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Abstract

Empirical risk minimization (ERM) of neural networks is prone to over-reliance
on spurious correlations and poor generalization on minority groups. The recent
deep feature reweighting (DFR) technique [33] achieves state-of-the-art group
robustness via simple last-layer retraining, but it requires held-out group and class
annotations to construct a group-balanced reweighting dataset. In this work, we
examine this impractical requirement and find that last-layer retraining can be
surprisingly effective with no group annotations (other than for model selection)
and only a handful of class annotations. We first show that last-layer retraining can
greatly improve worst-group accuracy even when the reweighting dataset has only a
small proportion of worst-group data. This implies a “free lunch” where holding out
a subset of training data to retrain the last layer can substantially outperform ERM
on the entire dataset with no additional data or annotations. To further improve
group robustness, we introduce a lightweight method called selective last-layer fine-
tuning (SELF), which constructs the reweighting dataset using misclassifications or
disagreements. Our empirical and theoretical results present the first evidence that
model disagreement upsamples worst-group data, enabling SELF to nearly match
DFR on four well-established benchmarks across vision and language tasks with
no group annotations and less than 3% of the held-out class annotations. Our code
is available at https://github.com/tmlabonte/last-layer-retraining.

1 Introduction

Classification tasks in machine learning often suffer from spurious correlations: patterns which are
predictive of the target class in the training dataset but irrelevant to the true classification function.
These spurious correlations, often in conjunction with the target class, create minority groups which
are underrepresented in the training dataset. For example, in the task of classifying cows and camels,
the training dataset may be biased so that a desert background is spuriously correlated with the camel
class, creating a minority group of camels on grass backgrounds [5]. Beyond this simple scenario,
spurious correlations have been observed in high-consequence applications including medicine [79],
justice [9], and facial recognition [42].

Neural networks trained via the standard procedure of empirical risk minimization (ERM) [68],
which minimizes the average training loss, tend to overfit to spurious correlations and generalize
poorly on minority groups [18]. Even worse, it is possible for ERM models to rely exclusively on the
spurious feature and incur minority group performance that is no better than random guessing [60].
Therefore, maximizing the model’s group robustness, quantified by its worst accuracy on any group,
is a desirable objective in the presence of spurious correlations [58].
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In contrast to more generic distribution shift settings (e.g., domain generalization [35]), the presence of
spurious correlations enables the improvement of group robustness merely by addressing model bias
(without collecting additional minority group data). The recently proposed deep feature reweighting
(DFR) [33, 28] technique efficiently corrects model bias by retraining the last layer of the neural
network, a simple procedure which achieves state-of-the-art group robustness. The key hypothesis
underlying DFR is that ERM models which overfit to spurious correlations still learn core features that
correlate with the ground-truth label on all groups, but they perform poorly because they overweight
the spurious features in the last layer. Ostensibly, retraining the last layer on a group-balanced
reweighting dataset would then upweight the core features and improve worst-group accuracy.

DFR compares favorably to existing methods such as group distributionally robust optimization
(DRO) [58], which requires group annotations for the entire training dataset. However, DFR still
necessitates a smaller reweighting dataset with group and class annotations to achieve maximal
performance [33]. This requirement limits its practical application, as the groups are often unknown
ahead of time or difficult to annotate (e.g., due to financial, privacy, or fairness concerns).

Our contributions

In this paper, we present a comprehensive examination of the performance of last-layer retraining in
the absence of group and class annotations on four well-established benchmarks for group robustness
across vision and language tasks.1 We first investigate the necessity of the reweighting dataset being
balanced across groups, and we show that last-layer retraining can substantially improve worst-group
accuracy even when the reweighting dataset has only a small proportion of worst-group data. Based
on this observation, we propose class-balanced last-layer retraining as a simple but strong baseline
for group robustness without group annotations. We show that, on average over the four datasets, this
method achieves 94% of DFR worst-group accuracy compared to 76% without class balancing.

The strong performance of class-balanced last-layer retraining reveals a “free lunch” with practical
ramifications. While class-balanced ERM was recently proposed by [27] as a competitive baseline for
worst-group accuracy, we show that instead of using the entire training dataset for ERM, dependence
on spurious correlations can be reduced by randomly splitting the training data in two, then performing
ERM training on the first split and class-balanced last-layer retraining on the second. Our experiments
indicate that this technique can improve worst-group accuracy by up to 17% over class-balanced
ERM on the original dataset using no additional data or annotations (even for model selection) – a
surprising and unexplained result given that the two splits have equally drastic group imbalance.

While retraining the last layer on a class-balanced held-out dataset can be effective, it is inferior to
DFR when group imbalance is large. To close this gap, we propose selective last-layer finetuning
(SELF), which selects a small, more group-balanced reweighting dataset and finetunes the last layer
instead of retraining. We implement SELF using points that are either misclassified or disagree in their
predictions relative to a regularized model. Disagreement SELF does not require class annotations for
the entire held-out set (only for the disagreements). We show that disagreement SELF between the
ERM and early-stopped models performs the best in general, surpassing class-balanced last-layer
retraining by up to 12% worst-group accuracy with less than 3% of the held-out class annotations.

Overall, our work shows benefits of last-layer retraining well beyond a group-balanced held-out
dataset. Our results call for further investigation of the DFR hypothesis: while group balance is the
most important factor in DFR performance, we show that a significant gain is solely due to class
balancing, and the performance discrepancy between misclassification SELF and disagreement SELF
suggests that worst-group accuracy may be affected by characteristics of the reweighting dataset other
than group balance. Our main results are summarized and compared to previous methods in Table 1.

2 Related work

This work subsumes and improves our two previous workshop papers: [38] broadly covers Section 4,
while [37] represents preliminary investigation into Section 5, which we have substantially updated
with new methodology, evaluation, and theoretical analysis for this version.

1Our methods in Section 4 do not require group annotations at all, while our SELF method in Section
5 assumes access to a small validation set with group annotations for model selection following previous
work [58, 41, 48, 33, 28]. We show in Appendix B that SELF is robust even with 1% of these annotations.
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Table 1: Comparison to other group robustness methods. We discuss our DFR implementation
in Section 3, and our proposed methods of class-balanced (CB) last-layer retraining and early-stop
(ES) disagreement SELF in Sections 4 and 5, respectively. Class-balanced ERM is trained on the
combined training and held-out datasets. DFR uses group annotations on the held-out dataset, while
Group DRO-ES requires them for the training dataset. ES disagreement SELF uses class annotations
on the training dataset (for ERM), but requests as few as 20 labels from the held-out dataset. All
methods except ERM and CB last-layer retraining use a small set of group annotations for model
selection. We list the mean and standard deviation over three independent runs.

Method Annotations Worst-group test accuracy

Group Class Waterbirds CelebA CivilComments MultiNLI

Class-balanced ERM 7 3 81.9±3.4 67.2±5.6 61.4±0.7 69.2±1.6

JTT [41, 27] 7 3 85.6±0.2 75.6±7.7 – 67.5±1.9

RWY-ES [27, 28] 7 3 74.5±0.0 76.8±7.7 78.9±1.0 68.0±0.4

CnC [81] 7 3 88.5±0.3 88.8±0.9 – –
CB last-layer retraining 7 3 92.6±0.8 73.7±2.8 80.4±0.8 64.7±1.1

ES disagreement SELF 7 7 93.0±0.3 83.9±0.9 79.1±2.1 70.7±2.5

DFR (our impl.) 3 3 92.4±0.9 87.0±1.1 81.8±1.6 70.8±0.8

DFR [33, 28] 3 3 91.1±0.8 89.4±0.9 78.8±0.5 72.6±0.3

Group DRO-ES [58, 28] 3 3 90.7±0.6 90.6±1.6 80.4 73.5

Spurious correlations. The performance of empirical risk minimization (ERM) in the presence of
spurious correlations has been extensively studied [18]. In vision, ERM models are widely known to
rely on spurious attributes like background [58, 75], texture [17], and secondary objects [56, 61, 62]
to perform classification. In language, ERM models often utilize syntactic or statistical heuristics as a
substitute for semantic understanding [20, 50, 46]. This behavior can lead to bias against demographic
minorities [25, 6, 67, 23, 8] or failure in high-consequence applications [42, 9, 79, 51].

Robustness and group annotations. If group annotations are available in the training dataset,
group distributionally robust optimization (DRO) [58] can improve robustness by minimizing the
worst-group loss, while other techniques learn invariant or diverse features [1, 19, 80, 76]. Methods
which use only partial group annotations include deep feature reweighting (DFR) [33, 28], which
retrains the last layer on a group-balanced held-out set, and spread spurious attribute [48], which
performs DRO with group pseudo-labels. Recently, more lightweight methods that only adjust the
model predictions using a group annotated held-out set have also been proposed [70]. However,
since the groups are often unknown ahead of time or difficult to annotate in practice, there has been
significant interest in methods which do not utilize group annotations except for model selection.
The bulk of these techniques utilize auxiliary models to pseudo-label the minority group or spurious
feature [63, 47, 77, 11, 31, 66, 32, 64, 81]; notably, just train twice (JTT) [41] upweights samples
misclassified by an early-stopped model. Other techniques reweight or subsample the classes [27] or
train with robust losses and regularization [54, 78].

Unlike DFR, our methods utilize no held-out group annotations, and unlike JTT, we do not have to
“train twice”, only finetune the last layer. We also show that SELF performs best using disagreements
between the ERM and early-stopped models instead of misclassifications as in JTT. Moreover, while
JTT assumes the early-stopped model has low worst-group accuracy which improves during training,
SELF performs well even when the early-stopped model has high worst-group accuracy which
decreases during training – substantially improving performance on datasets such as CivilComments.
The concurrent work of Qiu et al. [55] proposed a similar method to our Section 4.2; while they use a
tunable loss to upweight misclassified samples, our method shows that similar results can be achieved
with no hyperparameter tuning (and therefore no group annotations for the validation set). Finally,
while our results partially corroborate the findings of Idrissi et al. [27] that class balancing during
ERM is effective for group robustness, we observe that class-balanced last-layer retraining renders
ERM class balancing optional. We compare our results with previous methods in Table 1.

Generalization via disagreement. Disagreement-based active learning for improving in-
distribution generalization has been well-studied since before the deep learning era [10, 4, 21].
More recent research has utilized disagreements between SGD runs to predict in-distribution gen-
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Table 2: Dataset composition. We study four well-established benchmarks for group robustness
across vision and language tasks. The class probabilities change dramatically when conditioned on
the spurious feature. Note that Waterbirds is the only dataset that has a distribution shift and MultiNLI
is the only dataset which is class-balanced a priori. Probabilities may not sum to 1 due to rounding.

Dataset Group g Training distribution p̂ Data quantity

Class y Spurious s p̂(y) p̂(g) p̂(y|s) Train Val Test

Waterbirds

landbird land
.768

.730 .984 3498 467 2225
landbird water .038 .148 184 466 2225
waterbird land

.232
.012 .016 56 133 642

waterbird water .220 .852 1057 133 642

CelebA

non-blond female
.851

.440 .758 71629 8535 9767
non-blond male .411 .980 66874 8276 7535
blond female

.149
.141 .242 22880 2874 2480

blond male .009 .020 1387 182 180

CivilComments

neutral no identity
.887

.551 .921 148186 25159 74780
neutral identity .336 .836 90337 14966 43778
toxic no identity

.113
.047 .079 12731 2111 6455

toxic identity .066 .164 17784 2944 8769

MultiNLI

contradiction no negation
.333

.279 .300 57498 22814 34597
contradiction negation .054 .761 11158 4634 6655
entailment no negation

.334
.327 .352 67376 26949 40496

entailment negation .007 .104 1521 613 886
neither no negation

.333
.323 .348 66630 26655 39930

neither negation .010 .136 1992 797 1148

eralization [30], as well as between model classes (e.g., CNNs and Transformers) to predict out-of-
distribution generalization [3]. Two works that are concurrent to ours, diversity by disagreement [52]
and diversify and disambiguate [40], are methods for generalization under distribution shift which
maximize the disagreement between multiple predictors to learn a diverse ensemble. Compared to
our work, these methods are optimized for training datasets which exhibit a complete correlation
(i.e., contain no minority group data) and they underperform in the less extreme spurious correlation
setting we study.

3 Preliminaries

Setting. We consider classification tasks with input domain X and target classes Y . We assume S is
a set of spurious features such that each sample x ∈ X is associated with exactly one feature s ∈ S.
In conjunction with the target class, the spurious features partition the dataset into groups G = Y ×S .
While the groups may be heavily imbalanced in the training distribution, we desire a model which is
invariant to the spurious feature and thus has roughly uniform performance over G. Therefore, we
evaluate worst-group accuracy (WGA), i.e., the minimum accuracy among all groups [58].

We will often refer to datasets and models as group-balanced or class-balanced, meaning that in
expectation, the dataset is composed of an equal number of samples from groups in G or classes
in Y , respectively. This balance can be achieved by training on a subset with equal data from each
group/class, or sampling from the data so that each minibatch is balanced in expectation [27]. To make
the latter more concrete, for group balancing we first sample s ∼ Unif(S), then sample x ∼ p̂(·|s)
where p̂ is the training distribution; class balancing is the same with Y instead of S. We use the
minibatch sampling approach for both class-balanced ERM and class-balanced last-layer retraining,
and we provide a comparison with the subset method in Appendix A.

Deep feature reweighting. The recently proposed deep feature reweighting (DFR) [33, 28] method
achieves state-of-the-art WGA by performing ERM on the training dataset, then retraining the last
layer of the neural network on a group-balanced held-out dataset, called the reweighting dataset. In
the original implementation, half the validation set is used to construct the reweighting dataset: all
data from the smallest group is included and the other groups are randomly downsampled to that size.
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Then, the feature embeddings (i.e., the outputs of the penultimate layer) of the reweighting dataset
are pre-computed and used to train a logistic regression model with explicit `1-regularization. The
results are averaged over 10 randomly subsampled reweighting datasets, and a hyperparameter search
is performed over `1 regularization strength on the other half of the validation set.

To emphasize practicality and efficiency, our implementation of DFR has some differences from
the original. (i) Instead of logistic regression, we train the last layer on the reweighting dataset via
minibatch optimization using SGD and AdamW [43] for the vision and language tasks, respectively.
This fits well into standard training pipelines and avoids pre-computing the feature embeddings
and writing them to disk, which can be slow and memory-intensive. (ii) To reduce the number of
hyperparameters, we use a fixed-value `2 regularization instead of searching over `1 regularization
strength. We observed similar performance for `1 and `2 regularization, which we believe is because
`1-regularized gradients do not induce sparsity [39]. (iii) We sample uniformly at random from
the groups in the held-out dataset (to get group balanced minibatches) instead of averaging over
group-balanced subsets of the data [27]. We compare the implementations in detail in Appendix A.

Datasets and models. We study four datasets which are well-established as benchmarks for group
robustness across vision and language tasks, detailed in Table 2 and summarized below.

• Waterbirds [71, 69, 58] is an image classification dataset where the task is to predict whether
a bird is a landbird or a waterbird. The spurious feature is the image background: more
landbirds are present on land backgrounds than waterbirds, and vice versa.2

• CelebA [42, 58] is an image classification dataset where the task is to predict whether a
person is blond or not. The spurious feature is gender, with 16× more blond women than
blond men in the training set.

• CivilComments [7, 35] is a text classification dataset where the task is to predict whether
a comment is toxic or not. The spurious feature is the presence of one of the following
categories: male, female, LGBT, black, white, Christian, Muslim, or other religion.3 More
toxic comments contain one of these categories than non-toxic comments, and vice versa.

• MultiNLI [73, 58] is a text classification dataset where the task is to predict whether a pair of
sentences is a contradiction, entailment, or neither. The spurious feature is a negation in the
second sentence – more contradictions have this property than entailments or neutral pairs.

Importantly, Waterbirds is the only dataset that has a distribution shift – its validation and test datasets
are group-balanced conditioned on the classes, although still class-imbalanced.4 As a result, methods
which use the validation set for training can improve performance without explicit group balancing.

We utilize a ResNet-50 [24] pretrained on ImageNet-1K [57] for Waterbirds and CelebA, and a
BERT [14] model pretrained on Book Corpus [83] and English Wikipedia for CivilComments and
MultiNLI. Following previous work, we use half the validation set for feature reweighting [33, 28]
and half for model selection with group annotations [58, 41, 33, 48, 28]. We run each experiment on
three random seeds and do not utilize explicit early stopping except as part of SELF (see Section 5).
See Appendix D for further details on the training procedure.

4 Class-balanced last-layer retraining

In this section, we investigate the necessity of a group-balanced reweighting dataset for DFR and
show that class-balanced last-layer retraining is a simple but strong baseline for group robustness
without group annotations. To enable a fair comparison with our implementation of DFR (see Section
3), class-balanced last-layer retraining follows the same training procedure, except the reweighting
dataset is constructed by sampling uniformly over the classes Y instead of the groups G.

2We note that the Waterbirds dataset is known to contain incorrect labels [66]. We report results on the
original, un-corrected version for a fair comparison with previous work.

3This version of CivilComments has four groups, used in this work and by [58, 28, 33]. There is another
version where the identity categories are not collapsed into one spurious feature; this version is used by [41, 81],
so we do not report their CivilComments accuracies in Table 1. Both versions use the WILDS split [35].

4The Waterbirds validation and test datasets still contain more landbirds than waterbirds, but each class has
equal quantities of land and water backgrounds.
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Figure 1: How much worst-group data does last-layer retraining really need? We perform an
ablation on the percentage of worst-group data used for class-balanced last-layer retraining, while
keeping the total data constant. The results show that last-layer retraining can substantially improve
worst-group accuracy even when the reweighting dataset has only a small proportion of worst group
data, and that class balancing can be a major factor in its performance. The underperformance on
Waterbirds below 20% is because there is too little worst-group data to observe consistent model
behavior (less than ten samples). The stars 8 denote the baseline percentage of worst-group data in
the training dataset. We plot the mean over three independent runs. See Tables 12 and 13 for details.

Table 3: Last-layer retraining on the held-out dataset. While unbalanced (UB) last-layer retraining
decreases performance, class-balanced (CB) last-layer retraining nearly matches DFR on Waterbirds
and CivilComments. However, it still trails DFR on CelebA and MultiNLI; we improve these results
with the SELF method described in Section 5. CB ERM is trained on the combined training and
held-out datasets using class-balanced minibatches. We list the mean and standard deviation over
three independent runs.

Method
Group

annotations
Worst-group test accuracy

Waterbirds CelebA CivilComments MultiNLI

Class-balanced ERM 7 81.9±3.4 67.2±5.6 61.4±0.7 69.2±1.6

UB last-layer retraining 7 88.0±0.8 41.9±1.4 57.6±4.2 64.6±1.0

CB last-layer retraining 7 92.6±0.8 73.7±2.8 80.4±0.8 64.7±1.1

DFR (our impl.) 3 92.4±0.9 87.0±1.1 81.8±1.6 70.8±0.8

DFR [33, 28] 3 91.1±0.8 89.4±0.9 78.8±0.5 72.6±0.3

4.1 An ablation on the proportion of worst-group data

In this section, we perform an ablation on the percentage of worst-group data in the reweighting
dataset and show that class-balanced last-layer retraining can substantially improve WGA even when
the reweighting dataset has only a small proportion of worst group data. For our ablation, we
choose the worst groups based on the performance of ERM, and if two groups have similarly poor
performance, we vary both. The worst groups for Waterbirds are landbirds on water backgrounds
and waterbirds on land backgrounds; for CelebA blond men; for CivilComments toxic comments
containing identity categories; and for MultiNLI entailments and neutral pairs containing negations.

For these experiments, we begin with the DFR reweighting dataset, i.e., a random group-balanced
subset of the held-out dataset, where the size of each group is the minimum of the worst-group size
and half the size of any other group.5 We define this dataset to include 100% of the worst-group data.
We then reduce the percentage of worst-group data, while correspondingly increasing the percentage
of data from the same class without the spurious feature. For example, the DFR reweighting dataset
on CelebA has 92 points from each group, so reducing the worst group to 25% results in 92 non-blond
females, 92 non-blond males, 161 blond females, and 23 blond males. The total data is kept constant.

5This is necessary because we keep the total data constant. By reducing the quantity of worst-group data to
zero, we will at most double the size of any other group.
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(b) Combined training and held-out datasets

Figure 2: A “free lunch” in group robustness. We compare class-balanced (CB) ERM on the entire
dataset to splitting the dataset and performing CB ERM on the first (95%) split and CB last-layer
retraining on the second (5%) split. This technique improves worst-group accuracy on Waterbirds,
CelebA, and CivilComments by up to 17% while using no additional data or annotations for training
beyond ERM. We believe it underperforms on MultiNLI because there is not enough data in the
first split, i.e., ERM performance can be improved by collecting more data. We plot the mean and
standard deviation over three independent runs. See Table 14 for detailed results.

The results of this ablation are displayed in Figure 1. While a smooth increase in WGA with
increasing worst-group data is expected, the extent of the early increase is surprising: over the four
datasets, an average of 67% of the increase in WGA over class-unbalanced ERM is obtained by the
first 25% of worst-group data. In particular, CelebA and CivilComments – the most class-imbalanced
datasets we study – experience significant improvement even at low percentages of worst-group
data. This phenomenon suggests that, while group balancing is still important for best results, class
balancing is a major factor in the performance of DFR on these two datasets.

Furthermore, class-balanced last-layer retraining can improve worst-group accuracy even when the
held-out dataset has similar group imbalance as the training dataset (i.e., at the stars 8 in Figure 1).
Based on this observation, we propose that class-balanced last-layer retraining on the entire held-out
dataset can be a simple but strong baseline for group robustness without group annotations. Table
3 details the results; on average over the four datasets, class-balanced last-layer retraining achieves
94% of DFR performance, compared to 76% without class balancing. However, it still trails DFR by
a significant amount on CelebA and MultiNLI – the most group-imbalanced datasets we study. We
improve these results with our selective last-layer finetuning (SELF) method described in Section 5.

Moreover, our experiments in Figure 4 (deferred to Appendix A) indicate that class-balanced last
layer retraining has similar performance regardless of whether it is initialized with class-unbalanced
or class-balanced ERM features. Contrasting with Idrissi et al. [27], our results suggest that class
balancing in the ERM stage is optional. This result has practical relevance for expensive models
pre-trained without class balancing (e.g., large language models), as the benefits of class balancing on
downstream tasks can be reaped by simply retraining the last layer instead of training a new model.

4.2 A “free lunch” in group robustness

Motivated by the promising results of Section 4.1, where we performed class-balanced last-layer
retraining on a fixed held-out set, we now ask how can we best utilize a realistic training dataset?
In particular, practical applications often work with a predetermined data, annotation, and compute
budget. Within this budget, and with no explicit held-out dataset, would one achieve better group
robustness by using the entire dataset for ERM or by holding out a subset for last-layer retraining?

We investigate this question on our four benchmark datasets by randomly splitting the initial dataset
into two, then performing class-balanced ERM training on the first split (95% of the data) and
class-balanced last-layer retraining on the second split (5% of the data). Figure 2a illustrates the
results of our experiments on the training dataset and Figure 2b on the combined training and held-out
datasets. Since the quantity of data is higher in the case of combining the training and held-out
datasets, we expect all numbers to be higher in Figure 2b compared to Figure 2a (especially on
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Table 4: Comparison of selective last-layer finetuning methods. SELF nearly matches DFR and
improves WGA over class-balanced (CB) last-layer retraining by up to 12%. Early-stop (ES) dis-
agreement SELF performs the best overall, and disagreement methods perform especially well on
CivilComments. Dropout and ES disagreement request few as 20 class annotations from the held-out
dataset. All SELF methods use a small set of group annotations for model selection. We list the mean
and standard deviation over three independent runs.

Method Held-out annotations Worst-group test accuracy

Group Class Waterbirds CelebA CivilComments MultiNLI

Class-balanced ERM 7 3 81.9±3.4 67.2±5.6 61.4±0.7 69.2±1.6

CB last-layer retraining 7 3 92.6±0.8 73.7±2.8 80.4±0.8 64.7±1.1

Random SELF 7 7 91.1±1.9 80.2±6.4 80.5±1.6 65.0±4.0

Misclassification SELF 7 3 92.6±0.8 83.0±6.1 62.7±4.6 72.2±2.2

ES misclassification SELF 7 3 92.2±0.7 80.4±3.9 65.8±7.6 73.3±1.2

Dropout disagreement SELF 7 7 92.3±0.5 85.7±1.6 69.9±5.2 68.7±3.4

ES disagreement SELF 7 7 93.0±0.3 83.9±0.9 79.1±2.1 70.7±2.5

DFR (our impl.) 3 3 92.4±0.9 87.0±1.1 81.8±1.6 70.8±0.8

DFR [33, 28] 3 3 91.1±0.8 89.4±0.9 78.8±0.5 72.6±0.3

Waterbirds, which has a more group-balanced validation set). We perform no hyperparameter tuning
for these experiments, and therefore we do not utilize group annotations even for model selection.

Figure 2 indicates that splitting the dataset and performing last-layer retraining substantially improves
worst-group accuracy on Waterbirds, CelebA, and CivilComments. It decreases performance on
MultiNLI, which is the only dataset where adding held-out data from the same distribution signifi-
cantly increases ERM worst-group accuracy compared to DFR. Specifically, class-balanced ERM
achieves 67.4± 2.4% WGA on the training dataset and 69.2± 1.6% on the combined training and
held-out datasets, while our DFR implementation achieves 70.8± 0.8%. Therefore, we hypothesize
that last-layer retraining on the second split can improve group robustness only if there is enough
data for ERM to perform near-optimally on the first split, i.e., if the performance of ERM on the first
split is limited by dataset bias rather than sample variance.

Based on this hypothesis, our answer to the posed question is: if ERM performance is stable when
holding out 5% of data, perform last-layer retraining on the held-out dataset instead of ERM on
the initial dataset. We call this technique a “free lunch” because it improves worst-group accuracy
with no additional data or annotations beyond ERM (including for model selection). In particular,
we utilize less data for ERM training and less compute due to the efficient nature of last-layer
retraining. Therefore, we believe this method is especially relevant to practitioners, and it can be
easily implemented with little change to data processing or model training workflows.

A critical remaining question is why last-layer retraining improves group robustness; since the training
and held-out datasets have equally drastic group imbalance, it is counterintuitive that reducing the
quantity of data used for ERM and performing last-layer retraining would increase worst-group
accuracy. In some cases, as seen on MultiNLI in Figure 2, training an ERM model with less data
can be detrimental – but on the other three datasets, last-layer retraining substantially improves over
ERM. We leave it to future empirical and theoretical work to better understand this phenomenon.

5 Selective last-layer finetuning

While class-balanced last-layer retraining can improve worst-group accuracy without group annota-
tions, its performance is still inferior to DFR, particularly on the highly group-imbalanced CelebA
and MultiNLI datasets. In these cases, training on the entire held-out set can be detrimental; instead,
we show that constructing the reweighting dataset by detecting and upsampling worst-group data is
more effective. We propose selective last-layer finetuning (SELF), which uses an auxiliary model to
select a small, more group-balanced reweighting dataset, then finetunes the ERM last layer instead of
retraining entirely to avoid overfitting on this smaller dataset.
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SELF does not use group annotations for training and can be implemented even when class annotations
are unavailable in the held-out dataset, making it applicable in settings not captured by current
techniques (e.g., adaptation to an unlabeled target domain [45]). If class annotations are not available,
we select points which are disagreed upon by ERM and a regularized model, then request their
labels. If class annotations are available, we can still use disagreement, or alternatively, we select
points which are misclassified by the ERM or early-stopped model. Our experiments indicate that
disagreement SELF between the ERM and early-stopped models performs the best overall, increasing
the worst-group accuracy of class-balanced last-layer retraining to near-DFR levels while requesting
less than 3% of the held-out class annotations. Our results are detailed in Table 4.

We formalize SELF as follows. Let f, g : X → R|Y| be models with logit outputs, X ⊆ X be
a held-out dataset, c : R2|Y| → R be a cost function, and n be an integer. SELF constructs the
reweighting set D by greedily selecting the n points in X whose outputs incur the highest cost, i.e.,

D = argmax
S⊆X,|S|=n

∑
x∈S

c(f(x), g(x)). (1)

Then, SELF requests class annotations and performs class-balanced finetuning (i.e., starting from the
ERM weights) of the last layer of the ERM model on D, using the same implementation as last-layer
retraining (see Section 4). We study the following four variants of SELF:

• Misclassification: f is an ERM model and g is the labeling function, i.e., , for a datapoint
x with label y, the output g(x) is the one-hot encoded vector for y. The cost function c is
cross entropy loss.

• Early-stop misclassification:6 f is an early-stopped ERM model and g is the labeling
function. The cost function c is cross entropy loss.

• Dropout disagreement: f is an ERM model and g is the same model where inference is run
with nodes randomly dropped out in the last layer [65]. The cost function c is KL divergence
with softmax.
• Early-stop disagreement: f is an ERM model and g is an early-stopped ERM model. The

cost function c is KL divergence with softmax.

We also experiment with a pure random baseline, referred as Random SELF in Table 4, where
D consists of n random points from X . While Random SELF suffers high variance as expected,
perhaps surprisingly its performance is still competitive on average. The reweighting dataset size n
is a hyperparameter, and for disagreement SELF it corresponds to the quantity of class annotations
requested. Please see Appendices B and D for hyperparameter details and ablation studies.

5.1 Analysis of SELF performance

To quantify the extent of SELF’s upsampling, we plot the percentage of the reweighting dataset
consisting of worst-group data in Figure 3. In particular, we present to the best of our knowledge the
first evidence that model disagreement effectively upsamples worst-group data, an observation which
may be of independent interest. With that said, Figure 3 does not formally establish that better group
balance has a strong correlation with WGA – rather, it suggests an additional subtlety in the DFR
hypothesis, since group balance alone does not fully explain the performance of last-layer retraining.
In addition to the balance of the reweighting dataset, it is likely that characteristics of the specific data
selected also contribute to SELF results. Additionally, the competitive performance of pure random
SELF in Table 4 further questions the importance of group balancing in DFR.

The importance of which data are selected could explain why disagreement SELF often outperforms
misclassification SELF despite having access to less information. While misclassification selects the
most difficult or noisiest points, disagreement selects the most uncertain points. For example, dropout
models approximate a theoretically justified uncertainty metric [16] which is likely to be higher on
worst-group data, and early-stopped models tend to fit simple patterns first [2, 41] including the
majority group. Training on the most uncertain data is a key tenet of active learning [13, 59, 12], which
rationalizes the performance of disagreement SELF and provides motivation for further investigation
of why last-layer retraining improves group robustness.

6Using early-stop misclassification to upsample worst-group data is the premise of JTT [41].
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Figure 3: SELF upsamples the worst group. We plot the percentage of the reweighting dataset
consisting of worst-group data for each SELF method. “Baseline” represents the percentage of
worst-group data in the held-out dataset, while “Balanced” is the percentage of worst-group data
necessary to achieve group balance. This is to the best of our knowledge the first empirical evidence
that model disagreement is an effective method for upsampling worst-group data. The worst groups
in each dataset are listed in Section 4.1. We plot the mean for the best dataset size n over three
independent runs. See Table 15 for detailed results.

A remaining question is why the performance of disagreement SELF is so strong on CivilComments
compared to misclassification-based methods such as JTT [41] and ES misclassification SELF. We
show in Figure 6 (deferred to Appendix B) that, contrary to the assumptions made by JTT and
other early-stop misclassification methods, the worst-group accuracy decreases with training on
CivilComments. This highlights a potential advantage of disagreement methods over misclassification
methods, as disagreement is justified regardless of whether the regularized or ERM model has a
greater dependence on spurious features. Moreover, while misclassification methods do indeed
upsample the minority group in Figure 3, we show in Table 10 (deferred to Appendix B) that the
held-out set training accuracy of misclassification SELF tends to be very low – down to 0% on
MultiNLI – evidence that misclassifications are too difficult to learn without modifying the features.

Theoretical proof-of-concept. The observations of Section 5.1 raise the question of whether
disagreement SELF can ever be shown to provably upsample minority group points. We provide a
simple proof-of-concept for SELF by considering the last layer to be a linear model (which could be
under- or overparameterized) with core, spurious and junk features. We show that the disagreement
between the regularized model and the ERM model (measured by total variation distance between the
predicted distributions) is provably higher on minority examples than majority examples, regardless of
model dependence on the spurious feature. In particular, this shows provable benefits of disagreement
SELF even in situations where the early-stopped model has higher worst-group accuracy than the
convergent model, which may not be captured by related methods in the literature [41]. Our detailed
setup, assumptions, and main theoretical result (Theorem 1) are stated in detail in Appendix C.

6 Conclusion

In this paper, we presented a comprehensive examination of the performance of last-layer retraining
in the absence of group and class annotations. We showed that class-balanced last-layer retraining
is a simple but strong baseline for group robustness, and that holding out a subset of the training
data to retrain the last layer can substantially improve worst-group accuracy. We then proposed
selective last-layer finetuning (SELF), whose early-stop disagreement version improves performance
to near-DFR levels with no group annotations and less than 3% of the held-out class annotations.

Our work has generated several open questions which could prove fruitful for further research. First,
why does last-layer retraining on a held-out split of the training dataset improve group robustness
(see Section 4.2)? Second, to what extent does the precise data selected matter for reweighting, e.g.,
which of disagreement SELF and misclassification SELF would perform better when hyperparameters
are set to equalize group balance? Third, what is the optimal strategy in general for obtaining the
regularized model in disagreement SELF (dropout, early-stopping, or a different technique) and why?
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Appendix Outline

The appendix is organized as follows. In Appendix A we include additional experiments for Sections
3 and 4. In Appendix B we include additional experiments for Section 5. In Appendix C we include
the statement and proof of our theoretical proof-of-concept (Theorem 1). In Appendix D we describe
in detail our training procedure and hyperparameters. Appendix E include tables to accompany the
figures in the main paper. Finally, Appendix F discusses broader impacts, limitations, and compute.

A Additional experiments for Sections 3 and 4

In this section we include the detailed results of additional experiments for Sections 3 and 4.

Table 5: Empirical risk minimization. First, we compare class-unbalanced (CU) and class-balanced
(CB) ERM on the training dataset vs. the combined training and held-out datasets (i.e., the training
dataset plus half the validation dataset). We list the mean and standard deviation over three indepen-
dent runs. Note that the Waterbirds validation dataset has a different distribution than the training
dataset (and, in particular, is group-balanced), and that MultiNLI is class-balanced a priori.

Method Held-out dataset
included

Worst-group test accuracy

Waterbirds CelebA CivilComments MultiNLI

CU ERM 7 72.4±1.0 44.1±0.9 63.8±6.2 67.4±2.4

CB ERM 7 72.6±3.2 66.3±3.2 60.2±2.7 67.4±2.4

CU ERM 3 81.6±1.5 44.5±3.4 59.1±2.2 69.1±1.3

CB ERM 3 81.9±3.4 67.2±5.6 61.4±0.7 69.2±1.6

Table 6: Balancing methodology comparison. Next, we compare last-layer retraining on the held-
out set with different balancing methodologies, each initialized with class-balanced ERM features. In
“sampling”, we sample from the held-out dataset at a non-uniform rate so that each minibatch is class-
or group-balanced in expectation, while in “subset”, we train on a random class- or group-balanced
subset of the held-out dataset. Specifically, for group-balanced sampling we first sample s ∼ Unif(S),
then sample x ∼ p̂(·|s) where p̂ is the training distribution; class-balanced sampling is the same with
Y instead of S . For subset balancing, we keep all data from the smallest group/class and downsample
the others uniformly at random to that size. We list the mean and standard deviation over three
independent runs.

Last-layer retraining method Worst-group test accuracy

Waterbirds CelebA CivilComments MultiNLI

Class-unbalanced 88.0±0.8 41.9±1.4 57.6±4.2 64.6±1.0

Class-balanced sampling 92.6±0.8 73.7±2.8 80.4±0.8 64.7±1.1

Class-balanced subset 92.1±0.9 74.6±2.0 80.2±1.4 64.5±1.3

Group-balanced sampling 92.4±0.9 87.0±1.1 81.8±1.6 70.8±0.8

Group-balanced subset 91.6±1.9 88.1±1.0 79.2±1.8 68.3±1.8

DFR [33, 28] 91.1±0.8 89.4±0.9 78.8±0.5 72.6±0.3
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Table 7: Necessity of the held-out dataset. Next, we investigate whether holding out a subset of the
training dataset for class-balanced (CB) last-layer retraining is essential, or if retraining on the entire
(previously seen) dataset is also effective. For retraining on the training dataset, we use the same
class-balanced last-layer retraining procedure as the held-out dataset, but we train for 20 epochs for
the vision tasks and 2 epochs for the language tasks. For retraining on the held-out dataset, we report
the best over four splits (i.e., the same numbers as Figure 2). Our results suggest that holding out data
is necessary to achieve maximal worst-group accuracy, though last-layer retraining on the training
dataset interestingly prevents the performance decrease on MultiNLI. We list the mean and standard
deviation over three independent runs.

Method Worst-group test accuracy

Waterbirds CelebA CivilComments MultiNLI

CB ERM 72.6±3.2 66.3±3.2 60.2±2.7 67.4±2.4

CB last-layer retraining on training dataset 71.0±2.5 66.9±1.4 61.9±0.8 67.0±1.5

CB last-layer retraining on held-out dataset 77.4±0.3 73.0±2.3 77.9±1.5 63.0±1.5

Table 8: Average accuracy performance. We detail the average test accuracy of our methods on the
4 benchmark datasets. Both of our methods have similar average accuracy to DFR, which experiences
a slight accuracy/robustness tradeoff compared to ERM (as is typical in the robustness literature). We
list the mean and standard deviation over three independent seeds.

Method Group Anns Average test accuracy

Waterbirds CelebA CivilComments MultiNLI

ERM 7 90.2±0.7 94.4±0.2 92.0±0.2 81.8±0.2
CB last-layer retraining 7 94.8±0.3 93.6±0.2 87.1±0.0 82.0±0.2
ES disagreement SELF 7 94.0±1.7 91.7±0.4 87.7±0.6 81.2±0.7
DFR (our impl.) 3 94.9±0.3 92.6±0.5 87.5±0.2 81.7±0.2
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Figure 4: Class-balanced last-layer retraining renders class-balanced ERM optional. We com-
pare class-balanced (CB) last-layer retraining on the held-out dataset initialized with unbalanced
(UB) or CB ERM features. Our results show that CB ERM is unnecessary as long as the last layer is
retrained with class balancing. We plot the mean and standard deviation over three independent runs.
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B Additional experiments for Section 5

In this section we include the detailed results of additional experiments for Section 5.
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Figure 5: SELF reweighting dataset size ablation. We compare the class-balanced (ERM) baseline
to CB last-layer retraining, deep feature reweighting, and the four variants of SELF which we describe
in Section 5. The x axis is the size of the reweighting dataset, i.e., the number of points selected
from the held-out dataset, and the y axis is the worst-group accuracy. The held-out dataset has a fixed
size of 600 for Waterbirds, 9934 for CelebA, 22590 for CivilComments, and 41231 for MultiNLI. A
general trend is that SELF methods tend to improve as the size n of the reweighting dataset increases,
except on MultiNLI. We plot the mean over three independent runs and leave out error bars for
readability.

Table 9: Total variation distance comparison. We compare the usage of KL divergence in our
early-stop disagreement SELF method to total variation distance (TVD) as used in our Theorem
1. Our method is robust to the choice of distance function (though TVD is worse on CelebA) and
therefore our usage of TVD in Theorem 1 is empirically justified. We list the mean and standard
deviation over three independent seeds.

Method Worst-group test accuracy

Waterbirds CelebA CivilComments MultiNLI

KL divergence 93.0±0.3 83.9±0.9 79.1±2.1 70.7±2.5
Total variation distance 92.2±0.6 72.9±3.4 78.6±2.8 66.3±2.3
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Figure 6: Group validation accuracies over training. We plot the validation accuracies by group
for the four benchmark datasets over the course of ERM training. Contrary to the assumptions made
by JTT [41] and other early-stop misclassification methods, the worst-group accuracy decreases with
training on CivilComments. This highlights a potential advantage of disagreement methods over
misclassification methods: disagreement works regardless of whether the early-stopped or convergent
model has a greater dependence on the spurious feature, as long as there is a large relative difference.
We plot the mean over three independent runs and leave out error bars for readability.

Table 10: SELF training accuracies. We detail the training accuracies on the SELF held-out dataset
using the best configuration of each method with respect to worst-group validation accuracy. We find
that the misclassification techniques have much lower training accuracy than disagreement or random
– as low as 0% on MultiNLI – meaning that the misclassified points cannot be fit without changing
the features. We list the mean and standard deviation over three independent seeds.

Method Held-out training accuracy

Waterbirds CelebA CivilComments MultiNLI

Random SELF 96.3±0.2 90.6±9.2 91.1±7.8 86.7±11.6
Misclassification SELF 94.6±1.6 25.3±21.9 0.4±0.2 0.2±0.3
ES Misclassification SELF 91.3±7.5 28.5±24.7 1.1±2.0 0.0±0.0
Dropout Disagreement SELF 95.5±1.4 98.7±1.5 50.9±6.3 68.3±24.7
ES Disagreement SELF 97.0±2.0 79.9±9.2 58.1±3.3 52.6±2.5
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Figure 7: Label efficiency comparison. We compare the performance of early-stop disagreement
SELF to DFR while varying the amount of group annotations used for validation and retraining,
respectively. The results show that SELF is robust to hyperparameter tuning and can massively reduce
the annotation requirement: e.g., at 1% of data, Waterbirds has only 6 examples and CelebA has
only 99 examples. Moreover, SELF retains more performance than DFR when the number of group
annotations is very low. We plot the mean and standard deviation over three independent seeds.
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C Theoretical proof-of-concept for disagreement SELF

In tthis section, we describe and state our main theoretical proof-of-concept of disagreement SELF
(Theorem 1). We begin with a description of our setup and assumptions.

Setup. Let X ⊆ Rv be the data domain, n be the sample size, and d ≥ v, n be the number of
features. For x ∈ X and weights α, β > 0 we assume that the learned predictor of both the ERM and
regularized models takes the form

f̂(x) = αφcore(x) + βφsp(x) +

d−2∑
k=1

φkjunk(x) (2)

and assume that the label y is generated by y = sgn(φcore(x)) (i.e., zero label noise). Note that
this specific split of features into core, spurious, and junk categories is an extension of a common
simplified setting in the literature on overparameterized linear models [82, 34], where only core and
junk features are considered and only in-distribution accuracy is analyzed. We also consider the
domain X to be partitioned into a minority group Xmin and majority group Xmaj such that yφsp(x) < 0
for all x ∈ Xmin and yφsp(x) > 0 for all x ∈ Xmaj. (By definition, yφcore(x) > 0 for any x.)

Assumptions on the feature learning process. We make some extra simplifying assumptions on
the feature learning process that are motivated by empirical observations in the literature. First, we
assume that the learned features φcore, φsp, φjunk are identical for the regularized and ERM models,
and are only weighted differently in the last layer. This assumption is well-justified for dropout
disagreement SELF since we only use dropout for inference in the last layer (with frozen features),
and for early-stop disagreement SELF since feature learning has empirically been observed to occur
during the initial phase of training [29, 15]. More concretely, we consider the ERM model f̂erm to
have weights αerm and βerm, and the regularized model f̂reg to have weights αerm and βreg. Second,
we assume that weights on the core and spurious features are normalized such that αerm + βerm =
αreg + βreg, essentially positing that the proportion of junk feature strength is the same in both ERM
and regularized models. This is also justified by the empirical observation that regularization methods
such as early stopping make minimal difference to in-distribution accuracy [49].

Main result. The following result compares a minority group test example and a majority group
test example with features that are equal in magnitude, and shows that the disagreement is higher
for minority group points regardless of whether the ERM or regularized model weights the spurious
feature higher. We will use the total variation distance (TVD) as our cost function for disagreement
SELF. We focus on TVD instead of KL divergence to simplify the proof; we show in Table 9 (detailed
in Appendix B) that the empirical results are competitive using TVD (though worse on CelebA). We
show that the difference of the TVD terms is proportional to |βerm−βreg| := |αerm−αreg|, illustrating
that the models disagree more drastically the greater the discrepancy between their dependence on
the spurious feature (or, equivalently, the core feature).
Theorem 1 (Disagreement SELF). Consider two examples xmin ∈ Xmin and xmaj ∈ Xmaj which
have the same labels and whose features have the same magnitude, i.e., φcore(xmin) = φcore(xmaj),
|φsp(xmin)| = |φsp(xmaj)|, and

∑d−2
k=1 φ

k
junk(xmin) =

∑d−2
k=1 φ

k
junk(xmaj). Let Pmin andQmin be distribu-

tions over {−1, 1} which take value 1 with probability (b(f̂erm(xmin))+1)/2 and (b(f̂reg(xmin))+1)/2
respectively, and likewise for Pmaj and Qmaj.7 Then, we have

TVD(Pmin, Qmin)− TVD(Pmaj, Qmaj) = bmin(|φcore(xmaj)|, |φsp(xmaj)|)|βerm − βreg| > 0. (3)
7These are the estimated distributions we use to classify the inputs.
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Proof. For any x ∈ X define P (x) = (b(f̂erm(x)) + 1)/2 and Q(x) = (b(f̂reg(x)) + 1)/2. By the
assumptions on the features,

TVD(P (x), Q(x)) = |P (x)−Q(x)| (4)

=
b

2

∣∣f̂erm(x)− f̂reg(x)
∣∣ (5)

=
b

2

∣∣(αerm − αreg)φcore(x)− (βerm − βreg)φsp(x)
∣∣ (6)

=
b

2
|βerm − βreg||φcore(x)− φsp(x)|. (7)

Let c = |φcore(xmaj)| and d = |φsp(xmaj)|. By definition of the minority and majority groups,

|φcore(xmin)− φsp(xmin)| − |φcore(xmaj)− φsp(xmaj)| = c+ d− |c− d| = 2min(c, d) > 0. (8)

Together with b ≥ 0, Equations 7 and 8 show the result.
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D Training details

We utilize a ResNet-50 [24] pretrained on ImageNet-1K [57] for the vision tasks and a BERT [14]
model pretrained on Book Corpus [83] and English Wikipedia for the language tasks. These
pretrained models are used as the initialization for ERM on the four datasets we study. We use
standard ImageNet normalization with standard flip and crop data augmentation for the vision
tasks and BERT tokenization for the language tasks [28]. Our implementation uses the following
packages: NumPy [22], PyTorch [53], Lightning [72], TorchVision [44], Matplotlib [26],
Transformers [74], and Milkshake [36].

For ERM and last-layer retraining (Section 4), we do not vary any hyperparameters; their fixed values
are listed in Table 11. Recall that our SELF method (Section 5) splits the validation dataset in half,
using the first half as a held-out dataset for selecting reweighting points and the second half for model
selection [33, 28]. We vary the reweighting dataset size n (the number of points selected from the
held-out dataset) in the range (20, 100, 500). For the vision datasets, we search over learning rates
(10−4, 10−3, 10−2) and train for 250 steps. For the language datasets, we search over learning rates
(10−6, 10−5, 10−4) and train for 500 steps. For the two early-stopping methods, we search over
checkpoints saved at 10%, 20%, and 50% of model training, while for dropout disagreement, we
search over dropout probabilities of 0.5, 0.7, and 0.9 applied only at the last layer. See Appendix B
for additional ablation studies.

Table 11: ERM and last-layer retraining hyperparameters. We use standard hyperparameters
following previous work [58, 27, 33, 28]. For last-layer retraining, we keep all hyperparameters the
same except the number of epochs on CelebA, which we increase to 100.

Dataset Optimizer Initial LR LR schedule Batch size Weight decay Epochs

Waterbirds SGD 3× 10−3 Cosine 32 1× 10−4 100
CelebA SGD 3× 10−3 Cosine 100 1× 10−4 20
CivilComments AdamW [43] 1× 10−5 Linear 16 1× 10−4 10
MultiNLI AdamW [43] 1× 10−5 Linear 16 1× 10−4 10
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E Additional tables

In this section we provide results in a tabular form to accompany figures in the main paper.

Table 12: Table for Figure 1a. We perform an ablation on the percentage of worst-group data
used for class-balanced last-layer retraining, while keeping the total data constant. Note that the
100% numbers may not equal our other group-balanced last-layer retraining numbers due to our
methodology involving downsampling and starting from a class-unbalanced ERM. We list the mean
and standard deviation over three independent runs.

Percent of worst-group
data included

Worst-group test accuracy

Waterbirds CelebA CivilComments MultiNLI

2.5 53.5±4.4 61.1±2.9 75.3±4.9 67.3±1.8

5.0 53.5±6.0 62.8±3.9 75.4±5.0 67.4±1.9

12.5 63.1±6.3 72.0±2.8 75.5±5.1 67.6±1.9

25.0 73.6±4.2 78.2±1.7 75.5±4.9 67.8±2.1

37.5 80.2±2.9 81.5±4.2 75.6±4.8 67.8±2.1

50.0 83.2±3.7 83.7±2.8 75.8±5.0 67.9±2.0

62.5 86.2±1.3 85.7±3.1 75.8±4.8 67.9±2.0

75.0 86.5±2.1 87.0±2.5 76.1±4.7 68.0±1.9

87.5 88.8±0.6 88.2±1.3 76.0±4.7 68.3±1.8

100.0 90.4±0.9 88.7±0.7 76.1±4.6 68.3±1.9

Table 13: Table for Figure 1b. We compare the worst-group accuracy in Table 12 to the maximum
WGA increase over a class-unbalanced ERM (see Table 5). Note that Waterbirds performs poorly at
low percentages because the small size of the held-out dataset leads to no worst-group data being
included as a result of our downsampling methodology. We list the mean over three independent runs.

Percent of worst-group
data included

Percent of max WGA increase over ERM

Waterbirds CelebA CivilComments MultiNLI

2.5 −105.0 38.1 93.5 −11.1
5.0 −105.0 41.9 94.3 0.0
12.5 −51.7 62.6 95.1 22.2
25.0 6.7 76.5 95.1 44.4
37.5 43.3 83.9 95.9 44.4
50.0 60.0 88.8 97.6 55.6
62.5 76.7 93.3 97.6 55.6
75.0 78.3 96.2 100.0 66.7
87.5 91.1 98.9 99.2 100.0
100.0 100.0 100.0 100.0 100.0

Table 14: Table for Figure 2. We compare class-balanced (CB) ERM on the entire dataset to splitting
the dataset and performing CB ERM on the first (95%) split and CB last-layer retraining on the
second (5%) split. The results with and without the held-out dataset correspond to Figure 2a and 2b
respectively. We list the mean and standard deviation over three independent runs.

Method Held-out dataset
included

Worst-group test accuracy

Waterbirds CelebA CivilComments MultiNLI

CB ERM 7 72.6±3.2 66.3±3.2 60.2±2.7 67.4±2.4

CB last-layer retraining 7 72.4±3.5 74.1±2.1 80.7±1.1 64.4±1.1

CB ERM 3 81.9±3.4 67.2±5.6 61.4±0.7 69.2±1.6

CB last-layer retraining 3 83.1±2.7 71.3±3.2 80.8±0.2 65.6±2.4
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Table 15: Table for Figure 3. We list the percentage of the reweighting dataset consisting of worst-
group data for each SELF method. “Baseline” represents the percentage of worst-group data in the
held-out dataset, while “Balanced” is the percentage of worst-group data necessary to achieve group
balance (recall that there may be multiple worst groups; they are described in Section 4.1). We also
include the worst-group accuracy (WGA) of each SELF method, to get a sense of whether the amount
of worst-group data correlates with performance (in a loose qualitative sense). We list the mean over
three independent runs and round to the nearest whole number.

Method WGA/Percent of worst-group data

Waterbirds CelebA CivilComments MultiNLI

Baseline 50 1 7 2
Misclassification 90/45 85/25 64/51 65/ 4
ES misclassification 91/45 83/ 7 68/37 68/20
Dropout disagreement 91/55 82/13 79/13 66/ 3
ES disagreement 93/67 84/ 2 79/24 71/ 4
Balanced 50 25 25 33

Table 16: Table for Figure 4. We compare different combinations of ERM and last-layer retraining
with or without class balancing. Notably, class-balanced last-layer retraining enables nearly the same
worst-group accuracy whether the ERM incorporates class-balancing or not. In Figure 4, we only
plot the results which use class-balanced last layer retraining (i.e., the last two rows of the table). We
use the entire held-out set for last-layer retraining, and we list the mean and standard deviation over
three independent runs.

ERM
class balancing

Last-layer retraining
class balancing

Worst-group test accuracy

Waterbirds CelebA CivilComments MultiNLI

7 7 87.5±0.7 45.4±2.3 54.7±5.8 64.5±0.8

3 7 88.0±0.8 41.9±1.4 57.6±4.2 64.6±1.0

7 3 92.3±0.4 71.1±2.4 78.4±2.5 64.7±1.1

3 3 92.6±0.8 73.7±2.8 80.4±0.8 64.7±1.1
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F Broader impacts, limitations, and compute

Broader impacts. We hope our work contributes to the safe and equitable application of machine
learning and motivates further research in ML fairness. A potential negative outcome may arise if
practitioners assume their models are bias-free after applying our techniques; while we show reduced
dependence on spurious correlations, no method can completely alleviate the issue, and other modes
of bias may exist. We encourage practitioners to conduct rigorous examinations of model fairness.

Limitations. Our methods take advantage of the specificity of the spurious correlation setting, and
therefore would likely underperform on datasets which exhibit a more extreme complete correlation
(i.e., contain zero minority group data) [52, 40]. Furthermore, following previous work in this
setting [58, 41, 48, 33, 28], SELF utilizes a small validation dataset with group annotations for
model selection. While we show in Appendix B that SELF is robust to using as few as 1% of these
annotations, and our last-layer retraining method (Section 4) does not require them, completely
removing this assumption is an important direction for future research.

Compute. Our experiments were conducted on Nvidia Tesla V100 and A5000 GPUs. We used about
$25000 in compute credits in the course of this research. We believe this paper could be reproduced
for under $5000 in credits, and a majority of this compute would go towards the ablation studies.
With that said, our last-layer retraining methods only train the linear classifier, making them cheap
and efficient to run even on older hardware.
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