
Low Tensor Rank Learning of Neural Dynamics

Arthur Pellegrino
School of Informatics

University of Edinburgh
pellegrino.arthur@ed.ac.uk

N Alex Cayco-Gajic∗
Département d’Etudes Cognitives

Ecole Normale Supérieure
natasha.cayco.gajic@ens.fr

Angus Chadwick∗

School of Informatics
University of Edinburgh

angus.chadwick@ed.ac.uk

Abstract

Learning relies on coordinated synaptic changes in recurrently connected popu-
lations of neurons. Therefore, understanding the collective evolution of synaptic
connectivity over learning is a key challenge in neuroscience and machine learning.
In particular, recent work has shown that the weight matrices of task-trained RNNs
are typically low rank, but how this low rank structure unfolds over learning is
unknown. To address this, we investigate the rank of the 3-tensor formed by the
weight matrices throughout learning. By fitting RNNs of varying rank to large-
scale neural recordings during a motor learning task, we find that the inferred
weights are low-tensor-rank and therefore evolve over a fixed low-dimensional
subspace throughout the entire course of learning. We next validate the observation
of low-tensor-rank learning on an RNN trained to solve the same task. Finally, we
present a set of mathematical results bounding the matrix and tensor ranks of gradi-
ent descent learning dynamics which show that low-tensor-rank weights emerge
naturally in RNNs trained to solve low-dimensional tasks. Taken together, our
findings provide insight on the evolution of population connectivity over learning
in both biological and artificial neural networks, and enable reverse engineering of
learning-induced changes in recurrent dynamics from large-scale neural recordings.

1 Introduction

Populations of neurons perform tasks through their dynamics, and these computations can be un-
derstood through the lens of recurrent neural networks (RNNs) [1, 2]. Recent work has shown
that RNNs trained on idealized versions of behavioural tasks from neuroscience experiments can
be reverse-engineered to better understand the dynamical principles by which they perform tasks
[3, 4, 5, 6, 7]. RNNs can also be fitted to neural data to infer the latent dynamics that drive neural
activity in specific tasks [8, 9, 10, 11]. However, an understanding of task learning in the brain
requires methods to understand how these latent dynamics evolve over trials, and to map these
computational changes to learning-induced changes in neural connectivity [12, 13]. For example, it
has been observed that gradient descent in task-trained RNNs tends to drive low-rank weight updates
[14]. Yet the structure of learning dynamics itself remains largely unknown, both in the context of
gradient-based optimization of neural networks and biological learning in neural systems.

To address this question, we consider how RNN dynamics evolve as a result of structured changes
in connectivity over learning. Specifically, we consider changes in RNN connectivity over multiple
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trials by assuming that the weight tensor, i.e. the 3-tensor formed by stacking the weight matrix
over all trials, has low tensor rank. This allows us to identify how distinct components of the weight
matrix vary over trials while simultaneously restricting the parameter complexity and benefiting
from the interpretable framework of low (matrix) rank RNNs at each trial [15]. Furthermore, by
imposing a constraint on the covariance of the trial factors we are also able to separate smooth
changes over learning from condition-specific variability on individual trials. In contrast to classic
tensor decomposition methods (such as PARAFAC), which instead constrain the neural activity itself
to be low rank, low-tensor-rank RNNs (ltrRNNs) capture high-dimensional neural activity resulting
from nonlinear neural dynamics, while preserving the interpretability of these linear methods through
having interpretable low-dimensional factors.

Main contributions. We first apply this method to neural data during a motor learning task [16]
to show that the resulting neural activity can be captured with surprisingly low-tensor-rank weight
updates. Next, we aim to find intuition for the observation that learning can be low tensor rank by
turning to gradient-based optimization, which has recently been shown to be able to explain changes
in neural activity patterns over motor learning [17, 18]. Towards this end, we show numerically that
an RNN that is trained to perform the same task also results in low-tensor-rank learning dynamics.
Finally, we provide analytical intuition in the form of upper bounds on both the matrix rank and the
tensor rank of gradient-based optimization in RNNs. Ultimately these results provide evidence for
low tensor rank learning structure of neural dynamics both in the brain and in RNNs.

2 Low tensor rank learning

The weight tensor. Learning in recurrent neural networks, both biological and artificial, involves
the continual update of a weight matrix W ∈ RN×N , where each element Wij represents the
connectivity from neuron j to i. Here, we consider a set of K discrete samples of the weight matrix
over learning: W (k+1) = W (k) +∆W (k) for k ∈ {0, ...,K − 1}. In neuroscience, ∆W (k) could
represent plasticity-induced changes in connectivity strength following each trial in the experiment
(e.g., a perceptual decision or motor action), whereas in machine learning they could represent weight
updates arising from the application of a given learning rule to a set of training data. Learning can
then be summarised by the weight tensor W ∈ RN×N×K formed by stacking together the weight
matrices W (k) on all trials1, i.e., Wijk = W

(k)
ij .

Figure 1: Low tensor rank recurrent neural networks.
a. We consider the 3-tensor formed by stacking the weights
over learning. b. Constraining the weight tensor to be low
rank allows for an interpretable analysis of the evolution
of the weights over learning. c. LtrRNNs partition neural
variability into task condition-specific inputs and learning-
related weight changes over trials. d. LtrRNNs capture
changes in dynamics constrained to a low-dimensional sub-
space, which reshape neural representations over learning.

Here, we investigate the multilinear
structure of the weight tensor W in or-
der to gain insight into the relationship
between learning, recurrent weights,
and network dynamics (Fig. 1a). In
particular, given recent studies suggest-
ing that trained RNNs are typically low
(matrix) rank [14], we ask whether the
weight tensor is low tensor rank, i.e.,
if the weight tensor can be written as a
sum of R rank-1 components:

W =

R∑
r=1

ar ⊗ br ⊗ cr

W
(k)
ij =

R∑
r=1

c(k)r (ar ⊗ br)ij︸ ︷︷ ︸
=ar,ibr,jc

(k)
r

where ar,br ∈ RN and cr ∈ RK for
r ∈ {1, . . . , R} (Fig. 1b). A conse-
quence of the low tensor rank assumption is that the weights vec(W (k)) must evolve within an
R-dimensional subspace of RN2

spanned by the set of rank-1 matrices {vec(ar ⊗ br)}Rr=1.

1For consistency with our analysis of neural data, we use the terminology trial throughout to describe the
index of the weight samples k, denoted in superscript (cf. neuron and time indices denoted in subscript).
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Low tensor rank RNNs. To investigate the structure of weight tensors formed over learning in
recurrent networks, we consider a continuous-time RNN (Fig. 1c). The RNN dynamics on trial k are
given by:

τ ẋ(k) = W (k)ϕ(x(k))− x(k) +Bu(k)(t)

for B ∈ RN×Ninput ,u(k)(t) ∈ RNinput . If the low tensor rank hypothesis is satisfied, the system can be
written as:

τ ẋ(k) =

R∑
r=1

c(k)r (ar ⊗ br)ϕ(x
(k))− x(k) +Bu(k)(t),

Figure 2: Bifurcation in the flow
field of an ltrRNN. Here a = b =
[−1/

√
2, 1/
√
2]T , so that the weights

at any given trial k are, W (k) =
c(k)

2

[
1 −1
−1 1

]
. A supercritical pitchfork

bifurcation occurs at c(k) = 1 when
ϕ = tanh; for ϕ =id (Sup. Fig. 1) a
line attractor emerges at c(k) = 1.

which reduces to a low-rank RNN on every trial [15].
As a result, x(k)(t) is constrained to an (R + Ninput)-
dimensional subspace of RN spanned by {ar}Rr=1 ∪
{Bi}

Ninput
i=1 , and this subspace is fixed across trials (Fig.

1d).

The weight matrix evolves across trials via a simple
rescaling of the rank-1 components by the trial factors
c
(k)
r . This may at first appear to restrict the possible

changes in dynamics over trials to simple scalings of
the flow field along the directions determined by the
corresponding ar ⊗ br components of the weights. In
fact, non-trivial changes in the flow field (e.g., bifurca-
tions) can occur due to the nonlinear activation ϕ(x) (Fig.
2; Supplementary Material A). Moreover, even in the
case of a linear ltrRNN (ϕ =id), a rich repertoire of
dynamics is possible. First, the system can switch be-
tween different vector fields by allowing the correspond-
ing trial factors to transition to zero (or nonzero) values.
More generally, the eigenvalues are non-trivially related
to the cr’s. The real eigenvalues can be shown to sat-
isfy the following equality (Supplementary Material A):

λr = 1
2 cos(θ

ṽ,v
rr )−1

∑
r′ cr′ [cos(θ

ṽ,a
rr′ + θv,brr′ ) + cos(θṽ,arr′ − θv,brr′ )], where ṽr and vr are the rth left

and right eigenvectors and θx,yrr′ is the angle between the rth x and r′th y. This non-trivial relationship
between the eigendecomposition and tensor rank decomposition endows considerable flexibility
in terms of the possible changes in dynamics over trials, depending on the relative orientations of
{ar′}Rr′=1 and {br′}Rr′=1 as well as the angle θṽ,vrr which quantifies the non-normality of the resulting
weight matrix.

Fitting ltrRNNs to data. These results suggest that ltrRNNs comprise a highly flexible and expressive
class of neural networks for relating the changes in recurrent dynamics to low-dimensional structure
of the weight updates. We next considered how ltrRNNs could be fit to a dataset (for example, the
activations of an RNN over the course of training, or recordings from a population of neurons as an
animal learns to perform a task) in order to elicit a low tensor rank description of the weight updates
governing the evolution of the dynamics over trials.

Figure 3: LtrRNN fit to neural data.
LtrRNNs can be fitted to neural popula-
tion data (here shown for a single neu-
ron and for three trials), thus capturing
smooth changes in activity over learning.

We consider a dataset in the form of a tensor Y ∈
RNdata×T×K , comprising the activity of Ndata neurons mea-
sured on K trials, each of duration T time points, with
single trial activations y(k)(t). To fit the ltrRNN to such a
tensor, we minimise the loss function L(a,b, c, B,M) =∑T,K

t,k ∥Mϕ(x(k)(t)) − y(k)(t)∥2, where M ∈ RNdata×N

is a readout matrix mapping the activation of the ltrRNN
units onto the neural data. The loss function is minimised
directly via gradient descent with respect to the parameters
of a rank R tensor decomposition of W.

Above we considered how the low tensor rank assumption constrains the possible changes in RNN
dynamics for the case in which the cr can change arbitrarily across trials. However, here we are
interested specifically in understanding how these dynamics change over the course of learning which
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typically imposes additional structure on the cr’s. Here, we add an inductive bias that the components
determining the weights change smoothly over trials, which we impose by parameterizing the trial
factors as cr = (L+σI)c̄r where LLT = A is the Cholesky decomposition of the smooth covariance
matrix A (assuming c̄r ∼ N (0, I), see Supplementary Material A). In contrast, we constrain the
inputs to the RNN u(k)(t) to depend only on task condition (i.e., the type of trial, such as the stimulus
presented or set of instructions given), thus assuming that most of the condition-independent inter-trial
variability in the data comes from learning-induced changes in the dynamics of the system rather
than changes in its inputs. By partitioning the variability in this way, we ensure that the activations
x(k)(t), as well as the weights vec(W (k)), evolve in low-dimensional subspaces of RN and RN2

,
respectively, throughout the course of learning. In the following sections we ask how accurate this
low-dimensional view of learning is in the context of both biological and gradient-based learning.

3 Related work

LtrRNNs integrate a broad range of concepts in neuroscience and machine learning, including low
(matrix) rank RNNs, tensor decompositions, fitting RNNs to neural data, and analytical studies of
gradient descent dynamics. Here we review the relationship between ltrRNNs and previous results
across these domains.

Inferring weights from neural activity. A diverse range of methods have historically been used to
infer synaptic connectivity from neural recordings [19]. Our work specifically builds upon a recent
line of investigation attempting to infer the recurrently generated dynamics ẋ = f(x,W ) of the
network from samples of its trajectories [20]. [21] and [22] inferred learning-induced changes in
population dynamics from neural data, but this approach was limited to pre-post comparisons at two
timepoints in learning. Others have developed methods to infer the learning rules governing weight
updates from post-learning neural activity [23], or spike train recordings [24, 25]. However, no
previous study has directly inferred the evolution of weights over the course of learning in neural data.
Our low-tensor-rank approach enables this inference by constraining the parameter complexity, which
allows more efficient application to neural data. Moreover, in contrast to previous approaches [21, 22]
our method ensures that the dynamics at different phases of learning remain jointly interpretable due
to the existence of a stable latent space in which the network activity unfolds.

Low rank RNNs. Previous work has introduced low rank RNNs as a powerful framework to uncover
the low-dimensional dynamics underlying task performance [15, 7], and which can be inferred from
neural population data [10]. In the context of learning, one could naively fit a separate low rank RNN
to data recorded on each trial, but there is no guarantee that the resulting O(NK) parameters could
be related to each other. By instead assuming the weights have low tensor rank structure, we ensure
that smooth changes in the dynamics can be mapped over trials with O(N +K) parameters, while
benefiting from the low rank RNN framework on each trial.

The dynamics of learning. Recent work has investigated the dynamics of learning via gradient
descent in artificial neural networks [26, 14]. [26] showed that deep linear networks progressively
learn the leading singular values of the input-output covariance matrix, which naturally leads to
low rank weight matrices when the input-output mapping is itself low rank. [14] extended these
findings to show that the weight updates of an RNN are low rank. However, the proof assumed an
infinite-dimensional linear dynamical system at steady-state and with Gaussian-distributed weights.
Using adjoint sensitivity analysis, our work extends this result by deriving bounds on the matrix rank
on the weight updates of finite-dimensional nonlinear networks away from steady-state. Furthermore,
to investigate the evolution of weights over learning, we provide bounds on the tensor rank of learning.

Tensor decomposition methods. Our framework can be used to infer low dimensional latent structure
in neural data. An alternative approach is to directly fit a low rank approximation of the neuron× time
× trial data tensor [27, 28, 29, 30]. Such linear methods have become increasingly popular because
of their interpretability but have two key shortcomings: first, neural representations are generally
nonlinearly embedded due to their dynamics and task structure [31, 32, 33]. Second, these methods
do not provide insight into the dynamics underlying neural computations. Here, we address both
issues by parameterizing the dynamics themselves as being low tensor rank, which allows changes in
the dynamics to be mapped directly while also enabling RNN activity over trials to be visualized in a
fixed subspace spanned by the weight tensor column factors.
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4 LtrRNN dynamics capture neural activity during motor learning

To test whether neural population dynamics during learning are consistent with a low tensor rank
framework, we fit ltrRNNs of varying rank to recordings from the motor and premotor cortex of the
macaque during a motor learning task in which the subject must adapt to a force field perturbation
in order to reach the target endpoint [16] (Fig. 4a). Following evidence that motor cortical initial
states are set by upstream regions during the preparatory period [16, 34], we parameterize u(k)(t)
with a neural ODE (see Supplementary Material B) with solution ũ(i) on a trial of condition i during
motor preparation, after which the dynamics evolved autonomously. As preprocessing, we first
Gaussian filtered the spiking activity of each neuron (std = 40 ms) to obtain smooth estimates of
the instantaneous firing rates. To compare across models, blocks of consecutive entries in time and
trials were held-out for cross validation, and the remaining entries of the data tensor were used to fit
the parameters of each ltrRNN model. For comparison we also fit a full tensor RNN (i.e. all N2K
entries of W were fitted), as well as full and low matrix rank RNNs whose weights stayed constant
over all trials. We quantified model performance as the unexplained variance on the interiors of the
held out blocks while discarding borders to reduce temporal correlations between the train and test
set (Fig. 4b inset, Supplementary Material B).

Interestingly, when we compared the performance of the full tensor RNN to a static RNN, we found
only a ∼ 5% difference in the variance explained, indicating that much of the variability in the
data is determined by task condition and dynamics, with the difference in performance attributable
to learning-induced changes [16]. However, of this remaining variability, a ltrRNN with only 5
components was able to achieve similar performance to the full tensor RNN (Fig. 4b), supporting the
hypothesis that learning dynamics are low rank. Using this cross-validation procedure also allowed
us to compare the performance of the ltrRNN model with low-rank matrix and tensor decompositions
which do not fit the underlying nonlinear neural dynamics. We found that for low ranks, our method
outperformed truncated SVD (applied to the trial-concatenated data) and PARAFAC (Fig. 4b).
Interestingly, in the case that ϕ =id, the activity of the ltrRNN is constrained to an R-dimensional
subspace, therefore the MSE (without cross-validation) is lower-bounded by that of the rank R SVD
by the Eckart-Young theorem. This suggests that the the higher performance of ltrRNN compared to
PCA is due to the nonlinear mapping from the membrane potential space to the firing rate space.

Since after t = 0 the network evolved autonomously, all of the information regarding its trajectory
was contained in the the recurrent dynamics and initial state. We find that the initial states inferred
by the model reflect the topology of the task variables (Fig. 4c.). In comparison, in the perturbation
block of trials there was only a small change to the initial states, consistent with the finding that the
majority of the variability in the data was due to changes in task condition rather than learning (Fig.
3b, Supplementary Material B).

Since ltrRNNs reduce to a low-rank RNN on any given trial, their membrane potential x(t) is
constrained to lie in the space spanned by the column vectors ar [15]. The membrane potential can
therefore be visualized via a projection onto each ar to observe the low-dimensional activity of the
network [10]. We find that, compared to applying PCA directly on the neural data, ltrRNNs yield
more interpretable visualizations of the condition and learning-related variability in the neural (Fig.
3d,e). Additionally, since ltrRNNs parameterize changes in dynamics, we can visualize the vector
field in the subspace spanned by the column vectors. Consistent with our task-trained RNN results,
and those of the literature [17], small changes in the vector field are sufficient to account for learning
the perturbation (Fig. 4f). These changes in the dynamics of the network can be easily interpreted
through the trial factors. We find that the dynamics along certain directions in the membrane potential
space change during learning (Fig. 4g). Furthermore, consistent with the hand kinematics, and recent
experimental evidence [35], some of these changes in the trial factors do not simply revert back to
baseline during the washout period (in which the force field perturbation is removed; Fig. 4h,i).
Dynamics along some columns capture target variability (Fig. 4j, top 2 components), whereas others
capture mainly temporal variability (Fig. 4j, bottom 3 components). Interestingly, the trial factors
which revert to baseline during the washout period are those corresponding to target-related dynamics,
while those which are persistently changed are the temporal variability factors (Fig. 4i).

Overall, we find that learning-related variability can be accounted for by low-tensor-rank changes in
the recurrent dynamics of neural populations. LtrRNN allows uncovering these changes in large-scale
neural data and vizualizing their effect in an interpretable fashion.
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Figure 4: LtrRNN separates learning- from condition-related variability in motor neural data.
a. We apply ltrRNN to recordings of the motor and premotor cortex during learning of a perturbed
reach task. (Schematic adapted from [16]). b. We hold out for testing blocks of trials and time
points (100 ms by 50 trials). This reduces temporal correlations between the train and test sets as
compared to holding out individual tensor entries. c. State of the ltrRNN (R = 5) 100 ms after the go
cue. LtrRNN captures the topology of the task. Furthermore, different initial states seem to emerge
during the perturbation period. d. PCA directly applied to the neural data. e. Activity of the ltrRNN
projected on the column vectors of the first three components. f. Vector field along pairs of column
vectors. We constrain the activity to the columns of the tensor such that x = qrar + qr′ar′ for
qr, qr′ ∈ [−2, 2] and we compute the vector field ar(ϕ(x) · br) + ar′(ϕ(x) · br′). g. Eigenspectrum
of W (k). Saturation gradient indicates trial. h. The trial factors cr can be seen as a latent variable
of learning, such that they describe the evolution of the weights in a low-dimensional subspace of
the weight space spanned by ar ⊗ br. i. Trial factors. The black line is computed using σ = 0. j.
LtrRNN activity projected onto each column factor (ordered as in i). In particular the activity along
the top two components seem to be more specific to reach angle.

5 Low tensor rank learning in task-trained RNNs

We next decided to test the low-tensor-rank learning hypothesis in a model in which we had direct
access to the ground truth weight tensor. Towards this end, we trained an RNN with unconstrained
weight structure to perform the same motor task.

Task-trained RNN model. At any given trial k, the RNN linearly controls the force applied to the
hand:

ÿ(k) = Dϕ(x(k)(t)) + κ(k)(t)

where κ(k)(t) ∈ R2 is an Ornstein-Uhlenbeck process representing noise in the execution of move-
ment [36]. To create a purely ballistic model, we provide the RNN the target position and a hold cue.
For the objective we use the integrated hand to target position so that the RNN simply has to push the
hand as fast as possible towards the target (Fig. 5a).
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After first pre-training the RNN to move the hand to the goal position at the go onset, we then probe
motor learning following the same protocol as the neural data. Specifically, the RNN first performs
50 trials in the baseline condition, after which we introduce a force perturbation orthogonal and
proportional to the velocity of the hand for 100 trials (Fig. 5b):

ÿ(k) = Dϕ(x(k))(t) + cRẏ(k)(t) + κ(k)(t)

where R ∈ R2×2 is a 90◦ clockwise rotation matrix, and c ∈ R is the coefficient of perturbation.
Finally, the RNN performs the original unperturbed task for another 100 trials (washout). Throughout
the perturbation and washout periods, the weights are updated following SGD.

Figure 5: Learning-induced weight changes in task-trained RNNs are low tensor rank. a. RNN
model. b. Average MSE between hand and target positions integrated throughout the trial. c. Left:
Variance explained of the weights resulting from pre-training W ∗. The original task training results
in a rank-3 RNN. Right: Variance explained of the tensor of updates W −W ∗ ⊗ 1 due to retraining.
The retraining procedure results in a rank-2 tensor. We further found that the subspaces spanned by
the pre-training columns (resp. rows) and retraining columns (resp. rows) were different, suggesting
a tensor of rank at most 5. d. Hand movements during various periods of learning, where “early”
and “late” describe respectively the first and last trial during which the perturbation is introduced
or removed. e. Using the same cross-validation as in Fig. 4 uncovers the low tensor rank structure.
f. Eigenspectrum of the weights W (k) over learning. Top: Ground truth weights of the task-trained
RNN. Bottom: Weights of the ltrRNN fit to the task-trained RNN activity. Imaginary eigenvalues
emerge to counter the rotational effect of the perturbation, and are uncovered by ltrRNN. g. Activity
projected on PCs. The rotational activity during perturbed trials is uncovered by ltrRNN. h. Example
of trial factor uncovered by ltrRNN which correlates with learning at the level of the behaviour.

We next analyzed how the structure of the weight matrix changed over the baseline, perturbation, and
washout blocks. The change in weights as a result of the pre-training W ∗ −W0, where W0 is the
random initialization, and W ∗ the weights after pre-training, is of matrix rank 3 (Fig. 5c, left). Since
the weight updates resulting from learning the perturbation are small (consistent with the literature
[17]), we cannot simply apply PARAFAC on the weights recorded during perturbation learning,
as only the 3 rank-1 terms from pre-training will be visible. However, running PARAFAC on the
updates W −W ∗ ⊗ 1 (where 1 is the vector of ones), reveals tensor rank 2 updates (Fig. 5c, right).
Furthermore, the subspace spanned by the columns (or rows) resulting from pretraining is different
than those resulting from perturbation learning (Supplementary Material C).
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LtrRNN application. We next ask whether ltrRNN can uncover this low-tensor-rank structure in
the weights, especially the small changes due to perturbation learning. Using our cross-validation
procedure, we find that the variance of the activity of the task-trained RNN that is unexplained by
the fitted ltrRNN plateaus at tensor rank 5 (Fig. 5e), consistent with our analysis of the ground truth
weights. Furthermore, the weights of the ltrRNN share similar spectral properties, and a similar
evolution over learning, compared to ground truth (Fig. 5f). In particular, in both cases, imaginary
eigenvalues, corresponding to rotational activity, emerge over learning, consistent with the behaviour
being rotational post-learning to counter the force field (5d). The emergence of rotational activity is
also visible at the level of the neural activity (Fig. 5g).

Therefore, consistent with the results found through ltrRNN fit to neural data, we found that the
weight updates in an RNN trained on a perturbed ballistic reach task had low-tensor-rank structure.
Furthermore, ltrRNN was able to uncover this structure in the weights of the task-trained RNN, and
its evolution over learning.

6 Gradient-based learning constrains the tensor rank of weight updates

We have so far observed that learning leads to low-tensor-rank weight changes in both biological data
and task-trained RNNs. To gain deeper insight into why this is the case, we next present a set of
mathematical results regarding the tensor rank of gradient-based learning in RNNs. Towards this end,
we use the method of the adjoint [37, 38] to derive a dynamical system whose solution is the gradient
of a loss functional with respect to the RNN weights [39].

The adjoint. For a dynamical system ẋ = f(x,θ), the state adjoint of the loss functional L : Rn → R
at a particular time point t is defined as ax(t) =

dL(x(T ))
dx(t) where T is the time of loss evaluation (but

see Supplementary Material E for the case of a loss functional that is integrated over time). From the
dynamics of x, the state adjoint dynamics can be derived:

ȧx(t) =

(
df(x(t))

dx(t)

)T

ax(t)

However, to understand gradient-based learning, we require the parameter adjoint: aθ(t) =
dL(x(T ))

dθ(t) .
This can be accomplished by concatenating the original dynamical system by its parameters z(t) =
[x(t),θ(t)] (noting that θ̇(t) = 0) to define the the augmented adjoint az(t) = [ax(t),aθ(t)], whose
dynamics can be shown to follow

ȧz(t) =

[(
df(x(t))

x(t)

)T

ax(t),

(
df(x(t))

dθ

)T

ax(t)

]

with terminal condition az(T ) =
[
dL(x(T ))
dx(T ) , 0

]
. The gradient of the loss with respect to the parame-

ters can then be found by integrating the parameter adjoint dynamics backwards through time to get
aθ(0). In Supplementary Material E we provide a short derivation of the adjoint adapted from [38].

Main results. While the adjoint method is extensively used as a numerical tool in autodifferentiation
packages [38, 40], it can also provide analytical insight into the gradient dynamics of dynamical
systems. Towards this end, we now return to the case of an RNN, with the parameter of interest being
the weight matrix. We demonstrate several mathematical results with the aid of the adjoint.
Lemma 1. Consider the RNN ẋ = Wϕ(x)−x+Bu(t), where x(t) ∈ Rn, u(t) ∈ Rm, W ∈ Rn×n,
B ∈ Rn×m, and ϕ : Rn → Rn an element-wise nonlinearity, and define a loss functional of the
linearly decoded RNN state, L(Dϕ(x(T ));y(T )) for y ∈ Rd. Furthermore, let W =

∑R
r αr ⊗ βr.

The adjoint dynamics are then given by,

ȧx =

(
R∑
r

αr ⊗ (βr ⊙ ϕ′(x(t)))

)T

ax − ax, ȧW = ax ⊗ ϕ(x(t))

with terminal conditions ax(T ) = ϕ′(x(T ))⊙
∑d

r′ L
′(Dr′ · ϕ(x(T ));yr′)Dr′ and aW (T ) = 0. 2

2Where ⊙ denotes the Hadamard product and ϕ′ the element-wise derivative of ϕ
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From the adjoint dynamics, it can be seen that the singular values of the gradient of the loss with
respect to the weights of the RNN (∇WL = aW (0)) depend on the dimensionality of the subspaces
over which ϕ(x(t)) and ax evolve. This can be used to show that the gradient’s singular values
are bounded by the singular values of both the activity and the adjoint, which we formalize in the
following theorem.
Theorem 1. Consider an RNN be defined as in Lemma 1. Then the singular values of its gradient
can be bounded as:

max
{
σϕ(x)
n σax

r , σax
n σϕ(x)

r

}
≤ σ∇WL

r ≤ min
{
σ
ϕ(x)
1 σax

r , σax
1 σϕ(x)

r

}
,

where σv
r denotes the rth singular value of v.

This theorem demonstrates that there is a natural bound to the numerical rank [41] of gradient-based
learning in RNNs. Numerically, we find that the singular value spectrum of both ϕ(x) and ax tend to
decay exponentially, even in the case of a chaotic RNN (Fig. 6). In Supplementary Material E we
repeat the same analysis with various activation functions, initial weight variances and ranks: overall,
we find that smooth activation functions (such as the most commonly used tanh) tend to lead to the
fastest decaying singular value spectrum of the adjoint.

So far, we haven’t made any assumption on the architecture of the RNN such as constraints on W or
ϕ. Under such constraints, stronger and more explicit bounds on both the matrix and tensor ranks can
be obtained.
Theorem 2. Consider an RNN defined as in Lemma 1 with ϕ =id and W (0) of rank R. Furthermore
suppose x(k)(0) is constrained to the subspace spanned by the columns of W (k) and B. Consider
the weight tensor W = [W (0),W (1), ...] where W (k+1) = W (0) + α

∑k
j=1∇WL(Dx(j)(T );y(j)),

with y(j) ∈ Rd where x(j) denotes the activity of the RNN after the jth weight update. Then,

1. The rank of the gradient at the first step is at most rank(∇WL(0)) ≤ R+ 1.

2. The rank of the trial slices of the weight tensor is at most rank(W (k)) ≤ 2R+m+ d.

3. The tensor rank of the weight tensor is at most rank(W) ≤ (2R+m+ d)2.

We note that these bounds are tight, in the sense that there exists networks for which they are equalities;
therefore, they cannot be improved upon without restricting the set of architectures considered (e.g.
to normal weight matrices). We also point out that they are non-trivial as the current best upper bound
on the max rank of a (Rn)⊗3 tensor is n2 − n− 1 [42]. In particular, in the case of W (0) = 0 and
m = d = 1 considered by [14], the tensor rank is at most 4. For arbitrary weight initializations, the
matrix and tensor mathematical ranks can be high. Nevertheless, in most cases the matrix and tensor
numerical ranks will fall vastly below these bounds due to Theorem 1.

We illustrate this result with R = 3, d = 2,m = 2 in Fig. 6. We find that the true ranks fall within
these bounds – strictly below due to limited machine precision – and that the numerical ranks are
extremely low. Intuitively, decoding the firing rate of the RNN into a low-dimensional space produces
weight updates that push the RNN and adjoint activity to lie in a low-dimensional subspace of the
state space. This, in turn, further pushes weight updates to lie in a low-dimensional subspace of the
weight space.

The proofs of Lemma 1 and Theorems 1 and 2 are provided in Supplementary Material E. We also
discuss two additional cases, namely that of a loss integrated over some period of time, and the
gradient of the loss w.r.t. to other parameters of the RNN. Finally, we show that momentum-based
optimization methods such as ADAM have the same property. Together, these analytical results
provide insight as to why gradient dynamics bound the matrix rank of the weight updates in generic
RNNs, as well as the tensor rank of learning dynamics in the linear case.

7 Discussion

Summary. In the present work, we explored the tensor rank of learning in artificial and biological
neural networks. We showed that learning leads to low-tensor-rank weight updates, which can be
exploited to uncover smooth changes in dynamics along with a principled choice of low-dimensional
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Figure 6: The singular value spectrum of the gradient of random RNNs with random objective.
Top: Full rank RNN with tanh activation function in a chaotic regime. Bottom: Low-rank (R = 3)
linear RNN. In both cases m = d = 2. The networks are trained to map a time-varying input
(parameterized as an LDS) to a given target output. Error shade represents the standard deviation
over 5 random initialization. a. Loss over training. b. Example of network activity at one iteration.
Inset: activity of two neurons over learning, red is post-learning. c. Singular value spectrum of the
activity and of the adjoint. d. Singular value spectrum of the weights, gradient, and bound we derive.
d. Tensor rank of the weight tensor minus initial weights. Variance is computed per trial slice.
factors over which weights and activity evolve throughout the entire course of learning. Finally, we
derived upper bounds on the singular values of gradient dynamics of nonlinear RNNs, and on the
matrix and tensor ranks in the linear case.

Modelling limitations and future work. Inferring connectivity from neural recordings is in general
an ill-posed problem [19]: given any observed pattern of activity, it is always possible that the data
could be explained entirely in terms of a external input to a set of unconnected neurons. In our
application to neural data, we resolved such ambiguities by assuming that inputs were fixed on each
trial of a given condition, forcing the changes in neural activity across trials of the same condition to
be captured by (smoothly varying) changes in weights. We note that, in principle, our framework and
code could also implement residual trial-to-trial variability in the inputs.

In addition to learning- and condition-specific changes, neural recordings show substantial variability
across consecutive trials, which are thought to reflect a combination of i) unmeasured covariates
such as behavioural or intrinsic state, ii) stochasticity in the neural system itself, and iii) changes
in the initial state at trial onset. Future work could incorporate behavioural covariates, allow for
trial-specific initial states, and model the data using a stochastic dynamical system within each trial.

Here, we focused on gradient-based learning, motivated by recent evidence that it is able to explain
many features of motor learning in neural data [17, 18], as well as by more general support for
an optimization-based framework to understand neural learning [43]. The tensor rank of learning
in RNNs with local synaptic rules (e.g., Hebbian) remains an open question. Towards this end,
theoretical work has established links between Hebbian and gradient-based learning [44, 45], opening
the possibility of an extension of our mathematical results to biologically plausible learning rules.

Our analytical results provide intuition for our observation that the rank of learning dynamics is
limited by task complexity. This supports previous findings of low (matrix) rank weight changes
in RNNs [14] and in deep networks [46, 47, 48]. Our results on the numerical matrix rank also has
interesting ties to work that uses rank compression for more efficient training in deep networks [46],
and for numerical solutions to systems with time-varying dynamics [49].

Broader impact. We introduce a novel framework for understanding learning in the brain and
artificial neural networks. Our mathematical results on the rank of RNN gradients have broad
relevance to the machine learning community, while our results on motor neural data could drive
future applications to brain computer interfaces. Overall, our work makes novel contributions towards
understanding the emergence of computations through learning in neural systems.
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Supplementary Material

A Low tensor rank recurrent neural networks

A.1 Architecture

Low tensor rank weights. In order to probe for the tensor rank of learning in neural data, we
introduce an RNN architecture that captures the evolution of neural activity over slow timescales. We
first recall the description of the architecture of the main text, W ∈ RN×N×K ,

W =

R∑
r=1

ar ⊗ br ⊗ cr.

In particular, at trial k, the dynamics of the RNN can be described as,

τ ẋ = W (k)ϕ(x)− x+Bu(k)(t) =

R∑
r=1

c(k)r (ar ⊗ br)ϕ(x)− x+Bu(k)(t)

for B ∈ RN×Ninput ,u(k)(t) ∈ RNinput , so that the RNN is a low rank RNN [15]. When training,
we initialize ar ∼ N (0, I), br = ar. Furthermore, the weights are parameterized such that
||ar|| = ||br|| = 1, so that the magnitude of a component is captured by cr.

Smoothness constraint over trials. We further constrain the initial covariance in trial of the trial
factors by parameterizing them as cr = (L+ σI)c̄r where LLT = A is the Cholesky decomposition
of the smooth covariance matrix A, and c̄r is initialized as c̄r ∼ N (0, I). In particular, we use a
rational quadratic kernel s2(1+(2l)−1(ki−kj)2)−1, where ki is the ith trial index. This is equivalent
to performing a 3-mode matrix-tensor product on the weight tensor itself (L+ σI)×3 W so that its
entries over trials are linear combinations of smooth functions up to observation noise.

This parameterization is similar to that of Gaussian process regression, except no probabilistic
objective is set (kernel regression). In particular, given that (L+ σI) is invertible, any possible cr
can in theory be obtained upon optimization of the c̄r. By additionally setting a regularization on c̄r,
we penalize the smoothness of cr as non-smooth solutions have diverging c̄r. In this way, we bias
the optimization process towards smoother cr’s. As illustrated in Fig. 4b, the cross-validated loss
remains similar to the non-smooth, full-rank, case.

A key advantage of having smooth trial factors is that missing trials can be easily accounted for.
Indeed, in most large-scale neural datasets, such as the one explored in the present work, potentially
many trials may have been discarded, for example due to behavioural performance being outside the
range set by the experimentalist. The assumption being made here is that the across-trial covariance
is preserved when such trials occur. That is, we assume that a failure of the animal to perform a given
trial does not imply that a trial wasn’t informative, or that learning did not occur.

Condition-wise inputs. We parameterize the condition-wise inputs to the network with neural
ordinary differential equations [38], i.e. as a dynamical system whose right hand side is parameterized
by a deep neural network (DNN)

v̇(i) = DNN(v(i)) u(i)(t) = ϕ(Dv(i)(t)),

where v(i)(t) ∈ RNNODE and D ∈ RNinput×NNODE . Throughout this work, we used a fully-connected
3-layer DNN with layers of size 150 and ReLU nonlinearities. This provides inputs whose dynamics
are considerably less constrained than those generated by low-rank RNNs. Thus, we do not make
any assumption on the activity of upstream brain regions which drive the activity of the brain region
being recorded. While here we chose to model the inputs using autonomous neural ODEs, one might
imagine feeding the neural ODE with behavioural or task covariates to relax the condition specificity
assumption, or fitting residual inputs to capture trial-by-trial variability arising from unmeasured
variables [21]. This could account for some of the variability that can neither be explained by the task
condition, nor by changes in the dynamics due to learning.

Loss. In sections 4 and 5 we focus on optimizing for the mean squared error (MSE)

L(a,b, c, B,M) =

K∑
k

T∑
q

∣∣∣∣∣∣Mϕ(x(k)(tq))− y(k)(tq)
∣∣∣∣∣∣2 , (A.1.1)
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where y are firing rate estimates data and M ∈ RN×Ndata . In section B we present supplementary
results on optimizing the Poisson log-likelihood with respect to spike data,

L(a,b, c, B,M) = −
K∑
k

T∑
q

log(Poisson(y(k)(tq)|Mϕ(x(k)(tq)))) (A.1.2)

where y are binned spike data.

Pseudocode. The following pseudocode summarizes the steps of fitting an ltrRNN to neural data.
For the sake of clarity, we present the simplest case: an autonomous ltrRNN with fixed initial state.
The neural ODE-driven case can be achieved by coupling f with a deep neural net. Additionally,
to allow for the initial state (w.r.t. the data) of the RNN to change over conditions and trials, the
evaluation of the dynamical system can be done over {−T0∆t, ..., 0, ..., T∆t},where x0 is now the
state at −T0∆t, and the fit to data is still done on the non-negative time states.

Algorithm 1 Low tensor rank recurrent neural network fit to data
inputs:

Y ∈ RNdata×T×K ▷ Neural data tensor of shape neuron × time × trial
t = {0,∆t, ..., T∆t} ▷ Time points of evaluation of the dynamical system

initializations:
randomly initialize ar,br ∈ RN for r = 1, . . . , R
randomly initialize c̄r ∈ RN for r = 1, . . . , R
randomly initialize q ∈ RR, M ∈ RNdata×N

definitions:
fW (x) = Wϕ(x)− x ▷ RNN dynamics for a given weight matrix
A ∈ RK×K such that Aij ← κ(i, j) ▷ Trial covariance matrix defined by a smooth kernel κ
L← Cholesky(A+ σ2I) ▷ Cholesky decomposition

while the loss l hasn’t converged do
l← 0
cr ← Lc̄
W←

∑R
r=1 ar ⊗ br ⊗ cr

x0 ←
∑R

r=1 qrar ▷ The initial state
for k = 1, ...,K do ▷ For all trials (parallelizable)

X(k) ← ODESolve(fW (k) ,x0, t) ▷ Matrix of activity of the RNN during trial k
l← l + ||Mϕ(X(k))− Y (k)||22︸ ︷︷ ︸

Fit to data

+α||X(k)||22︸ ︷︷ ︸
Regularization

end for
SGDUpdate(ar,br, c̄r,M,q) ▷ E.g. ar ← ar − η dl

dX
dX
dW

dW
dar

end while

Code availability. The ltrRNN implementation can be found at https://github.com/
arthur-pe/LtrRNN.

A.2 The dynamics of ltrRNNs

Rich changes of dynamics through oblique columns. Unlike for a matrix rank decomposition, a
tensor rank decomposition can be unique even for non-orthogonal factors. A sufficient condition for
uniqueness is that ra + rb + rc ≤ R− 2 where, without loss of generality, ra denotes the maximum
number of linearly dependent columns of a [50]. In other words, fitting the changes of dynamics
over trials as opposed to a single low rank RNN shared over all trials gives additional information
regarding the columns and rows. In the case where the aj’s are not orthogonal, non-trivial qualitative
changes in the vector fields can occur. Since for any given trial k, an ltrRNN is simply a low rank
RNN [15],

ẋ(k) =
∑
j

aj(c
(k)
j bj · ϕ(x(k)))− x(k) +Bu(k)(t) (A.2.1)
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Table 1: Hyperparameters of the ltrRNN models. Bold indicates values specific to section 4 and 5,
∗ indicates cross-validated hyperparameters, other hyperparameters were tuned by hand.

Neural data (S4) Simulated data (S5)
LtrRNN

R 5∗ 5∗
n 200∗ 200∗

ϕ tanh tanh
Smoothness

l 50 15
s 0.1 0.1
σ 0.1 0.1

Neural ODE
Layers 150× 150× 150 N/A

ϕ ReLU N/A
Regularization

α 0.01 0
Cross-validation

Train blocks 1× 10× 20 1× 10× 10
Test blocks 1× 5× 10 1× 5× 5

neuron × time × trial

Table 2: Approximate training time of ltrRNNs. Here on the neural data of section 4. The variables
which impact the most training time are the trial and neuron dimensions of the ltrRNN (not the rank
or data time steps), as well as the neural ODE architecture. Hardware : desktop with an RTX 3090
Nvidia GPU and i7-12700K Intel CPU. ∗ indicates the one used in section 4.

Neurons
200 400

Tr
ia

ls 370 12min 22min
740 16min∗ 40min

so that the dynamics of x(k) are constrained to span{aj} ∪ {Bj}. Unlike low rank RNNs, ltrRNN
are not necessarily invariant under changes of bases of aj’s. Nevertheless, we can introduce an
orthonormal basis {ãj} so that,

W (k)ϕ(x(k)) =

R∑
i

ãi
∑
j

(ãi · aj)(bj · ϕ(x))c(k)j (A.2.2)

In particular, notice that the dynamics along all ãi could potentially be affected by varying c
(k)
j .

Conversely, the ai’s and bi’s being respectively orthonormal — e.g. as in a singular value de-
composition — is not a sufficient condition for uniqueness of the tensor rank decomposition [51].
Nevertheless, constraining the ai to be orthogonal and ensuring that the Kruskal constraint is satisfied,
the vector fields are then orthogonal. In that case, varying c

(k)
i for some i corresponds to rescaling

the vector field along ai. Nevertheless, as is illustrated below with a single component, the leak term
allows the system to display typical properties of linear and nonlinear dynamical systems.

Bifurcation in a tensor rank-one RNN. A classical example of bifurcation in a two-neuron system
is that of the pitchfork supercritical bifurcation. Here, we show that it is essentially a tensor
rank one RNN. We also illustrate how the corresponding linear RNN bifurcates. Let a = b =
[−1/

√
2, 1/
√
2]T so that,

W (k) =
c

2

[
1 −1
−1 1

]
ẋ=0
===⇒

[
x1

x2

]
=

c

2

[
ϕ(x1)− ϕ(x2)
−ϕ(x1) + ϕ(x2)

]
(A.2.3)

That is x1 = −x2. We consider two cases, ϕ = tanh and ϕ = id, both odd functions. Introducing
the two in the previous equation, −ϕ(x2) = ϕ(x1). So that xi = cϕ(xi). Now considering each
activation function separately,
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• tanh: i) c > 1 has two solutions. ii) c ≤ 1 one solution (the origin). At c = 1 the origin is a
non-hyperbolic fixed point.

• id: i) c = 1 for any x1. The non-zero eigenvalue of the Jacobian of the system is negative,
therefore it is a line attractor. ii) x1 = 0 for any c. Then the Jacobian of the system at the
origin has both positive and negative eigenvalues for c > 1 and only negative for c ≤ 1.

Supplementary Figure 1: Bifurcation in a tensor rank one RNN.

More general changes in vector fields. At the cost of increasing the rank, an ltrRNN can possibly
transition between two arbitrary vector fields of ranks R1 and R2. For example, let cj = [1, 0.9, ..., 0]
for j ∈ {1, ..., R1} and cj = [0, ..., 0.9, 1] for j ∈ {R1 + 1, ..., R1 + R2}. There might however
be multiple bifurcations between the first and last trial. More generally, given that any tensor has a
(possibly high rank) tensor decomposition, any weight tensor can in theory be captured by an ltrRNN.
This further illustrates the relevance of the result we found that ltrRNN of very low ranks fit data as
well as full tensor RNNs.

A.3 Relationship between rank decomposition and eigendecomposition

In this section, we investigate the relationship between an arbitrary low rank decomposition of a matrix
and the eigendecomposition. We assume that, on a given trial k, W (k) has the rank decomposition

W (k) = adiag(c(k))bT =

R′∑
i=1

c
(k)
i aib

T
i . (A.3.1)

where a ∈ CN×R′
, b ∈ CR′×N , c(k) ∈ RR′

, and ai,bi are the rows/colums of a,b respectively.
One such low rank decomposition is the eigendecomposition34

W (k) = V ΛV −1 = V diag(λ)V −1 =

R∑
i=1

λiviṽ
T
i .

By the rank-nullity theorem, R is the rank of W (k), so that R′ ≥ R, with R = R′ when Equation
(A.3.1) is a minimal rank decomposition. Equating the two decompositions gives a general expression
for the eigenvalues:

Λ = V −1adiag(c)bTV =⇒ λi = (V −1adiag(c)bTV )ii =
∑
j

cj(ṽi · aj)(vi · bj).

3Assuming W (k) is diagonalisable. A similar argument using the Jordan normal form holds for defective
matrices.

4Here, we write the left eigenvectors (rows of V −1, transposed into column vectors) as ṽr . We can
assume without loss of generality that the right eigenvectors vi are normalised to unit length, in which case
the orthonormality of left and right eigenvectors gives ṽi · vj = δij = ∥ṽi∥∥vj∥ cos(θṽ,vij ) =⇒ ∥ṽi∥ =

1/ cos(θṽ,vii ), where θṽ,vii is the angle between the ith left and right eigenvector.
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If λi,a,b, c
(k) ∈ R, this gives rise to the result stated in the main text:

λi =
∑
j

cj(∥ṽi∥∥aj∥ cos θṽ,aij )(∥vi∥∥bj∥ cos θv,bij ) (A.3.2)

=
∑
j

cj(
∥aj∥

cos(θṽ,vii )
cos θṽ,aij )(∥bj∥ cos θv,bij ) (A.3.3)

=
∑
j

cj
∥aj∥∥bj∥
cos(θṽ,vii )

cos θṽ,aij cos θv,bij (A.3.4)

=
1

2

∑
j

cj
∥aj∥∥bj∥
cos(θṽ,vii )

(cos(θṽ,aij + θv,bij ) + cos(θṽ,aij − θv,bij )). (A.3.5)

Note that the above derivation makes no assumptions about the form of the low rank decomposition,
other than that it is real-valued. Low rank decompositions commonly set ∥ai∥ = ∥bi∥ = 1, and
often enforce orthogonality on the ai and/or bi, thereby introducing additional constraints on the
relationship between the c’s and λ’s. Normal matrices have cos(θṽ,vij ) = δij and ṽi = vi, in which
case further simplifications can be made.

B Motor learning

Pre-processing. Motor (n = 72 for Fig. 4, n = 70 for Sup. Fig. 4) and premotor (n = 231 for
Fig. 4, n = 137 for Sup. Fig. 4) cortical neurons were used. The data were Gaussian filtered with
a standard deviation of 40 ms (4 time bins). It was then centered by its baseline activity through
subtracting neuron-wise the mean activity from around target onset to go-cue, and rescaled by dividing
neuron-wise by the standard deviation of the execution period. Namely, the activity of a neuron ȳi(t)
was given by

ȳi(t) =
yi(t)− ⟨yi(t)⟩t≤100

⟨(yi(t)− ⟨yi(t)⟩t>100)2⟩t>100
(B.0.1)

where t = 0 is the go cue. Example of activity upon this pre-processing is given in Supp. Fig. 2.

Modeling assumptions. We assumed that motor and premotor cortex was driven into an initial state
by inputs from upstream regions during the preparatory period, after which the input shuts off so that
the resulting activity during the reach evolves autonomously via the recurrent dynamics dynamics
from that initial state. We therefore set u(t) = 0 for t > 100 where t = 0 is the time of the go cue.
Where the 100 ms account for a sensory delay.

Cross-validation procedure. We cross-validated the optimal rank and number of neurons of the
ltrRNN. Low matrix or tensor rank models can be cross-validated by holding out specific entries of the
matrix or tensor for training, and then used for testing. However, neural data has temporal correlation,
such that the entry of the time-by-trial-by-neuron data tensor Tijk is strongly correlated with Ti−1,jk

and Ti+1,jk. For example, assuming the data are continuous, a simple average of these entries will
give an optimal estimate Tijk in the limit of small time bins. Thus, the test set can be trivially inferred
from the train set. We validated this intuition by performing the same cross-validation as section 4
but with 1× 1× 1 blocks, and found the test loss was similar as using the train loss over the whole
dataset (Sup. Fig. 3).

To counter this effect, sets of contiguous entries [Tijk, ..., Ti+n,jk] can be held out of training, and
the interior of these blocks [Ti+q,jk, ..., Ti+n−q,jk] used for testing [30]. Here, given that we are
interested in uncovering smooth changes in neural activity over slow timescales, we hold out n-by-m
matrices [[Tijk, ..., Ti+n,jk], ..., [Ti,j+m,k, ..., Ti+n,j+m,k]] (Fig. 4b. inset).

As mentioned in Supplementary Material A, our method allows inferring the dynamics of held-out
trials. We found that using the cross-validation procedure from [30] infers similar ranks as holding
out entire trials (Sup. Fig. 3). We nevertheless applied this procedure for the sake of being able to
compare different classes of models.

Poisson log likelihood. Another method for fitting firing-rate models to spike data is to use the
negative Poisson log likelihood loss [11, 10]. We fitted a ltrRNN (R = 5, n = 200 as in the MSE
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loss case) with softplus activation using negative Poisson log likelihood loss. We found similar but
overall noisier results (Supp. Fig. 5). This may be due to the presence of high firing rate neurons
which are normalized by the preprocessing procedure but not likelihood fitting.

Supplementary Figure 2: Persistent effects of motor learning. Top: session used in the main text
(Fig. 4). Bottom : session used in supplementary material (Sup. Fig. 4). a. Hand movement during
the first and last 80 trials of perturbation learning and washout. The hand trajectories of some reach
directions do not revert back post-washout (e.g. light green for top; dark green for bottom) b. Single
neuron activity averaged within each condition. c. State at go cue +100ms. Larger full color marker
are median within a condition. For some reach directions, the washout tends to be more similar to the
perturbed state than the baseline.

C Task-trained RNN model of motor learning

Task design. A trial is split into a preparatory period t ∈ [0, Tgo) and execution period [Tgo, Tend].
Here we set Tgo = 2, Tend = 4. To model a ballistic reach, the RNN receives input the target
information and a hold cue during the preparatory period. During the execution period it evolves
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Supplementary Figure 3: Comparison of cross-validation procedures. Applied to the neural data
of the session used in the main text.

Supplementary Figure 4: LtrRNN applied to an additional recording session. a. Cross-validated
loss with held out blocks of size 100ms by 20 trials. b. PCA on preprocessed data. c. State of the
ltrRNN at go cue +100ms. f. Projection on first three aj . e. Projection of the vector field along
aj (see main text). f. Eigenspectrum of W (k) over trials. g. First three cj . h. Trial factors cj . i.
Projection of x(k)(t) on the corresponding aj .

autonomously.

dx(k) =
[
Wϕ(x(k))− x(k) + 1t<Tgo

Btargetu
(k)
target + 1t<Tgo

Bholdu
(k)
hold

]
dt+ σdW (C.0.1)

where Btarget ∈ Rn×2, u(k)
target = [cos(θ(k)), sin(θ(k))] is a static vector representing the position of

the target, Bhold ∈ Rn×1, u(k)
hold = 1 a cue indicating to hold movement, and dW the infinitesimal

increments of a Wiener process [52]. The dynamics of the hand are given in section 5 of the
main text. The loss is taken to minimize the distance between the hand y(k)(t) and the target v(k)

throughout the execution period, while keeping the hand still during the preparatory period, that is
L(W,Btarget, Bhold, D) =

1

K

K∑
k=1

(
1

Tgo

∫ Tgo

0

||y(k)(t)||2dt+ 1

Tend − Tgo

∫ Tend

Tgo

||y(k)(t)− v(k)||2dt

)
. (C.0.2)
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Supplementary Figure 5: Poisson log-likelihood fitting. a. Projection on first three aj . b. State
of the ltrRNN at go cue +100ms. c. First three cj . d. Eigenspectrum of W (k) over trials. e. Trial
factors cj . f. Projection of x(k)(t) on the corresponding aj .

In particular, the speed of the reach is only constrained by the noise of the RNN and the hand. The
dynamical system as a whole is evaluated with a differentiable adaptive step SDE solver [40] and
trained with ADAM [53] during initial training, and SGD during motor perturbation learning.

Analysis of the weights. We found that, consistent with the literature [17], the changes in weights
resulting from the initial training were much larger than those of motor perturbation learning.
PARAFAC on the full tensor of updates W −W0 ⊗ 1 captured the weight tensor in 3 components
(not shown), whose columns and rows were essentially those of performing SVD on W ∗. Fitting
additional PARAFAC components revealed that residual variability in the updates of pretraining
was larger than the motor perturbation learning variability. Furthermore, unlike SVD, there is no
guarantee that the components of fitting a rank k + 1 PARAFAC model will be related to those of
fitting a rank k model. Nevertheless, motor perturbation learning had a significant change on the
eigenvalues and activity of the RNN (Fig. 5f,g)

To uncover an upper bound on rank of the weight tensor, we split the analysis into the pre-training
and motor perturbation learning. We first performed SVD on the change in weights matrix W ∗−W0,
where W ∗ are the weights of the network post-training, but pre-motor perturbation learning (Fig.
5b.). We found that the changes in weights were well captured by a rank-3 decomposition. Then,
we performed PARAFAC on the change in weights tensor W −W ∗ ⊗ 1 of the motor perturbation
learning. We found that this change of weight tensor was well approximated by a tensor rank
2 decomposition. The combination of these results upper-bounds the tensor rank of the overall
changes in weights to 5. Finally, we compared the subspace spanned by the columns of the SVD and
PARAFAC decomposition by projecting the weight tensor W−W ∗⊗1 on the first three column and
row singular vectors of W ∗ −W0 and found approximately a remaining 0.2 unexplained variance,
suggesting that the columns of W0 −W ∗ and W ∗ were not orthogonal, but did not span the same
subspace. Combined, these results suggest that the numerical tensor rank is at least 4 and at most 5,
consistent with the results uncovered by ltrRNN from the RNN activity (Fig. 5e).
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D Task-trained RNN models of additional neuroscience tasks

To investigate the generality of the low tensor rank framework, we additionally trained RNNs on
three non-motor tasks commonly used in neuroscience.

Sensory evidence accumulation task [54] (Fig. 6i). The RNN receives a one-dimensional Ornstein-
Uhlenbeck (OU) process input whose expected steady-state is either positive or negative. The target
output is either +1 or -1 if the mean of the input is positive or negative, respectively.

Contextual decision making task [10] (Fig. 6ii). The RNN receives a three-dimensional input. The
first two inputs are independent OU processes as in the previous task. The third input is binary and
constant, and determines which of the two stochastic inputs must be integrated. The target output is
+1 (or -1) if the mean of the input of the OU process indicated by the contextual input is positive (or
negative).

Working memory task [14] (Fig. 6iii). The RNN receives a 1-dimensional input consisting of two
stimuli of different amplitudes separated by a delay in time. The target output is the identity of the
stimulus (1 or 2) which had larger amplitude.

Note that, in contrast to the motor adaptation task, these tasks do not contain any baseline period.
Therefore, as we could not compare weight updates to a pre-trained solution, we simply analyzed the
tensor rank of the weights starting from random initialization. That is, we first trained an RNN on
each of these tasks using gradient descent, then used PARAFAC on W −W (0) ⊗ 1 to determine the
tensor rank of the resulting neuron × neuron × iteration tensor of weights over training. In each of
these tasks we found that the variance explained indeed saturated at low tensor ranks (at R = 1, 4,
and 3; Fig. 6e).

Supplementary Figure 6: Validation of low-tensor-rank framework on RNNs trained on addi-
tional tasks. Each row indicates a different task. Row i. Sensory evidence accumulation. a. Example
inputs. Each line represents a different trial; red/blue indicate target identity. b. Example outputs after
training (for the inputs shown in a). c. Loss curve over iterations. d. Eigenspectrum of W (k) −W (0).
Color gradient indicates training iterations k (with k = 1 in yellow). e. After training, we perform
PARAFAC on W−W (0)⊗1 to estimate the rank of learning dynamics. Row ii. Contextual decision
making. Row iii. Working memory task.
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E Mathematical results

E.1 Adjoint derivation

In this section, we present a derivation of the adjoint mainly following [38]. Then, we derive the
adjoint of recurrent neural networks.

E.1.1 State adjoint

Consider the dynamical system ẋ = f(x,θ) ∈ Rn where θ ∈ Rk is a set of parameters. Furthermore,
let the functional L : Rn → R such that L(x(T )) is our loss. First, define the state adjoint,

a(t) =
dL(x(T ))

dx(t)
. (E.1.1)

Notice that since x(t+∆t) is a function of x(t),

a(t) =
dL(x(T ))

dx(t+∆t)

dx(t+∆t)

dx(t)
= a(t+∆t)

dx(t+∆t)

dx(t)
. (E.1.2)

By Taylor expanding x(t+∆t) = x(t) + ∆tf(x(t)) +O(∆t2), we get,

a(t) = a(t+∆t)(I +
d

dx(t)
f(x(t)) +O(∆t2)) (E.1.3)

where I is the identity matrix. By rearranging,
a(t+∆t)− a(t)

∆t
= a(t+∆t)

df(x(t))

dx(t)
+O(∆t). (E.1.4)

Taking the limit as ∆t→ 0,
da(t)

dt
= a(t)

df(x(t))

dx(t)
. (E.1.5)

We now have the dynamics of the adjoint; all that remains is that we find an initial (or rather terminal)
condition. For this, notice that

a(T ) =
dL(x(T ))

dx(T )
(E.1.6)

is the usual gradient of L w.r.t. to its argument.

E.1.2 Parameter adjoint and gradient

In the above we derived the state adjoint a. However, for our purposes we also require the parameter
adjoint dL(x(T ))/dθ. For this, it suffices to augment the original dynamical system with its
parameters5 ż = [f(x,θ),0] and initial (later terminal) condition z(0) = [x(0),θ]. Defining the loss
L̄(z(T )) = L(x(T )), the adjoint of this augmented system is,

az(t) =
dL̄(z(T ))

dz(t)
=

[
dL̄(z(T ))

dx(t)
,
dL̄(z(T ))

dθ

]
=

[
dL(x(T ))

dx(t)
,
dL(x(T ))

dθ

]
=

[
ax(t),

dL(x(T ))

dθ

]
,

(E.1.7)

which contains the desired term dL(x(T ))/dθ. It now remains to describe the dynamics of the
augmented system. By the same argument as for the state adjoint (E.1.5),

daz(t)

dt
= az(t)

dż

dz
. (E.1.8)

By (E.1.7) and by unconcatenating z,

=

[
ax(t),

dL(x(T ))

dθ

] [df(x(t))
dx(t)

dx(t)
dθ

d0
dx(t)

d0
dθ

]
(E.1.9)

=

[
a(t)

df(x(t))

x(t)
,a(t)

df(x(t))

dθ

]
. (E.1.10)

5Here [·, ·] denotes row concatenation.
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Hence the following dynamical system can be evaluated,
d

dt

[
x(t),a(t),

dL(x(T ))

dθ

]
=

[
f(x(t),θ),a(t)

df(x(t))

x(t)
,a(t)

df(x(t))

dθ

]
, (E.1.11)

with terminal condition[
x(T ),a(T ),

dL(x(T ))

dθ

]
=

[
x(T ),

dL(x(T ))

dx(T )
,0

]
. (E.1.12)

Notice that to obtain the terminal condition, since it depends on x(T ), the original dynamical system
must be evaluated forward once.

E.1.3 RNN adjoint

Let ẋ = f(x,W ) = Wϕ(x) − x + Bu(t) and L(x(T )) = ||Dϕ(x(T )) − y||2 for y ∈ Rd.
Furthermore, as it will be convenient, let W =

∑R
i αi ⊗ βi. We will derive one by one the terms

needed to characterize the parameter adjoint. First the Jacobian is

df(x(t),θ)

dx(t)
=

R∑
i

αi ⊗ (βi ⊙ ϕ′(x(t)))− I (E.1.13)

where ⊙ denotes the element-wise product, I the identity matrix, and ϕ′ the derivative of ϕ. Next,

df(x(t),θ)i
dWjk

=

{
0 i ̸= j

ϕ(x)k i = j
, (E.1.14)

that is
df(x(t),θ)

dW
= I ⊗ ϕ(x). (E.1.15)

Finally the terminal condition,

dL(x(T ))

dx(T )i
=

d

dxi

d∑
j

(Dj · ϕ(x)− yj)
2 =

d∑
j

(Dj · ϕ(x)− yj)(Dijϕ
′(x)i) (E.1.16)

that is,

dL(x(T ))

dx(T )
=

d∑
j

(Dj · ϕ(x)− yj)(Dj ⊙ ϕ′(x)) = ϕ′(x)⊙
d∑
j

(Dj · ϕ(x)− yj)Dj (E.1.17)

Or more explicitly, ȧz =ȧx =
(∑R

i αi ⊗ βi ⊙ ϕ′(x)
)T

ax − ax, ax(T ) = ϕ′(x(T ))⊙
∑d

j (Dj · ϕ(x(T ))− yj)Dj

ȧW = ax ⊗ ϕ(x), aW (T ) = 0

(E.1.18)

E.2 Rank of the gradient

E.2.1 The gradient as a composition of operators

In this section, we prove Theorems 1. In order to derive bounds on the singular values of∇WL =
aW (0), we shall now consider ax and ϕ(x) as linear operators with integration. Namely,

axy :=

∫ T

0

ax(t)y(t)dt (E.2.1)

where y ∈ H forH some suitable Hilbert space, such as L2 for our case.

More formally, let ax, ϕ(x) ∈ B0,0, where B0,0 is the Banach space of i) compact ii) bounded
operators from H to Rn, such that ax, ϕ(x) : H → Rn. In particular, we note that compactness
follows from the image of ax, that is ax(H), to be a vector subspace of Rn and therefore be of finite
rank. By the same argument, ϕ(x) is compact, and therefore so is ϕ(x)∗ by Schauder’s theorem [55],
where ∗ is adjunction. Furthermore, notice that ϕ(x),ax are solutions of dynamical systems with
differentiable right hand side and therefore bounded (in Rn) if they are evaluated for finite time, and
therefore bounded when seen as operators. The following result can now be applied:
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Lemma 2 ([55]). Let T ∈ B0,0, then T admits a singular value decomposition. Furthermore, this
singular value decomposition is of finite rank.

We can now prove the main theorem.

Proof of Theorem 1. Notice that the composition of the two operators is: ax ◦ ϕ(x)∗ = ∇WL.
Furthermore, the singular values of∇WL are,

σ∇WL
i = min

U⊆Rn,
dimU=
n−i−1

max
y∈U,
||y||=1

||∇WLy|| = min
U⊆Rn,
dimU=
n−i−1

max
y∈U,
||y||=1

||axϕ(x)∗y|| (E.2.2)

which can be bounded as,

min
U⊆Rn,
dimU=
n−i−1

max
y∈U,
||y||=1

||axϕ(x)∗y|| ≤ min
U⊆Rn,
dimU=
n−i−1

max
y∈U,
||y||=1

||ax||||ϕ(x)∗y|| (E.2.3)

= σax
1 min

U⊆Rn,
dimU=
n−i−1

max
y∈U,
||y||=1

||ϕ(x)∗y|| (E.2.4)

that is,

(E.2.5)

σ∇WL
i ≤ σax

1 σ
ϕ(x)∗

i (E.2.6)

Now notice that, for any operator, akin to the matrix case, T1, T2, the adjoint of their composition is
(T1T2)

∗ = T ∗
2 T

∗
1 . Furthermore,

σ
(∇WL)T

i = min
U⊆Rn,
dimU=
n−i−1

max
y∈U,
||y||=1

||(axϕ(x)∗)∗y|| = min
U⊆Rn,
dimU=
n−i−1

max
y∈U,
||y||=1

||ϕ(x)a∗xy|| (E.2.7)

≤ σ
ϕ(x)
1 min

U⊆Rn,
dimU=
n−i−1

max
y∈U,
||y||=1

||a∗xy|| (E.2.8)

= σ
ϕ(x)
1 σ

a∗
x

i (E.2.9)

Noticing that σa∗
x

i = σax
i and σ∇WL

i = σ
(∇WL)T

i ,

σ∇WL
i ≤ σ

ϕ(x)
1 σax

i (E.2.10)

Combining E.2.6 and E.2.10 we obtain the sought upper bound of Theorem 1,

σ∇WL
i ≤ min

{
σax
1 σ

ϕ(x)
i , σ

ϕ(x)
1 σax

i

}
(E.2.11)

Similar steps can be used to derive the lower bound of Theorem 1, using instead the identity
σT1
n ||T2y|| ≤ ||T1T2y|| where T1, T2 ∈ B0,0 and σT1

n is the smallest non-zero singular value of
T1.

We however note that, unlike the upper bound, the lower bound we provide does not have any
numerical use, as the smallest singular value of the adjoint or of the firing rate is practically 0 (for
example, well bellow machine precision).

We further point out that a more explicit characterization of the singular values of the gradient can be
obtained. Let Uax

i , Uϕ(x)
i be the right singular vectors of respectively ax and ϕ(x), so that V ax

i (t),
V

ϕ(x)
i (t) are the left singular vectors and σax

i , σϕ(x)
j the singular values.

∇WL =

n∑
i,j=1

(
V ax
i ⊗ V

ϕ(x)
j

)
σax
i σ

ϕ(x)
j

∫ T

0

Uax
i (t)U

ϕ(x)
j (t)dt (E.2.12)
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The characterization of the rank of the gradient has thus shifted to the firing rate and adjoint spaces.
Furthermore, the integral is just the inner product between their right singular vectors and therefore
of magnitude bounded by 1. Hence, for the dynamics of the weights to be large in a given direction
in weight space V ax

i ⊗ V
ϕ(x)
j , all three of: the singular values of the firing rate, the state adjoint, as

well as their cofluctuation in time, must not be small.

E.2.2 Weight gradient for time discretizations

Finally, we mention that our detour through functional analysis was for the sake of mathematical
rigour, and that in practical applications, the RNN and its adjoint are evaluated at discrete time
steps 0,∆t..., q∆t. In that case, the gradient can be estimated as a simple matrix-matrix product.
Let A = [ax(0), ...,ax(q∆t)] and B = [ϕ(x)(0), ..., ϕ(x)(q∆t)]. Then ∇WL = ∆tABT , and the
bounds E.2.6 and E.2.10 follow from classic matrix-matrix product bounds [56]. In particular, given
that ϕ(x) and ax are smooth, without loss of generality,

σ∇WL
i = lim

minj(tj+1−tj)→0
σABT

i (E.2.13)

This simple matrix-matrix product opens up the possibility of fast RNN adjoint implementations as,
unlike computing ax

df
dW in general adjoint solvers, which requires O(qn3) time and O(n2) memory

complexity for an n-dimensional RNN and q time steps, here the time complexity drops to O(qn2).

E.2.3 Rank of linear RNNs

In this section we prove Theorem 2.

Proof of claim 1. If W =
∑R

i αi⊗βi, then by Lemma 1, the dynamics of the adjoint are constrained
to the span of the rows of W , namely, ȧx ∈ span{βi}. Therefore, ax ∈ span{βi} ∪ {ax(T )},
which is a at most R+ 1 dimensional subspace. If ax is constrained to a at most R+ 1 dimensional
subspace, then ȧW = ax ⊗ x is also constrained to a at most R + 1 dimensional subspace. Since
aW (T ) = 0, aW is constrained to the same subspace as its dynamics, and in particular, rankaW (0) =
rank∇WL(0) ≤ R+ 1.

Proof of claim 2. Suppose W (k) =
∑2R+m+d

i α
(k)
i ⊗ β

(k)
j , where α

(k)
i ,β

(k)
i ∈ span{α(0)

i } ∪
{β(0)

i } ∪ {Bi} ∪ {Di} := V . In particular, notice that V is only dependent on the initial weight.
Then by a similar argument as above, a

(k)
x ∈ V , which implies aW (0)(k) = ∇WL(k) ∈ V .

Therefore W (k+1) = W (k) + γ∇WL(k) =
∑2R+m+d

i α
(k+1)
i ⊗ β

(k+1)
j with α

(k+1)
i ∈ V . That is

rankW (k+1) ≤ 2R+m+ d.

Proof of claim 3. Mutatis mutandis β(k+1) ∈ V , that is x ∈ V . Therefore, W(k) =∑2R+m+d
ij c

(k)
ij αi ⊗ αj for some c

(k)
ij ’s, where αi ∈ V . Or equivalently, W =

∑2R+m+d
ij αi ⊗

αj ⊗ cij . That is, rankW ≤ (2R+m+ d)2.

E.3 Extensions of our results

Loss integrated over time. Commonly, the loss considered might be integrated,

L(T ) :=
∫ T

0

L(x(t),y(t))dt (E.3.1)

The parameter adjoint is dependent only linearly on the state adjoint, we may therefore integrate the
state adjoint for all initial conditions.

L(T ) =
(∫ 0

T

ax(t) +

∫ 0

t

ȧx(t
′)dt′

)
dt (E.3.2)
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The term inside the first integral is just the solution of time-varying autonomous LDS, therefore,∫ 0

T

ax(t)dt =

∫ 0

T

Φ(0, t)
dL(x(t),y(t))

dx(t)
dt (E.3.3)

Where Φ is the linear dynamical system state transition matrix [57]. But notice that this is the solution
to the controlled LDS,

ȧx = ax
df(x(t))

dx(t)
+

dL(x(t),y(t))

dx(t)
, ȧx(T ) = 0 (E.3.4)

In the specific case of an RNN,

ȧx =

(
R∑
i

αi ⊗ βi ⊙ ϕ′(x)

)T

ax − ax + ϕ′(x(t))⊙
d∑
j

(Dj · ϕ(x(t))− yj)Dj , ȧx(T ) = 0

(E.3.5)

Therefore, Theorem 1 remains unchanged for a loss integrated over time. For Theorem 2, Claims 2-3
remain unchanged, while Claim 1 becomes rank∇WL(0) ≤ R+min{d,m}.
Gradient with respect to other parameters. So far we have focused on the gradient of the weights
of the RNN. As we have seen, the space over which the state adjoint ax(t) evolves as well as the
trajectories of the system itself x(t) determine the space over which the gradient evolves. But those
are respectively dependent on the decoder D and encoder B of the system. If all parameters D,B,W
of the system are optimized simultaneously, as is most often the case, we may wonder how our
bounds hold.

First, for B, notice that by a similar argument as for W , df(x,Bu(t))
dB = I ⊗ u(t), so that ȧB =

ax ⊗ u(t). Therefore, following essentially the same derivation as that of Theorem 1, the following
bound can be derived,

σB
i ≤ min{σax

1 σu
i , σ

u
1 σ

ax
i }. (E.3.6)

By a similar argument as for the derivation of Theorem 2, B(k)
i ∈ span{αi} ∪ {βi} ∪ {Bi} ∪ {Di}.

Second, for D, since df
dD = 0, that is ȧD = 0,

aD(T ) = aD(0) = ∇DL =
dL(T )

dD
. (E.3.7)

In other words, the gradient of the loss with respect to the decoder weights have zero dynamics.

The gradient of a functional w.r.t. a given parameter is independent of the gradient of that functional
with respect to another parameter if these two parameters do not depend on one another. Therefore
these results hold regardless of which combination of W , B or D is optimized.

Batched updates. Most often, the weights are updated in batches. That is ∆W (k) =

Q−1
∑Q

q ∇WL(k,q) where q is the index over the batched dimension. Since the column and
row spaces of ∇WL(k,q) remain unchanged, Theorem 2 2-3. remain unchanged, while 1. be-
comes rank∆W (0) ≤ R + min{d,m}. For Theorem 1, the common singular value identities
[56] σi+j−1(A + B) ≤ σi(A) + σj(B) and σi(cA) = cσi(A) for c ∈ R+

0 can be used. Then,
σ∑

iq−Q+1(∆W (k)) ≤ Q−1
∑Q

q σiq (∇WL(k,q)).

Momentum-based optimizers. Momentum-based optimizers such as Adam [53] are commonly
used to train RNNs on behavioural tasks. Here we focus on the first moment, a similar derivation
can be undertaken for higher moments. In that case, a momentum variable is introduced, which is
updated as M (k+1) = βM (k) + (1− β)∇WL(k), where β determines the speed of the exponential
decay. The weights are then updated as W (k+1) = W (k) − αM (k+1), where α is the learning rate.
Which implies, ∆W (k) = W (k+1) −W (k) = −α

∑k
j (1− β)j∇WL(j). Using the same identities

are for batched updates, σ∑
iq−k+1(∆W (k)) ≤

∑k
j (1− β)jσiq (∇WL(j)).
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E.4 Numerical simulations

Similarly to [14], we illustrate our mathematical results on random RNNs. Since constant inputs are
one dimensional (Bu =

∑
Biui), we instead use time-varying inputs parameterized with LDS:

u̇ = Mu− u u(0) = u0 (E.4.1)

where u(t) ∈ Rm, Mij ∼ N (0, 1
√
m), u0 ∼ N (0,1/2). The target outputs are set as y ∈ Rl,

yi ∼ U(−1, 1). The loss is defined as,

L(W ) = ||Dϕ(x)(T )− y||2 (E.4.2)

where x is the solution of an RNN as considered thus far.

In Sup. Fig. 7 we show the effect of varying ϕ, the rank R of the initial weights as well as the
standard deviation (or strength) g of the initial weights such that W (0)

ij ∼ N (0, g2).

28



Supplementary Figure 7: Singular values of adjoints and gradients. a. Loss over training. Inset:
activation function. b. Activity during the last trial (black). Inset: activity of two example neurons
over training. c. Singular values of the firing rate and adjoint. Inset: additional singular values. d.
Singular values of the gradient, weights, and the bound we derive. e. Variance explained per rank
of the tensor decomposition of weight tensor W −W (0) ⊗ 1. We additionally plot the variance
explained over performing matrix decomposition on all possible unfoldings of the weight tensor.
Architectures. Unless noted, the initial weight std was g = 1.5, the input and output dimensions
m = d = 2. i. Rectified tanh. We found that non-smooth activition functions seem to give the slowest
decay of the singular values of the firing rate and adjoint. ii-iii. Softplus and tanh, which are the most
common activation functions in neuroscience, have exponentially decaying firing rate and adjoint
singular values, and therefore (by Theorem 1) exponentially decaying gradient singular values. iv.
Low rank (R = 3) linear RNN. As per Theorem 2, the first gradient step is of rank R + 1 = 4. v.
Tanh in a chaotic regime (g = 2.1). Despite being in a chaotic regime, the firing rate, the adjoint, and
therefore (by Theorem 1) the gradient have exponentially decaying singular values.
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