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Abstract

Predominately in explainable artificial intelligence (XAI) research, the Shapley
value (SV) is applied to determine feature attributions for any black box model.
Shapley interaction indices extend the SV to define any-order feature interaction
scores. Defining a unique Shapley interaction index is an open research question
and, so far, three definitions have been proposed, which differ by their choice of
axioms. Moreover, each definition requires a specific approximation technique.
Here, we propose SHAPley Interaction Quantification (SHAP-IQ), an efficient
sampling-based approximator to compute Shapley interactions for arbitrary cardinal
interaction indices (CII), i.e. interaction indices that satisfy the linearity, symmetry
and dummy axiom. SHAP-IQ is based on a novel representation and, in contrast to
existing methods, we provide theoretical guarantees for its approximation quality,
as well as estimates for the variance of the point estimates. For the special case
of SV, our approach reveals a novel representation of the SV and corresponds
to Unbiased KernelSHAP with a greatly simplified calculation. We illustrate
the computational efficiency and effectiveness by explaining language, image
classification and high-dimensional synthetic models.

1 Introduction

Feature attributions are a prevalent approach to interpret black box machine learning (ML) models
[2, 7, 26]. However, in many real-world applications, such as understanding drug-drug interactions,
mutational events or complex language models, quantifying interactions between features is essential,
too [48, 23, 43]. Feature interactions provide a more comprehensive explanation, which can be
seen as an enrichment of feature attributions [3, 39, 40]. While feature attributions quantify the
contribution of single features to the model’s prediction or performance, feature interactions quantify
the contribution of a group of features to the model’s prediction or performance.
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I have never forgot this movie. All these years and it has remained in my life.
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Figure 1: Interaction scores for a movie review excerpt presented to a sentiment analysis model.

In this work, we are interested in feature interactions that make use of the Shapley value (SV) and its
extension to Shapley interactions. The SV is a concept from cooperative game theory that has been
used, apart from feature attributions [7], as a basis for many Shapley-based explanations [21, 15, 49].
It distinguishes itself through uniqueness given a set of intuitive axioms. A number of approaches
extend Shapley-based explanations to feature interactions [17, 3, 39, 40]. Yet, in contrast to the SV,
a “natural” extension of the intuitive set of axioms for a unique Shapley interaction index is less
clear. Moreover, its efficient computation is challenging and, so far, approximation approaches are
specifically tailored to the particular definition.

In this paper, we consider a more general class of interaction indices, known as cardinal interaction
indices (CII) [17], which covers all currently proposed definitions and all other that satisfy the
(generalized) linearity, symmetry and dummy axiom. We present SHAPley Interaction Quantification
(SHAP-IQ), a sampling-based unified approximation method. It is substantiated by mathematical
guarantees and can be applied to any CII to approximate any-order interaction scores efficiently.

Contribution. Our main contributions include:

• We consider a general form of interaction indices, known as CII (Definition 3.3) and establish
a novel representation (Theorem 4.1), which we utilize to construct SHAP-IQ (Definition
4.2), an efficient sampling-based estimator.2

• We show that SHAP-IQ is unbiased, consistent and provide a general approximation bound
(Theorem 4.3). We further prove that SHAP-IQ maintains the efficiency condition for
n-Shapley Values [3] and the Shapley Taylor Interaction Index [39] (Theorem 4.7).

• For the SV, we find a novel representation (Theorem 4.4). We further prove that SHAP-IQ is
linked to Unbiased KernelSHAP [8] (Theorem 4.5) and greatly simplifies its representation.

• We use SHAP-IQ to compute any-order n-Shapley Values on different ML models and
demonstrate that it outperforms existing baseline methods. We further contrast different
existing CIIs and compare SHAP-IQ to the corresponding baseline approximation method.

2 Related Work

The Shapley Interaction Index (SII) [17], its efficiency preserving aggregation as n-Shapley Values
(n-SII) [3], the Shapley Taylor Interaction (STI) [39] and the Faithful Shapley Interaction Index (FSI)
[40] offer different ways of extending the SV to interactions, which extend on the linearity, symmetry
and dummy axiom to provide a uniquely defined interaction index. SII and STI extend on axiomatic
properties of the weighted sum for SV [35], whereas FSI extends on the axiomatic properties of the
Shapley interaction as the solution to a weighted least square solution [32, 33].

2The shapiq package extends on the well-known shap library and can be found at https://pypi.org/
project/shapiq/.
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In the field of cooperative game theory, interactions have also been studied from a theoretical
perspective as the solution of a weighted least square problem and the sum of marginal contributions
with constant weights, which both yield a generalized Banzhaf value [18, 16].

In the ML community, interactions of features have been studied from a practical perspective for text
[29] and image [41] data, for specific models, such as neural networks [42, 10, 36, 20] or tree based
models [25]. Other concepts of interactions have been discussed in [43] using marginal contributions,
from a statistical perspective with functional decomposition [28] and improved white box models
with interaction terms [24].

To approximate SII and STI, a permutation-based method [39, 40], as an extension of ApproShapley
[5], was suggested, whereas FSI relies on a kernel-based approximation, similar to KernelSHAP
[26], which utilizes a representation of the SV as the solution of a weighted least square problem
[6]. Unlike these specific approaches, we consider general CIIs, which subsume all of the above
mentioned measures, and we propose a generic approximation technique, which can be accompanied
by mathematical guarantees. In case of the SV, our approximation of the CII is related to Unbiased
KernelSHAP [8], which is a variant of KernelSHAP [26]. It is further related to stratified sampling
approximations for the SV and our sampling approach can be seen as flexible framework to find the
optimum allocation for each stratum [4].

3 The Cardinal Interaction Index (CII) and Shapley-based Explanations

In this section, we review Shapley-based explanations and introduce the CII, which we aim to
approximate in Section 4. We further introduce existing baseline methods for specific CIIs and
Unbiased KernelSHAP for the SV, which is linked to our proposed method.

Notations. We refer to the model behavior on a set of features D = {1, . . . , d} as a function
ν : P(D)→ R, where P(D) refers to the power set of D. We denote ν0(T ) := ν(T )− ν(∅), which
is the default setting in game theory and also known as set function [17, 14]. The subsets S ⊆ D
refer to the set of features (or players in game theory) of which the interaction is computed, where
we use lower case letters for the cardinality, i.e. s := |S|. The maximum order interaction of interest
is denoted with s0 and we use the set Tk := {T ⊆ D : k ≤ t ≤ d− k} and the set of interactions
Ss0 := {S ⊆ D | s ≤ s0, S ̸= ∅}. For a subset T ⊆ D, we refer to the binary representation as
ZT = (z1, . . . , zd) ∈ {0, 1}d with zi = 1(i ∈ T ) for i = 1, . . . , d, where 1 refers to the indicator
function. We further denote the Shapley kernel [6, 26] as µ(t) := 1

d−1

(
d−2
t−1

)−1
.

Removal-based explanations [9] consider a model that is trained on d features, where the goal
is to examine a model behavior that is defined on a subset of features. The model behavior ν
for a subset of features could, for instance, be a particular model prediction for one input (local
explanation) or an overall measure of model performance (global explanation), if only this subset
of features is known [9]. To quantify the contribution for individual features, the change in model
behavior is evaluated, if the feature is removed from the model. To restrict a ML model on a
subset of features, different feature removal techniques have been proposed, such as marginalization
of features or retraining the model [9]. To quantify the impact of a single feature i ∈ D on the
model behavior ν it is then intuitive to compute the difference δν{i}(T ) = ν(T ∪ {i}) − ν(T ) for
subsets T ⊆ D \ {i}. For a distinct pair of features (i, j) with i, j ∈ D, a natural extension is
δν{i,j}(T ) = ν(T ∪ {i, j}) − ν(T ) − δν{i}(T ) − δν{j}(T ) for T ∈ D \ {i, j}, i.e. subtracting the
contribution of single features from the joint impact of both features. The following definition
generalizes this recursion and is known as discrete derivative or S-derivative [14].
Definition 3.1 (Discrete Derivative [14]). For S ⊆ D the S-derivative of ν at T ⊆ D \ S is

δνS(T ) :=
∑
L⊆S

(−1)s−lν(T ∪ L).

To obtain an attribution score, the marginal contributions on different subsets T ⊆ D \ S are
aggregated using a specific summary technique. In this work, we are interested in the approximation
and extension of one particular summary technique for single features i ∈ D, called the Shapley
value [35], independent of model behavior and feature removal.

Definition 3.2 (Shapley Value (SV) [35]). The SV is ISV(i) =
∑

T⊆D\{i}
(d−t−1)!t!

d! δν{i}(T ), i ∈ D.
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The SV is the unique attribution method that fulfills the axioms: symmetry (attributions are inde-
pendent of feature ordering), linearity (in terms of the model behavior ν), dummy (if a feature does
not change ν then its attribution is zero) and efficiency (the sum of attributions are equal to ν0(D))
[35]. However, the SV does not give any information about the interactions between two or more
features. A suitable extension of the SV for interactions of features S ⊆ D remains an open question,
as different axiomatic extensions have been proposed [17, 39, 40]. In this work, we thus consider a
broad class of interaction indices, known as CIIs [17, 40], which subsumes popular choices.
Definition 3.3 (Cardinal Interaction Index (CII) [17]). A CII is an interaction index of the form

Im(S) :=
∑

T⊆D\S

ms(t)δ
ν
S(T ) with weights ms(t) for s = 1, . . . , s0 and t = 0, . . . , d− s.

Remark 3.4. It was shown that every interaction index satisfying the generalized linearity, symmetry
and dummy axioms can be represented as a CII [17]. If

∑d−s
t=0

(
d−s
t

)
ms(t) = 1, then the CII is also

referred to as a cardinal-probabilistic interaction index (CPII) [14].

In this paper, we present a unified approximation technique for arbitrary CIIs.

3.1 Shapley Interaction Index (SII) and other CIIs

In the following, we introduce prominent examples of CIIs. For further details on the axioms and
exact definitions, we refer to the appendix. The SII [17] is a direct extension of the SV, that relies on
an additional recursive axiom to obtain a unique CII.
Definition 3.5 (Shapley Interaction Index (SII)[17]). The SII is a CII defined as

ISII(S) :=
∑

T⊆D\S

mSII
s (t)δνS(T ) and mSII

s (t) :=
(d− t− s)!t!

(d− s+ 1)!
.

It has been shown that the SII is a CPII [14]. In contrast to the SV, the SII does not fulfill the efficiency
axiom, which is a desirable property in the context of ML. Therefore an extension of SII, as well as
other interaction indices have been proposed.

n-Shapley Values (n-SII) and other interaction indices. The efficiency axiom for interaction
indices of maximum interaction order 1 ≤ s0 ≤ d requires that the sum of Im(S) up to order s0
equals ν0(D).
Definition 3.6 (Efficiency [39, 40]). A CII is efficient of order s0, if

∑
S∈Ss0

Im(S) = ν0(D), where
Ss0 is the set of interactions up to order s0.

In [3], an aggregation of SII was proposed to obtain n-SII In-SII
s0 (S) of order s0 that satisfies efficiency.

Other axiomatic approaches directly require efficiency together with the linearity, symmetry and
dummy axioms, and omit the recursive axiom of SII. However, in contrast to the SV, this axiom alone
does not yield a unique interaction index [39, 40]. The STI [39] requires the efficiency axiom and an
additional interaction distribution axiom. On the other hand, the FSI [40] requires the efficiency axiom
and the faithfulness property, that relates the interaction index to a solution of a constrained weighted
least square problem. The choice of axioms of SII (n-SII), STI and FSI yield a unique interaction
index that reduces to the SVs for s0 = 1. For FSI, it was shown that the top-order interactions define
a CPII [40, Proposition 21], which is also easily verified for STI. All orders of interactions of FSI and
STI can in general be represented as a CII, as they fulfill the linearity, symmetry and dummy axioms
[17, Proposition 5]. However, it was noted that for FSI a simple closed-form solution for lower-order
interactions in terms of discrete derivatives remains unclear [40, Lemma 70].

3.2 Baseline Approximations of SII, STI and FSI.

By definition, the number of evaluations of ν in I , which constitutes the limiting factor in ML, grows
exponentially with d and thus, in practice, approximation methods are required. Currently, there does
not exist an approximation for the general CII definition, as each index (SII, STI, FSI) requires a
specifically tailored technique. Approximations of CII can be distinguished into permutation-based
approximation (SII and STI) and kernel-based approximation (FSI). Both extend on existing methods
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for the SV, namely permutation sampling [5] for SII and STI, and KernelSHAP [26] for FSI. For
a comprehensive overview of the original SV methods, we refer to the appendix. We now briefly
discuss existing approaches, which will be used as baselines in our experiments.

Permutation-based (PB) Approximation for STI and SII [39, 40]. The permutation-based (PB)
approximation computes estimates of SII and STI based on a representation of uniformly sampled
random permutations π ∼ unif(SD), where SD is the set of all permutations, i.e. the set of all
ordered sequences of the elements in D. Then,

ISII(S) = Eπ∼unif(SD)

[
1(S ∈ π)δνS

(
u−
S (πk)

)]
and ISTI(S) = Eπ∼unif(SD)

[
δνS
(
u−
S (π)

)]
.

Here, u−
S (π) refers to the set of indices in π preceding the first occurrence of any element of S in π

and S ∈ π is fulfilled, if all elements of S appear as a consecutive sequence in π. The estimators for
SII and STI then compute an approximation by Monte Carlo integration by sampling π ∼ unif(SD).

Kernel-based (KB) Approximation for FSI [40, 8]. Kernel-based (KB) approximation estimates
FSI based on the representation of I as a solution to a constrained weighted least square problem

IFSI = argmin
β∈Rds0

ET∼p(T )[(ν(T )−
∑

S∈Ss0
S⊆T

β(S))2] s.t.
∑

S∈Ss0

β(S) = ν(D) and β(∅) = ν(∅), (1)

where p(T ) ∝ µ(t), is a probability distribution over T1 and ds0 := |Ss0 |. KB approximation for
FSI estimates the expectation using Monte Carlo integration by sampling from p(T ) and solves the
approximated least-squares problem explicitly, similar to KernelSHAP [26, 8, 40]. For more details
and pseudo code, we refer to the appendix.

3.3 Unbiased KernelSHAP (U-KSH) for the SV

U-KSH constitutes a variant of KernelSHAP (KSH) [26], which relies on KB approximation for the
SV. In contrast to KSH, U-KSH is theoretically well understood and it was shown that the estimator
is unbiased and consistent [8]. U-KSH finds an exact solution to (1) with s0 = 1 as

ISV = A−1

(
b− 1

1TA−1b− ν0(1)

1TA−11

)
where A := E[ZZT ], b = E[Zν0(Z)] and p(Z) ∝ µ(t).

U-KSH then approximates this solution using Monte Carlo integration.
Definition 3.7 (Unbiased KernelSHAP (U-KSH) [8]). Given T1, . . . , TK ∼ p(T ) ∝ µ(t) with binary
representation Z1, . . . , ZK ∈ {0, 1}d, U-KSH is defined as

ÎSV
U := A−1

(
b̂− 1

1TA−1b̂− ν0(1)

1TA−11

)
, where b̂ :=

1

K

K∑
k=1

Zkν0(Zk).

The main idea of U-KSH is that A can be computed explicitly independent of ν and only b has to be
estimated [8]. By linking U-KSH to our method (Theorem 4.5), we will show that ÎSV

U can be greatly
simplified to a weighted sum.

4 SHAP-IQ: Unified Approximation of any-order CII

So far, there exists no unified approximation technique for the general CII. In particular, it is unknown
if existing approximation techniques, such PB and KB, generalize to other indices [39, 40, 13].
Furthermore, PB approximation for SII and STI is very inefficient as each update of all estimates
requires a significant number of model evaluations. KB approximation for FSI efficiently computes
estimates, where one model evaluation can be used to update all interaction scores. It is, however,
impossible to compute only a selection of interaction estimates and theoretical results for the estimator
are difficult to establish. In the following, we introduce SHAP-IQ (Section 4.1), a unified sampling-
based approximation method that can be applied to any CII. SHAP-IQ is based on a Monte Carlo
estimate of a novel representation of the CII and well-known statistical results are applicable. In the
special case of SV, we find a novel representation of the SV and show that SHAP-IQ is linked to
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U-KSH (Section 4.2). SHAP-IQ therefore greatly reduces the computational complexity of U-KSH.
We further show (Section 4.3), that the sum of interaction estimates of SHAP-IQ remains constant and
therefore maintains the efficiency property for STI and SII. Interestingly, for FSI this property does
not hold, which should be investigated in future research. All proofs can be found in the appendix.

4.1 SHAPley Interaction Quantification (SHAP-IQ)

A key challenge in approximating the CII efficiently is that the sum changes for every interaction
subset S. We thus first establish a novel representation of the CII. Based on this representation, we
construct SHAP-IQ, an efficient estimator of the CII. We show that SHAP-IQ is unbiased, consistent
and provide a general approximation bound.

Our novel representation of the CII is defined as a sum over all subsets T ⊆ D. In previous works, it
was shown that such a representation does exist for games with ν(∅) = 0, if the linearity axiom is
fulfilled [17, Proposition 1]. We now explicitly specify this representation and show that the weights,
for a CII, only depend on the sizes of T and the intersection T ∩ S.3

Theorem 4.1. It holds Im(S) =
∑

T⊆D ν0(T )γ
m
s (t, |T ∩ S|) with γm

s (t, k) := (−1)s−kms(t− k).

Theorem 4.1 yields a novel representation of the CII, where the model evaluations ν0(T ) are indepen-
dent of S. This allows to utilize every model evaluation to compute all CII scores simultaneously by
properly weighting with γm

s . Notably, our representation relies on ν0 instead of ν, which constitutes
an important choice for approximation, on which we elaborate in the appendix.

To approximate I , we introduce a sampling order k0 ≥ s0, for which we split the sum in Theorem
4.1 to subsets with T ∈ Tk0 and T /∈ Tk0 and rewrite

Im(S) = ck0(S)+ET∼pk0
(T )

[
ν0(T )

γm
s (t, |T ∩ S|)

pk0
(T )

]
with ck0

(S) :=
∑

T /∈Tk0

ν0(T )γ
m
s (t, |T ∩S|),

where pk0 is over Tk0 . SHAP-IQ then estimates the CII by Monte Carlo integration.

Definition 4.2 (SHAP-IQ). The Shapley Interaction Quantification (SHAP-IQ) of order k0 with K
samples is

Îmk0
(S) := ck0

(S) +
1

K
·

K∑
k=1

ν0(Tk)
γm
s (tk, |Tk ∩ S|)

pk0
(Tk)

with T1, . . . , TK ∼ pk0
(T ).

SHAP-IQ is outlined in the appendix and we establish the following important theoretical guarantees.

Theorem 4.3. SHAP-IQ is unbiased, E
[
Îmk0

(S)
]
= Im(S), and consistent, Îmk0

(S)
K→∞→ Im(S).

With σ2(S) := V
[
ν0(T )

γm
s (|T |,|T∩S|)

pk0
(T )

]
and ϵ > 0, it holds P(|Îmk0

(S)− Im(S)| > ϵ) ≤ 1
K

σ2(S)
ϵ2 .

SHAP-IQ provides efficient estimates of all CII scores with important theoretical guarantees. The
sample variance σ̂2 can further be used for statistical analysis of the estimates.

Finding the sampling order k0 and distribution pk0
. In line with KSH and U-KSH [26, 8], we

find k0 in an iterative procedure, outlined in the appendix. We consider sampling weights q(t) ≥ 0
for 0 ≤ t ≤ d that grow symmetrically towards the center and consider a distribution pk0

(T ) ∝ q(t).
Given a budget M and initial k0 = 0, we consider Im(S) = ET∼pk0

(T )

[
ν0(T )

γm
s (t,|T∩S|)
pk0

(T )

]
and

iteratively increase k0, if for a subset T of size k0 and d−k0, the condition M ·pk0
(T ) ≥ 1 is fulfilled.

The budget is then decreased by the number of subsets of that size, i.e. 2
(
d
k0

)
. This essentially verifies

iteratively, if the expected number of subsets exceeds the total number of subsets. For more details
and possible choices of sampling weights q, we refer to the appendix.

Computational Complexity. In contrast to PB approximations, SHAP-IQ allows to iteratively
update all interaction estimates with one single model evaluation for any-order interactions. The

3Our representation generalizes a result for SII [16, Table 3] to functions with ν(∅) ̸= 0 and the class of CIIs.
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weights γm
s (t, k) used for the updates can be efficiently precomputed. The updating process can be

implemented efficiently using Welford’s algorithm [45], where estimates have to be maintained for
all interactions sets, i.e. ds0 in total. In contrast to KB approximation, which requires to solve a
weighted least square optimization problem with ds0 variables, the computational effort per interaction
increases linearly for SHAP-IQ. Furthermore, SHAP-IQ even allows to update selected interaction
estimates, whereas, for instance, KB approximation for FSI requires to estimate all interactions. For
more details on the implementation and computational complexity of the baseline methods, we refer
to the appendix.

4.2 SHAP-IQ for the Shapley Value

In this section, we show that SHAP-IQ, in the special case of single feature subsets s0 = 1, yields
novel insights into the SV. Furthermore, SHAP-IQ corresponds to U-KSH and greatly simplifies its
calculation. Utilizing Theorem 4.1, we find a novel representation of the SV for every feature i ∈ D.

Theorem 4.4. With c1(i) =
ν0(D)

d the SV is ISV(i) = c1(i) +
∑

T∈T1
ν0(T )µ(t)

[
1(i ∈ T )− t

d

]
.

SHAP-IQ admits a similar form (see appendix) and corresponds to U-KSH ÎSV
U .

Theorem 4.5 (SHAP-IQ simplifies U-KSH). For p(T ) ∝ µ(t) it holds that ÎSV
U = Îm1 .

Theorem 4.5 implies that the U-KSH estimator can be computed using the SHAP-IQ estimator,
which greatly simplifies the calculation to a weighted sum. The main idea of the proof relies on the
observation that not only A can be explicitly computed, but also A−1, cf. the appendix.

4.3 The Sum of Interaction Scores and SHAP-IQ Efficiency

In this section, we are interested in the sum of CII scores, which we link to a property of SHAP-
IQ estimates to maintain the efficiency axiom. By Theorem 4.1, we have

∑
S∈Ss0

Im(S) =∑
T⊆D ν0(T )

∑
S∈Ss0

γm
s (t, |T ∩ S|). For the SV, by Theorem 4.4, this sum is zero for every

T ∈ T1. For higher order CIIs, we introduce the following definition.
Definition 4.6. A CII is s-efficient, if

∑
S⊆D,|S|=s0

γm
s (t, |T ∩ S|) = 0 for every T ∈ Ts0 .

Theorem 4.7. SII and STI are s-efficient. In particular, SHAP-IQ estimates maintain efficiency for
n-SII and STI.

Further, if a CII is s-efficient, then the sum of SHAP-IQ estimates remains constant. Although we did
not provide a rigorous statement, it is easy to validate numerically that FSI is not s-efficient. This
finding suggests that there are conceptional differences between these indices, that should be further
investigated in future work. Using s-efficiency it is also possible to find an explicit formula for the
sum of interaction scores for SII, which we give in the appendix.

5 Experiments

We conduct multiple experiments to illustrate the approximation quality of SHAP-IQ compared to
current baseline approaches.4 We showcase SHAP-IQ estimates on any-order SII (n-SII), on top-order
STI and FSI. For each interaction index, we use its specific approximation method as a baseline. For
SII and STI, we use the PB approximation and for FSI the KB approximation, further described in
the appendix. We then compute n-SII based on the estimated SII values. We compare the baseline
methods with SHAP-IQ using p(T ) ∝ µ(t). For each iteration we evaluate the approximation quality
with different budgets up to a maximum budget of 214 model evaluations. To account for variation,
we randomly evaluate the approximation method on 50 randomly chosen instances, further described
below. To quantify the approximation quality, we compute multiple evaluation metrics for each
interaction order: mean-squared error (MSE), MSE for the top-K interactions (MSE@K) and the
ratio (precision) of estimated top-K interactions (Prec@K). The top-K interactions are determined in
regards to their absolute value.

4All code and implementations for conducting the experiments can be found at https://github.com/
FFmgll/shapiq. Running the experiments required a computational cost of approximately 2 000 CPU hours.
For more details we refer to the appendix.

7

https://github.com/FFmgll/shapiq
https://github.com/FFmgll/shapiq


2000
0.12

4000
0.24

6000
0.37

8000
0.49

10000
0.61

12000
0.73

14000
0.85

16000
0.98

model evaluations (absolute, relative)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
SE

SII for the LM (d = 14)

Method
SHAP-IQ
Baseline
 

Order
s = 1
s = 2
s = 3

2000
0.12

4000
0.24

6000
0.37

8000
0.49

10000
0.61

12000
0.73

14000
0.85

16000
0.98

model evaluations (absolute, relative)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

SII for the LM (d = 14)
Method
SHAP-IQ
Baseline

Order
s = 2
s = 3

2000
0.12

4000
0.24

6000
0.37

8000
0.49

10000
0.61

12000
0.73

14000
0.85

16000
0.98

model evaluations (absolute, relative)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

SII for the ICM (d = 14)
Method
SHAP-IQ
Baseline

Order
s = 2
s = 3

Figure 2: Approximation quality of SHAP-IQ and the baseline for orders s = 1, 2, 3 of SII measured
by MSE for the LM (left) and Prec@10 for orders s = 2, 3 for the LM (middle) and ICM (right).

Models. For a language model (LM), we use a fine-tuned version of the DistilBERT transformer
architecture [34] on movie review sentences from the original IMDB dataset [27, 22] for sentiment
analysis, i.e. ν has values in [−1, 1]. In the LM, for a given sentence, different feature coalitions are
computed by masking absent features in a tokenized sentence. The implementation is based on the
transformers API [47]. We randomly sample 50 reviews of length d = 14 and explain each model
prediction. For an image classification model (ICM), we use ResNet18 [19] pre-trained on ImageNet
[11] as provided by torch [30]. We randomly sample 50 images and explain the prediction of the
corresponding true class. To obtain the prediction of different coalitions, we pre-compute super-pixels
with SLIC [1, 44] to obtain a function on d = 14 features and apply mean imputation on absent
features. For a high-dimensional synthetic model with d = 30, we use a sum of unanimity model
(SOUM) ν(T ) :=

∑N
n=1 an1(Qn ⊆ T ), where N = 50 interaction subsets Q1, . . . , QN ⊆ D are

chosen uniformly from all subset sizes and a1, . . . , aN ∈ R are generated uniformly an ∼ unif([0, 1]).
Note that the SOUM could also be viewed as an extension of the induced subgraph game [12] for a
hypergraph with edges of different order.We randomly generate 50 instances of such SOUMs.

Ground-Truth (GT) Values. For the LM and the ICM we compute the ground-truth (GT) values
explicitly using the representation from Theorem 4.1. For the high-dimensional SOUM it is impossible
to compute the GT values naively. However, due to the linearity of the CII and the simple structure of
a SOUM, we can compute the exact GT values of for any CII efficiently, cf. the appendix.

5.1 Approximation of any-order SII and n-SII scores using SHAP-IQ

In this experiment, we apply SHAP-IQ on SII and compute estimates for the LM and the ICM up to
order s = 4. We then compare the estimates with the baseline using the GT values for each order.
The results are shown in Figure 2. We display the MSE for the LM (left) and the Prec@10 for the LM
(middle) and ICM (right). We further compute the n-SII estimates by aggregating the SII estimates
with s0 = 4 and visualize positive and negative interactions on single individuals as proposed in [3].
Thereby, interactions are distributed equally among each participating feature, which was justified in
[3, Theorem 6]. This representation amplifies the variance of our sampling-based estimator. We thus
also present SHAP-IQ without sampling, i.e. ck0

. The results are shown in Figure 3 (left) and from
left to right: GT values, SHAP-IQ, SHAP-IQ without sampling and baseline. Lastly, we illustrate the
n-SII scores estimates for s0 = 3 of a movie review excerpt classified by the LM (right), where the
interactions (“is”,“not”), (“not”,“bad”), and (“’ll”,“love”,“this”) yield a highly positive score.

The results show that SHAP-IQ outperforms the baseline methods across different models and metrics.
For the n-SII visualization, we conclude that the SHAP-IQ estimator without sampling is preferable,
which yields more accurate results than SHAP-IQ and the baseline methods. In general, SHAP-IQ
without sampling performs surprisingly strong, and we encourage further work in this direction.

5.2 Approximation of different CIIs using SHAP-IQ

In this experiment, we apply SHAP-IQ on different CIIs, namely SII, STI and FSI. We compute
top-order interactions for s0 = 3 and compare the results with the baselines. Our results are shown
in Figure 4 (left) and further experiments and results can be found in the appendix. For the LM,
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Figure 4: Approximation quality for top-order interactions of SII, STI, and FSI of the LM with
s0 = 3 (left) and the SOUM with s0 = 2 (middle and right).

SHAP-IQ clearly outperforms the baseline for SII and STI. For FSI, SHAP-IQ is outperformed by
the KB approximation of the baseline. As SII and STI rely on PB approximation, our results indicate
that KB approximation is more effective than PB approximation for this setting, which is in line
with the strong performance of KernelSHAP [26] for the SV. However, SHAP-IQ, in contrast to KB
approximation, provides a solid mathematical foundation with theoretical guarantees and we now
consider a high-dimensional synthetic game, where SHAP-IQ outperforms all baselines.

SHAP-IQ on high-dimensional synthetic models. For the SOUM we compute the average and
standard deviation of each evaluation metric for SHAP-IQ and the baselines for pairwise interactions
(s0 = 2) of each index. Our results are shown in Figure 4 (middle and right) and further experiments
and results can be found in the appendix. SHAP-IQ outperforms all baseline methods in this setting,
in particular, the KB approximation of FSI that performed strongly in ML context. The experiment
highlights that there exists no approximation method that performs universally best.

Runtime Analysis. The runtime of SHAP-IQ is affected by different parameters. The computation
of the sampling order k0 is a constant time operation given a number of features (cf. Algorithm 2 in the
appendix). While the pre-computation of the weights (ms) scales linearly with the number of features,
the additional computational burden is negligible as it does not depend on ν0. The main computational
cost stems from the model evaluations (access to the value function ν0), which is bounded by a
model’s inference time. To illustrate the runtime performance, we compare SHAP-IQ with the
baseline methods on the LM using different number of model evaluations K. Figure 5 displays the
runtime of SHAP-IQ and the corresponding baseline approaches, including all pre-computations.
With increasing K the runtime complexity scales linearly, but the overhead of SHAP-IQ remains low.
Note that the difference in STI can be attributed to less than K model evaluations, which is required
to maintain efficiency, cf. lines 15-16 in Algorithm 6 of the appendix.
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6 Limitations
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solid, STI: dashed, FSI: dashdotted), we
compare the run-time (in seconds) of SHAP-
IQ (pink) compared to baseline estimators
(violet) of one instantiation of the LM (16
words) over five independent runs at differ-
ent levels of K.

We presented SHAP-IQ, a unified approximation al-
gorithm for any-order CIIs with important theoretical
guarantees. SHAP-IQ relies on the specific structure
in terms of discrete derivatives from Definition 3.3.
This representation exists for every interaction indices
that fulfills the linearity, symmetry and dummy axiom
[17, Proposition 5]. However, for FSI, which has been
defined as the solution to the weighted least square
problem, a closed-form representation for lower-order
interactions in terms of discrete derivatives remains
difficult to establish [40, Lemma 70]. This limits the
applicability of SHAP-IQ to top-order interactions of
FSI, for which this representation is given in [40, The-
orem 19]. The FSI baseline performs strongly in ML
context, in line with empirical findings for KernelSHAP
[26] for the SV. However, the estimator is theoretically
not well understood [8] and we have shown that it is
not universally best. Moreover, for other CIIs, such
as SII and STI, it is unlikely [13] that such an explicit
form in terms of a weighted least square problem can
be found, which limits the applicability of KB approx-
imation to FSI. SHAP-IQ outperforms the baselines of
SII and STI by a large margin, is generally applicable
and supported by a solid mathematical foundation.

7 Conclusion

How to extend the SV to interactions is an open research question. In this work, we considered CIIs,
a broad class of interaction indices, which covers all currently proposed indices, as well as all indices
that fulfill the linearity, symmetry and dummy axiom. We established a novel representation of the
CII, which we used to introduce SHAP-IQ, an efficient sampling-based approximation algorithm that
is unbiased and consistent. For the special case of SV, SHAP-IQ can be seen as a generalization of
U-KSH [8] and greatly simplifies its calculation as well as providing a novel representation of the
SV. Furthermore, for n-SII and STI, SHAP-IQ maintains the efficiency condition, which is a direct
consequence of a specific property, which we coin s-efficiency for CIIs. We applied SHAP-IQ in
multiple experimental settings to compute any-order interactions of SII and n-SII, where SHAP-IQ
consistently outperforms the baseline method and showcased the applicability of feature interaction
scores to understand black-box language and image classification models. SHAP-IQ further benefits
from a solid statistical foundation, which can be leveraged to improve the approximation quality.

Future work. Applying SHAP-IQ to real-world applications, such as NLP tasks [43] and genomics
[48, 23], could yield valuable insights. However, the exponentially increasing number of interactions
requires human-centered post-processing to enhance interpretability for practitioners and ML engi-
neers, e.g. through automated dialogue systems [37]. Further, it would be beneficial to discover the
statistical capabilities of SHAP-IQ to provide confidence bounds or approximate interaction scores
sequentially. Beyond model-agnostic approximation, model-specific variants could substantially
reduce computational complexity. For instance, it is likely that ideas of TreeSHAP [25] for tree-based
models can be extended to Shapley-based interactions.
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Appendix of “SHAP-IQ: Unified Approximation of any-order Shapley
Interactions”

Organisation of the Appendix

We provide further theoretical and experimental results for SHAP-IQ. The appendix is organized
as follows: In Appendix A, we formally introduce specific CIIs, such as SII, n-SII, STI and FSI
and their axiomatic foundation and theoretical results and provide a novel theoretical result for the
sum of SII scores. In Appendix B, we provide all proofs of theoretical results from the main paper.
In Appendix C, we give further insights into the implementation of SHAP-IQ. In Appendix D, we
provide further experimental results, information about the used models, explicit formulas for the
SOUM interaction scores, and pseudo-code and information on the computational complexity of
baseline implementations. In Appendix E, we provide further theoretical results for the special case
of SV, in particular the explicit form of the covariance matrix from [8] and a simplified representation,
similar to Theorem 4.4, of SHAP-IQ in this case. In Appendix F, we describe the approximation
methods ApproShapley [5] and KernelSHAP [26] for the SV on which our baseline methods are
built.
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A Shapley-based Interaction Indices and further theoretical Results

In this section, we review the axiomatic structures of n-SII, SII, STI and FSI. We further provide an
additional result for the sum of SII interaction scores.

A.1 Shapley-based Interaction Indices

We consider G as the set of all games ν : P(D)→ R. In the following, we formalize the axioms for
the Shapley interaction indices Iν : P(D)→ R
Definition A.1 (Linearity Axiom [17]). Iν is linear, if for any two games ν1, ν2 ∈ G and any S ⊆ D,
it holds Iν1+ν2

(S) = Iν1
(S) + Iν2

(S).
Definition A.2 (Dummy Axiom [17]). For a dummy player i ∈ D for a game ν ∈ G, i.e. constant
contribution c(i) added to any coalition ν(T ∪ {i} = ν(T ) + c(i), then for every T ⊆ D \ {i}, the
dummy axiom requires Iν(S ∪ {i}) = 0 for any S ⊆ D \ {i}. That is, a dummy player has no
interaction with any coalition.
Definition A.3 (Symmetry Axiom [17]). Iν is said to fulfill the symmetry axiom, if for any permuta-
tion π on D it holds Iν(S) = Iπν(πS), where πν(πS) := ν(S) and πS := {π(i) : i ∈ S} changes
the ordering of the players.
Definition A.4 (Recursive Axiom [17]). Iν fulfills the recursive axiom, if for any S ⊆ D with |S| > 1
and any game ν ∈ G

I(S) = Iν[S]
([S])−

∑
K⊊S,K ̸=∅

IνD\K (S \K),

where ν[S] is the game, where all players in S is considered as one player, and νD\K is a game
defined on the subset of players D \K.

The recursive axiom defines higher order interactions using lower order interaction. For pairwise
interactions it can be stated as Iν(ij) = Iν[ij]

([ij]) − IνD\{j}(i) − IνD\{i}(j), i.e. the pairwise
interaction is the difference of the value for the reduced player [ij] and the individual player values
for the reduced game.
Definition A.5 (Shapley Interaction Index [17]). The Shapley interaction index (SII) is the unique
interaction index that satisfies the linearity, dummy, symmetry and recursive axiom, where the values
for |S| = 1 correspond to the Shapley value. It can be represented as a CII as

ISII(S) :=
∑

T⊆D\S

mSII
s (t)δνS(T ) and mSII

s (t) :=
(d− t− s)!t!

(d− s+ 1)!
.

In contrast to the SV, the SII does not yield an efficiency property, which is desirable in ML context.
The efficiency axiom was therefore introduced for interactions. The following axioms rely on a
maximum interaction order s0, where the values of the interaction indices change for different
maximum interaction orders.
Definition A.6 (Efficiency Axiom [39]). For all ν ∈ G, it holds

∑
S∈Ss0

Iν(S) = ν(D)− ν(∅).

The efficiency axiom is an extension of the SV efficiency axiom and requires that all interaction
scores up to the maximum order s0 sum up to ν(D)− ν(∅). For SII there exists a unique recursive
aggregation, such that the efficiency axiom is fulfilled. This novel interaction index is referred to as
n-Shapley Values (n-SII) [3].
Definition A.7 (n-Shapley Values (n-SII) [3]). Given s0 the n-Shapley Values (n-SII) are defined as

In-SII
s0 (S) :=

{
ISII(S), for |S| = s0
In-SII
s0−1(S) +Bd−|S|

∑
K⊆D\S
k+s=d

ISII(S ∪K), for |S| < s0.

Besides n-SII, there have been two axiomatic extensions to CIIs that directly require the efficiency
axiom together with the linearity, symmetry and dummy axiom. However, unlike for the SV, it is not
sufficient to require efficiency for a unique interaction index. The Shapley Taylor Interaction Index
(STI) further specifies the interaction distribution axiom, which then yields a unique index [39].
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Definition A.8 (Interaction Distribution Axiom [39]). For an interaction function νT parametrized
by T ⊆ D it holds νT (S) = 0, if T ⊊ S and a constant value νT (S) = c for T ⊆ S and c ∈ R. The
interaction distribution axiom requires for all S ⊆ D with S ⊊ T and s < s0 that IνT

(S) = 0.
Definition A.9 (The Shapley Taylor Interaction Index [39]). The Shapley Taylor interaction index
(STI) is the unique interaction index that satisfies the linearity, dummy, symmetry, efficiency and
interaction distribution axiom.

The STI yields a unique interaction index by introducing the interaction distribution axiom, which
favors the maximum order interactions as discussed in [40]. It was thus argued that instead the
representation of the interaction index as a solution to a weighted least square problem is preferable
[40], which yields the Faith-Interaction Index.
Definition A.10 (Faith-Interaction Index [40]). I is called a Faith-interaction index if it can be
expressed as

I = argmin
β∈Rds0

∑
T⊆D:µ(T )<∞

µ(T )

ν(T )−
∑
T⊆S
t≤s0

β(S)


2

s.t. ν(T ) =
∑

S⊆T,t≤s0

β(S),∀T : µ(T ) =∞.

(2)

Definition A.11 (Faithful Shapley Interaction Index [40]). The Faithful Shapley interaction index
(FSI) is the unique faith-interaction index that satisfies the linearity, dummy, symmetry and efficiency
axiom.

While n-SII, SII, STI and FSI offer differnt ways of characterizing an interaction index, it was shown
in [17] that every interaction index satisfying the linearity, symmetry and dummy axiom admits a CII
representation.
Proposition A.12. Every interaction index satisfying the linearity, symmetry and dummy axiom can
be represented as a CII

Im(S) :=
∑

T⊆D\S

ms(t)δ
ν
S(T ).

Furthermore, the weights ms0 for the top-order interaction indices, i.e. s = s0 are defined as

mSII
s0 (t) :=

(d− t− s0)!t!

(d− s0 + 1)!
,

mSTI
s0 (t) := s0

(d− t− 1)!t!

d!

mFII
s0 (t) :=

(2s0 − 1)!

((s0 − 1)!)2
(d− t− 1)!(t+ s0 − 1)!

(d+ s0 − 1)!
.

The definitions for lower order interactions can be found in [17] for SII, in [39] for STI and in [40]
for FSI. Note that for FSI a closed-form solution for lower-order interactions in terms of discrete
derivatives remains unknown [40, Lemma 70].

Proof. For the proofs, we refer to the corresponding paper of each index. The general statement is
proven in [17, Proposition 5].

A.2 Explicit Formula for Sum of SII Scores

Using s-efficiency, it is easy to calculate the sum of SII scores, which provide an explicit representation
of a formula considered in [31, Theorem 4.2].
Proposition A.13 (Sum of SII Scores). For SII it holds∑

S⊆D
|S|=s0

ISII(S) =
∑
T⊆D
t<s0

r(t) [(−1)s0ν(T ) + ν(D \ T )] ,
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where r(t) := 1
s0

(
d−t

s0−t−1

)
and mSII

s (t) := (d−t−s0)!t!
(d−s0+1)! .

Proof. For SII, we let m(t) := mSII
s (t) = 1

d−s+1

(
d−s
t

)−1
and have by Theorem 4.7 and the definition

of s-efficiency∑
S⊆D
|S|=s0

Im(S) =
∑
S⊆D
|S|=s0

cs0(S) =
∑
T⊆D
t<s0

ν(T )
∑
S⊆D
|S|=s0

γm
s (t, |T ∩ S|) +

∑
T⊆D

t>d−s0

ν(T )
∑
S⊆D
|S|=s0

γm
s (t, |T ∩ S|)

For t < s0 we have

ρ(t) :=
∑
S⊆D
|S|=s0

γm
s (t, |T ∩ S|) =

t∑
k=0

(
t

k

)(
t− k

s0 − k

)
γm
s (t, |T ∩ S|)

=
1

d− s0 + 1

t∑
k=0

(−1)s0−k

(
t

k

)(
d− t

s0 − k

)(
d− s0
t− k

)−1

.

For t > d− s there are at least kmin = t− (d− s) elements in the intersection of |T ∩ S| and thus
with t̄ := d− t < s0 and kmin = s0 − t̄∑

S⊆D
|S|=s0

γm
s (t, |T ∩ S|) =

s0∑
k=kmin

(
t

k

)(
t− k

s0 − k

)
γm
s (t, |T ∩ S|)

=
1

d− s0 + 1

s0∑
k=kmin

(−1)s0−k

(
t

k

)(
d− t

s0 − k

)(
d− s0
t− k

)−1

=
1

d− s0 + 1

s0∑
k=s0−t̄

(−1)s0−k

(
d− t̄

k

)(
t̄

s0 − k

)(
d− s0

d− t̄− k

)−1

=
1

d− s0 + 1

t̄∑
k=0

(−1)k
(

d− t̄

s0 − k

)(
t̄

k

)(
d− s0

d− t̄− s0 + k

)−1

=
1

d− s0 + 1

t̄∑
k=0

(−1)k
(

d− t̄

s0 − k

)(
t̄

k

)(
d− s0
t̄− k

)−1

= (−1)s0ρ(t̄).

We can explicitly compute ρ(t) as

ρ(t) =
1

d− s0 + 1

t∑
k=0

(−1)s0−k

(
t

k

)(
d− t

s0 − k

)(
d− s0
t− k

)−1

= (−1)s0 t!(d− t)!

(d− s0 + 1)!

t∑
k=0

(−1)k 1

(s0 − k)!k!

= (−1)s0 t!(d− t)!

s0!(d− s0 + 1)!

t∑
k=0

(−1)k
(
s0
k

)
= (−1)s0 t!(d− t)!

s0!(d− s0 + 1)!

(
s0 − 1

t

)
=

(−1)s0
s0

(
d− t

s0 − t− 1

)
,

where we have used that
∑t

k=0(−1)k
(
s0
k

)
=
(
s0−1

t

)
for t < s0. Hence,∑

S⊆D
|S|=s0

Im(S) =
1

s0

∑
T⊆D
t<s0

[(−1)s0ν(T ) + ν(D \ T )]
(

d− t

s0 − t− 1

)
.
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B Proofs

This section contains the proofs of the claims made in the main paper.

B.1 Proof of Theorem 4.1

Proof. By definition, the sum Im(S) :=
∑

T⊆D\S m(t)δνS(T ) ranges over all subsets T ⊆ D,
where every subset is exactly once evaluated. On the one hand, it is easy to see that every evaluated
subset in Im(S) is different, as T ∪ L is unique. Furthermore, given any subset T ⊆ D, we
decompose T = T̃ ∪ L, where T̃ ⊆ D \ S and L := T ∩ S ⊆ S. The corresponding weight is
m(t̃) = m(t− l) = m(t−|T ∩S|) and the sign from δνS(T̃ ) is (−1)s−l = (−1)s−|T∩S|. This yields
with ν0(T ) := ν(T )− ν(∅)

Im(S) =
∑
T⊆D

ν(T )γm
s (t, |T ∩ S|) =

∑
T⊆D

ν0(T )γ
m
s (t, |T ∩ S|) + ν(∅)

∑
T⊆D

γm
s (t, |T ∩ S|)

=
∑
T⊆D

ν0(T )γ
m
s (t, |T ∩ S|),

as the sum over all γm is zero, if the dummy axiom is fulfilled.

Remark B.1. It is important to note, that the sum
∑

T⊆D γm
s (t, |T ∩S|) is not zero, if not all subsets

are considered, which makes it crucial to use ν0 instead of ν. In fact, the estimates of Im would be
heavily skewed by ν(∅). While the estimator would still be unbiased, its variance would scale with
ν(∅)2.

B.2 Proof of Theorem 4.3

Proof. We aim to show that Îm(S) is unbiased and consistent, i.e. E
[
Îmk0

(S)
]
= Im(S) and

limK→∞ Îmk0
(S) = Im(S). Given

Îmk0
(S) := ck0

(S) +
1

K
·

K∑
k=1

ν0(Tk)
γm
s (tk, |Tk ∩ S|)

pk0
(Tk)

,

it is clear that due to the linearity of the expectation

ET∼pk0
(T )

[
Îmk0

(S)
]
= ck0

(S) +
1

K

K∑
k=1

ET∼pk0
(T )

[
ν0(T )

γm
s (|T |, |T ∩ S|)

pk0
(T )

]
= Im(S).

Furthermore, let σ2(S) := VT∼pk0
(T )

[
ν0(T )

γm
s (|T |,|T∩S|)

pk0
(T )

]
be the variance of each estimate, then,

by the law of large numbers

1

K
·

K∑
k=1

ν0(Tk)
γm
s (tk, |Tk ∩ S|)

pk0
(Tk)

K→∞−→ ET∼pk0
(T )

[
ν0(T )

γm
s (|T |, |T ∩ S|)

pk0
(T )

]
,

and thus limK→∞ Îm(S) = Im(S). Lastly, as Îm(S) is unbiased, we have for ϵ > 0 by Chebyshev’s
inequality

P(|Îmk0
(S)− Im(S)| > ϵ) ≤

V
[
Îmk0

(S)
]

ϵ2
=

1

K2

Kσ2(S)

ϵ2
=

1

K

σ2(S)

ϵ2
.
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B.3 Proof of Theorem 4.4

Proof. We let m(t) := (d−t−1)!t!
d! and apply Theorem 4.1. With γm

s (0, 0) = −m(0), γm
s (d, 1) =

m(d− 1) and m(0) = m(d− 1) = 1
d , we have

ISV(i)
Theorem 4.1

=
∑
T⊆D

ν(T )γm
s (t,1(i ∈ T )) =

ν(D)− ν(∅)
d

+
∑
T∈T1

ν(T )γm
s (t,1(i ∈ T ))

= c1(i) +
∑
T∈T1

ν(T ) [1(i ∈ T )γm
s (t, 1) + 1(i /∈ T )γm

s (t, 0)]

= c1(i) +
∑
T∈T1

ν(T ) [1(i ∈ T ) (γm
s (t, 1)− γm

s (t, 0)) + γm
s (t, 0)]

= c1(i) +
∑
T∈T1

ν(T ) [1(i ∈ T ) (m(t− 1) +m(t))−m(t)]

= c1(i) +
∑
T∈T1

ν(T )

[
1(i ∈ T )

(
(d− t)!(t− 1)!

d!
+

(d− t− 1)!t!

d!

)
− (d− t− 1)!t!

d!

]
= c1(i) +

∑
T∈T1

ν(T )
(d− t− 1)!(t− 1)!

(d− 1)!

[
1(i ∈ T )− t

d

]
= c1(i) +

∑
T∈T1

ν(T )µ(t)

[
1(i ∈ T )− t

d

]
.

B.4 Proof of Theorem 4.5

Proof. According to Proposition E.3, our goal is to show that

ÎSV
U (i) = c1(i) +

2hd−1

K

K∑
k=1

ν0(Tk)

[
1(i ∈ Tk)−

tk
d

]
with Tk

iid∼ p(T ) := µ(t)/(2hd−1), where p is a probability distribution over T1 and hn :=
∑n

t=1 t
−1.

The proof is structured in the following steps:

1. Exact computation of A−1 using the exact structure of A with diagonal entries µ1 and
off-diagonal entries µ2, cf. [8, Appendix A].

2. Exact computation of ÎSV
U , which yields with Proposition E.3 ÎSV

U (i) = Îm1 (i), if (µ1 −
µ2)2hd−1 = 1.

3. We show that (µ1 − µ2)2hd−1 = 1.

Calculation of A−1. It has been shown in [8, Appendix A] that all off-diagonal entries are equal
and all diagonal entries are equal, i.e. A may be written as A = µ2J+ (µ1 − µ2)I with off-diagonal
entries µ2 := p(Zi = Zj = 1) and diagonal entries µ1 := p(Zi = 1), where Zi refers to the i-th
component of the binary vector Z and J is a matrix of ones and I is the identity matrix. The simple
structure of A allows to compute the inverse exactly by using the following Lemma.

Lemma B.2. Let µ1, µ2 > 0 with µ1 ̸= µ2, then

(µ2J+ (µ1 − µ2)I)
−1 = µ̃2J+ (µ̃1 − µ̃2)I

with

µ̃2 =
−µ2

(µ1 − µ2)(µ1 + (d− 1)µ2)

µ̃1 =
µ1 + (d− 2)µ2

(µ1 − µ2)(µ1 + (d− 1)µ2)
.
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Proof. We compute

I =(µ2J+ (µ1 − µ2)I) · (µ̃2J+ (µ̃1 − µ̃2)I)

=((µ1 + (d− 1)µ2)µ̃2 + (µ̃1 − µ̃2)µ2)J

+ (µ1 − µ2)(µ̃1 − µ̃2)I,

which yields (µ1 − µ2)(µ̃1 − µ̃2) = 1 and µ2µ̃2d+ (µ1 − µ2)µ̃1 + (µ̃1 − µ̃2)µ2 = 0. From the first
equation we have µ̃1 − µ̃2 = 1/(µ1 − µ2) and thus by the second equation

µ̃2 =
−µ2

(µ1 − µ2)(µ1 + (d− 1)µ2)

and hence

µ̃1 =
µ1 + (d− 2)µ2

(µ1 − µ2)(µ1 + (d− 1)µ2)

Calculation of ÎSV
U . By Lemma B.2, we proceed to compute the different components of

ÎSV
U := A−1

(
b̂L − 1

1TA−1b̂L − ν0(1)

1TA−11

)
.

First,

1TA−1 = ((d− 1)µ̃2 + µ̃1)1
T =

1

µ1 + (d− 1)µ2
1T .

Then the denominator yields 1TA−11 = d
µ1+(d−1)µ2

. We then obtain

1
1TA−1b̂L − ν0(1)

1TA−11
=

1

d
11T b̂L−

µ1 + (d− 1)µ2

d
ν0(1)1 =

1

d
J · b̂L +

µ1 + (d− 1)µ2

d
ν0(1) · 1,

which, with A−11 = (µ̃1 + (d− 1)µ̃2)1 = 1
µ1+(d−1)µ2

1, yields

ÎSV
U = A−1(b̂L −

1

d
J · b̂L) +

ν0(1)

d
· 1 = c1 +A−1(b̂L −

1

d
J · b̂L).

It remains to show that(
A−1(b̂L −

1

d
J · b̂L)

)
i

=
1

K

K∑
k=1

ν0(Tk)
γm
s (tk,1(i ∈ Tk))

p(Tk)
.

With b̂L = 1
K

∑K
k=1 zkν0(zk) it follows

A−1(b̂L −
1

d
J · b̂L) =

1

K

K∑
k=1

(
A−1zk −

1

d
A−1Jzk

)
ν0(zk).

Then A−1zk = tkµ̃21+ (µ̃1 − µ̃2)zk where tk is the subset size, i.e. tk is the sum of all entries in
zk. It follows with A−1J = 1

µ1+(d−1)µ2
J

A−1zk−
1

d
A−1Jzk = tk

(
µ̃2 −

1

d (µ1 + (d− 1)µ2)

)
1+(µ̃1− µ̃2)zk =

1

µ1 − µ2

(
zk −

tk
d
1

)
.

For the i-th component, we have with set notation Tk and for the SV weights m(t) := (d−t−1)!t!
d! then

ÎSV
U (i)− c1(i) =

(
A−1(b̂L −

1

d
J · b̂L)

)
i

=
1

K

K∑
k=1

ν0(Tk)
1

µ1 − µ2

(
1(i ∈ Tk)−

tk
d

)
=

1

(µ1 − µ2)2hd−1

(
Îm1 (i)− c1(i)

)
,

where we have used Proposition E.3 for Îm1 (i). It remains to show that (µ1 − µ2)2hd−1 = 1.
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Show that (µ1−µ2)2hd−1 = 1. We let p(Tk) := µ(t)/R be a probability distribution over T1. By
definition, and as subsets of size t have equal probability, we have

µ1 = p(Zi = 1) =

d−1∑
t=1

p(Zi = 1|1TZ = t)p(1TZ = t)

=

d−1∑
t=1

(
d−1
t−1

)(
d
t

) µ(t)

R

(
d

t

)
=

d−1∑
t=1

(
d− 1

t− 1

)
µ(t)

R

and

µ2 = p(Zi = Zj = 1) =

d−1∑
t=1

p(Zi = Zj = 1|1TZ = t)p(1TZ = t)

=

d−1∑
t=2

(
d−2
t−2

)(
d
t

) µ(t)

R

(
d

t

)
=

d−1∑
t=2

(
d− 2

t− 2

)
µ(t)

R
.

Hence,

µ1 − µ2 =
µ(1)

R
+

d−1∑
t=2

µ(t)

R

((
d− 1

t− 1

)
−
(
d− 2

t− 2

))
=

d−1∑
t=1

µ(t)

R

(
d− 2

t− 1

)
=

1

R
,

where we have used the recursion for the binomial coefficient and µ(t) = 1
d−1

(
d−2
t−1

)−1
. Lastly, we

have seen in the proof of Proposition E.3 that R = 2hd−1, which finishes the proof.

B.5 Proof of Theorem 4.7

Proof. We prove the statements in separate subsections. We consider interactions of maximum order
s0 ≥ 1, summarized in I := {S ⊂ D | s = s0}. To show that SII and STI are s-efficient, by
Theorem 4.1 it suffices to show that

∑
S∈I γm

s (t, |T ∩ S|) = 0 for all T ∈ Ts0 . Given a subset
T ∈ Ts0 with |T ∩ S| = k and k ∈ {0, . . . , s0}, we have∑

S∈I
γm
s (t, |T ∩ S|) =

s0∑
k=0

(
t

k

)(
t− k

s0 − k

)
γm
s (t, k) =

s0∑
k=0

(−1)s0−k

(
t

k

)(
d− t

s0 − k

)
m(t− k).

B.5.1 Proof of s-efficiency for SII.

We let m(t) := mSII
s0 (t) =

(d−t−s0)!t!
(d−s0+1)! = 1

d−s0+1

(
d−s0

t

)−1
and obtain∑

S∈I
γm
s (t, |T ∩ S|) = 1

d− s0 + 1

s0∑
k=0

(−1)s0−k

(
t

k

)(
d− t

s0 − k

)(
d− s0
t− k

)−1

.

We now consider
s0∑
k=0

(−1)k
(
t

k

)(
d− t

s0 − k

)(
d− s0
t− k

)−1

=

s0∑
k=0

(−1)k t!

k!(t− k)!

(d− t)!

(s0 − k)!(d− t− s0 + k)!

(t− k)!(d− s0 − t+ k)!

(d− s0)!

=
t!(d− t)!

(d− s0)!

s0∑
k=0

(−1)k 1

(s0 − k)!k!

=
t!(d− t)!

s0!(d− s0)!

s0∑
k=0

(−1)k
(
s0
k

)
=

t!(d− t)!

s0!(d− s0)!
(1− 1)s0

= 0,

where we have used the binomial expansion for (1− 1)s0 . Hence,∑
S∈I

γm
s (t, |T ∩ S|) = 0,

which finishes the proof of SII s-efficiency.
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B.5.2 Proof of s-efficiency of STI.

For STI, i.e. mSTI
s0 := s0

(d−t−1)!t!
d! , we have∑

S∈I
γm
s (t, |T ∩ S|) =

s0∑
k=0

(−1)s0−k

(
t

k

)(
d− t

s0 − k

)
s0

(d− t+ k − 1)!(t− k)!

d!

=
s0(−1)s0t!(d− t)!

s0!d!

s0∑
k=0

(−1)k
(
s0
k

)
(d− t+ k − 1)!

(d− t− s0 + k)!

As (d−t+k−1)!
(d−t−s0+k)! is a polynomial with orders less than s0, we can use

∑s0
k=0

(
s0
k

)
km = 0 for m < s0

[38] to obtain
s0(−1)s0t!(d− t)!

s0!d!

s0∑
k=0

(−1)k
(
s0
k

)
(d− t+ k − 1)!

(d− t− s0 + k)!
= 0,

which finishes the proof of STI s-efficiency.

B.5.3 Proof of efficiency for STI.

It is clear that s-efficiency of a CII implies by Theorem 4.1 with sampling order k ≥ s0 that the sum
of top-order interaction estimates is ∑

S∈I
ÎSTI
s0 (t) =

∑
S∈I

cSTI
s0 (S).

On the other hand, it also implies that the sum of STI scores for the top-order interactions are∑
S∈I

ISTI
s0 (t) =

∑
S∈I

cSTI
s0 (S).

While lower-order estimates are computed exactly for STI, it follows that the sum of STI scores and
sum of SHAP-IQ estimates over all interaction sets Ss0 are equal. Furthermore, due to the definition
of STI, they must fulfill the efficiency axiom, which finishes the proof.

B.5.4 Proof of efficiency for n-SII.

This result follows from the aggregation suggested by n-SII, which is independent of the index. The
efficiency condition follows directly from the SV efficiency and the Bernoulli numbers, independent
of higher-order interaction values, cf. proof in [3, Proposition 12]. The proof is based on induction,
starting from the SV, where the efficiency condition holds. The specific aggregation based on the
Bernoulli numbers then ensures that this efficiency condition is maintained. To apply this observation
to SHAP-IQ estimates of n-SII, we observe that due to Proposition E.3, SHAP-IQ maintains the
efficiency condition for order s = 1, i.e. the SV estimates. The aggregation of n-SII for the SHAP-IQ
estimates of higher orders then immediately implies that this efficiency condition is always preserved,
as the arguments presented therein hold independent of the interaction index, cf. [3, Proof of
Proposition 12].
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C Algorithmic Details of SHAP-IQ

In this section, we decribe further algorithmic details that are used in the SHAP-IQ implementation.

C.1 Algorithm of SHAP-IQ

The pseudo-code for SHAP-IQ is outlined in Algorithm 1.

Algorithm 1 SHAP-IQ for any-order interactions Ss0 up to order s0
Require: Budget K > 0, weights q(t) ≥ 0 with t ∈ [d], precomputed weights γm

s (t, ℓ) for
s = 1, . . . , s0, t = 0 . . . , d and ℓ = 0, . . . , s

1: k0 ← getSamplingOrder(q,K)
2: for T /∈ Tk0 do ▷ Deterministic
3: η ← ν0(T )
4: for S ∈ Ss0 do
5: ck0

(S)← ck0
(S) + η · γm

s (t, |T ∩ S|) ▷ Update deterministic part for all S
6: end for
7: K ← K − 1
8: end for
9: for t = k0, . . . , d− k0 do

10: p(t)← q(t)/
(∑d−k0

k=k0
q(k)

(
d
k

))
▷ compute probabilities Pk0

(|T | = t)

11: end for
12: for k = 1, . . . ,K do ▷ Sampling
13: T ← Sample(p, k0)
14: η ← ν0(T )
15: for S ∈ Ss0 do
16: ∆(S)← η · γm

s (t, |T ∩ S|)
(
d
t

)
/p[t] ▷ Use probabilities

Pk0
(T ) = Pk0

(|T | = t)/
(
d
t

)
∝ q(t)

17: end for
18: µ̂, ŝ2 ← WelfordUpdate(µ̂, s2, k,∆)
19: end for
20: mean Îmk0

← ck0
+ µ̂m and variance σ̂2 ← s2/(n− 1)

21: return Îmk0
and σ̂2

C.2 Sampling Weights q(t)

In our implementation, we rely on q(t) ∝ µ(t) for 1 ≤ t ≤ d− 1, where the weights q(0) = q(d) =
q0 ≫ 0 are set to a high positive constant, which favors these subsets before weighting the remaining
subsets in T1. These weights ensure that SHAP-IQ is equal to U-KSH for the SV. Another choice of
weights is q(t) = (d−t−s0)!(t−s0)!

(d−s0+1)! for s0 ≤ t ≤ d − s0 and q(t) = q0 otherwise, which prefers all
orders up to s0 and from d to d− s0. This choice of subset weights may be beneficial for very low
budgets, as it is important to ensure that k0 ≥ s0 for SHAP-IQ to maintain the efficiency condition.
The algorithm to find k0 given weight q and budget K is outlined in Algorithm 2. The sampling
procedure to generate a subset according to p(T ) is outlined in Algorithm 3.

C.3 Welford’s Algorithm

Welford’s algorithm [45] allows to iteratively update the mean and variance using a single pass. The
algorithm is outlined in Algorithm 4.
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Algorithm 2 Determine the the sampling order k0 for the deterministic part
Require: weights q over 0, . . . , d, budget K > 0

1: initialize k0 = 0
2: for t = 0, . . . , Floor(d/2) do
3: R =

(∑d−k0

k=k0
q[k]

(
d
k

))
▷ Normalization

4: p[t]← q[t]
(
d
t

)
/R

5: p[d− t]← q[d− t]
(
d
t

)
/R

6: if K · q[t] > R and K · q[d− t] > R then
7: k0 ← k0 + 1
8: K ← K − 2

(
d
t

)
9: end if

10: end for
11: return k0

Algorithm 3 Sample a subset T ∼ p(T )

Require: p with
∑d−k0

k=k0
p[k] = 1, sampling order k0

1: for t = k0, . . . , d− k0 do
2: p(|T | = t)← p[t]

(
d
t

)
3: end for
4: choose subset size t0 with probability p(|T | = t)

5: choose subset T of size t0 with probability
(
d
t0

)−1

6: return T

Algorithm 4 Welford Algorithm for Mean and Variance [45]
Require: µ, s2, n,∆

1: n← n+ 1
2: ∆1 ← ∆− µ
3: µ← µ+∆/n
4: ∆2 ← ∆− µ
5: s2← s2 + ∆1∆2

6: return µ, s2
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D Experiments

For the interested reader, we provide a more detailed view on our empirical evaluation of Section 5.
We give descriptions and pseudocode of the baseline algorithms approximating the three considered
interaction indices SII, STI, and FSI, formal definitions of our synthetic games, and finally further
obtained results that we omitted in the main part due to space constraints.

D.1 Baseline Algorithms for SII, STI, and FSI

In this section, we describe our baseline algorithms for SII, STI and FSI. We distinguish between
permutation-based approximation (SII and STI) and kernel-based approximation (FSI).

D.1.1 Permutation-based (PB) Approximation

The algorithm for SII is outlined in Algorithm 5. Note that with each permutation only d − s + 1
interaction estimates of order s are updated.

Algorithm 5 Permutation-based sampling for SII for all orders up to s0 [40]
Require: maximum interaction order s0, interaction set Ss0 , budget K

1: sum[S]← 0 for all S ∈ Ss0
2: count[S]← 0 for all S ∈ Ss0
3: permutationCost← 0
4: for s = 1, . . . , s0 do
5: permutationCost← permutationCost +2s · (d− s+ 1) ▷ Evaluate costs per permutation
6: end for
7: while K ≥ permutationCost do
8: π ← {i1, . . . , id} random permutation of D
9: for s = 1, . . . , s0 do

10: for m = 1, . . . , d− s+ 1 do
11: S ← {im, . . . , im+s−1}
12: T ← {i1, . . . , im−1} the set of predecessors of im in π
13: sum[S]← sum[S] + δνS(T ) ▷ δνS(T ) costs 2s evaluations
14: count[S] = count[S]+1
15: end for
16: end for
17: K ← K− permutationCost ▷ Update budget
18: end while
19: SII[S]← sum[S]/count[S] for all S ∈ Ss0 .
20: return SII

The sampling-based algorithm for top-order interactions of STI is outlined in Algorithm 6. Note
that with each permutation all top-order interaction estimates can be updated. However, the update
requires a significant amount (permutationCost) of model evaluations.

D.1.2 Kernel-based (KB) Approximation

Given a budget of K, we first find the sampling budget by identifying k0 according to Algorithm 2
with weights q(t) := µ(t) and subtracting the number of subsets used for the deterministic part. We
then sample the remaining subsets according to p(T ) ∝ µ(t) according to Algorithm 3.
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Algorithm 6 Permutation-based sampling for STI for all orders up to s0 [39, 40]
Require: maximum interaction order s0, interaction set Ss0 , budget K

1: sum[S]← 0 for all S ∈ Ss0
2: count[S]← 0 for all S ∈ Ss0
3: Compute exact (trivial) lower-order interactions
4: eval[S]← 0 for all S ∈ Ss0−1 ▷ Model evaluations for lower-order STI values
5: for S ∈ Ss0−1 do ▷ Precompute model evaluations for lower-order STI
6: eval[S]← ν(S)
7: K ← K − 1
8: end for
9: for S ∈ Ss0−1 do ▷ Lower-order interactions

10: for L ∈ P(S) do
11: SII[S]← SII[S] + (−1)s−l· eval[L] ▷ Exact lower-order STI values
12: end for
13: end for
14: Compute sampling-based top-order interaction estimates
15: permutationCost← 2s0 ·

(
d
s0

)
▷ Every S requires to compute δνS with 2s0 evaluations

16: while K ≥ permutationCost do ▷ Evaluate one permutation
17: π ← {i1, . . . , id} random permutation of D
18: for all top-order interactions S do
19: im ← the leftmost element of S in π
20: T ← {i1, . . . , im−1} the set of predecessors of im in π
21: sum[S]← sum[S] + δνS(T ) ▷ δνS(T ) costs 2s0 evaluations
22: count[S] = count[S]+1
23: end for
24: K ← K− permutationCost ▷ Update budget
25: end while
26: STI[S]← sum[S]/count[S] for all top-order interactions.
27: return STI

Given the collection of K subsets (deterministic and sampled), we solve an approximated weighted
least square objective as

ET∼p(T )


ν(T )−

∑
S∈Ss0
S⊆T

β(S)


2

≈
∑

T∈Tk0

p(T )

ν(T )−
∑

S∈Ss0
S⊆T

β(S)


2

+ p(T ∈ Tk0
)ET∼pk0

(T )


ν(T )−

∑
S∈Ss0
S⊆T

β(S)


2 ,

where k0 is found similar to SHAP-IQ and pk0
is a probability distribution over Tk0

with pk0
(T ) ∝

µ(t), which is related to p with pk0
(T ) = p(T )/p(T ∈ Tk0

). The expectation over pk0
is then found

by Monte Carlo integration. Approximating this objective yields a weighted sum of sampled subsets
that approximates the weighted least square problem. This approximated least-square problem is then
computed explicitly using

ÎFSI = (ZTWZ)−1ZTWy, (3)

where Z ∈ {0, 1}K×ds0 is a matrix that represents a binary encoding for each sampled subset where
an entry in column S ∈ Ss0 is equal to one, if the subset contains S and zero otherwise. The matrix
W ∈ RK×K contains the weights for each subset on the diagonal, e.g. p(T ) for subsets of the
deterministic part or p(T ∈ Tk0)/m for subsets of the sampled part, where m refers to the number of
sampled subsets for Monte Carlo integration. The vector y consists of all model evaluations ν0(T ),
where T is in the collection of subsets. To include the optimization constraint, we add D to the
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collection with weight set to a high positive constant (mimicking infinite). The algorithm is outlined
in Algorithm 7.

Algorithm 7 Kernel-based approximation of FSI [26, 40]
Require: maximum interaction order s0, budget K, high constant c0 >> 0.

1: Weight vector w[T ] with one row and column per distinct subset T .
2: Binary subset matrix Z[T, S] with one row per distinct subset T and one column per interaction

subset S.
3: Model evaluation vector y[T ] with model evaluations ν(T ) per distinct subset T .
4: Index array: I per distinct subset T
5: Initialize constraints
6: w ← Append(w, c0)
7: Z ← AppendRow(Z,1T ) with 1T of length ds0 .
8: y ← Append(y, ν0(D)).
9: K ← K − 1.

10: Deterministic Part
11: for t = 1, . . . , d− 1 do ▷ Initialize subset size probabilities as P1(|T | = t)

12: p(t)← q(t)/
(∑d−1

k=1 q(k)
(
d
k

))
13: end for
14: k0 ← getSamplingOrder(q,K)
15: for T ∈ T1 and T /∈ Tk0

do ▷ Deterministic
16: Z ← APPENDROW(Z, Binary(T ))
17: y ← Append(y, ν0(T ))
18: w ← Append(w, p(t)/

(
d
t

)
) ▷ Weight with probability P1(T ) = P1(|T | = t)/

(
d
t

)
19: K ← K − 1
20: end for
21: Sampling Part
22: w0 ← sum(p(t)) for k0 ≤ t ≤ d− k0. ▷ Remaining probability weight
23: for k = 1, . . . ,K do ▷ Sampling
24: T ← Sample(p, k0)
25: if T ∈ I then
26: Z ← AppendRow(Z, Binary(T)).
27: y ← Append(y, ν0(T ))
28: w ← Append(w, 1)
29: I.AddIndex(T )
30: else
31: w[I[T ]]← w[I[T ]] + 1
32: end if
33: end for
34: w[I[T ]]← w[I[T ]] · w0/K for all T ∈ I ▷ Rescaling
35: W ← diag(w) ▷ Diagonal matrix with diagonal w
36: FSI← SolveWLS(Z,W, y).
37: return FSI

D.1.3 Computational Complexity of Baseline Methods

To evaluate one permutation for STI, the PB algorithm requires 2s model evaluations per interaction,
i.e. in total

(
d
s0

)
· 2s0 for all top-order interactions. With each evaluated permutation all interaction

estimates can be updated. For lower order interactions, STI requires to compute model evaluations
for all subsets with |S| ≤ s0. For SII, the complexity is (d− s+ 1) · 2s per permutation and only
interaction estimates with S ∈ π can be updated per permutation, i.e. d− s+ 1 interaction estimates
with one permutation. This constitutes a significant drawback over the PB approximations for SV,
which iterates only once through the permutation requiring d− 1 evaluations to update all estimates
of the SV. In contrast, as for SV, the KB approach of FSI allows to update all interaction estimates
using one single model evaluation. However, the KB approach of FSI always requires to estimate all
interactions with order s ≤ s0 and its computational effort increases non-linear with the number of
subsets used, as solving the weighted least square problem requires inverting a K × ds0 matrix.
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D.2 Further Information about the Models

This section contains a detailed information about the models (SOUM, LM, and ICM) used in our
experiments.

D.2.1 Sum of Unanimity Model (SOUM)

Definition D.1 (Sum of Unanimity Model (SOUM)). For N subsets Q1, . . . , QN ⊆ D and coeffi-
cients a1, . . . , aN ∈ R the sum of unanimity model (SOUM) is defined as

ν(T ) :=

N∑
n=1

an1(Qn ⊆ T ).

For SOUMs, it is possible to efficiently compute the ground-truth values for CII.
Proposition D.2 (Ground-truth values for SOUM). For a SOUM, it holds

Imν (S) =

N∑
n=1

anω(qn, |S ∩Qn|),

with

ω(q, r) =

d∑
t=q

kmax(r)∑
k=0

(
d− q − (s− r)

t− q − k

)(
s− r

k

)
γm
s (t, k + r)

and kmax(r) := min(t− q, s− r)

Proof. Due to the linearity of the CII, it suffices to compute the CII for νQ(T ) := 1(Q ⊆ T ). By
Theorem 4.1, we have

ImνQ
(S) =

∑
T⊆D

1(Q ⊆ T )γm
s (t, |T ∩ S|)

=

d∑
t=q

kmax∑
k=0

(
d− q − (s− |S ∩Q|)

t− q − k

)(
s− |S ∩Q|

k

)
γm
s (t, k + |S ∩Q|)

=: ω(q, |S ∩Q|),

where we used that Q∩S ⊆ T ∩S due to 1(Q ⊆ T ) and |T ∩S| = |S ∩Q|+(|T ∩S|) \ (|S ∩Q|),
where k := |(T ∩ S) \ (S ∩Q)| ranges from 0 to kmax := min(t− q, s− |S ∩Q|). Since S ∩Q is
fixed, we need to count the number of subsets T of size t, given k, such that |T ∩ S| = |S ∩Q|+ k.
We count

(
s−|S∩Q|

k

)
ways to choose subsets of elements that are not in S ∩ Q but are in S. Then

q − (s − |S ∩ Q|) elements of T are fixed. We thus select from d − q − (s − |S ∩ Q|) elements
exactly t− q − k elements, as q and k elements are already contained in T .

Finally, the CII value is given as

Imν (S) =

N∑
n=1

anω(qn, |S ∩Qn|),

where the weights ω can be precomputed with |S ∩Qn| ∈ {0, . . . , s}.

D.2.2 Language Model (LM)

For a language model (LM), we use a fine-tuned version of the DistilBERT5 transformer architecture
[34] on movie review sentences from the original IMDB dataset [27] for sentiment analysis, i.e. ν has
values in [−1, 1]. The IMDB data stems from the dataset library [22]. In the LM, for a given sentence,
different feature coalitions are computed by masking absent features in a tokenized sentence. The
implementation is based on the transformers API [47].

5The model can be found at https://huggingface.co/dhlee347/distilbert-imdb.
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D.2.3 Image Classifier (ICM)

The image classification model (ICM) is a ResNet18 [19] pre-trained on ImageNet [11] as provided
by torch [30]. We randomly sample 50 images from ImageNet [11] and explain the prediction of the
highest probability class given the original image. To obtain the prediction of different coalitions, we
pre-compute super-pixels with SLIC [1, 44] to obtain a function on d = 14 features and apply mean
imputation on absent features.

D.3 Hardware Details and Environmental Impact of the Experiments

Running the experiments required approximately 2 000 CPU hours in total. The experiments concern-
ing the approximation quality of SHAP-IQ compared to the baselines were run on an computation
cluster on hyperthreaded Intel Xeon E5-2697 v3 CPUs clocking at with 2.6Ghz. To further increase
the efficiency of the experiments, the outputs of the LM and ICM were pre-computed given the
powerset of all features. Around 1 500 CPU hours were consumed for these experiments on the
cluster. Before running the experiments on the cluster, the implementations were validated on a Dell
XPS 15 9510 containing an Intel i7-11800H at 2.30GHz. For this and further small-scale experiments
like the n-SII values approximately 500 CPU hours were consumed.

D.4 Further Experimental Results

This section describes the further results and experiments omitted in the main body of the work.

D.4.1 Approximation Quality of top Order Interactions.

We further compute interaction scores for s0 = 1, s0 = 2, s0 = 3, and s0 = 4 of all three interaction
indices SII, STI, and FSI on the LM. We plot the MSE and Prec@10 based on g = 50 independent
iterations for these settings. All results are summarized in Figure 6. Moreover, we compute interaction
scores for s0 = 1, s0 = 2, s0 = 3, and s0 = 4 of all three interaction indices SII, STI, and FSI on the
ICM. The MSE and Prec@10 based on g = 50 independent iterations for these settings are shown in
Figure 7. Further results to the plots show in Section 5.2 for the SOUM are presented in Figure 8.

D.4.2 n-SII Estimation on Example Sentences.

We further probe the LM with randomly selected sentences from the IMDB dataset and estimate the
SII scores up to order 4. For the example sentence “It is a gruesome cannibal movie. But it’s not
bad. If you like Hannibal, you’ll love this.” in Section 5.2 all orders of n-SII with s0 = 1, 2, 3, 4
are illustrated in Figure 9. Another example sentence “I have never forgot this movie. All these
years and it has remained in my life.” with all orders of n-SII up to the maximum interaction order
s0 = 1, 2, 3, 4 is shown in Figure 10. Lastly, for four sentences n-SII for all orders with s0 = 4 are
visualized in Figure 11.
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Figure 6: Approximation Quality for LM with interaction order s0 = 4 for g = 50 iterations (first
row), with interaction order s0 = 3 for g = 50 iterations (second row), with interaction order s0 = 2
for g = 50 iterations (third row), and with interaction order s0 = 1 (Shapley Value) for g = 50
iterations (fourth row).
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Figure 7: Approximation Quality for ICM with interaction order s0 = 4 for g = 50 iterations (first
row), with interaction order s0 = 3 for g = 50 iterations (second row), with interaction order s0 = 2
for g = 50 iterations (third row), and with interaction order s0 = 1 (Shapley Value) for g = 50
iterations (fourth row).
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Figure 8: Approximation Quality for SOUM order s0 = 2 (first row) and s0 = 1 (Shapley value,
second row) for g = 50 iterations on the SOUM with N = 100 interactions, d = 30 features, and
ℓmax = 30.
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Figure 9: Estimated SII values with orders s = 1, 2, 3, 4 for the sentence “It is a gruesome cannibal
movie. But it’s not bad. If you like Hannibal, you’ll love this.” (d = 23) provided to the LM. The
plots show all orders of n-SII with maximum interaction order s0 = 1 (top left), s0 = 2 (top right),
s0 = 3 (bottom left), and s0 = 4 (bottom right).
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Figure 10: Estimated SII values with orders s = 1, 2, 3, 4 for the sentence “I have never forgot this
movie. All these years and it has remained in my life.” (d = 16) provided to the LM. The plots show
all orders of n-SII with maximum interaction order s0 = 1 (top left), s0 = 2 (top right), s0 = 3
(bottom left), and s0 = 4 (bottom right).
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Figure 11: Estimated n-SII values with s0 = 4 for the sentences provided to the LM: “Absolutely
nothing is redeeming about this total piece of trash.” (d = 12, top left), “I actually liked the ending
even though it did not make a lot of sense.” (d = 15, top right), “However, I really liked the ending so
much, I actually smiled and cried tears of joy. I felt good.” with (d = 19, bottom left), and “It is a
gruesome cannibal movie. But it’s not bad. If you like Hannibal, you’ll love this.” (d = 23, bottom
right).
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E Further theoretical Results for the Shapley Value

In this section, we give two additional results for the special case of the SV. We explicitly state the
inverse of the covariance matrix from [8] and further present a simplified representation of SHAP-IQ,
if applied on the SV, which aligns with Theorem 4.4.

E.1 Explicit Inverse of Covariance Matrix of Unbiased KernelSHAP

The covariance matrix has been explicitly computed in [8, Appendix A]. In this section, we provide
the explicit form of the inverse A−1. This inverse admits the same structure and is a central element
in the explicit calculation of U-KSH as a weighted sum, which is linked to SHAP-IQ.
Proposition E.1 (Explicit covariance matrix [8]). For the covariance matrix it holds

A := E[ZZT ] = µ2J+ (µ1 − µ2)I,

with i, j ∈ D and constants

Aii := µ1 := P(Zi = 1) =
1

2
Aij := µ2 := P(Zi = Zj = 1) =

1

d(d− 1)

∑d−1
k=2

k−1
d−k∑d−1

k=1
1

k(d−k)

.

Proof. The proof is given in [8, Appendix A].

We have for
∑d−1

k=1
1

k(d−k) = 2hd−1, where hn is the n-th harmonic number. Furthermore µ1−µ2 =
1

2hd−1
. We now give the explicit form of A−1.

Proposition E.2 (Explicit inverse of covariance matrix). Let A := E[ZZT ]. Then, we have an
explicit form of the inverse A−1 as

A−1 = µ̃2J+ (µ̃1 − µ̃2)I

with constants

(A−1)ii := µ̃1 = 2hd−1
µ1 + (d− 2)µ2

µ1 + (d− 1)µ2
(A−1)ij := µ̃2 = 2hd−1

−µ2

µ1 + (d− 1)µ2

Proof. The proof follows directly from Proposition E.1 and Lemma B.2.

E.2 Simplified Representation of SHAP-IQ for the Shapley Value

In this section, give an explicit form of SHAP-IQ for the SV that admits a similar form as the SV
representation in Theorem 4.4. We consider the SV weights m(t) := (d−t−1)!t!

d! .
Proposition E.3 (SHAP-IQ for SV). For SHAP-IQ with p(T ) ∝ µ(t) and sampling order k0 = 1, it
holds

Îm1 (i) = c1(i) +
2hd−1

K

K∑
k=1

ν0(Tk)

[
1(i ∈ Tk)−

tk
d

]
,

where hn is the n-th harmonic number.

Proof. Recall the definition of SHAP-IQ of order 1

Îm1 (i) := c1(i) +
1

K
·

K∑
k=1

ν(Tk)
γm
s (tk, |Tk ∩ {i}|)

p(Tk)
.

with p(Tk) := µ(tk)/R ∝ µ(tk). We proceed by rewriting γm
s (tk, |Tk ∩ {i}|) = γm

s (tk,1(i ∈ Tk))
for Tk ∈ T1 as

γm
s (tk,1(i ∈ Tk)) = (−1)1−1(i∈Tk)

(d− t− 1 + 1(i ∈ Tk))!(t− 1(i ∈ Tk))!

d!

= µ(t)
1

d
[1(i ∈ Tk)(d− tk)− 1(i /∈ Tk)tk]

= µ(t)

[
1(i ∈ Tk)−

tk
d

]
.
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Hence,

Îm1 (i) := c1(i) +
1

K
·

K∑
k=1

ν(Tk)
µ(t)

[
1(i ∈ Tk)− tk

d

]
p(Tk)

= c1(i) +
R

K
·

K∑
k=1

ν(Tk)

[
1(i ∈ Tk)−

tk
d

]
.

For the normalizing constant, we have

R =
∑
T∈T1

µ(t) =

d−1∑
t=1

µ(t)

(
d

t

)
=

d−1∑
t=1

d

t(d− t)
=

d−1∑
t=1

(
1

t
+

1

d− t

)
= 2hd−1,

which finishes the proof.

35



F Approximation Methods for the SV

There are two prominent representations of the SV, which are used for sampling-based approximation.
Both allow to update all SVs simultaneously with one sample as well as maintaining the efficiency
property.

F.1 Permutation-based (PB) Approximation

Permutation-based (PB) approximation was introduced for SV [5]. It is based on the observation
that the marginal contributions δνi (T ) = ν(T ∪ {i})− ν(T ) can be computed by using permutations
π ∈ SD of D and ν(u−

i (π)) − ν(u+
i (π)), where u−

i (π), u
+
i (π) are the sets that consist of all

elements preceding i in π with and without i, respectively. For for each subset T ⊆ D \ {i} of size t
there are exactly t!(d− t− 1)! permutations with T = u−

i (π) and thus

ISV(i) =
1

d!

∑
π∈SD

δνi (u
−
S (π)) = Eπ∼unif(SD)[δ

ν
i (u

−
S (π))].

This expectation can be efficiently approximated by sampling π ∼ unif(SD) and using a Monte
Carlo estimate for the expectation. As

∑
i∈D δνi (u

−
i (π)) = ν(D)− ν(∅) for arbitrary permutations

π, the efficiency constraint is maintained throughout the sampling procedure. The Monte Carlo
estimates allows to apply well-established statistical results to obtain bounds on the approximation
error [4].

F.2 Kernel-based (KB) Approximation

Kernel Shapley Additive Explanation Values [26], short KernelSHAP (KSH), and Unbiased Ker-
nelSHAP (U-KSH) [8] make use of the representation of the SV as the solution to a constrained
quadratic optimization problem [6]

ISV = argmin
β

∑
T∈T1

µ(t)

(
ν0(T )−

∑
i∈T

βi

)2

s.t.
∑
i∈D

βi = ν0(D)

(4)

with ν0(T ) := ν(T ) − ν(∅), Tk := {T ⊆ D : k ≤ t ≤ d − k} and µ(t) := 1
d−1

(
d−2
t−1

)−1
. This

quadratic optimization problem can be solved explicitly using the weighted least square solution

ISV = (ZTWZ)−1ZTWy, (5)

where Z ∈ {0, 1}2d×d is a row-wise binary encoding of all subsets of T ⊆ D, W ∈ R2d×2d is a
diagonal matrix with the subset weights µ and y consists of the evaluations of ν0(T ) for each subset.
To include the optimization constraint, the (otherwise undefined) weights µ(d), µ(0) of D and ∅ are
set to a high positive constant. Solving (5) still requires 2d model evaluations and thus KSH [26]
approximates ISV by considering (5) as an expectation

∑
T∈T1

µ(t)

(
ν0(T )−

∑
i∈T

βi

)2

∝ ET∼p(T )

(ν0(T )−∑
i∈T

βi

)2


with p(T ) ∝ µ(t). Note that the optimization problem is invariant in terms of scaling. This
expectation is the approximated similarly to SHAP-IQ, by computing high and low subset sizes
explicitly and using Monte Carlo integration for the center sizes. The KSH estimator is difficult to
analyze and it is only known that it is asymptotically unbiased [46].

KSH constructs a collection of subsets by determining a sampling order k0, such that subsets with
k0 ≤ t ≤ d− k0 are sampled from p(T ) ∝ µ(t) and for t < k0 or t > d− k0 all possible subsets are
used. The value of k0 is thereby found by successively comparing the expected number of subsets
with the total number of subsets of that size. As the number of subsets

(
d
t

)
for fixed d is a symmetric
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log-concave sequence of positive terms, it has a maximum at the middle term(s) ⌊d2⌋, ⌈
d
2⌉ and grows

monotonically and symmetrically as
(
d
t

)
=
(

d
d−t

)
towards this maximum from both sides. Thus, the

implementation starts the comparison at k0 = 0 and iteratively increases the k0 candidate.
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