points where $b_t = 1$ to permutations. Let $\Phi_b = \mathcal{S}_K^{\{t \in [T]: b_t = 1\}}$ denote all such functions ϕ . For every $h \in \mathcal{H}$, there exists a $\phi_b^h \in \Phi_b$ such that for all $t \in \{t : b_t = 1\}$, $\phi_b^h(t) = h(x_t)$. Let $|b| = |\{t \in [T] : b_t = 1\}|$. For every $b \in \{0,1\}^T$ and $\phi \in \Phi_b$, we will define an Expert $E_{b,\phi}$. Expert $E_{b,\phi}$, formally presented in Algorithm \mathfrak{g} uses \mathcal{A}_i^p 's to make predictions in each round. However, $E_{b,\phi}$ only updates the \mathcal{A}_i^p 's on those rounds where $b_t = 1$, using ϕ to compute a labeled instance. For every $b \in \{0,1\}^T$, let $\mathcal{E}_b = \bigcup_{\phi \in \Phi_b} \{E_{b,\phi}\}$ denote the set of all Experts parameterized by functions $\phi \in \Phi_b$. If b is the bitstring with all zeros, then \mathcal{E}_b will be empty. Therefore, we will actually define $\mathcal{E}_b = \{E_0\} \cup \bigcup_{\phi \in \Phi_b} \{E_{b,\phi}\}$, where E_0 is the expert that never updates \mathcal{A}_i^j 's and only uses them for predictions in all $t \in [T]$. Note that $1 \leq |\mathcal{E}_b| \leq (K!)^{|b|} \leq K^{K|b|}$. Using these experts, Algorithm \mathfrak{g} is our agnostic online learner \mathcal{Q} for \mathcal{H} w.r.t $\ell \in \mathcal{L}(\ell_{pre}^{\mathbb{O}})$.

Algorithm 7 Expert (b, ϕ)

Input: Independent copy of realizable learners \mathcal{A}_{i}^{p} of \mathcal{H}_{i}^{p} for $i \in [K]$ 1 for t = 1, ..., T do 2 Receive example x_{t} 3 Define a binary vote vector $v_{t} \in \{0, 1\}^{K}$ such that $v_{t}[i] = \mathcal{A}_{i}^{p}(x_{t})$ 4 Predict $\hat{\pi}_{t} \in \arg \min_{\pi \in S_{K}} \langle \pi, v_{t} \rangle$ 5 if $b_{t} = 1$ then 6 Let $\pi = \phi(t)$ and for each $i \in [K]$, update \mathcal{A}_{i}^{p} by passing (x_{t}, π_{i}^{p}) 7 end

Using REWA guarantees and following exactly the same calculation as in the proof of Theorem 5.1 we immediately arrive at

$$\mathbb{E}\left[\sum_{t=1}^{T} \ell(\mathcal{Q}(x_t), y_t)\right] \le \mathbb{E}\left[\sum_{t=1}^{T} \ell(E_{B,\phi_B^{h^\star}}(x_t), y_t)\right] + M\sqrt{2T^{1+\beta}K\ln K}$$

the analog of Equation (1) for this setting. Using Lemma E.2, we have

$$\ell(E_{B,\phi_B^{h^\star}}(x_t),y_t) \leq \ell(h^\star(x_t),y_t) + \frac{M}{a}\ell(E_{B,\phi_B^{h^\star}}(x_t),\operatorname{BinRel}(h^\star(x_t),p))$$

pointwise, where $a = \min_{\pi,y} \{ \ell(\pi, y) \mid \ell(\pi, y) \neq 0 \}$. By definition of M, we further get

$$\begin{split} \ell(E_{B,\phi_B^{h\star}}(x_t),\operatorname{BinRel}(h^{\star}(x_t),p)) &\leq M \, \mathbbm{1}\{\ell(E_{B,\phi_B^{h\star}}(x_t),\operatorname{BinRel}(h^{\star}(x_t),p)) > 0\} \\ &= M \, \mathbbm{1}\{\ell_{\operatorname{prec}}^{\otimes p}(E_{B,\phi_B^{h\star}}(x_t),\operatorname{BinRel}(h^{\star}(x_t),p)) > 0\}, \end{split}$$

where the equality follows from the fact that $\ell \in \mathcal{L}(\ell_{\text{prec}}^{@p})$.

In order to upperbound the indicator above, we need some more notations. Given the realizable online learner \mathcal{A}_i^p for $i \in [K] \times [p]$, an instance $x \in \mathcal{X}$, and an ordered finite sequence of labeled examples $L \in (\mathcal{X} \times \{0,1\})^*$, let $\mathcal{A}_i^p(x|L)$ be the random variable denoting the prediction of \mathcal{A}_i^p on the instance x after running and updating on L. For any $b \in \{0,1\}^T$, $h \in \mathcal{H}$, and $t \in [T]$, let $L_{b_{<t}}^h(i,p) = \{(x_s, h_i^p(x_s)) : s < t \text{ and } b_s = 1\}$ denote the subsequence of the sequence of labeled instances $\{(x_s, h_i^p(x_s))\}_{s=1}^{t-1}$ where $b_s = 1$. Then, we have

$$\mathbb{1}\{\ell_{\text{prec}}^{@p}(E_{B,\phi_{B}^{h^{\star}}}(x_{t}), \text{BinRel}(h^{\star}(x_{t}), p)) > 0\} \le \sum_{i=1}^{K} \mathbb{1}\{\mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{$$

To prove this claimed inequality, consider the case when $\sum_{i=1}^{K} \mathbb{1}\{\mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{< t}}^{h^{\star}}(i,p)) \neq h_{i}^{\star,p}(x_{t})\} = 0$ because the inequality is trivial otherwise. Then, we must have $\mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{< t}}^{h^{\star}}(i,p)) = h_{i}^{\star,p}(x_{t})$ for all $i \in [K]$. Let $v_{t} \in \{0,1\}^{K}$ such that $v_{t}[i] = \mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{< t}}^{h^{\star}}(i,p))$ be a binary vote vector that the expert $E_{B,\phi_{B}^{h^{\star}}}$ constructs in round t. Since $h^{\star}(x_{t})$ is a permutation, the vote vector v_{t} must contain exactly p labels with 1 vote and K - p labels with 0 votes. Thus, every $\hat{\pi}_{t} \in \arg\min_{\pi \in \mathcal{S}_{K}} \langle \pi, v_{t} \rangle$ must rank labels with 1 vote in top p and labels with 0 votes outside top p.

In other words, we must have $\hat{\pi}_t \stackrel{p}{=} h^*(x_t)$, and thus $\ell_{\text{prec}}^{@p}(\hat{\pi}_t, \text{BinRel}(h^*(x_t), p)) = 0$ by definition of $\ell_{\text{prec}}^{@p}$. Our claim follows because $E_{B,\phi_B^{h^*}}(x_t) \in \arg \min_{\pi \in \mathcal{S}_K} \langle \pi, v_t \rangle$.

Combining everything, we obtain

$$\ell(E_{B,\phi_B^{h^\star}}(x_t), y_t) \le \ell(h^\star(x_t), y_t) + \frac{M^2}{a} \sum_{i=1}^K \mathbb{1}\{\mathcal{A}_i^p(x_t \mid L_{B_{$$

Taking expectations on both sides and summing over all $t \in [T]$ yields

$$\mathbb{E}\left[\sum_{t=1}^{T} \ell(E_{B,\phi_{B}^{h^{\star}}}(x_{t}), y_{t})\right] \leq \sum_{t=1}^{T} \ell(h^{\star}(x_{t}), y_{t}) + \frac{M^{2}}{a} \sum_{i=1}^{K} \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{\mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{< t}}^{h^{\star}}(i, p)) \neq h_{i}^{\star, p}(x_{t})\right\}\right].$$

So, it now suffices to show that $\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{\mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{<t}}^{h^{\star}}(i,p)) \neq h_{i}^{\star,p}(x_{t})\right\}\right]$ is a sub-linear function of T. Again, using the independence of B_{t} and the algorithm's prediction in round t, we can write

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\{\mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{
$$= \frac{T}{T^{\beta}} \sum_{t=1}^{T} \mathbb{E}\left[\mathbb{1}\{\mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{
$$= \frac{T}{T^{\beta}} \sum_{t=1}^{T} \mathbb{E}\left[\mathbb{1}\{\mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{$$$$$$

Next, we can use the regret guarantee of the algorithm \mathcal{A}_i^p on the rounds it was updated. That is,

$$\sum_{t=1}^{T} \mathbb{E} \left[\mathbb{1} \{ \mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{
$$= \mathbb{E} \left[\mathbb{E} \left[\sum_{t:B_{t}=1} \mathbb{1} \{ \mathcal{A}_{i}^{p}(x_{t} \mid L_{B_{
$$\leq \mathbb{E}_{B} \left[R_{i}^{p}(|B|) \right],$$$$$$

where $R_i^p(|B|)$ is the regret of \mathcal{A}_i^p , a sub-linear function of |B|. In the last step, we use the fact that \mathcal{A}_i^p is a realizable algorithm for \mathcal{H}_i^p and the feedback that the algorithm received was $(x_t, h_i^{\star, p}(x_t))$ in the rounds whenever $B_t = 1$. By Lemma 5.17 from Ceccherini-Silberstein et al. [2017], there exists a concave sub-linear function $\tilde{R}_i^p(|B|)$ that upperbounds $R_i^p(|B|)$. By Jensen's inequality, $\mathbb{E}_B[R_i^p(|B|)] \leq \tilde{R}_i^p(T^{\beta})$, a sub-linear function of T^{β} .

Putting everything together, we obtain

$$\mathbb{E}\left[\sum_{t=1}^{T} \ell(\mathcal{Q}(x_t), y_t)\right] \leq \sum_{t=1}^{T} \ell(h^*(x_t), y_t) + \frac{M^2}{a} \sum_{i=1}^{K} \frac{T}{T^\beta} \tilde{R}_i^p(T^\beta) + M\sqrt{2T^{1+\beta}K \ln K}$$
$$= \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} \ell(h(x_t), y_t) + \frac{pM^2}{a} \sum_{i=1}^{K} \frac{T}{T^\beta} \tilde{R}_i^p(T^\beta) + M\sqrt{2T^{1+\beta}K \ln K}$$

Since $\tilde{R}_i^p(T^\beta)$ is a sublinear function of T^β , we have that $\frac{T}{T^\beta}\tilde{R}_i^p(T^\beta)$ is a sublinear function of T. As the sum of sublinear functions is sublinear, the second term above must be a sublinear function of T. Thus, the regret is sub-linear for any choice of $\beta \in (0, 1)$. This completes our proof as we have shown that the algorithm Q achieves sub-linear regret in T.

We will now show that the online learnability of \mathcal{H} w.r.t ℓ implies that \mathcal{H}_i^p for each $i \in [K]$ is online learnable w.r.t 0-1 loss.

Proof. (of necessity in Theorem 5.2)

Fix $\ell \in \mathcal{L}(\ell_{\text{prec}}^{\otimes p})$ and let $M = \max_{\pi, y} \ell(\pi, y)$. Given an online learner \mathcal{A} for \mathcal{H} w.r.t ℓ , our goal is to construct an agnostic online learner \mathcal{A}_i^p for \mathcal{H}_i^p for a fixed $i \in [K]$. One can construct agnostic online learners for \mathcal{H}_i^p for all $i \in [K]$ by symmetry. Our construction uses the REWA and is similar to the sufficiency proof above.

Let us define function ϕ 's, the collection of functions Φ_b for every b in the same way we did before. For every $b \in \{0,1\}^T$ and $\phi \in \Phi_b$, define an Expert $E_{b,\phi}$. Expert $E_{b,\phi}$ is the expert presented in Algorithm 6 after setting j = p and uses \mathcal{A} to make predictions in each round. For every $b \in \{0,1\}^T$, let $\mathcal{E}_b = \bigcup_{\phi \in \Phi_b} \{E_{b,\phi}\}$ denote the set of all Experts parameterized by functions $\phi \in \Phi_b$. As before, we will actually define $\mathcal{E}_b = \{E_0\} \cup \bigcup_{\phi \in \Phi_b} \{E_{b,\phi}\}$, where E_0 is the expert that never updates \mathcal{A} and only uses it to make predictions in each round. Note that $1 \leq |\mathcal{E}_b| \leq (K!)^{|b|} \leq K^{K|b|}$.

The online learner for \mathcal{H}_i^p , henceforth denoted by \mathcal{Q} , is similar to Algorithm 3. First, it samples a $B \in \{0, 1\}^T$ s.t. $B_t \sim \text{Bernoulli}(T^\beta/T)$, constructs a set of experts \mathcal{E}_B using Algorithm 6 and runs REWA, denoted by \mathcal{P} , on the 0-1 loss over the stream $(x_1, y_1), ..., (x_T, y_T) \in (\mathcal{X} \times \{0, 1\})^T$. Let $h_i^{\star, p} = \arg \min_{h_i^p \in \mathcal{H}_i^p} \sum_{t=1}^T \mathbb{1}\{h_i^p(x_t) \neq y_t\}$ be the optimal function in hindsight and h^{\star} be any arbitrary completion of $h_i^{\star, p}$.

Using REWA guarantees and following exactly the same calculation as in the sufficiency proof, we arrive at

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{\mathcal{Q}(x_t) \neq y_t\right\}\right] \leq \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{E_{B,\phi_B^{h^*}}(x_t) \neq y_t\right\}\right] + \sqrt{2T^{1+\beta}K\ln K}.$$

The inequality above is the adaptation of Equation (1) for this proof. Since $\mathbb{1}\{E_{B,\phi_B^{h^*}}(x_t) \neq y_t\} \le \mathbb{1}\{h_i^{\star,p}(x_t) \neq y_t\} + \mathbb{1}\{E_{B,\phi_B^{h^*}}(x_t) \neq h_i^{\star,p}(x_t)\}$, the inequality above reduces to

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\{\mathcal{Q}(x_t) \neq y_t\}\right] \le \sum_{t=1}^{T} \mathbb{1}\{h_i^{\star, p}(x_t) \neq y_t\} + \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\{E_{B, \phi_B^{h^\star}}(x_t) \neq h_i^{\star, p}(x_t)\}\right] + \sqrt{2T^{1+\beta}K \ln K}$$

It now suffices to show that $\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\{E_{B,\phi_B^{h^{\star}}}(x_t) \neq h_i^{\star,p}(x_t)\}\right]$ is sub-linear in T.

Given an online learner \mathcal{A} for \mathcal{H} , an instance $x \in \mathcal{X}$, and an ordered finite sequence of labeled examples $L \in (\mathcal{X} \times \mathcal{Y})^*$, let $\mathcal{A}(x|L)$ be the random variable denoting the prediction of \mathcal{A} on the instance x after running and updating on L. For any $b \in \{0,1\}^T$, $h \in \mathcal{H}$, and $t \in [T]$, let $L_{b_{<t}}^h = \{(x_i, \operatorname{BinRel}(h(x_s), p)) : s < t \text{ and } b_s = 1\}$ denote the *subsequence* of the sequence of labeled instances $\{(x_s, \operatorname{BinRel}(h(x_s), p))\}_{s=1}^{t-1}$ where $b_s = 1$. Using Lemma E.4, we have

$$\begin{split} \mathbb{1}\{E_{B,\phi_{B}^{h^{\star}}}(x_{t}) \neq h_{i}^{\star,p}(x_{t})\} &\leq \mathbb{1}\{\ell_{\text{prec}}^{@p}(\mathcal{A}(x_{t} \mid L_{B_{ 0\} \\ &= \mathbb{1}\{\ell(\mathcal{A}(x_{t} \mid L_{B_{ 0\} \\ &\leq \frac{1}{a}\,\ell(\mathcal{A}(x_{t} \mid L_{B_{$$

where the equality follows from the definition of the loss class. Here, a is the lower bound on ℓ whenever it is non-zero. Thus, we obtain

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{E_{B,\phi_B^{h^\star}}(x_t) \neq h_i^{\star,p}(x_t)\right\}\right] \leq \frac{1}{a} \mathbb{E}\left[\sum_{t=1}^{T} \ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^\star}), \mathsf{BinRel}(h^\star(x_t), p))\right]$$

Now, we will again use the fact that the prediction $\mathcal{A}(x_t \mid L_{B_{< t}}^{h^*})$ only depends on (B_1, \ldots, B_{t-1}) , but is independent of B_t . Using this independence, we obtain

$$\begin{split} \mathbb{E}\left[\sum_{t=1}^{T}\ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^{\star}}), \operatorname{BinRel}(h^{\star}(x_t), p))\right] &= \frac{T}{T^{\beta}} \mathbb{E}\left[\sum_{t:B_t=1}\ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^{\star}}), \operatorname{BinRel}(h^{\star}(x_t), p))\right] \\ &= \frac{T}{T^{\beta}} \mathbb{E}\left[\mathbb{E}\left[\sum_{t:B_t=1}\ell(\mathcal{A}(x_t \mid L_{B_{< t}}^{h^{\star}}), \operatorname{BinRel}(h^{\star}(x_t), p)) \left|B\right]\right] \\ &\leq \frac{T}{T^{\beta}} \mathbb{E}\left[R(|B|, K)\right], \end{split}$$

where R(|B|, K) is the regret of the algorithm \mathcal{A} and is a sub-linear function of |B|. In the last step, we use the fact that \mathcal{A} is a (realizable) online learner for \mathcal{H} w.r.t. ℓ and the feedback that the algorithm received was $(x_t, \operatorname{BinRel}(h^*(x_t), p))$ in the rounds whenever $B_t = 1$. Again, using Lemma 5.17 from Ceccherini-Silberstein et al. [2017] and Jensen's inequality yields $\mathbb{E}_B[R(|B|, K)] \leq \tilde{R}(T^{\beta}, K)$, a concave, sub-linear function of T^{β} . Combining everything, we get

$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\{\mathcal{Q}(x_t) \neq h_i^{\star, p}(x_t)\}\right] \le \sum_{t=1}^{T} \mathbb{1}\{h_i^{\star, p}(x_t) \neq y_t\} + \frac{T}{a T^{\beta}} \tilde{R}(T^{\beta}, K) + \sqrt{2T^{1+\beta} K \ln K}$$
$$\le \inf_{h_i^p \in \mathcal{H}_i^p} \sum_{t=1}^{T} \mathbb{1}\{h_i^p(x_t) \neq y_t\} + \frac{T}{a T^{\beta}} \tilde{R}(T^{\beta}, K) + \sqrt{2T^{1+\beta} K \ln K}$$

For any choice of $\beta \in (0, 1)$, the regret above is a sub-linear function of T. Therefore, we have shown that Q is an agnostic learner for \mathcal{H}_i^p w.r.t. 0-1 loss. This completes our proof.

E Technical Lemmas

Throughout this section, for any ranking (permutation) $\pi \in S_K$, we let $\pi_i^j = \mathbb{1}\{\pi_i \leq j\}$ for all $(i, j) \in [K]$.

Lemma E.1. For any $y \in \mathcal{Y}$, $(\pi, \hat{\pi}) \in \mathcal{S}_k$, and $\ell \in \mathcal{L}(\ell_{sum}^{\otimes p})$

$$\ell(\pi, y) \leq \ell(\hat{\pi}, y) + c \, p \, \mathbb{E}_{j \sim Unif([p])} \left[\ell(\pi, BinRel(\hat{\pi}, j)) \right].$$

where $c = \frac{\max_{\tilde{\pi}, y} \ell(\tilde{\pi}, y)}{\min_{\tilde{\pi}, y} \{\ell(\tilde{\pi}, y) \mid \ell(\tilde{\pi}, y) \neq 0\}}.$

Proof. Assume that $\ell(\pi, y) > \ell(\hat{\pi}, y) \ge 0$ (as otherwise the inequality trivially holds). Then, since $\ell \in \mathcal{L}(\ell_{\text{sum}}^{@p})$, it must be the case that $\hat{\pi} \neq \pi$. That is, $\hat{\pi}$ and π assign different ranks to the labels in the top p. Therefore, there exists $i \in [p]$ s.t. $\ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, i)) > 0$. Since $\ell \in \mathcal{L}(\ell_{\text{sum}}^{@p})$, for this same $i \in [p], \ell(\pi, \text{BinRel}(\hat{\pi}, i)) > 0$. Therefore, we have

$$c \ p \ \mathbb{E}_{j \sim \text{Unif}([p])} \left[\ell(\pi, \text{BinRel}(\hat{\pi}, j)) \right] \ge c\ell(\pi, \text{BinRel}(\hat{\pi}, i))$$

$$= \frac{\max_{\tilde{\pi}, y} \ell(\tilde{\pi}, y)}{\min_{\tilde{\pi}, y} \{\ell(\tilde{\pi}, y) \mid \ell(\tilde{\pi}, y) \neq 0\}} \ell(\pi, \text{BinRel}(\hat{\pi}, i))$$

$$\ge \max_{\tilde{\pi}, y} \ell(\tilde{\pi}, y)$$

$$\ge \ell(\pi, y).$$

Combining the upperbounds in both cases gives the desired inequality.

Lemma E.2. For any $y \in \mathcal{Y}$, $(\pi, \hat{\pi}) \in \mathcal{S}_k$, and $\ell \in \mathcal{L}(\ell_{prec}^{@p})$

$$\ell(\pi, y) \le \ell(\hat{\pi}, y) + c \,\ell(\pi, BinRel(\hat{\pi}, p)).$$

where $c = \frac{\max_{\tilde{\pi}, y} \ell(\tilde{\pi}, y)}{\min_{\tilde{\pi}, y} \{\ell(\tilde{\pi}, y) \mid \ell(\tilde{\pi}, y) \neq 0\}}.$

Proof. Assume that $\ell(\pi, y) > \ell(\hat{\pi}, y) \ge 0$ (as otherwise the inequality trivially holds). Then, since $\ell \in \mathcal{L}(\ell_{\text{prec}}^{@p})$, it must be the case that $\hat{\pi} \neq \pi$. That is, $\hat{\pi}$ and π assign different labels in the top p. Therefore, $\ell_{\text{prec}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, p)) > 0$. Since $\ell \in \mathcal{L}(\ell_{\text{prec}}^{@p})$, $\ell(\pi, \text{BinRel}(\hat{\pi}, p)) > 0$. Therefore, we have

$$c \,\ell(\pi, \operatorname{BinRel}(\hat{\pi}, p)) = \frac{\max_{\tilde{\pi}, y} \ell(\tilde{\pi}, y)}{\min_{\tilde{\pi}, y} \{\ell(\tilde{\pi}, y) \mid \ell(\tilde{\pi}, y) \neq 0\}} \ell(\pi, \operatorname{BinRel}(\hat{\pi}, p))$$
$$\geq \max_{\tilde{\pi}, y} \ell(\tilde{\pi}, y)$$
$$\geq \ell(\pi, y).$$

Combining the upperbounds in both cases gives the desired inequality.

Lemma E.3. Let $\pi, \hat{\pi} \in S_k$. Then, for all $(i, j) \in [K] \times [p]$, $\ell_{sum}^{@p}(\pi, BinRel(\hat{\pi}, j)) \ge \mathbb{1}\{\pi_i^j \neq \hat{\pi}_i^j\}$.

Proof. Fix label $i^* \in [K]$ and threshold $j^* \in [p]$. Our goal is to show that $\ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, j^*)) \ge \mathbb{1}\{\pi_{i^*}^{j^*} \neq \hat{\pi}_{i^*}^{j^*}\}$. Recall that $\text{BinRel}(\hat{\pi}, j^*)[i^*] = \mathbb{1}\{\hat{\pi}_{i^*} \le j^*\}$ by definition. Since $\ell_{\text{sum}}^{@p}(\hat{\pi}, \text{BinRel}(\hat{\pi}, j^*)) = 0$, we have that

$$\begin{split} \ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, j^{\star})) &= \ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, j^{\star})) - \ell_{\text{sum}}^{@p}(\hat{\pi}, \text{BinRel}(\hat{\pi}, j^{\star})) \\ &= \sum_{i=1}^{K} \min(\pi_{i}, p+1) \text{BinRel}(\hat{\pi}, j^{\star})[i] - \sum_{i=1}^{K} \min(\hat{\pi}_{i}, p+1) \text{BinRel}(\hat{\pi}, j^{\star})[i] \\ &= \sum_{i=1}^{K} \min(\pi_{i}, p+1) \mathbb{1}\{\hat{\pi}_{i} \leq j^{\star}\} - \sum_{i=1}^{K} \min(\hat{\pi}_{i}, p+1) \mathbb{1}\{\hat{\pi}_{i} \leq j^{\star}\} \\ &= \sum_{i=1}^{K} \min(\pi_{i}, p+1) \mathbb{1}\{\hat{\pi}_{i} \leq j^{\star}\} - \sum_{i=1}^{K} \hat{\pi}_{i} \mathbb{1}\{\hat{\pi}_{i} \leq j^{\star}\} \end{split}$$

Let $\mathcal{I} \subseteq [K]$ s.t. for all $i \in \mathcal{I}$, $\hat{\pi}_i^{j^*} = \mathbb{1}\{\hat{\pi}_i \leq j^*\} = 1$. Then, we have that

$$\ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, j^{\star})) = \sum_{i \in \mathcal{I}} \min(\pi_i, p+1) - \sum_{i \in \mathcal{I}} \hat{\pi}_i$$
$$= \sum_{i \in \mathcal{I}} \min(\pi_i, p+1) - \sum_{i=1}^{j^{\star}} i$$

Suppose that $\mathbb{1}\{\pi_{i^{\star}}^{j^{\star}} \neq \hat{\pi}_{i^{\star}}^{j^{\star}}\} = 1$. It suffices to show that $\ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, j^{\star})) \ge 1$. There are two cases to consider. Suppose $i^{\star} \in \mathcal{I}$. Then, it must be the case that $\mathbb{1}\{\pi_{i^{\star}} \le j^{\star}\} = \pi_{i^{\star}}^{j^{\star}} = 0$, implying that $\pi_{i^{\star}} \ge j^{\star} + 1$. It then follows that in the best case $\sum_{i \in \mathcal{I}} \min(\pi_i, p+1) \ge \sum_{i=1}^{j^{\star}-1} i + (j^{\star}+1) > \sum_{i=1}^{j^{\star}} i$ showcasing that indeed $\ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, j)) \ge 1$. Now, suppose $i^{\star} \notin \mathcal{I}$. Then, $\mathbb{1}\{\hat{\pi}_{i^{\star}} \le j^{\star}\} = 0$, which means that $\mathbb{1}\{\pi_{i^{\star}} \le j^{\star}\} = 1$. Accordingly, while $\hat{\pi}$ did not rank label i^{\star} in the top j^{\star} . That is, there exists $\hat{i} \in \mathcal{I}$ st. $\pi_{\hat{i}} \ge j^{\star}+1$. Using the same logic, in the best case $\sum_{i \in \mathcal{I}} \min(\pi_i, p+1) \ge \sum_{i=1}^{j-1} i + (j^{\star}+1)$ showcasing that again $\ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, j^{\star})) \ge 1$. Thus, we have shown that when $\mathbb{1}\{\pi_{i^{\star}}^{j^{\star}} \neq \hat{\pi}_{i^{\star}}^{j^{\star}}\} = 1$, $\ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, j^{\star})) \ge 1$. Since i^{\star} and j^{\star} were arbitrary, this must be true for any $(i, j) \in [K] \times [p]$, completing the proof.

Lemma E.4. Let $\pi, \hat{\pi} \in S_k$. Then, for all $i \in [K]$, $\ell_{nrec}^{\otimes p}(\pi, BinRel(\hat{\pi}, p)) \geq \mathbb{1}\{\pi_i^p \neq \hat{\pi}_i^p\}$.

Proof. Fix label $i^* \in [K]$. Our goal is to show that $\ell_{\text{prec}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, p)) \ge \mathbb{1}\{\pi_{i^*}^p \neq \hat{\pi}_{i^*}^p\}$. Recall that $\text{BinRel}(\hat{\pi}, p)[i^*] = \mathbb{1}\{\hat{\pi}_{i^*} \le p\}$ by definition. Since $\ell_{\text{prec}}^{@p}(\hat{\pi}, \text{BinRel}(\hat{\pi}, p)) = 0$, we have that

$$\begin{split} \ell^{@p}_{\text{prec}}(\pi, \text{BinRel}(\hat{\pi}, p)) &= \ell^{@p}_{\text{prec}}(\pi, \text{BinRel}(\hat{\pi}, p)) - \ell^{@p}_{\text{prec}}(\hat{\pi}, \text{BinRel}(\hat{\pi}, p)) \\ &= \sum_{i=1}^{K} \mathbbm{1}\{\hat{\pi}_i \leq p\} \text{BinRel}(\hat{\pi}, p)[i] - \sum_{i=1}^{K} \mathbbm{1}\{\pi_i \leq p\} \text{BinRel}(\hat{\pi}, p)[i] \\ &= p - \sum_{i=1}^{K} \mathbbm{1}\{\pi_i \leq p\} \mathbbm{1}\{\hat{\pi}_i \leq p\} \end{split}$$

Let $\mathcal{I} \subseteq [K]$ s.t. for all $i \in \mathcal{I}$, $\hat{\pi}_i^p = \mathbb{1}\{\hat{\pi}_i \leq p\} = 1$. Then, we have that

$$\ell_{\mathrm{prec}}^{@p}(\pi,\mathrm{BinRel}(\hat{\pi},p)) = p - \sum_{i \in \mathcal{I}} \mathbb{1}\{\pi_i \leq p\}$$

Suppose that $\mathbb{1}\{\pi_{i^{\star}}^{p} \neq \hat{\pi}_{i^{\star}}^{p}\} = 1$. It suffices to show that $\ell_{\text{prec}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, p)) \geq 1$. There are two cases to consider. Suppose $i^{\star} \in \mathcal{I}$. Then, it must be the case that $\mathbb{1}\{\pi_{i^{\star}} \leq p\} = \pi_{i^{\star}}^{p} = 0$, implying that $\pi_{i^{\star}} \geq p + 1$. It then follows that in the best case $\sum_{i \in \mathcal{I}} \mathbb{1}\{\pi_{i} \leq p\} \leq p - 1 < p$ showcasing that indeed $\ell_{\text{sum}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, p)) \geq 1$. Now, suppose $i^{\star} \notin \mathcal{I}$. Then, $\mathbb{1}\{\hat{\pi}_{i^{\star}} \leq p\} = 0$, which means that $\mathbb{1}\{\pi_{i^{\star}} \leq p\} = 1$. Accordingly, while $\hat{\pi}$ did not rank label i^{\star} in the top p, π did rank label i^{\star} in the top p. Since $|\mathcal{I}| = p$, there must exist an label $\hat{i} \in \mathcal{I}$ which π does not rank in the top p. That is, there exists $\hat{i} \in \mathcal{I}$ s.t. $\pi_{\hat{i}} \geq p + 1$. Using the same logic, in the best case $\sum_{i \in \mathcal{I}} \mathbb{1}\{\pi_{i} \leq p\} \leq p - 1 < p$ showcasing that again $\ell_{\text{prec}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, p)) \geq 1$. Thus, we have shown that when $\mathbb{1}\{\pi_{i^{\star}}^{p} \neq \hat{\pi}_{i^{\star}}^{p}\} = 1$, $\ell_{\text{prec}}^{@p}(\pi, \text{BinRel}(\hat{\pi}, p)) \geq 1$. Since i^{\star} was arbitrary, this must be true for any $i \in [K]$, completing the proof.