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Abstract

In applying reinforcement learning (RL) to high-stakes domains, quantitative and
qualitative evaluation using observational data can help practitioners understand
the generalization performance of new policies. However, this type of off-policy
evaluation (OPE) is inherently limited since offline data may not reflect the distribu-
tion shifts resulting from the application of new policies. On the other hand, online
evaluation by collecting rollouts according to the new policy is often infeasible, as
deploying new policies in these domains can be unsafe. In this work, we propose
a semi-offline evaluation framework as an intermediate step between offline and
online evaluation, where human users provide annotations of unobserved coun-
terfactual trajectories. While tempting to simply augment existing data with such
annotations, we show that this naive approach can lead to biased results. Instead,
we design a new family of OPE estimators based on importance sampling (IS)
and a novel weighting scheme that incorporate counterfactual annotations without
introducing additional bias. We analyze the theoretical properties of our approach,
showing its potential to reduce both bias and variance compared to standard IS
estimators. Our analyses reveal important practical considerations for handling
biased, noisy, or missing annotations. In a series of proof-of-concept experiments
involving bandits and a healthcare-inspired simulator, we demonstrate that our
approach outperforms purely offline IS estimators and is robust to imperfect an-
notations. Our framework, combined with principled human-centered design of
annotation solicitation, can enable the application of RL in high-stakes domains.
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Figure 1: Left - The state transition diagram of a tree MDP with 3 steps and 2 actions. States are
denoted by ⃝, actions are denoted by arrows {↗,↘}, rewards are denoted in red and given only
at terminal transitions. Center - The behavior policy takes a specific sequence of actions and leads
to the factual trajectory, leaving the rest of the state-action space with poor support. Right - The
counterfactual annotations provided by human annotators (indicated by ?) capture information (in
this example, the terminal reward under any policy that takes (↗,↗) for the second and third steps)
about support-deficient regions of the state-action space not visited by the behavior policy.
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1 Introduction
Reinforcement learning (RL) has gained popularity in recent years for its ability to solve sequential
decision-making problems in various domains [1–7]. Despite these successes, it remains challenging
to deploy and use RL in highly consequential or safety-critical domains, such as healthcare, education,
and public policy [8–12]. One of the major roadblocks that distinguishes RL-based systems from
their supervised learning counterparts is evaluation.

Evaluation of supervised learning models often involves calculating prediction accuracy against a
labeled test set [13]. In contrast, evaluation of RL policies is less straightforward and often involves
interacting with the environment [2, 3, 14–19]. For domains that lack accurate simulators, this means
deploying new policies in the real environment. For instance, in healthcare, online evaluation would
require clinicians to follow RL recommendations in selecting treatments for real patients. While
mathematically sound, this presents clear safety issues and potential disruptions to workflows. There-
fore, most work in these areas has relied exclusively on retrospective evaluations using observational
data [20–22], focusing on both quantitative and qualitative aspects. Quantitative evaluations make
use of statistical off-policy evaluation (OPE) methods to account for the distribution shift resulting
from the application of new policies [23–25]. Despite their wide use, OPE is fundamentally limited
by the available offline data. In particular, past work has noted that unexpected bias and large
variance [20] among other reasons make these approaches unreliable [22, 26]. On the other hand,
qualitative evaluations typically aim to verify with domain experts whether the RL recommendations
are reasonable, but are difficult to standardize and may be susceptible to confirmation bias [20].

In this work, we consider an intermediate step before prospective deployment that improves upon
offline evaluation of RL policies. Specifically, we assume human domain experts can provide annota-
tions of unobserved counterfactual trajectories that are small deviations of the observed trajectory
(Figure 1), where each annotation is some summary of the expected outcomes of counterfactual tra-
jectories. For example, in healthcare domains, such annotations may be obtained by asking clinicians
what they think would happen to the patient if a different treatment were to be used. Intuitively, these
counterfactual annotations can make up for regions of the state-action space with poor support in the
offline dataset. However, as we demonstrate, simply adding the annotations as new trajectories to the
offline dataset will change the state distribution and lead to biased results. Thus, we design a new
OPE estimator based on importance sampling (IS) that incorporates both the offline factual data and
counterfactual annotations without introducing additional bias. We analyze the theoretical properties
of our proposed estimator, noting its advantages over standard IS. Specifically, our estimator requires
a weaker condition on support to achieve unbiasedness and has the potential to reduce variance.
Through a series of proof-of-concept experiments using toy problems and a healthcare-inspired
simulator, we show the benefits of our approach in making use of counterfactual annotations to
enable better evaluations of RL policies, even when annotations are biased, noisy, or missing. Our
semi-offline evaluation framework represents an important step that complements offline evaluations
by providing additional confidence in RL policies.

2 Problem Setup
We consider Markov decision processes (MDPs) defined by a tuple M = (S,A, P,R, d1, γ, T ),
where S and A are the state and action spaces, P : S × A → ∆(S) and R : S × A → ∆(R)
are the transition and reward functions, d1 ∈ ∆(S) is the initial state distribution, γ ∈ [0, 1] is the
discount factor, T ∈ Z+ is the fixed horizon. p(s′|s, a) denotes the probability density function of P ,
and R̄(s, a) denotes the expected reward. A policy π : S → ∆(A) specifies a mapping from each
state to a probability distribution over actions. A T -step trajectory following policy π is denoted by
τ = [(st, at, rt)]

T
t=1 where s1 ∼ d1, at ∼ π(st), rt ∼ R(st, at), st+1 ∼ p(st, at). Here, a ∼ π(s)

is short for a ∼ π(·|s) and s′ ∼ p(s, a) for s′ ∼ p(·|s, a). Let J =
∑T

t=1 γ
t−1rt denote the return of

the trajectory, which is the discounted sum of rewards. The value of a policy π is the expected return,
defined as v(π) = Eπ[J ]. The value function of policy π, denoted by V π : S → R, maps each
state to the expected return starting from that state following policy π. Similarly, the action-value
function (i.e., the Q-function), Qπ : S × A → R, is defined by further restricting the action taken
from the starting state. Formally, V π(s) = Eπ[J |s1 = s], and Qπ(s, a) = Eπ[J |s1 = s, a1 = a].
We also consider value functions at specific horizons: V π

t:T (s) = Eπ[
∑T

t′=t γ
t′−1rt′ |st = s], and

Qπ
t:T (s, a) = Eπ[

∑T
t′=t γ

t′−1rt′ |st = s, at = a]. Throughout the paper we also consider the non-
sequential, bandit setting with horizon T = 1. In this case, a “trajectory” (or, a sample) is denoted by
τ = (s, a, r) where we omit the time step subscript.
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Our goal is to estimate v(πe), the value of an evaluation policy πe, given data that were previously
collected by some behavior policy πb in the same environment defined by M. Let D = {τ (i)}Ni=1
denote the dataset containing N independent trajectories drawn according to πb and M.

OPE. The typical approach to this problem relies on off-policy evaluation (OPE). Importance
sampling (IS) is a common OPE approach that reweights samples based on how likely they are to
occur under πe relative to πb. Given a trajectory τ , the 1-step and cumulative IS ratios are defined as
ρt =

πe(at|st)
πb(at|st) and ρ1:t =

∏t
t′=1 ρt′ . The per-decision IS estimator, v̂PDIS =

∑T
t=1 ρ1:tγ

t−1rt, is an
unbiased estimator of v(πe) [27, 28]. We also consider its recursive definition: v̂PDIS = vT where
v0 = 0, vT−t+1 = ρt(rt + γvT−t). In this paper, we discuss the properties of IS-based estimators
over a single trajectory; our results naturally generalize to dataset D containing N trajectories where
the final estimator is the average over trajectories. For the bandit setting, we refer to PDIS simply as
the IS estimator, v̂IS = ρr = πe(a|s)

πb(a|s)r.

Counterfactual Annotations. In addition to the offline dataset D, our semi-offline framework
assumes access to accompanying counterfactual annotations. To introduce the notation, we start
with the non-sequential, bandit setting where T = 1, dropping the time step subscripts. Given a
factual sample τ = (s, a, r), let cã ∈ {0, 1} be a binary indicator for whether the counterfactual
action ã ∈ A \ {a} is associated with an annotation, and let the annotation be gã ∈ R. We use
G : S × A → ∆(R) to denote the annotation function such that gã ∼ G(s, ã). A counterfactual-
augmented sample τ + = (τ, g) consists of the factual sample τ and counterfactual annotations
g = {gã : cã = 1}, where each gã ∼ G(s, ã). Intuitively, a “good” annotation should reflect the
scenario where the counterfactual action ã is taken and the reward gã ∼ R(s, ã) is observed.
Assumption 1 (Perfect annotation, bandit). Eg∼G(s,a)[g] = R̄(s, a),∀s ∈ S, a ∈ A.

Figure 2: A trajectory augmented with coun-
terfactual annotations, where the action space
is A = {x, y, z}. The factual trajectory τ is
shown in black. Solid blue arrows indicate
the counterfactual annotations were queried
and obtained; dashed gray arrows indicate the
annotations are not available. Each transition
arrow is labeled with (action, value), where
value is either an observed immediate reward
or a counterfactual annotation.

For the sequential setting, we define the correspond-
ing notation with time step subscripts: for (st, at, rt)
occurring at step t of trajectory τ , we define coun-
terfactual indicators cãt for ã ∈ A \ {at} and anno-
tations gt = {gãt : cãt = 1}. Figure 2 provides an
example trajectory with counterfactual annotations.
Here, each gãt ∼ Gt(st, ã) is drawn from the horizon-
t annotation function Gt. While the general notion of
counterfactual annotations could be used to capture
different information (e.g., the instantaneous reward
of the counterfactual action, R(s, ã)), in this work,
we study a specific version that allows us to extend
the theory of the bandit setting. Specifically, the an-
notation for counterfactual action ã summarizes the
annotator’s belief of the expected future return (sum
of rewards) in the remaining T − t+ 1 steps after taking the counterfactual action ã from state st,
and then following the evaluation policy πe. In other words, the annotation plays the same role as the
Q-function. This leads to a more refined assumption on the horizon-specific annotation function Gt.
Assumption 2 (Perfect annotation, MDP). Eg∼Gt(s,a)[g] = Qπe

t:T (s, a),∀s ∈ S, a ∈ A.

Under Assumption 2, if we obtained infinitely many annotations for all initial states and all actions,
then evaluation becomes trivial (we essentially recover the Q-function of all initial states). However,
we consider the non-asymptotic regime where not every annotation is available, as certain annotations
might be difficult to obtain. For example, annotating initial states requires reasoning about the full
horizon T . Furthermore, since this is a rather strong assumption (we need different annotations for
each πe), later we explore a relaxation where the annotations reflect the behavior policy πb instead.

3 Methods
To motivate our approach, we begin with a didactic bandit example to illustrate how the naive
incorporation of counterfactual annotations can yield biased estimates. In order to address this
issue, we propose a modification of IS estimators that reweights the factual data and counterfactual
annotations. We formally describe how this idea applies to IS (in the bandit setting) and PDIS (in the
sequential RL setting), giving rise to a family of semi-offline counterfactual-augmented IS estimators.
We study the impact of different assumptions regarding the annotations on the performance of our
proposed estimators both theoretically (Section 4) and empirically (Section 5).
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3.1 Intuition
Consider a one-step bandit (Figure 3a) with two states {s1, s2} (drawn with equal probability) and
two actions, up (↗) and down (↘). The reward from s1 is +1 and from s2 is 0 (i.e., rewards do not
depend on the action), meaning all policies have an expected reward of 0.5. Suppose the behavior
policy always selects ↗, generating a dataset with poor support for policies that assign nonzero
probabilities to ↘ (Figure 3b). Now suppose we also have access to human-provided annotations
of counterfactual actions, but not all counterfactual annotations are available (either because they
were never queried or the users declined to provide annotations). In our example (Figure 3c), one
annotation is collected for the counterfactual action ↘ at state s1, indicating that the human annotator
believes the reward for taking action ↘ from state s1 is +1 (which is the true reward). To make
use of this information, one might be tempted to add the counterfactual annotation as a new sample.
The augmented dataset (Figure 3d) would allow us to evaluate policies (e.g., using IS) that assign
non-zero probabilities to ↘ in state s1. While seemingly plausible, this naive approach inadvertently
changes the state distribution and results in a dataset inconsistent with the original problem (it looks
like state s1 is seen more often than reality). A quick calculation reveals that applying IS to this
unweighted augmented dataset gives a biased estimate of a new policy as 2/3 instead of 0.5 (see
Appendix B). To address this issue, in Section 3.2 we propose a new reweighting procedure that
maintains the state distribution of the original dataset while incorporating counterfactual annotations.

(a) State diagram

(b) Factual dataset

(c) Counterfactual Annotations

(d) Unweighted augmented dataset

Figure 3: (a) The state diagram of a bandit
problem with two states and two actions. (b) A
factual dataset containing two samples. (c) The
factual samples augmented with counterfactual
annotations. (d) The (unweighted) augmented
dataset constructed from factual samples and
counterfactual annotations. Compared to the
original factual dataset, the relative frequency
of s1 vs s2 has changed from 1 : 1 to 2 : 1.

3.2 Augmenting IS Estimators with Counterfactual Annotations
To avoid the bias issue described in Section 3.1, informally, we want to split the contribution of each
sample between the factual data and counterfactual annotations. Given a factual sample (s, a, r)
and the associated counterfactual annotations g, let w = {wa} ∪ {wã : ã ∈ A \ {a}} be a set
of user-defined non-negative weights that satisfy wa +

∑
ã∈A\{a} w

ã = 1. These weights specify
how much we want the estimator to “listen” to the counterfactual annotations (wã) relative to the
factual data (wa). We restrict wã = 0 when cã = 0, i.e., non-zero weight is only allowed when
the annotation is available. In general, one may assign different weights for each occurrence of
(s, a) (e.g., the counterfactual annotation is obtained for one instance but missing for another); let
W̄ (ã|s, a) = E[wã] denote the average weight assigned to ã when the factual data is (s, a) (see
example in Appendix B.1). After reweighting, the state distribution is maintained (since the weights
associated with each sample sum to 1) but the state-conditional action distributions have changed; this
“weighted” augmented dataset can be seen as if it was generated using a different behavior policy.
Definition 1 (Augmented behavior policy).

πb+(a|s) = W̄ (a|s, a)πb(a|s) +
∑

ǎ∈A\{a} W̄ (a|s, ǎ)πb(ǎ|s).
Here, πb+(a|s) represents the probability that information about action a is observed for state s
(similar to how an “average policy” may be defined for multiple behavior policies [29]), either as a
factual action in the dataset, or as an annotated counterfactual action when some other action ǎ is the
factual action. Next, we define our proposed estimators (for bandits) based on IS.
Definition 2 (Counterfactual-augmented IS). Given a counterfactual-augmented sample τ + = (τ, g)
and weights w = {wã : ã ∈ A}, where τ = (s, a, r), g = {gã : cã = 1}, the C-IS estimator is
v̂C-IS = waρar +

∑
ã∈A\{a} w

ãρãgã, where ρã = πe(ã|s)
πb+ (ã|s) for each ã ∈ A.

The C-IS estimator is a weighted convex combination of the factual IS estimate ρar and the coun-
terfactual IS estimates ρãgã for all counterfactual actions ã ∈ A \ {a}. We also study a special
case where all annotations are available and the weights are split equally among actions, such that
wa = wã = 1/|A|. Then, πb+ becomes the uniformly random policy, and after substituting into
Definition 2, we obtain the following estimator.
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Definition 3 (C-IS with equal weights). Given a counterfactual-augmented sample τ + = (τ, g), the
C*-IS estimator is v̂C*-IS = πe(a|s)r +

∑
ã∈A\{a} πe(ã|s)gã.

Remark. Definition 3 provides an alternative interpretation of the estimator when using equal weights:
if Assumption 1 holds (i.e., the annotation function G is the true reward function R), we effectively
observe both the factual and counterfactual rewards from R. Then, we can directly use the definition
of the value function to calculate the expected reward under πe using the action probabilities πe(·|s).
For the sequential setting, given a trajectory with T steps, we define the collection of weights over
all time steps, w = {wat

t : t = 1...T} ∪ {wã
t : ã ∈ A \ {at}, t = 1...T}. The augmented behavior

policy πb+ is similarly defined (see Definition 1). By extending the recursive definition of PDIS, we
obtain the following two estimators (assuming either arbitrary weights or equal weights).
Definition 4 (Counterfactual-augmented PDIS). Given a counterfactual-augmented trajectory τ + =
(τ, g) and weights w as defined above, where τ = [(st, at, rt)]

T
t=1, g = {gãt : cãt = 1}, the C-PDIS

estimator is v̂C-PDIS = vT , with vT defined recursively as v0 = 0, vT−t+1 = wat
t ρat

t (rt + γvT−t) +∑
ã∈A\{at} w

ã
t ρ

ã
t g

ã
t for t = T...1, where ρãt = πe(ã|st)

πb+ (ã|st) for each ã ∈ A.

Definition 5 (C-PDIS with equal weights). Given a counterfactual-augmented trajectory τ + =
(τ, g), the C*-PDIS estimator is v̂C*-PDIS = vT , with vT defined recursively as v0 = 0, vT−t+1 =
πe(at|st)(rt + γvT−t) +

∑
ã∈A\{at} πe(ã|st)gãt for t = T...1.

Next, we study the theoretical properties of our proposed estimators, relating their OPE performance
(in terms of bias and variance) to assumptions on counterfactual annotations and the offline dataset.

4 Theoretical Analyses

We first present results for the bandit setting, where we study and compare the properties of the C-IS
estimator with standard IS in terms of bias, variance, and the assumptions required, highlighting
scenarios where bias and variance reduction is guaranteed. We then show how these results generalize
to C-PDIS in the sequential RL setting. Finally, we discuss practical implications of the theoretical
results. Full derivations are in Appendix C.

To begin, we review existing results for IS. Recall the following assumption of common support.
Assumption 3 (Common support). πe(a|s) > 0 → πb(a|s) > 0,∀s ∈ S, a ∈ A.

If Assumption 3 holds, IS is unbiased (i.e., Eτ [v̂
IS] = v(πe)), and its variance is [27]:

V[v̂IS] = Vs∼d1 [V
πe(s)] + Es∼d1

[
Va∼πb(s)[ρ(a|s)R̄(s, a)]

]
+ Es∼d1

[
Ea∼πb(s)[ρ(a|s)2 σR(s, a)

2]
]

(1)

where σR(s, a)
2 = Vr∼R(s,a)[r] is the variance associated with the reward function R(s, a). The first

term reflects the inherent randomness from the state distribution not related to importance sampling.
The second term reflects the randomness in the behavior policy, whereas the third term reflects the
randomness in rewards; these two terms are affected by the distribution of importance ratios ρ(a|s).
When Assumption 3 is not satisfied, the IS estimator is biased [30], where the bias is related to
actions with no support: Bias[v̂IS] = E[v̂IS]− v(πe) = Es∼d1

[
−∑a∈U(s,πb)

πe(a|s)R̄(s, a)
]
, with

U(s, πb) = {a : πb(a|s) = 0} denoting the set of unsupported actions.

Intuitively, when Assumption 3 does not hold, the C-IS estimator can make use of information
from the counterfactual annotations for unsupported actions, thereby reducing bias compared to IS
(Section 4.1). For cases when IS is already unbiased, counterfactual annotations play the role of
additional data and should help further reduce variance (Section 4.2).

4.1 Bias Analyses for C-IS

To formalize the effect of counterfactual annotations on support, we state the following assumption.
Assumption 4 (Common support with annotations). πe(a|s) > 0 → πb+(a|s) > 0,∀s ∈ S, a ∈ A.

Assumption 4 is a weaker version of Assumption 3, because πb+(a|s) > 0 requires either
W̄ (a|s, a)πb(a|s) > 0 (same as Assumption 3, assuming W̄ (a|s, a) ̸= 0) or W̄ (a|s, ǎ)πb(ǎ|s) > 0
for at least some ǎ ∈ A\ {a}. In other words, information about action a can be from either a factual
sample or counterfactual annotations (recall Definition 1). Next, we state the main results for the bias
of C-IS (unless specified otherwise, expectations are taken with respect to Eτ+,w). These results hold
for any nonzero w and directly generalize to the special case of C*-IS where the weights are 1/|A|.
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Theorem 1 (Unbiasedness of C-IS). In the bandit setting, when both Assumptions 1 and 4 hold, the
C-IS estimator is unbiased, E[v̂C-IS] = v(πe).
Proposition 2 (Bias of C-IS due to support). When Assumption 1 holds but Assumption 4 is violated,
Bias[v̂C-IS] = Es∼d1

[
−∑a∈U(s,πb+ ) πe(a|s)R̄(s, a)

]
where U(s, πb+) = {a : πb+(a|s) = 0} are

unsupported actions in the counterfactual-augmented dataset.
Proposition 3 (Bias of C-IS due to imperfect annotations). When Assumption 4 holds but Assump-
tion 1 is violated, Bias[v̂C-IS] = Es∼d1

Ea∼πe(s)

[
δW (s, a) ϵG(s, a)

]
, where we measure violation of

Assumption 1 as ϵG(s, a) = Eg∼G(s,a)[g]− R̄(s, a), and δW (s, a) =
(
1− W̄ (a|s,a)πb(a|s)

πb+ (a|s)
)
.

Proposition 4 (A sufficient condition for bias reduction). If Assumption 1 holds (but Assumption 4
is violated), R̄(s, a) ≥ 0 for all s ∈ S, a ∈ A, and there exists (s, a) such that πb(a|s) = 0,
πb+(a|s) > 0, πe(a|s) > 0, R̄(s, a) > 0, then |Bias[v̂C-IS]| < |Bias[v̂IS]|.

There are two sources of bias for C-IS: missing annotations contribute to the bias as the rewards
of unsupported actions (Proposition 2), whereas imperfect annotations contribute to the bias as the
annotation error over supported actions (Proposition 3). If both assumptions are violated, the resulting
bias is the combination of the two (see Appendix C). If both assumptions hold, C-IS is unbiased
(Theorem 1). Even when not all counterfactual annotations are collected (Assumption 4 is violated),
C-IS can evaluate more policies without bias (assuming perfect annotations), because there is a larger
space of policies “supported” by the counterfactual-augmented dataset. In particular, if there is at
least one counterfactual annotation for an action with no support in the factual data, C-IS has less bias
than IS (under mild conditions, Proposition 4). Lastly, we note the a useful corollary of Theorem 1.
Corollary 5 (Expectation of augmented importance ratios). Let ρ+

W = waρa +
∑

ã∈A\{a} w
ãρã

given τ and w. Under Assumption 4, E[ρ+

W ] = 1.
Remark. Corollary 5 suggests that for each sample, ρ+

W plays a similar role as the standard importance
ratio ρ in IS, which may be used for calculating the effective sample size (ESS) [31]. Naturally, we
can also create a weighted version of our proposed estimators (e.g., C-WIS), with the normalization
factor defined using ρ+

W .

4.2 Variance Analyses for C-IS

Compared to the bias analyses above, the variance of C-IS has a more involved dependence on
weights w as well as the variance of the annotation function, σG(s, a)

2 = Vg∼G(s,a)[g]. For clarity,
we defer the full derivations to Appendix C.3; here, we present results for C*-IS where the weights
are all set to 1/|A| and the annotation function has the same variance as the reward function.
Theorem 6 (Variance of C*-IS). Assuming σG(s, a)

2 = σR(s, a)
2, under Assumptions 1 and 4,

V[v̂C*-IS] = Vs∼d1 [V
πe(s)] + Es∼d1Ea∼πb(s)

[
πb(a|s) ρ(a|s)2 σR(s, a)

2
]

(2)

where ρ(a|s) = πe(a|s)
πb(a|s) is the importance ratio under the original behavior policy.

Proposition 7 (Variance Reduction of C*-IS). Under the premise of Theorem 6, V[v̂C*-IS] ≤ V[v̂IS].

Comparing Eqn. (2) with the three terms of the variance decomposition of IS in Eqn. (1), we note that
the first term Vs∼d1

[V πe(s)] is identical, the dropped second term (of Eqn. (1)) is a non-negative vari-
ance term, and the third term is scaled by a factor πb(a|s) ≤ 1 (for each instantiation of the expression
inside the expectation), leading to a guaranteed variance reduction (Proposition 7). We derive the full
variance decomposition for C-IS in Theorem 13. Unlike C*-IS, variance reduction is not guaranteed
for C-IS. This is due to additional non-negative terms that depend on the variance/covariance of
weights w and terms that depend on the difference in variance between annotations and rewards
σG(s, a)

2 − σR(s, a)
2 (could be positive or negative); these terms all vanish to zero in the case of

C*-IS where weights are constant (1/|A|) and σG(s, a)
2 = σR(s, a)

2.

4.3 Extensions to C-PDIS

We note that the corresponding results in the bandit setting can be derived for the MDP setting using
an induction-style proof, with similar interpretations of the factors that contribute to reduced bias
and reduced variance when compared to standard PDIS. Below, we briefly demonstrate how the
unbiasedness result (Theorem 1) extends to the MDP setting. We further explore the sequential RL
setting in the empirical experiments.
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Theorem 8 (Unbiasedness of C-PDIS). In the MDP setting, when both Assumptions 2 and 4 hold,
the C-PDIS estimator is unbiased, E[v̂C-PDIS] = v(πe).

Proof Sketch. Here, we explain the intuition behind the proof for C*-PDIS, which proceeds via a
backward induction (Figure 4). In the recursive definition (Definition 4), we aim to show that every
vT−t+1 is an unbiased estimator of the horizon-t value function. At each horizon t, we can view the
problem as a one-step bandit problem (reducing the estimator to C*-IS), where the factual action leads
to a factual trajectory and the counterfactual action(s) leads to the counterfactual annotation(s), both
of which are used to construct unbiased estimates of horizon-t Q-values (for at and ã, respectively).
In the end, the estimates from the two branches are combined according to πe, resulting in the correct
expectation of the horizon-t value of state s. See full proof for C-PDIS in Appendix C.4.

(ii)

(i)

(iii)

(iv)

Figure 4: Illustration of proof idea. (i) The factual
estimate vT−t provides an unbiased estimate of the
horizon-(t+ 1) value of state st+1. (ii) When com-
bined with the factual reward rt, we obtain an un-
biased estimate of the horizon-t Q-value of (st, at).
(iii) By assumption, the counterfactual annotations
provide unbiased estimates of the horizon-t Q-value
of (st, ã). (iv) The factual and counterfactual esti-
mates are combined using πe. For clarity, we omit
details about state distributions here (see appendix).

4.4 Practical Implications
So far, we have been focusing on the theoretical framework for incorporating counterfactual an-
notations into OPE. However, the actual implementation of this approach poses several practical
challenges. We believe this underscores the fact that this is a rich area for research with many
potential directions. In this section, we address several real-world scenarios that do not adhere to the
theoretical assumptions – specifically, when annotations are biased, noisy, or missing.
Correcting annotation bias. Comparing Assumptions 1 and 2, we note an important distinction
between the bandit setting and the sequential RL setting. For bandits, we simply want G to mimic
the reward model R. In contrast, for the RL setting, Gt should ideally mimic the Q-function of the
evaluation policy Qπe

t:T . Such annotations can be difficult if not impossible to obtain in practice (e.g.,
for healthcare, it would require asking clinicians to reason about a sequence of counterfactual actions
and predict the outcome). Thus, we additionally consider a relaxation of Assumption 2 where instead
Eg∼Gt(s,a)[g] = Qπb

t:T reflecting expected return under the behavior policy (which is more likely
in practice). This annotation bias ϵG = Qπb

t:T − Qπe

t:T results in a biased estimator (Proposition 3).
To correct this bias, we suggest first estimating the annotation bias function ϵ̂G(s, a) using an
approximate MDP built from offline data, and then mapping each annotation as ĝã = gã − ϵ̂G(s, ã)
(see Appendix D.1 for details). In Section 5.2, we empirically measure the impact of this alternative
assumption and the bias-correction procedure (which we denote as Qπb 7→ Q̂πe ) on OPE performance.
Reweighting noisy annotations. So long as Assumption 1 or 2 is satisfied, the noise (i.e., variance)
of the annotations does not affect unbiasedness; however, as shown in Theorem 13, the variance
of our proposed estimators directly depends on how noisy the annotations are. Intuitively, if the
annotation variance is smaller than the reward variance, we want the final estimate to “listen” more
to the annotations and less to the factual data (and vice versa). We empirically explore the impact
of annotation noise in both Section 5 and Appendix E, noting that while using equal weights (as in
C*-IS) outperforms standard IS, adjusting weights based on the relative magnitudes of σ2

R and σ2
G

can further improve OPE performance.
Imputing missing annotations. For many real-world domains, it is unlikely that we can obtain an
annotation for every counterfactual action at every time step (the total number of annotations needed
is (|A| − 1)NT ). While desirable to use equal weights as in C*-IS (and C*-PDIS) due to its variance
reduction guarantee, this is not possible if some annotations are missing (in which case the factual
data must have wa = 1), and this can actually lead to higher variance (see Appendix D.2 for an
example). To alleviate this variance increase, we suggest estimating an annotation model Ĝ from
available annotations and using it to impute the missing annotations (see Appendix D.2). Although Ĝ
may be a biased estimator of G (due to annotation noise) and introduce additional bias to the final
estimate, we empirically observe a favorable bias-variance trade-off (Section 5.2).
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In general, one would expect more counterfactual annotations to reduce both bias and variance;
at the same time, these annotations may be imperfect (biased or noisy) and directly increase bias
or variance. Our analyses in Section 4 and Appendix C show that both bias and variance depend
on weights w, suggesting the weighting scheme as a key mechanism to achieve optimal bias and
variance. In Appendix D.3 we explore an analytical approach for solving the variance-minimizing
weighting scheme and note the solution is highly non-trivial. We empirically explore the impact of
different weights in Appendix E.1 and note that using equal weights (as in C*-IS) is a promising
heuristic, since it achieves good performance in most settings. We believe that optimizing the weights
can further improve OPE performance and is an interesting direction for future work.

5 Experiments
First, through a suite of simple bandit problems, we verify the theoretical properties of C-IS. Then,
we apply our approach to a healthcare-inspired RL simulation domain, where we compare the
performance of our proposed approach, C-PDIS, to several baselines in terms of their OPE accuracy
and ability to rank policies, and explore robustness to bias, noise, and missingness in the annotations.

5.1 Synthetic Domains - Bandits
We consider a class of bandit problems with two states {s1, s2} (drawn with equal probability),
two actions A = {↗,↘} (recall Figure 3), and corresponding reward distributions R(si, a) ∼
N (R̄(si,a), σ

2). Without loss of generality, we assume ↗ is always taken from s2 by both πb and πe.
For s1, we consider deterministic policies in which one action is always taken, and a stochastic policy
that takes the two actions with equal probability (see column/row header in Table 1). Given (πb, πe),
we draw 1, 000 samples following πb and then evaluate πe using various estimators, including
standard IS, the naive baseline of adding counterfactual annotations as new samples (Section 3.1),
and C*-IS. We assume that counterfactual annotations are only available for s1, and all annotations
are drawn from the true reward function. We measure the bias, standard deviation (std, the square
root of variance), and root mean-squared error (RMSE) of the estimators with respect to v(πe).

Table 1: Summary of performance on the
bandit problem for various πb (rows) and
πe (columns), where each policy is de-
noted by its probabilities assigned to the
two actions from s1. Each cell of the table
corresponds to a (πb, πe) combination, for
which we report (bias, std, RMSE) for
three estimators: IS in the top row, naive
in the middle row, and C*-IS in the bottom
row. Settings with πb(s1) = [0, 1] are omit-
ted due to symmetry.

πb

πe [ 1 , 0 ] [ 0 , 1 ] [0.5, 0.5]

[ 1 , 0 ] -
−1 0.6 1.2
0.2 1.8 1.8
0 0.7 0.7

−0.5 0.5 0.7
0.1 0.7 0.7
0 0.5 0.5

[0.5, 0.5]
0 0.9 0.9
0 1 1
0 0.5 0.5

0 1.6 1.6
0.2 1.8 1.8
0 0.7 0.7

-

Naive baseline fails due to bias, whereas C*-IS can re-
duce bias and/or variance compared to IS. In Table 1,
we display the results for R̄(s1,↗) = 1, R̄(s1,↘) = 2,
R̄(s2,·) = 1, σ = 0.5 (other settings in Appendix E.1).
The naive baseline fails to improve upon IS (and often
underperforms IS in terms of RMSE) and can have a
nonzero bias even when IS is unbiased (Table 1, row
2, column 2). C*-IS achieves a lower RMSE than IS
across all settings considered. The benefits of C*-IS
align with our theoretical analyses. (i) Bias Reduction
for Support-Deficient Data. When πb is deterministic
(first row), the unselected action has poor support and IS
has a nonzero bias whereas C*-IS is unbiased. Though
C*-IS sometimes has a larger variance than IS, the bias
reduction outweighs the variance increase and leads to
overall lower RMSE. (ii) Variance Reduction for Well-
Supported Data. In the second row, data generated by
πb has full support. Both IS and C*-IS are unbiased, but
C*-IS leverages counterfactual annotations to achieve
lower variance and lower RMSE.

We vary the assumptions (e.g., weights in C-IS, noisy/missing annotations) and present further exper-
iments in Appendix E.1. These results suggest that (i) Equal weights (in C*-IS) is a good heuristic
though not always “optimal” and (ii) Imputing missing annotations can reduce variance.

5.2 Healthcare Domain - Sepsis Simulator
Next, we apply our approach to evaluate policies in a simulated RL domain modeled after the
physiology of sepsis patients [32]. Following prior work [22], we collected 50 offline datasets from
the sepsis simulator (using different random seeds) each with 1000 episodes by following an ϵ-greedy
behavior policy with respect to the optimal policy where ϵ = 0.1. We considered a set of deterministic
policies (including the optimal policy) as evaluation policies, which have different performance and
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Table 2: Comparison of baseline and proposed estimators in terms of OPE performance (RMSE,
ESS), ranking performance (Spearman’s rank correlation) and binary classification performance
(accuracy, FPR, FNR) on the sepsis simulator, reported as mean ± std from 50 repeated runs. Bolded
results are the best for each metric, whereas highlighted results outperform all baselines.

Estimator ↓ RMSE ↑ ESS ↑ Spearman ↑ %Accuracy ↓ %FPR ↓ %FNR
B

as
el

in
e PDIS (w/o annot.) 0.113 ±0.038 76.8 ±44.0 0.596 ±0.110 76.5 ±3.5 33.7 ±8.7 15.9 ±4.6

Naive unweighted (G = Qπe ) 0.128 ±0.006 207.2 ±91.5 0.089 ±0.089 50.0 ±6.0 11.6 ±8.3 78.1 ±13.6

Naive weighted (G = Qπe ) 0.097 ±0.006 300.8 ±117.6 0.420 ±0.097 64.3 ±4.7 24.0 ±12.7 44.3 ±11.4

Pr
op

os
ed C*-PDIS (G = Qπe ) 0.013 ±0.005 994.0 ±10.1 0.995 ±0.003 95.7 ±3.1 4.5 ±6.9 4.2 ±5.3 } ⋆ ideal case

C*-PDIS (G = Qπb ) 0.070 ±0.003 994.0 ±10.1 0.961 ±0.011 86.8 ±8.2 22.0 ±20.1 8.2 ±11.3
}

relaxing
Assump. 2C*-PDIS (G = Qπb 7→ Q̂πe ) 0.028 ±0.007 994.0 ±10.1 0.979 ±0.010 90.1 ±5.4 4.2 ±6.6 14.1 ±9.7

0.0 0.5 1.0

DKL(πb||πe)

0.0

0.1

0.2

R
M

S
E

(v
(π
e
),
v̂
(π
e
))

PDIS (baseline)

C*-PDIS (G = Qπb )

C*-PDIS (G = Qπb 7→ Q̂πe )

C*-PDIS (G = Qπe )

C*-PDIS, noisy annot. PDIS (baseline)
ideal case

C-PDIS , w/o imputation
C*-PDIS, w/ imputation
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Figure 5: (Left) RMSE of C*-PDIS vs. distance to πb (in terms of KL divergence) for each πe,
plotted with linear trend lines. OPE error increases as πe becomes more different from behavior.
(Center&Right) Performance of our proposed approach under noisy and missing annotations. Trend
lines show average of 50 runs ± one std. C*-PDIS is generally robust to noise, and imputing the
missing annotations can help maintain competitive performance (relative to the ideal setting) even in
the presence of high degrees of missingness.

varying degrees of similarity vs behavior. We compared our proposed estimator (with different
annotation functions) with a set of baselines, including standard PDIS (without annotations) and
two naive baselines (with perfect annotations): “naive unweighted” simply adds counterfactual
annotations as new trajectories and has the same issue discussed in Section 3.1, whereas “naive
weighted” reweights the annotations at the trajectory level instead of per-decision. See Appendix E.2
for detailed experimental setup. As the main OPE metric, we report RMSE of value estimates vs true
values as well as the effective sample size (ESS). Additionally, we report metrics for two downstream
uses of OPE for model selection. (i) When used to rank policies. We report the Spearman’s rank
correlation between v̂(πe) and v(πe) (computed over all πe’s) [22, 26]. (ii) When used to determine
whether πe is better or worse than πb. We formulate a binary classification problem of v(πe) ≥ v(πb)
vs v(πe) < v(πb), and report the accuracy, false positive rate (FPR) and false negative rate (FNR).

C*-PDIS outperforms all baselines across all metrics in the ideal setting. As shown in Table 2,
when all counterfactuals are available and annotated with the evaluation policy’s Q-function (G =
Qπe ), C*-PDIS outperforms baseline PDIS (without annotations) in all metrics, demonstrating that it
provides more accurate OPE estimates. In contrast, the two naive approaches fail to provide accurate
estimates and often underperform standard PDIS.

C*-PDIS is robust to biased annotations. Under the more realistic scenario where G = Qπb , i.e.,
annotations summarize the future returns under πb rather than πe, we observe a degradation in all
metrics compared to the ideal case, though C*-PDIS is still superior to PDIS (Table 2). Applying the
bias correction procedure (G = Qπb 7→ Q̂πe , see Appendix D.1) helps in recovering performance
closer to the ideal case, especially when πe is far from πb (Figure 5-left).

Variance reduction of C*-PDIS outweighs the effect of noisy annotations. When annotations are
perturbed with increasing amounts of noise (Figure 5-center), performance degradation is minimal
even at the highest level of noise tested (with a std of 1, which is large relative to the reward range
[−1, 1], and larger than 0.31 the std of initial state values). Our estimator remains competitive
relative to baselines, suggesting that the benefit of variance reduction from additional data (through
counterfactual annotations) outweighs the variance increase from annotation noise, even when
annotations are much noisier than factual data. See Appendix E.2 for variations of this experiment.
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Collecting more annotations and imputing missing annotations improves performance. As the
amount of available annotations increases (Figure 5-right), our approach interpolates between baseline
PDIS and the ideal case of C*-PDIS with a monotonic improvement in performance. Furthermore,
imputing annotations achieves better performance, suggesting it is a promising strategy when not all
annotations can be collected in practice. See Appendix E.2 for variations of this experiment where
the imputed annotations have varying degrees of bias due to annotation noise.

6 Related Work
There is a rich literature on statistical methods for offline policy evaluation (OPE), including direct
methods (DM), importance sampling (IS), and doubly-robust (DR) approaches [24, 26]. DM directly
uses offline data to learn the value function of the evaluation policy (e.g., using model-based or
model-free approaches) [33, 34]. We do not consider DM in our work since it often involves function
approximators whose bias and variance may be difficult to analyze [35]. On the other hand, IS
uses a weighted average of trajectory returns to correct the distributional mismatch between the
evaluation and behaviour policies [28, 27]. Our proposed estimator directly builds on IS and uses
counterfactual annotations to reduce its variance (and bias), while carefully addressing the nuances
involved with reweighting the counterfactual annotations to maintain the unbiasedness property.
Finally, DR approaches combine IS and DM and reduce the variance of IS by using the estimates
from DM as a control variate [27, 36–38]. Our approach is a complementary source of variance
reduction and may be combined with DR approaches by modifying our current definitions to include
a control variate. We note that other approaches exist for managing the variance of IS in long-horizon
settings by considering the stationary or marginalized state distributions [39–41]. Incorporating
counterfactual annotations into these estimators is an interesting direction of future research.
Our work focuses on OPE rather than policy learning, but the broader theme of human input for
RL has recently gained renewed attention, particularly in natural language processing tasks [42–44].
In many of these problems, human input is in the form of preferences (or rankings) over actions,
states, or (sub-)trajectories [45]. Other related annotation approaches also exist in non-RL areas,
where past work has proposed to ask annotators to alter text to match a counterfactual target label
[46] and incorporating annotations of potential unmeasured confounders [47]. In contrast, our work
investigates the role of a specific form of human input, counterfactual annotations in offline RL,
in improving OPE performance. We focus on offline evaluation due to its practical importance in
high-stakes RL domains such as healthcare, though our insights could also potentially benefit offline
learning in these domains. While we did not discuss how counterfactual annotations are obtained, our
theoretical analysis establishes a thorough understanding of their desirable characteristics. This can
help motivate methods for converting different forms of human feedback into useful counterfactual
annotations (e.g., learning reward/annotation models from human preferences [42]). Conversely,
progress in the field of preference learning and learning-to-rank may benefit our approach by providing
mechanisms to solicit high-quality annotations [48].

7 Discussion & Conclusion
In this paper, we propose a novel semi-offline policy evaluation framework that incorporates counter-
factual annotations into traditional IS estimators. We emphasize that the naive approach of viewing
annotations as additional data can lead to bias and propose a simple reweighting scheme to address
this issue. We formally study the theoretical properties of our approach, identifying scenarios where
bias and variance reduction is guaranteed. Driven by a deep understanding of these theoretical
properties, we further propose practically motivated strategies to handle biased, noisy, or missing an-
notations. Through proof-of-concept experiments on bandits and a healthcare-inspired RL simulator,
we demonstrate that our approach outperforms standard IS and is robust to imperfect annotations.
Our semi-offline framework serves as an intermediate step between offline and online evaluations and
has the potential to enable practical applications of RL in high-stakes domains. Though motivated by
current limitations of offline evaluation, we caution that our approach is not meant to replace existing
OPE methods, but rather to complement them. Collecting annotations from domain experts comes at
a cost (of real human time and labor), and thus, our approach should only be applied after a policy
has passed all checks on retrospective data. While not explored in this paper, future work should
focus on assessing the quality of counterfactual annotations in the domains of interest through human
experiments. See Appendix A for more detailed discussions on limitations, societal impacts, and
future directions. Overall, we believe our contributions will inspire further investigations into the
practical obstacles that emerge in semi-offline evaluation (e.g., devising human-centered strategies
for soliciting counterfactual annotations that align with theoretical assumptions) and will bring RL
closer to reality in healthcare and other high-stakes decision-making domains.
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A Further Discussions

Limitations. This work proposes and theoretically studies a new framework of semi-offline evaluation
of RL policies. While our core idea is to incorporate human annotations into the evaluation process,
we did not make use of real human annotations in our experiments and relied on simulations instead.
Given the costs associated with user studies, we opted not to conduct user studies before we have
a thorough understanding of when and why our approach works (or does not work) and how it
can be implemented in practice. Our present paper focuses on describing and analyzing a formal
mathematical framework of counterfactual annotations, which provides valuable insights as to what
types of annotations are useful, how they should be incorporated into OPE, and which factors
impact performance (see method description in Section 3 and theoretical analyses in Section 4). Our
experiments further demonstrate the robustness of our approach when we deviate from the ideal
setting (see Section 5). Despite best efforts, our experiments do not capture all possible scenarios in
the real world. We list several important practical implications in Section 4.4 and encourage future
research into these directions. Additional areas of interest that we did not explore include: alternative
forms of annotations (e.g., preference, immediate reward), whether these other annotation types could
be converted to match our assumptions so that our framework still applies, how best to design the
question phrasing for the annotators, evaluating annotation quality, targeted annotation solicitation
and optimizing annotation solicitation under budget constraint.

Ethical Considerations and Societal Impact. Since our experiments only involved simulations
and no real humans, we did not pose immediate ethical concerns or safety threats. Nonetheless, in
high-stakes decision-making tasks such as healthcare, computationally-derived RL policies must be
carefully validated before their final adoption. While we are motivated by the current limitations of
standard offline evaluation methods, we caution that our approach is not meant to replace, but rather
to complement, existing OPE approaches. Collecting these annotations from real human domain
experts comes at a cost, and thus we recommend applying our approach only when a policy has passed
all checks on retrospective data. We note that compared to traditional qualitative evaluations (e.g.,
typically done by asking domain experts whether RL recommendations make sense), our approach is
less likely (though still possible) to affect the existing decision making or suffer from confirmation
bias, since we do not need to reveal the evaluation policy at the annotation collection stage. Future
work that adopts our framework should carefully design the annotation solicitation process (including
when and how the question is posed to the annotators) so as to achieve safe, non-disruptive evaluations
of offline RL policies before their prospective use. Additionally, more work is needed to understand
the extent to which humans can provide accurate annotations of counterfactuals. These human
experiments should be addressed in the context of specific application domains and the target groups
of expert human annotators.

Future Directions on Counterfactual Annotations. Our present paper establishes important theo-
retical groundwork for using counterfactual annotations in semi-offline policy evaluation. However,
we did not collect any real annotations with human annotators as those are outside of the scope of the
main research question we seek to address in our current paper. To fully realize the impact of this
work, real-world human experiments would be the necessary next step, with a focus on obtaining
faithful annotations (with small bias and small noise). More specifically, it would be important to
empirically measure if and how various factors influence annotation quality, including: horizon t
(annotating beginning of an episode or the terminal step), the inherent stochasticity associated with
the annotated state-action pair and how often they appear in data (under πb). Equipped with this
knowledge, it is then important to select which annotations to prioritize given a limited annotation
budget. Many of these questions delve into the realm of HCI and are outside the scope of this paper’s
methodological contributions for offline RL and OPE, and we encourage researchers and practitioners
in different research areas (e.g., RL, HCI, healthcare, education) to build upon the ideas in our work.
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B Toy Example for Intuition

(a) State diagram

(b) Factual dataset

(c) Counterfactual Annotations

(d) Unweighted augmented dataset

Figure 6: For ease of reference, Figure 3 is reproduced here. (a) The state diagram of a bandit
problem with two states and two actions. (b) A factual dataset containing two samples. (c) The
factual samples augmented with counterfactual annotations. (d) The (unweighted) augmented dataset
constructed from factual samples and counterfactual annotations. Compared to the factual dataset,
the relative frequency of s1 vs s2 changed from 1 : 1 to 2 : 1.

Recall the example discussed in Section 3.1 (figure reproduced here in Figure 6). The bandit problem
has two states {s1, s2} (drawn with equal probability) and two actions, up (↗) and down (↘). The
reward from s1 is +1 and from s2 is 0 (i.e., rewards do not depend on the action), meaning all policies
have an expected reward of 0.5. Suppose the behavior policy always selects ↗, generating a dataset
with poor support for policies that assign nonzero probabilities to ↘ (Figure 6b). Now suppose we
also have access to human-provided annotations of counterfactual actions, but not all counterfactual
annotations are available (either because they were never queried or the users declined to provide
annotations). In our example (Figure 6c), one annotation is collected for the counterfactual action ↘
at state s1, indicating that the human annotator believes the reward for taking action ↘ from state s1
is +1. To make use of this information, one might consider adding the counterfactual annotation as a
new sample. The augmented dataset (Figure 6d) would allow us to evaluate policies (e.g., using IS)
that assign non-zero probabilities to ↘ in state s1. Unfortunately, this naive approach leads to biased
results, which we walk through in detail below.

Consider an evaluation policy that takes ↘ in s1 and ↗ in s2, i.e., πe(s1) = [0, 1] and πe(s2) = [1, 0]
(denoted in terms of the probabilities assigned to the two actions, ↗ and ↘).

• If we use the original πb in the factual dataset (Figure 6b) where πb(s1) = [1, 0], πb(s2) =
[1, 0], the IS estimator is ill-defined because we will encounter a divide-by-zero error:

1

3

(
0

1
× (+1) +

1

0
× (+1) +

1

1
× (0)

)
= undefined

• Instead, one may consider the behavior policy in the augmented dataset (Figure 6d), which
gives πb(s1) = [0.5, 0.5], πb(s2) = [1, 0]. The IS estimate is:

1

3

(
0

0.5
× (+1) +

1

0.5
× (+1) +

1

1
× (0)

)
=

2

3

However, as stated above, all policies should have a value of 0.5, meaning that 2
3 is a biased estimate.

The core of the issue is because directly adding counterfactual annotations inadvertently changes
the state distribution and results in a dataset inconsistent with the original problem. In particular,
comparing Figure 6b vs 6d, the relative frequency of s1 vs s2 has changed from 1 : 1 to 2 : 1.

Our proposed estimator addresses this issue by reweighting the factual data and counterfactual
annotations in order to maintain the state distribution. Suppose we assign a weight α to (s1,↗)
and 1 − α to (s1,↘) for some α ∈ (0, 1), i.e., the two non-negative weights associated with s1
sum to 1. The sample (s2,↗) receives a weight of 1 by default since it does not have an associated
counterfactual annotation. In this way, the state distribution remains equally split between s1 and s2.

Using Definition 1, we can calculate the augmented behavior policy πb+(s1) = [α, 1−α], πb+(s2) =
[1, 0]. Applying C-IS as defined in Definition 3, we see our proposed approach produces the correct,
unbiased estimate of 0.5:
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for s1,
(
α× 0

α
× (+1) + (1− α)× 1

1− α
× (+1)

)
= 1

for s2,
(
1× 1

1
× (0)

)
= 0

overall:
1

2
(1 + 0) = 0.5

B.1 Another Example Illustrating the Weighting Scheme

Suppose similar to Figure 6, we now have a bandit problem with only a single state {s} such
that all policies have an expected reward of 1. Suppose the behavior policy always selects ↗,
generating a dataset containing two samples: sample #1 (s,↗) with an annotation for ↘, sample
#2 is simply (s,↗) with no annotation for ↘. In applying our approach, for sample #1 we can
assign weights [α, 1 − α] for some α ∈ (0, 1), i.e., the two non-negative weights associated with
sample #1 sum to 1; for sample #2 the weights are simply [1, 0]. Then, the average weights for state
s are W̄ (↗ |s,↗) = 1+α

2 and W̄ (↘ |s,↗) = 1−α
2 . For example, if α = 0.8, then the weights

for sample #1 are [0.8, 0.2] and the average weights associated with state s are [0.9, 0.1]. Note that
while the average weights W̄ (used for calculating πb+ and C-IS) are state-specific, the user-assigned
weights wã are sample-specific; furthermore, the sample-specific weights should not be interpreted
as “random”, as a user may deliberately set weights to split equally into [0.5, 0.5], or to [1, 0] which
ignores the annotation if they believe it is of poor quality.

Using Definition 1, we can calculate the augmented behavior policy πb+(s) = [1+α
2 , 1−α

2 ]. Applying
C-IS as defined in Definition 2, we see our proposed approach produces an unbiased estimate of 1:(

1 + α

2
× 0

1+α
2

× (+1) +
1− α

2
× 1

1−α
2

× (+1)

)
= 1

C Extended Theoretical Analyses

Unless otherwise stated, the estimators are for πe, i.e., v̂ = v̂(πe).

C.1 IS: Bias & Variance

We formally state and prove the bias and variance results for IS (informally described in Section 4).
The proofs are adapted from existing literature [27, 30].
Theorem 9 (Unbiasedness of IS). In the bandit setting, when Assumption 3 holds, E[v̂IS] = v(πe).
Proposition 10 (Bias of IS). In the bandit setting, when Assumption 3 is violated, Bias[v̂IS] =
Es∼d1

[
−∑a∈U(s,πb)

πe(a|s)R̄(s, a)
]

where U(s, πb) = {a : πb(a|s) = 0} are unsupported actions
in the dataset.
Proposition 11 (Variance of IS). In the bandit setting, when Assumption 3 holds, the variance of IS
can be written as:

V[v̂IS] = Vs∼d1
[V πe(s)] + Es∼d1

[
Va∼πb(s)[ρ(a|s)R̄(s, a)]

]
+ Es∼d1

[
Ea∼πb(s)[ρ(a|s)2 σR(s, a)

2]
]

where σR(s, a)
2 = Vr∼R(s,a)[r] is the variance associated with the reward function R(s, a).

Derivation for Bias of IS (adapted from [30]).

Bias[v̂IS] = E[v̂IS]− v(πe)

= E
s∼d1

 ∑
a∈A\U(s,πb)

πb(a|s)
πe(a|s)
πb(a|s)

R̄(s, a)

− E
s∼d1

[∑
a∈A

πe(a|s)R̄(s, a)

]

= E
s∼d1

 ∑
a∈A\U(s,πb)

πe(a|s)R̄(s, a)−
∑
a∈A

πe(a|s)R̄(s, a)
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= E
s∼d1

− ∑
a∈U(s,πb)

πe(a|s)R̄(s, a)


If Assumption 3 holds, πe(a|s) = 0 for a ∈ U(s, πb) and thus Bias[v̂IS] = 0.

Derivation for Variance of IS (adapted from [27]). We apply the law of total variance:

V[v̂IS] = Vs∼d1,a∼πb(s),r∼R(s,a)[ρr]

= Vs∼d1

[
Ea∼πb(s),r∼R(s,a)[ρr]

]
+ Es∼d1

[
Va∼πb(s),r∼R(s,a)[ρr]

]
= Vs∼d1

[
Ea∼πb(s)

[
πe(a|s)
πb(a|s)

Er∼R(s,a)[r]

]]
+ Es∼d1

[
Va∼πb(s)Er∼R(s,a)[ρr] + Ea∼πb(s)Vr∼R(s,a)[ρr]

]
= Vs∼d1

[
Ea∼πe(s)[R̄(s, a)]

]
+ Es∼d1

[
Va∼πb(s)[ρR̄(s, a)]

]
+ Es∼d1Ea∼πb(s)

[
ρ2Vr∼R(s,a)[r]

]
= Vs∼d1 [V

πe(s)] + Es∼d1

[
Va∼πb(s)[ρ(a|s)R̄(s, a)]

]
+ Es∼d1

[
Ea∼πb(s)

[
ρ(a|s)2σR(s, a)

2
]]

C.2 C-IS: Bias Analyses

We start by showing unbiasedness of C-IS in the ideal case (Theorem 1) .
Theorem 1 (Unbiasedness of C-IS). In the bandit setting, when both Assumptions 1 and 4 hold, the
C-IS estimator is unbiased, E[v̂C-IS] = v(πe).

Proof of Theorem 1. Starting with Definition 2,

E[v̂C-IS] = E

waρar +
∑

ã∈A\{a}

wãρãqã


= E

s∼d1

E
a∼πb(s)

[
Ewa∼W (a|s,a)[w

a]
πe(a|s)
πb+(a|s)Er∼R(s,a)[r]

+
∑

ã∈A\{a}

Ewã∼W (ã|s,a)[w
ã]

πe(ã|s)
πb+(ã|s)Egã∼G(s,ã)[g

ã]

]

(1)
= E

s∼d1

[∑
a∈A

πb(a|s)
(∑

ã∈A
W̄ (ã|s, a) πe(ã|s)

πb+(ã|s) R̄(s, ã)

)]
(2)
= E

s∼d1

[∑
ã∈A

(∑
a∈A

πb(a|s)W̄ (ã|s, a) πe(ã|s)
πb+(ã|s) R̄(s, ã)

)]
(3)
= E

s∼d1

[∑
ã∈A

((∑
a∈A

πb(a|s)W̄ (ã|s, a)
) πe(ã|s)
πb+(ã|s) R̄(s, ã)

)]
(4)
= E

s∼d1

[∑
ã∈A

����πb+(ã|s) πe(ã|s)
����πb+(ã|s) R̄(s, ã)

]

= E
s∼d1

[∑
ã∈A

πe(ã|s)R̄(s, ã)

]
= E

s∼d1

E
ã∼πe

[R̄(s, ã)]

= E
s∼d1

[V πe(s)]

= v(πe)

where in (1) we replace Eg∼G(s,ã)[g] with R̄(s, ã) following Assumption 1 and combine it with
Er∼R(s,a)[r] in a single summation over ã ∈ A, in (2) we swap the order of summations, in (3) we
take out common factors that do not depend on a, and in (4) we use Definition 1 for πb+(ã|s), which
cancels out the denominator in the importance ratio on the next line.
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Next, we look at two factors contributing to the bias of C-IS: lack of support and imperfect annotations.
Proposition 2 (Bias of C-IS due to support). When Assumption 1 holds but Assumption 4 is violated,
Bias[v̂C-IS] = Es∼d1

[
−∑a∈U(s,πb+ ) πe(a|s)R̄(s, a)

]
where U(s, πb+) = {a : πb+(a|s) = 0} are

unsupported actions in the counterfactual-augmented dataset.
Proposition 3 (Bias of C-IS due to imperfect annotations). When Assumption 4 holds but Assump-
tion 1 is violated, Bias[v̂C-IS] = Es∼d1 Ea∼πe(s)

[
δW (s, a) ϵG(s, a)

]
, where we measure violation of

Assumption 1 as ϵG(s, a) = Eg∼G(s,a)[g]− R̄(s, a), and δW (s, a) =
(
1− W̄ (a|s,a)πb(a|s)

πb+ (a|s)
)
.

Proposition 12 (Bias of C-IS, combined). When both Assumptions 1 and 4 are violated, Bias[v̂C-IS] =
Es∼d1

[
−∑a∈U(s,πb+ ) πe(a|s) R̄(s, a)

]
+ Es∼d1

[∑
a∈A\U(s,πb)

δW (s, a) πe(a|s) ϵG(s, a) +∑
a∈U(s,πb)\U(s,πb+ ) πe(a|s) ϵG(s, a)

]
, where U(s, πb+) = {a : πb+(a|s) = 0} are unsup-

ported actions in the counterfactual-augmented dataset, ϵG(s, a) = Eg∼G(s,a)[g] − R̄(s, a), and

δW (s, a) =
(
1− W̄ (a|s,a)πb(a|s)

πb+ (a|s)
)
.

Remark. There are two main sources of bias for C-IS, resulting from each of the two assumptions
being violated. In Proposition 12, missing annotations (i.e., violation of Assumption 4) contribute to
the bias through the first term as the rewards of unsupported actions, whereas imperfect annotations
(i.e., violation of Assumption 1) contribute to the bias through the second term as the annotation error
over supported actions. When both assumptions hold, C-IS only requires a weaker version of the
common support assumption to remain unbiased (Theorem 1); consequently, compared to IS, there is
a larger space of policies that C-IS can evaluate without bias. Note that the unbiasedness property is
not affected by the user-defined weighting scheme (except that the weights must not be to 0 or 1)
and directly applies to C*-IS. When only Assumption 1 holds (Proposition 2), the bias is related to
the negative rewards over unsupported actions. On the other hand, when only Assumption 4 holds
(Proposition 3), the annotation error ϵG contributes to the resulting bias and this contribution is scaled
by a factor of δW (s, a) ≤ 1 when the estimator can make use of (unbiased) factual samples of the
state-action pair (s, a) (i.e., when πb(a|s) > 0 and W̄ (a|s, a) > 0).

We show Proposition 12 first and then discuss Propositions 2 and 3 as two special cases.

Proof of Proposition 12.

Bias[v̂C-IS] = E[v̂C-IS]− v(πe)

= E
s∼d1

[ ∑
a∈A\U(s,πb)

πb(a|s)
(
Ewa∼W (a|s,a)[w

a]
πe(a|s)
πb+(a|s)Er∼R(s,a)[r]

+
∑

ã∈A\U(s,πb+ )\{a}

Ewã∼W (ã|s,a)[w
ã]

πe(ã|s)
πb+(ã|s)Egã∼G(s,ã)[g

ã]

)]
− v(πe)

= E
s∼d1

[ ∑
a∈A\U(s,πb)

πb(a|s)
( ∑

ã∈A\U(s,πb+ )

W̄ (ã|s, a) πe(ã|s)
πb+(ã|s)

(
R̄(s, ã) + ϵG(s, ã)

)
− W̄ (a|s, a) πe(a|s)

πb+(a|s)ϵG(s, a)
)]

− v(πe)

= E
s∼d1

[ ∑
a∈A\U(s,πb)

πb(a|s)
∑

ã∈A\U(s,πb+ )

W̄ (ã|s, a) πe(ã|s)
πb+(ã|s) R̄(s, ã)

]
− v(πe)

+ E
s∼d1

[ ∑
a∈A\U(s,πb)

πb(a|s)
∑

ã∈A\U(s,πb+ )

W̄ (ã|s, a) πe(ã|s)
πb+(ã|s)ϵG(s, ã)

]

− E
s∼d1

[ ∑
a∈A\U(s,πb)

πb(a|s)W̄ (a|s, a) πe(a|s)
πb+(a|s)ϵG(s, a)

]

= E
s∼d1

[ ∑
ã∈A\U(s,πb+ )

( ∑
a∈A\U(s,πb)

πb(a|s)W̄ (ã|s, a)
)

πe(ã|s)
πb+(ã|s) R̄(s, ã)

]
− v(πe)
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+ E
s∼d1

[ ∑
ã∈A\U(s,πb+ )

( ∑
a∈A\U(s,πb)

πb(a|s)W̄ (ã|s, a)
)

πe(ã|s)
πb+(ã|s)ϵG(s, ã)

]

− E
s∼d1

[ ∑
a∈A\U(s,πb)

πb(a|s)W̄ (a|s, a) πe(a|s)
πb+(a|s)ϵG(s, a)

]

= E
s∼d1

− ∑
a∈U(s,πb+ )

πe(a|s)R̄(s, a)

+ E
s∼d1

 ∑
a∈A\U(s,πb+ )

πe(a|s)ϵG(s, a)


− E

s∼d1

[ ∑
a∈A\U(s,πb)

πe(a|s)W̄ (a|s, a) πb(a|s)
πb+(a|s)ϵG(s, a)

]

= E
s∼d1

− ∑
a∈U(s,πb+ )

πe(a|s)R̄(s, a)


+ E

s∼d1

[ ∑
a∈A\U(s,πb)

δW (s, a)πe(a|s)ϵG(s, a) +
∑

a∈U(s,πb)\U(s,πb+ )

πe(a|s)ϵG(s, a)
]

where δW (s, a) =
(
1− W̄ (a|s,a)πb(a|s)

πb+ (a|s)
)
.

Note that U(s, πb+) ⊆ U(s, πb), because πb+(a|s) = 0 implies πb(a|s) = 0 (factual data does not
contain action a) and W̄ (a|s, ǎ) = 0,∀ǎ ∈ A (counterfactual annotations for other actions ǎ also do
not contain action a).

Proof for Proposition 2. Given Assumption 1 but not Assumption 4,

Bias[v̂C-IS] = E[v̂C-IS]− v(πe)

= E
s∼d1

 ∑
a∈A\U(s,πb)

πb(a|s)

 ∑
ã∈A\U(s,πb+ )

W̄ (ã|s, a) πe(ã|s)
πb+(ã|s) R̄(s, ã)

− v(πe)

= E
s∼d1

 ∑
ã∈A\U(s,πb+ )

( ∑
a∈A\U(s,πb)

πb(a|s)W̄ (ã|s, a)
)

πe(ã|s)
πb+(ã|s) R̄(s, ã)

− E
s∼d1

[∑
a∈A

πe(a|s)R̄(s, a)

]

= E
s∼d1

 ∑
a∈A\U(s,πb+ )

πe(a|s)R̄(s, a)−
∑
a∈A

πe(a|s)R̄(s, a)


= E

s∼d1

[
−
∑

a∈U(s,πb+ )
πe(a|s)R̄(s, a)

]
Proof for Proposition 3. Given Assumptions 3 and 4 but not Assumption 1,

Bias[v̂C-IS] = E[v̂C-IS]− v(πe)

= E
s∼d1

∑
a∈A

πb(a|s)

W̄ (a|s, a) πe(a|s)
πb+(a|s) R̄(s, ã) +

∑
ã∈A\{a}

W̄ (ã|s, a) πe(ã|s)
πb+(ã|s)

(
R̄(s, ã) + ϵG(s, ã)

)− v(πe)

= E
s∼d1

∑
a∈A

πb(a|s)

∑
ã∈A

W̄ (ã|s, a) πe(ã|s)
πb+(ã|s) R̄(s, ã) +

∑
ã∈A\{a}

W̄ (ã|s, a) πe(ã|s)
πb+(ã|s)ϵG(s, ã)

− v(πe)

= E
s∼d1

[∑
ã∈A

((∑
a∈A

πb(a|s)W̄ (ã|s, a)
) πe(ã|s)
πb+(ã|s) R̄(s, ã)

)]
− v(πe)
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+ E
s∼d1

[∑
ã∈A

((∑
a∈A

πb(a|s)W̄ (ã|s, a)
) πe(ã|s)
πb+(ã|s)ϵG(s, ã)

)]

− E
s∼d1

[(∑
a∈A

πb(a|s)W̄ (a|s, a) πe(a|s)
πb+(a|s)ϵG(s, a)

)]

= E
s∼d1

[∑
ã∈A

πe(ã|s)ϵG(s, ã)
]
− E

s∼d1

[∑
a∈A

πe(a|s)W̄ (a|s, a) πb(a|s)
πb+(a|s)ϵG(s, a)

]

= E
s∼d1

E
a∼πe(s)

[(
1− W̄ (a|s, a)πb(a|s)

πb+(a|s)

)
ϵG(s, a)

]
While it is generally true that the space of policies that C-IS can evaluate without bias is larger than
that of IS, since the lack of support leads to C-IS being biased towards 0 (similar to the case of
standard IS), the magnitude of bias of C-IS is not guaranteed to be less than standard IS without
additional assumptions about the rewards. However, if all rewards are non-negative, then under mild
assumptions, we can prove the following bias reduction result.
Proposition 4 (A sufficient condition for bias reduction). If Assumption 1 holds (but Assumption 4
is violated), R̄(s, a) ≥ 0 for all s ∈ S, a ∈ A, and there exists (s, a) such that πb(a|s) = 0,
πb+(a|s) > 0, πe(a|s) > 0, R̄(s, a) > 0, then |Bias[v̂C-IS]| < |Bias[v̂IS]|.

Proof. |Bias[v̂IS]| − |Bias[v̂C-IS]|

=

∣∣∣∣ E
s∼d1

[
−
∑

a∈U(s,πb)
πe(a|s)R̄(s, a)

]∣∣∣∣− ∣∣∣∣ E
s∼d1

[
−
∑

a∈U(s,πb+ )
πe(a|s)R̄(s, a)

]∣∣∣∣
= E

s∼d1

[∑
a∈U(s,πb)

πe(a|s)R̄(s, a)

]
− E

s∼d1

[∑
a∈U(s,πb+ )

πe(a|s)R̄(s, a)

]
= E

s∼d1

[∑
a∈U(s,πb)\U(s,πb+ )

πe(a|s)R̄(s, a)

]
> 0

Lastly, we note a useful corollary of Theorem 1.
Corollary 5 (Expectation of augmented importance ratios). Let ρ+

W = waρa +
∑

ã∈A\{a} w
ãρã

given τ and w. Under Assumption 4, E[ρ+

W ] = 1.

Proof of Corollary 5. Starting with Theorem 1 and substituting R(s, a) = G(s, a) = 1 as the
constant reward and annotation for all s ∈ S, a ∈ A, we have: Eτ+ [waρa +

∑
ã∈A\{a} w

ãρã] =

Es∼d1Eã∼πe(s)[1] = 1.
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C.3 C-IS: Variance Analyses

For variance analyses, we focus on the scenario where Assumptions 1 and 4 hold and bias is zero.
Below, we state the variance decomposition results under a few assumptions about the weighting
scheme and the annotation variance.
Theorem 13 (Variance of C-IS). Let ρ+(a|s) = ρa = πe(a|s)

πb+ (a|s) be the importance ratio defined using
the augmented behavior policy, and assume variance of the annotation function and the variance
of the reward function are related by σR(s, a)

2 = σR(s, a)
2 +∆σ(s, a) where ∆σ(s, a) ∈ R, then

under Assumptions 1 and 4,

V[v̂C-IS] = Vs∼d1 [V
πe(s)] + Es∼d1

[
Va∼πb(s)

[∑
ã∈A ρ+(ã|s) W̄ (ã|s, a) R̄(s, ã)

] ]
+ Es∼d1Ea∼πb(s)

[∑
ã∈A ρ+(ã|s)2 W̄ (ã|s, a)2 σR(s, ã)

2
]

+ Es∼d1 Ea∼πb(s)

[∑
ã∈A\{a} ρ

+(ã|s)2W̄ (ã|s, a)2∆σ(s, ã)
]

+ Es∼d1Ea∼πb(s)

[∑
ã∈A ρ+(ã|s)2 R̄(s, ã)2 σW (ã|s, a)2

]
+ Es∼d1Ea∼πb(s)

[∑
ã∈A ρ+(ã|s)2 σR(s, ã)

2 σW (ã|s, a)2
]

+ Es∼d1Ea∼πb(s)

[
C(s, a)

]
+ Es∼d1Ea∼πb(s)

[∑
ã∈A\{a} ρ

+(ã|s)2∆σ(s, ã)σW (ã|s, a)2
]

(3)

where C(s, a) = 2
ai ̸=aj∑

ai,aj∈A
ρ+(ai|s) ρ+(aj |s) R̄(s, ai) R̄(s, aj) Cov

(
W (ai|s, a),W (aj |s, a)

)
.

Corollary 14 (Variance of C*-IS). Assuming σG(s, a)
2 = σR(s, a)

2+∆σ(s, a) where ∆σ(s, a) ∈ R,
then under Assumptions 1 and 4,

V[v̂C*-IS] = Vs∼d1
[V πe(s)]+ Es∼d1

Ea∼πb(s)

[
πb(a|s) ρ(a|s)2 σR(s, a)

2
]

+ Es∼d1

[∑
ã∈A\{a} πe(a|s)2∆σ(s, a)

]
where ρ(a|s) = πe(a|s)

πb(a|s) is the importance ratio under the original behavior policy.
Remark. The variance decomposition in Theorem 13 contains eight terms. The first three terms
correspond to the three terms in the IS variance decomposition in Eqn. (1), the fourth and eighth
terms are related to the variance difference between annotations and rewards, whereas the remaining
three terms are all related to the variance (and covariance) of the weight distribution W (·|s, a). As we
will demonstrate empirically (Appendix E.1), depending on the weight distributions, variance of C-IS
may actually be larger than that of IS. While it is difficult to guarantee a general variance reduction,
we provide intuition for a few special cases. (i) If the weights are constant (i.e., W (·|s, a) is the same
value for all instantiations of (s, a) in the data), then the last four terms will all vanish to zero. (ii)
When the annotation function and reward function have the same variance, ∆σ(s, a) = 0, the fourth
and eight terms vanish to zero; with this assumption, we can straightforwardly obtain Theorem 6 from
Corollary 14. (iii) Suppose for each state-action pair (s, a), we set factual weights W (a|s, a) = 1 and
counterfactual weights W (ã|s, a) = 0. Then, we effectively ignore all counterfactual annotations,
and the variance of C-IS becomes identical to that of IS.

We prove the most general case for Theorem 13 first, and then derive Corollary 14 as a special case.

Proof of Theorem 13. We apply the law of total variance:

V[v̂C-IS] = Vs∼d1,a∼πb(s),r∼R(s,a)
g∼G(s,·),w∼W (s,a)

waρar +
∑

ã∈A\{a}

wãρãgã


= V

s∼d1

E a∼πb(s),r∼R(s,a)
g∼G(s,·),w∼W (s,a)

[
waρar +

∑
ã∈A\{a}

wãρãgã
]

︸ ︷︷ ︸
(1)

+ E
s∼d1

V a∼πb(s),r∼R(s,a)
g∼G(s,·),w∼W (s,a)

[
waρar +

∑
ã∈A\{a}

wãρãgã
]

︸ ︷︷ ︸
(1′)
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As shown in the bias analyses, we have (1) = Vs∼d1 [V
πe(s)]. We further apply the law of total

variance on (1′):

(1′) = E
s∼d1

 V
a∼πb(s)

[
Er∼R(s,a),g∼G(s,·)

w∼W (s,a)

[
waρar +

∑
ã∈A\{a}

wãρãgã
]] . . . (2)

+ E
s∼d1

 E
a∼πb(s)

[
Vr∼R(s,a),g∼G(s,·)

w∼W (s,a)

[
waρar +

∑
ã∈A\{a}

wãρãgã
]] . . . (2′)

Since (r, g) and w are conditionally independent given (s, a),

(2) = E
s∼d1

 V
a∼πb(s)

[
ρaEwa∼W (a|s,a)

r∼R(s,a)

[war] +
∑

ã∈A\{a}

ρãEwã∼W (ã|s,a)
gã∼G(s,ã)

[wãgã]
]

= E
s∼d1

 V
a∼πb(s)

ρaEwa∼W (a|s,a)[w
a]Er∼R(s,a)[r] +

∑
ã∈A\{a}

ρãEwã∼W (ã|s,a)[w
ã]Egã∼G(s,ã)[g

ã]


= E

s∼d1

[
V

a∼πb(s)

[∑
ã∈A

ρ+(a|s)W̄ (ã|s, a)R̄(s, ã)

]]

where in the last step, we apply Assumption 1 to combine the expressions involving Er∼R(s,a)[r] and
Egã∼G(s,ã)[g

ã] (both are equal to R̄(s, ã)) into a single summation over ã ∈ A.

We further apply the law of total variance on (2′):

(2′) = E
s∼d1

E
a∼πb(s)

Vr∼R(s,a)
g∼G(s,·)

Ew∼W (s,a)

[
waρar +

∑
ã∈A\{a}

wãρãgã
] . . . (3)

+ E
s∼d1

E
a∼πb(s)

Er∼R(s,a)
g∼G(s,·)

Vw∼W (s,a)

[
waρar +

∑
ã∈A\{a}

wãρãgã
] . . . (3′)

Then we have

(3) = E
s∼d1

E
a∼πb(s)

Vr∼R(s,a)

[
ρaEwa∼W (a|s,a)[w

a]r
]
+

∑
ã∈A\{a}

Vg∼G(s,·)

[
ρãEwã∼W (ã|s,a)[w

ã]gã
]

= E
s∼d1

E
a∼πb(s)

ρ+(a|s)2W̄ (a|s, a)2Vr∼R(s,a)[r] +
∑

ã∈A\{a}

ρ+(ã|s)2W̄ (ã|s, a)2Vgã∼G(s,ã)[g
ã]


= E

s∼d1

E
a∼πb(s)

[∑
ã∈A

ρ+(ã|s)2W̄ (ã|s, a)2σR(s, ã)
2

]
+ E

s∼d1

E
a∼πb(s)

 ∑
ã∈A\{a}

ρ+(ã|s)2W̄ (ã|s, a)2∆σ(s, ã)


where in the last step we substitute σG(s, ã)

2 = σR(s, ã)
2 +∆σ(s, ã).

Letting ga = r for clarity, we have

(3′) = E
s∼d1

E
a∼πb(s)

Er∼R(s,a)
g∼G(s,·)

∑
ã∈A

Vwã∼W (ã|s,a)[ρ
ãgãwã] + 2

ai ̸=aj∑
ai,aj∈A

Covw∼W (s,a)(ρ
aigaiwai , ρajgajwaj )
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= E
s∼d1

E
a∼πb(s)

Er∼R(s,a)
g∼G(s,·)

[∑
ã∈A

(ρã)2(gã)2Vwã∼W (ã|s,a)[w
ã]

+ 2

ai ̸=aj∑
ai,aj∈A

(ρai)(ρaj )(gai)(gaj )× Cov
(
W (ai|s, a),W (aj |s, a)

)]

= E
s∼d1

E
a∼πb(s)

[∑
ã∈A

ρ+(ã|s)2
(
R̄(s, ã)2 + σR(s, ã)

2
)
σW (ã|s, a)2 +

∑
ã∈A\{a}

ρ+(ã|s)2∆σ(s, ã)σW (ã|s, a)2

+ 2

ai ̸=aj∑
ai,aj∈A

ρ+(ai|s) ρ+(aj |s) R̄(s, ai) R̄(s, aj)× Cov
(
W (ai|s, a),W (aj |s, a)

)]

= E
s∼d1

E
a∼πb(s)

[∑
ã∈A

ρ+(ã|s)2R̄(s, ã)2σW (ã|s, a)2
]

︸ ︷︷ ︸
(4)

+ E
s∼d1

E
a∼πb(s)

[∑
ã∈A

ρ+(ã|s)2σR(s, ã)
2σW (ã|s, a)2

]
︸ ︷︷ ︸

(5)

+ E
s∼d1

E
a∼πb(s)

 ∑
ã∈A\{a}

ρ+(ã|s)2∆σ(s, ã)σW (ã|s, a)2


︸ ︷︷ ︸
(6)

+ E
s∼d1

E
a∼πb(s)

2 ai ̸=aj∑
ai,aj∈A

ρ+(ai|s) ρ+(aj |s) R̄(s, ai) R̄(s, aj)× Cov
(
W (ai|s, a),W (aj |s, a)

)
︸ ︷︷ ︸

(7)

Putting together expressions (1) through (7), we have the desired decomposition for V[v̂C-IS].

Proof of Corollary 14. Here we derive the variance of C*-IS, which is C-IS with W (ã|s, a) = |A|−1.
Since the weights are constant, expressions (4)(5)(6)(7) all vanish to zero because the variance and
covariance associated with W (·|s, a) are both zero. We focus on simplifying the second, third, and
fourth terms in the variance decomposition (which correspond to expressions (2) and (3) in the proof
above; we denote the two parts of (3) as (3.1) and (3.2)). First, note that

πb+(a|s) = ∑
ǎ∈A W̄ (a|s, ǎ)πb(ǎ|s)

=
∑

ǎ∈A |A|−1πb(ǎ|s)
= |A|−1

(∑
ǎ∈A πb(ǎ|s)

)
= |A|−1

Then,

(2) = Es∼d1

[
Va∼πb(s)

[∑
ã∈A ρ+(ã|s) W̄ (ã|s, a) R̄(s, ã)

] ]
= Es∼d1

[
Va∼πb(s)

[∑
ã∈A

πe(ã|s)
1/|A| (1/|A|) R̄(s, ã)

] ]
= Es∼d1

[
Va∼πb(s)

[∑
ã∈A πe(ã|s)R̄(s, ã)

] ]
= Es∼d1

[
Va∼πb(s) [V

πe(s)]
]

= 0

(3.1) = Es∼d1Ea∼πb(s)

[∑
ã∈A ρ+(ã|s)2 W̄ (ã|s, a)2 σR(s, ã)

2
]

= Es∼d1Ea∼πb(s)

[∑
ã∈A

πe(ã|s)2
(1/|A|)2 (1/|A|)2 σR(s, ã)

2
]
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= Es∼d1

[∑
a∈A πb(a|s)

∑
ã∈A πe(ã|s)2 σR(s, ã)

2
]

= Es∼d1

[∑
ã∈A

(∑
a∈A πb(a|s)

)
πe(ã|s)2 σR(s, ã)

2
]

= Es∼d1

[∑
ã∈A πe(ã|s)2 σR(s, ã)

2
]

= Es∼d1

[∑
a∈A πb(a|s)2 ρ(a|s)2 σR(s, a)

2
]

= Es∼d1
Ea∼πb(s)

[
πb(a|s) ρ(a|s)2 σR(s, a)

2
]

(3.2) = Es∼d1
Ea∼πb(s)

[∑
ã∈A\{a} ρ

+(ã|s)2 W̄ (ã|s, a)2 ∆σ(s, ã)
]

= Es∼d1
Ea∼πb(s)

[∑
ã∈A\{a}

πe(ã|s)2
(1/|A|)2 (1/|A|)2 ∆σ(s, ã)

]
= Es∼d1

[∑
a∈A πb(a|s)

∑
ã∈A\{a} πe(ã|s)2 ∆σ(s, ã)

]
= Es∼d1

[∑
ã∈A\{a}

(∑
a∈A πb(a|s)

)
πe(ã|s)2 ∆σ(s, ã)

]
= Es∼d1

[∑
ã∈A\{a} πe(ã|s)2 ∆σ(s, ã)

]

C.4 C-PDIS: Bias Analyses

Theorem 8 (Unbiasedness of C-PDIS). In the MDP setting, when both Assumptions 2 and 4 hold,
the C-PDIS estimator is unbiased, E[v̂C-PDIS] = v(πe).

First, we introduce a few definitions useful for the proof. Let the t-step state distribution be denoted
by dπt (s) = Pr(st = s | s1 ∼ d1, at′ ∼ π(st′)). Similarly, the t-step state-action distribution is
dπt (s, a) = Pr(st = s, at = a | s1 ∼ d1, at′ ∼ π(st′)). Note that dπt+1(s

′) = Es,a∼dπ
t
[p(s′|s, a)].

Let dt = dπb
t denote the distribution under the behavior policy. Recall the horizon-t value functions:

V πe

t:T (s) = Eπe
[
∑T

t′=t γ
t′−1rt′ |st = s], Qπe

t:T (s, a) = Eπe
[
∑T

t′=t γ
t′−1rt′ |st = s, at = a]. Based

on the Bellman equation, Qπe

t:T (s, a) = r(s, a) + γ Es′∼p(s,a)[V
πe

(t+1):T (s
′)]. Note that v(πe) =

Es∼d1
[V πe

1:T (s)]. Also recall Assumption 2, the perfect annotation function in the MDP setting
satisfies Eg∼Gt(s,a)[g] = Qπe

t:T (s, a) for (s, a) at step t of the trajectory.

Recall the recursive definition of C-PDIS (Definition 4): v̂C-PDIS = vT , with v0 = 0, vT−t+1 =

wat
t ρat

t (rt + γvT−t) +
∑

ã∈A\{at} w
ã
t ρ

ã
t q

ã
t for t = T...1, where ρãt = πe(ã|st)

πb+ (ã|st) .

Proof. We show this via backward induction on a sequence of horizon-t value functions of πe denoted
by V πe

t:T (s). The goal is to show that Eτ+,w[vT−t] = Es∼dt+1
[V πe

(t+1):T (s)] for all t = T...0 (for
clarity, the subscript of expectation of the estimator may be omitted and assumed to be Eτ+,w with τ
generated by the behavior policy πb unless otherwise specified).

Base case. It is trivially true that E[v0] = Es∼dT+1
[V πe

(T+1):T (s)] = 0 since there are no more steps
after t = T and s ∼ dT+1 can be seen as a dummy absorbing state.

Inductive step. Suppose E[vT−t] = Es∼dt+1 [V
πe

(t+1):T (s)] holds. For factual state-action pair
(s, a) ∼ dt occurring at step t, we have

E
s,a∼dt

[rt + γvT−t] = E
s,a∼dt

[
rt + γ E

s′∼dt+1

[V πe

(t+1):T (s
′)]

]
= E

s,a∼dt

[
rt + γ E

s′∼p(·|s,a)
[V πe

(t+1):T (s
′)]

]
= E

s,a∼dt

[Qπe

t:T (s, a)]
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To show the case for t− 1,

E[vT−t+1] = E

wat
t ρat

t (rt + γvT−t) +
∑

ã∈A\{at}

wã
t ρ

ã
t q

ã
t


= E

s∼dt

E
a∼πb(s)

[
Ewa

t ∼W (a|s,a)[w
a
t ]

πe(a|s)
πb+(a|s)Es,a∼dt

[rt + γvT−t]

+
∑

ã∈A\{a}

Ewã
t ∼W (ã|s,a)[w

ã
t ]

πe(ã|s)
πb+(ã|s)Egã

t ∼Gt(s,ã)[g
ã
t ]

]

(1)
= E

s∼dt

[∑
a∈A

πb(a|s)
(∑

ã∈A
W̄ (ã|s, a) πe(ã|s)

πb+(ã|s)Q
πe

t:T (s, ã)

)]
(2)
= E

s∼dt

[∑
ã∈A

(∑
a∈A

πb(a|s)W̄ (ã|s, a) πe(ã|s)
πb+(ã|s)Q

πe

t:T (s, ã)

)]
(3)
= E

s∼dt

[∑
ã∈A

((∑
a∈A

πb(a|s)W̄ (ã|s, a)
) πe(ã|s)
πb+(ã|s)Q

πe

t:T (s, ã)

)]
(4)
= E

s∼dt

[∑
ã∈A

����πb+(ã|s)
πe(ã|s)
����πb+(ã|s)Q

πe

t:T (s, ã)

]

= E
s∼dt

[∑
ã∈A

πe(ã|s)Qπe

t:T (s, ã)

]

= E
s∼dt

E
ã∼πe

[Qπe

t:T (s, ã)] = E
s∼dt

[V πe

t:T (s)]

where in (1) we replace Egã
t ∼Gt(s,ã)[g

ã
t ] with Qπe

t:T (s, ã) following Assumption 2 and combine it
with Es,a∼dt [rt + γvT−t] = Qπe

t:T (s, ã) (as shown above) in a single summation over ã ∈ A, in
(2) we swap the order of summations, in (3) we take out common factors that do not depend on the
inner summation a, and in (4) we use Definition 1 for πb+(ã|s), which cancels out the denominator
in the importance ratio on the next line. The proof techniques are similar to that in Appendix C.2.

Since E[vT−t] = Es∼dh+1
[V πe

(t+1):T (s)] implies E[vT−t+1] = Es∼dt [V
πe

t:T (s)], and the base case
E[v0] = Es∼dT+1

[V πe

(T+1):T (s)] is true, by mathematical induction, we have the desired property that
E[v̂C-PDIS] = E[vT ] = Es∼d1

[V πe

1:T (s)] = v(πe).
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D Extended Discussions on Practical Implications

D.1 Using an Approximate MDP Model to Correct Annotation Bias

In the sequential RL setting, if the annotation function reflects the expected returns under the behavior
policy, i.e. Gt = Qπb

t:T , then annotations have a nonzero bias of ϵGt = Qπb

t:T − Qπe

t:T ̸= 0 (since
Qπe

t:T ̸= Qπb

t:T for meaningful OPE problems where πe ̸= πb), and consequently, C-PDIS using
such annotations becomes biased. While such annotations may aid in model selection (as shown
in experiments), here we further propose a procedure to convert the annotations so that they better
reflect the evaluation policy.

From the offline data, we first learn an approximate model of the MDP M̂, which includes the
transition model p̂(s′|s, a) and reward model r̂(s, a). M̂ is then used to evaluate both πb and πe

using a model-based approach, leading to estimated horizon-specific Q-functions, Q̂πb

t:T and Q̂πe

t:T .
We then approximate the annotation error for state st occurring at horizon t and counterfactual action
ã as ϵ̂Gt(st, ã) = Q̂πb

t:T (st, ã) − Q̂πe

t:T (st, ã). Given the factual state-action pair (s(i)t , a
(i)
t ) and the

counterfactual annotation g
(i),ã
t ∼ Qπb

t:T (s
(i)
t , ã) for action ã, we convert the annotation as

ĝ
(i),ã
t = g

(i),ã
t − ϵ̂Gt

(st, ã)

One may verify that ĝ(i),ãt ∼ Qπe

t:T (s
(i)
t , ã) in expectation. Note that this approach for annotation

conversion is only possible if the counterfactual action has support in the offline data (i.e., (s(i)t , ã) is
seen in the data); otherwise, we suggest using the annotation as collected.

D.2 Imputing Missing Annotations

Consider the following scenario: for two instances of the same factual (s, a) in the dataset, only
one instance has a counterfactual annotation but not the other. This means that the weights for the
factual and counterfactual are (0.5, 0.5) and (1, 0) (assuming a binary action space), and the weight
distribution W (·|s, a) has a nonzero variance and covariance. Specifically, in the example above
with two samples, σW (a|s, a)2 = σW (ã|s, a)2 = Cov(W (a|s, a),W (ã|s, a)) = 0.0625. These
variances appear in the variance decomposition of C-IS as shown in Theorem 13 and may lead to an
overall larger variance compared to IS.

To address this issue, we suggest a procedure to impute the missing annotations using other available
annotations when possible. Given all annotations gD = {g(i),ãt : c

(i),ã
t = 1} associated with dataset

D = {τ (i)}Ni=1, we first build an approximate annotation model Ĝ by solving a regression problem
on {

(
(s

(i)
t , ã), g

(i),ã
t

)
: c

(i),ã
t = 1} using all available annotations gD. For discrete state and action

spaces, this is essentially to averaging the annotations for each state-action pair. Then, Ĝ can be
used to impute the missing annotations as ĝ = {Ĝ(s

(i)
t , ã) : c

(i),ã
t = 0, ã ∈ A \ {a(i)t }} if there

is “support” for annotations of the same state and action, i.e., c(i),ãt = 0 (annotation is missing)
and

∑N
i′=1

∑T
t′=1 1[s

(i′)
t′ = s

(i)
t ] c

(i′),ã
t′ > 0 (annotation has support and thus can be imputed).

This approximate annotation model Ĝ may be biased, but generally its bias can be outweighed by
the benefit of variance reduction for having equal weights (we also observed this empirically in
Appendices E.1 and E.2).

D.3 Optimizing Weighting Schemes to Minimize Variance

Using a worked example, we illustrate that optimizing weights for variance reduction is a highly
non-trivial problem. Suppose we have a bandit problem with one state {s}, two actions {↗,↘},
and the reward function is R(s,↗) = N (r0, σ

2
0), R(s,↘) = N (r1, σ

2
1). Furthermore, suppose all

annotations are available, allowing us to use constant weights and eliminate the weight variances, and
suppose the annotation function is identical to the reward function, i.e., G = R. We can simplify the
variance decomposition of C-IS to be

V[v̂C-IS] = Vs∼d1 [V
πe(s)] + Es∼d1

[
Va∼πb(s)

[∑
ã∈A ρ+(ã|s) W̄ (ã|s, a) R̄(s, ã)

] ]
+ Es∼d1Ea∼πb(s)

[∑
ã∈A ρ+(ã|s)2 W̄ (ã|s, a)2 σR(s, ã)

2
] (4)
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We denote policies in terms of the probabilities assigned to the two actions.

Setting 1. Consider πb(s) = [1, 0], πe(s) = [α, 1− α]. The offline dataset contains only (s, a =↗)
with counterfactual annotations (s, ã =↘), and we assume they are each assigned a weight of w and
(1 − w). The augmented behavior policy is then πb+(s) = [w, 1 − w]. The first and second terms
of Eqn. (4) are zero because no variance is associated with sampling state-action pairs (only one
possibility under πb). The third term becomes (state s is omitted from the expressions)

πe(↗)

πb+(↗)
W̄ (↗ | ↗)2σ2

0 +
πe(↘)

πb+(↘)
W̄ (↘ | ↗)2σ2

1

=
α

w
× w2 × σ2

0 +
1− α

1− w
× (1− w)2 × σ2

1

= wασ2
0 + (1− w)(1− α)σ2

1

=
(
ασ2

0 − (1− α)σ2
1

)
w + (1− α)σ2

1

This is a linear function of w, and where the variance achieves the minimum value depends on the
slope

(
ασ2

0 − (1− α)σ2
1

)
.

• If ασ2
0 = (1− α)σ2

1 , the slope is zero, and w does not affect variance.
• If ασ2

0 < (1− α)σ2
1 , the slope is negative, and w∗ → 1 achieves minimum variance of ασ2

0 .
• If ασ2

0 > (1 − α)σ2
1 , the slope is positive, and w∗ → 0 achieves minimum variance of

(1− α)σ2
1 .

Setting 2. Consider πb(s) = [β, 1−β], πe(s) = [α, 1−α]. In the offline dataset, (s, a =↗) appears
with probability β and (s, a =↘) appears with probability 1−β. When the factual data is (s, a =↗),
the counterfactual annotation is for (s, ã =↘), and let the weights be w0 and (1 − w0); when the
factual data is (s, a =↘), the counterfactual annotation is for (s, ã =↗), and let the weights be w1

and (1− w1). The augmented behavior policy is then

πb+(s) =

{
βw0 + (1− β)(1− w1)

β(1− w0) + (1− β)w1
.

The first term of Eqn. (4) is zero because there is only one state. The third term is

β
( πe(↗)

πb+(↗)
W̄ (↗ | ↗)2σ2

0 +
πe(↘)

πb+(↘)
W̄ (↘ | ↗)2σ2

1

)
+ (1− β)

( πe(↘)

πb+(↘)
W̄ (↗ | ↘)2σ2

0 +
πe(↗)

πb+(↗)
W̄ (↗ | ↘)2σ2

1

)
= β

( α

βw0 + (1− β)(1− w1)
× w2

0 × σ2
0 +

1− α

β(1− w0) + (1− β)w1
× (1− w0)

2 × σ2
1

)
+ (1− β)

( α

βw0 + (1− β)(1− w1)
× (1− w1)

2 × σ2
0 +

1− α

β(1− w0) + (1− β)w1
× w2

1 × σ2
1

)
=

βw2
0 + (1− β)(1− w1)

2

βw0 + (1− β)(1− w1)
× ασ2

0 +
β(1− w0)

2 + (1− β)w2
1

β(1− w0) + (1− β)w1
× (1− α)σ2

1

Next, we will attempt to simplify the second variance term:

Va∼πb(s)

[∑
ã∈A ρ+(ã|s) W̄ (ã|s, a) R̄(s, ã)

]
.

First note that

Ea∼πb(s)

[∑
ã∈A ρ+(ã|s) W̄ (ã|s, a) R̄(s, ã)

]
=

πe(↗)

πb+(↗)
W̄ (↗ | ↗)r0 +

πe(↘)

πb+(↘)
W̄ (↘ | ↗)r1

=
α

w
× w × r0 +

1− α

1− w
× (1− w)× r1

= αr0 + (1− α)r1
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Then, the second variance term becomes

β

(
α

βw0 + (1− β)(1− w1)
× w0 × r0 +

1− α

β(1− w0) + (1− β)w1
× (1− w0)× r1 −

(
αr0 + (1− α)r1

))2

+ (1− β)

(
α

βw0 + (1− β)(1− w1)
× (1− w1)× r0 +

1− α

β(1− w0) + (1− β)w1
× w1 × r1 −

(
αr0 + (1− α)r1

))2

= β

[
αr0

( w0

βw0 + (1− β)(1− w1)
− 1
)
+ (1− α)r1

( (1− w0)

β(1− w0) + (1− β)w1
− 1
)]2

+ (1− β)

[
αr0

( 1− w1

βw0 + (1− β)(1− w1)
− 1
)
+ (1− α)r1

( w1

β(1− w0) + (1− β)w1
− 1
)]2

= β

[
α2r20

( w0

βw0 + (1− β)(1− w1)
− 1
)2

+ (1− α)2r21

( (1− w0)

β(1− w0) + (1− β)w1
− 1
)2

+ 2α(1− α)r0r1

( w0

βw0 + (1− β)(1− w1)
− 1
)( (1− w0)

β(1− w0) + (1− β)w1
− 1
)]

+ (1− β)

[
α2r20

( 1− w1

βw0 + (1− β)(1− w1)
− 1
)2

+ (1− α)2r21

( w1

β(1− w0) + (1− β)w1
− 1
)2

+ 2α(1− α)r0r1

( 1− w1

βw0 + (1− β)(1− w1)
− 1
)( w1

β(1− w0) + (1− β)w1
− 1
)]

= α2r20

[
β
( w0

βw0 + (1− β)(1− w1)
− 1
)2

+ (1− β)
( 1− w1

βw0 + (1− β)(1− w1)
− 1
)2]

+ (1− α)2r21

[
β
( 1− w0

β(1− w0) + (1− β)w1
− 1
)2

+ (1− β)
( w1

β(1− w0) + (1− β)w1
− 1
)2]

+ 2α(1− α)r0r1

[( w0

βw0 + (1− β)(1− w1)
− 1
)( 1− w0

β(1− w0) + (1− β)w1
− 1
)

+
( 1− w1

βw0 + (1− β)(1− w1)
− 1
)( w1

β(1− w0) + (1− β)w1
− 1
)]

As shown above, the variance expression is a rather complicated function of (w0, w1). To solve for its
minimum, one may take the derivatives with respect to each of w0 and w1 and solve for the zeros. The
final solution will depend on the problem parameters, including r0, r1, σ

2
0 , σ

2
1 , α, β. Here, we do not

solve for the final solution, and note that this approach may not be applicable to real-world problems
due to its explicitly dependence on problem parameters that may be unknown. We encourage future
work to explore different methods to find the variance-minimizing weighting schemes.
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E Extended Experiments

E.1 Synthetic Domains - Bandits

E.1.1 Two-State Bandits

We expand on the experiments shown in Section 5.1, where we consider a class of bandit problems
with two states {s1, s2} (drawn with equal probability), two actions A = {↗,↘} (recall Figure 3),
and corresponding reward distributions R(si, a) ∼ N (R̄(si,a), σ

2). Without loss of generality, we
assume ↗ is always taken from s2 by both πb and πe. For s1, we consider deterministic policies
(in which one action is always taken) as well as stochastic policies (which take the two actions with
probabilities that sum to 1); see column/row header in Table 3. Given (πb, πe), we draw 1, 000
samples following πb and then evaluate πe using various estimators, including standard IS, the naive
baseline of adding counterfactual annotations as new samples (Section 3.1), and C*-IS. We assume
that counterfactual annotations are only available for s1, and all annotations are drawn from the
true reward function. We measure the bias, standard deviation (square root of variance), and root
mean-squared error (RMSE) of the estimators with respect to v(πe). In Table 3 we consider three
settings of the rewards: (i) R̄(s1,↗) = 1, R̄(s1,↘) = 2, i.e., both actions lead to a positive reward.
(ii) R̄(s1,↗) = −1, R̄(s1,↘) = 1, i.e., one action leads to a positive reward and the other leads to a
negative reward, (iii) R̄(s1,↗) = −1, R̄(s1,↘) = −2, i.e., both actions lead to a negative reward. In
all cases, the reward for state s2 is set to 0 for both actions.

Naive baseline fails due to bias. The naive baseline often has a nonzero bias and worse RMSE
than IS regardless of whether the offline data has support. This is consistent with our analyses and
example provided in Appendix B.

Bias reduction in support-deficient settings. In the first two rows of each sub-table in Table 3, πb is
deterministic and the untaken action has poor support in the offline data. IS is often biased for these
cases; note that in cases where πe assigns a small probability to the unsupported action (e.g., row
2, column 4, πe takes ↗ with probability 0.1), the bias is small and shows up as 0 after rounding.
In particular, when rewards as all positive (the first table of Table 3), the bias is negative, and when
rewards are all negative (the third table of Table 3), the bias is positive. In the second table of Table 3,
the direction of bias depends on the reward of the unsupported action. In the last three rows, IS is
unbiased when the offline data has full support. In contrast, C*-IS is unbiased in all cases (but for
rounding errors), and can reduce bias compared to IS in support-deficient settings by making use of
counterfactual annotations. RMSE of C*-IS is often (but not always) reduced compared to IS even
though variance can sometimes increase. This is consistent with our analyses in Appendix C.2.

Variance reduction in well-supported settings. In the last three rows of each sub-table in Table 3,
the offline data has full support because πb is stochastic, and IS is unbiased in these cases. C*-IS is
also unbiased in these cases and achieves lower variance, leading to lower RMSE than IS. This is
consistent with our analyses in Appendix C.3.

E.1.2 One-State Bandits

To simplify further experiments, we modify the two-state bandits above so that s2 is drawn with
probability 0 — equivalently, we have a set of one-state bandits (with only s1) with two actions A =
{0, 1} where 0 corresponds to ↗ and 1 corresponds to ↘, and corresponding reward distributions
R0 ∼ N (R̄0, σ

2
0) and R1 ∼ N (R̄1, σ

2
1). For πb and πe, we consider the same set of policies as

before, and the same evaluation setup. We omit the naive approach in this setting because it is
equivalent to our proposed approach when there is only one state (the state distribution is not affected
by adding counterfactual annotations directly).

Results for this setting are summarized in Table 4 and show similar trends as above. Next, we use
the one-state bandit to study the effect of weights w on OPE performance.
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Table 3: Summary of performance on the two-state bandit problem for various πb (rows) and πe

(columns), where each policy is denoted by its probabilities assigned to the two actions from s1. Each
cell of the table corresponds to a (πb, πe) combination, for which we report (bias, std, RMSE) for
three estimators: IS in the top row, naive in the middle row, and C*-IS in the bottom row.

R̄(s1,↗) = 1, R̄(s1,↘) = 2

πb

πe [ 1 , 0 ] [ 0 , 1 ] [0.5, 0.5] [0.1, 0.9] [0.8, 0.2]

[1.0, 0.0]
0 0.7 0.7
0.2 1.1 1.2
0 0.7 0.7

91 0.4 1
0.3 2 2
0 1.1 1.1

90.5 0.5 0.7
0.3 0.9 1
0 0.9 0.9

90.9 0.4 1
0.3 1.8 1.8
0 1.1 1.1

90.2 0.6 0.6
0.2 0.9 0.9
0 0.7 0.7

[0.0, 1.0]
90.5 0.4 0.6
0.2 1.1 1.1
0 0.7 0.7

0 1.1 1.1
0.3 2 2
0 1.1 1.1

90.2 0.6 0.7
0.3 0.9 1
0 0.9 0.9

0 1 1
0.3 1.8 1.8
0 1.1 1.1

90.4 0.4 0.6
0.2 0.8 0.9
0 0.7 0.7

[0.5, 0.5]
0 1 1
0.2 1.1 1.1
0 0.7 0.7

0 1.8 1.8
0.3 2 2
0 1.1 1.1

0 1 1
0.3 0.9 1
0 0.9 0.9

0 1.6 1.6
0.3 1.8 1.8
0 1.1 1.1

0 0.8 0.8
0.2 0.8 0.9
0 0.7 0.7

[0.1, 0.9]
0.1 2.6 2.6
0.2 1.1 1.1
0 0.7 0.7

0 1.2 1.2
0.3 2 2
0 1.1 1.1

0 1.3 1.3
0.3 0.9 1
0 0.9 0.9

0 1.1 1.1
0.3 1.8 1.8
0 1.1 1.1

0.1 2 2
0.2 0.8 0.9
0 0.7 0.7

[0.8, 0.2]
0 0.8 0.8
0.2 1.1 1.2
0 0.7 0.7

0.1 3.2 3.2
0.3 2 2
0 1.1 1.1

0 1.6 1.6
0.3 0.9 1
0 0.9 0.9

0 2.9 2.9
0.3 1.7 1.8
0 1.1 1.1

0 0.8 0.8
0.2 0.8 0.9
0 0.7 0.7

R̄(s1,↗) = −1, R̄(s1,↘) = 1

πb

πe [ 1 , 0 ] [ 0 , 1 ] [0.5, 0.5] [0.1, 0.9] [0.8, 0.2]

[1.0, 0.0]
0 0.7 0.7

90.1 1.1 1.1
0 0.7 0.7

90.5 0.4 0.6
0.2 1.1 1.1
0 0.7 0.7

90.2 0.5 0.5
0 0.9 0.9
0 0.4 0.4

90.4 0.4 0.6
0.2 1.1 1.1
0 0.6 0.6

90.1 0.6 0.6
90.1 1 1
0 0.6 0.6

[0.0, 1.0]
0.5 0.4 0.6
90.1 1.1 1.1
0 0.7 0.7

0 0.7 0.7
0.2 1.1 1.2
0 0.7 0.7

0.3 0.5 0.5
0 0.9 0.9
0 0.4 0.4

0.1 0.6 0.7
0.2 1.1 1.1
0 0.6 0.6

0.4 0.4 0.6
90.1 1 1
0 0.6 0.6

[0.5, 0.5]
0 1.1 1.1

90.1 1.1 1.1
0 0.7 0.7

0 1.1 1.1
0.2 1.2 1.2
0 0.7 0.7

0 0.9 0.9
0 1 1
0 0.4 0.4

0 1 1
0.2 1.1 1.1
0 0.6 0.6

0 0.9 0.9
90.1 1 1
0 0.6 0.6

[0.1, 0.9]
0 2.4 2.4

90.1 1.1 1.1
0 0.7 0.7

0 0.7 0.7
0.2 1.1 1.2
0 0.7 0.7

0 1.4 1.4
0 0.9 0.9
0 0.4 0.4

0 0.8 0.8
0.2 1.1 1.1
0 0.6 0.6

0 2 2
90.1 1 1
0 0.6 0.6

[0.8, 0.2]
0 0.8 0.8

90.1 1.1 1.1
0.1 0.7 0.7

0.1 1.8 1.8
0.2 1.1 1.2
0 0.7 0.7

0 1.1 1.1
0 0.9 0.9
0 0.4 0.4

0.1 1.7 1.7
0.1 1.1 1.1
0 0.6 0.6

0 0.8 0.8
90.1 1 1
0 0.5 0.5

R̄(s1,↗) = −1, R̄(s1,↘) = −2

πb

πe [ 1 , 0 ] [ 0 , 1 ] [0.5, 0.5] [0.1, 0.9] [0.8, 0.2]

[1.0, 0.0]
0 0.7 0.7

90.1 1.1 1.1
0 0.7 0.7

1 0.4 1.1
90.3 2 2
0.1 1.1 1.1

0.5 0.5 0.7
90.2 1 1
0.1 0.9 0.9

0.9 0.4 1
90.3 1.7 1.8
0.1 1.1 1.1

0.2 0.6 0.7
90.2 0.9 0.9
0 0.8 0.8

[0.0, 1.0]
0.5 0.4 0.6
90.1 1.1 1.1
0 0.7 0.7

0.1 1.1 1.1
90.3 2 2
0.1 1.1 1.1

0.3 0.7 0.7
90.2 1 1
0.1 0.9 0.9

0.1 1 1
90.3 1.7 1.8
0.1 1.1 1.1

0.4 0.4 0.6
90.2 0.9 0.9
0 0.8 0.8

[0.5, 0.5]
0 1.1 1.1

90.1 1.1 1.1
0 0.7 0.7

0.1 1.8 1.8
90.3 2 2
0.1 1.1 1.1

0.1 1 1
90.2 1 1
0.1 0.9 0.9

0.1 1.6 1.6
90.3 1.7 1.8
0.1 1.1 1.1

0 0.9 0.9
90.2 0.8 0.9
0 0.8 0.8

[0.1, 0.9]
0 2.4 2.4

90.1 1.1 1.1
0 0.7 0.7

0.1 1.2 1.2
90.3 2 2
0.1 1.1 1.1

0 1.3 1.3
90.2 1 1
0.1 0.9 0.9

0.1 1.1 1.1
90.3 1.7 1.8
0.1 1.1 1.1

0 1.9 1.9
90.2 0.9 0.9
0 0.8 0.8

[0.8, 0.2]
0 0.8 0.8

90.1 1.1 1.1
0.1 0.7 0.7

0.1 3.1 3.1
90.3 2 2
0 1.1 1.1

0 1.5 1.5
90.2 1 1
0.1 0.9 0.9

0.1 2.8 2.8
90.3 1.8 1.8
0 1.1 1.1

0 0.8 0.8
90.2 0.8 0.9
0.1 0.8 0.8
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Table 4: Summary of performance on the one-state bandit problem for various πb (rows) and πe

(columns), where each policy is denoted by its probabilities assigned to the two actions from s1. Each
cell of the table corresponds to a (πb, πe) combination, for which we report (bias, std, RMSE) for
three estimators: IS in the top row, naive in the middle row, and C*-IS in the bottom row.

R̄0 = 1, R̄1 = 2

πb

πe [ 1 , 0 ] [ 0 , 1 ] [0.5, 0.5] [0.1, 0.9] [0.8, 0.2]

[1.0, 0.0]
0.03 0.5 0.5

0.03 0.5 0.5

92 0 2

0.02 0.47 0.47

90.980.25 1.01

0.03 0.34 0.35

91.8 0.05 1.8

0.02 0.43 0.43

90.37 0.4 0.55

0.03 0.41 0.41

[0.0, 1.0]
91 0 1

0.02 0.47 0.47

0.03 0.5 0.5

0.03 0.5 0.5

90.480.25 0.54

0.03 0.34 0.35

90.070.45 0.45

0.03 0.45 0.45

90.79 0.1 0.8

0.02 0.39 0.39

[0.5, 0.5]
0.01 1.23 1.23

0.03 0.47 0.47

0.09 2.17 2.17

0.02 0.5 0.5

0.05 0.71 0.71

0.03 0.34 0.35

0.08 1.86 1.86

0.02 0.46 0.46

0.02 0.69 0.69

0.03 0.39 0.39

[0.1, 0.9]
0.08 3.46 3.46

0.01 0.47 0.47

0.02 0.88 0.88

0.04 0.5 0.5

0.05 1.45 1.45

0.03 0.34 0.35

0.03 0.59 0.59

0.03 0.45 0.45

0.07 2.64 2.64

0.02 0.39 0.39

[0.8, 0.2]
0.03 0.75 0.75

0.04 0.48 0.48

0.05 4.28 4.28

0.01 0.49 0.49

0.04 1.92 1.92

0.03 0.34 0.35

0.05 3.8 3.81

0.02 0.44 0.44

0.03 0.65 0.65

0.03 0.4 0.4

R̄0 = −1, R̄1 = 1

πb

πe [ 1 , 0 ] [ 0 , 1 ] [0.5, 0.5] [0.1, 0.9] [0.8, 0.2]

[1.0, 0.0]
0.03 0.5 0.5

0.03 0.5 0.5

91 0 1

0.02 0.47 0.47

90.480.25 0.54

0.03 0.34 0.35

90.9 0.05 0.9

0.02 0.43 0.43

90.17 0.4 0.43

0.03 0.41 0.41

[0.0, 1.0]
1 0 1

0.02 0.47 0.47

0.03 0.5 0.5

0.03 0.5 0.5

0.52 0.25 0.57

0.03 0.34 0.35

0.13 0.45 0.47
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Using equal weights (in C*-IS) is a reasonable heuristic though not always variance-minimizing.
In the results above, C*-IS assumed the weights are split equally for factual and counterfactual data.
Next, we explore the effect of different weighting schemes on the performance of C-IS, applied to the
same class of bandit problems described above. Note that, consistent with Theorem 1, C-IS remains
unbiased regardless of weights, except potentially at extreme values of weights (0 or 1) that ignore
either the factual data or counterfactual annotations. Across different settings (Figure 7a-d), we found
that the ideal weighting scheme is problem-specific, and certain weights may lead to higher variance
compared to standard IS (e.g., lower left region of Figure 7b). Encouragingly, these results also
demonstrate that C*-IS, though not always variance-minimizing, consistently achieves lower variance
than standard IS (when the data has full support and the estimator is unbiased). Additionally, variance
in the weight distributions directly contributes to variance in the resulting estimator (Figure 7e),
corroborating our analysis in Theorem 13. Overall, our results suggest that C*-IS, which uses constant
weights split equally among actions, is a promising heuristic for using C-IS in practice.
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Figure 7: Heatmaps of log std for C-IS using different weights applied to various problems (with
different bandit parameters, πb, πe, and annotation quality; exact parameter settings are specified
below). W (ã|s, a) is the weight wã assigned to action ã given the factual sample (s, a). Asterisks
∗ indicate the weights under which the variance is minimized for each problem. Gray crosses ×
indicate where the estimator is biased. Red circles ⃝ correspond to C*-IS. Yellow dots • in the upper
right corners correspond to standard IS (where applicable). (a-b) Constant weights where we sweep
the factual weight within the range [0, 1] for both actions. (c-d) Similar to (a), where the annotations
have a larger (c) or smaller (d) variance than the reward function. (e) Weights are drawn from uniform
distributions centered at 0.5. We sweep the range of the uniform distributions within [0, 1].
Parameter settings: (a) Base setting, R = [1, 2], σR = [1, 1], πb = [0.1, 0.9], πe = [0.8, 0.2], σG = σR. (b) Annotations are not useful,
R = [1, 2], σR = [1, 1], πb = [0.9, 0.1], πe = [0.95, 0.05], σG = σR. (c) Annotations has larger variance than rewards, R = [1, 2],
σR = [1, 1], πb = [0.1, 0.9], πe = [0.8, 0.2], σG = 2σR. (d) Annotations has smaller variance than rewards, R = [1, 2], σR = [1, 1],
πb = [0.1, 0.9], πe = [0.8, 0.2], σG = 0.5σR. (e) R = [1, 2], σR = [1, 1], πb = [0.1, 0.9], πe = [0.8, 0.2], σG = σR.

Imputing missing annotations can reduce variance. Finally, we explore the impact of missing
annotations on the performance of C-IS. As shown in Figure 8a, obtaining more counterfactual
annotations generally helps to reduce the variance. However, as noted in our variance analyses, if
annotations for the same factual (s, a) are sometimes missing, we cannot directly apply C*-IS with
equal weights; this may lead to increased variance due to variance in the weights. Here, we use a
simple strategy to impute the missing annotations with the average of other annotations (for the same
counterfactual ã of the same factual (s, a)). As shown in Figure 8b, this reduces the variance further
especially when not all annotations are available.

(a) Without imputation (b) With imputation

0 1Fraction annotated
(action 0)

0

1

F
ra

ct
io

n
an

n
o

ta
te

d
(a

ct
io

n
1

) ∗

0.0

0.5

1.0

1.5

0 1Fraction annotated
(action 0)

0

1

F
ra

ct
io

n
an

n
o

ta
te

d
(a

ct
io

n
1

)

∗

0.0

0.5

1.0

1.5

Figure 8: Heatmaps of log std for C-IS where some
counterfactual annotations may be missing. We vary
the fraction of acquired annotations for the two ac-
tions independently within [0, 1]. (a) Equal weights
(as in C*-IS) are used when annotations are available;
otherwise, the factual weight is set to 1 when anno-
tations are missing. (b) The missing annotations are
imputed using other similar annotations. Imputing
missing annotations allows for C*-IS to be applied
directly and it achieves lower variance. Parameter
settings are the same as Figure 7a.
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E.2 Healthcare Domain - Sepsis Simulator

E.2.1 Experimental Setup

Simulator Description. The patient state is characterized by five variables: a binary indicator for
diabetes status, and four ordinal-valued vital signs (heart rate, blood pressure, oxygen concentration,
glucose). Following prior work [22], we used a discrete state space with |S| = 1440. The action
space corresponds to the administration of vasopressors and takes on a binary value (on/off), which
may increase or decrease the values of certain vital signs (with pre-specified probabilities) at the
next time step. The action space in the original simulator formulation involves combinations of 3
treatments: antibiotics, vasopressors, and mechanical ventilation; we focus on only vasopressors for
the purpose of illustration. The episode ends when the patient is discharged or died; discharge only
occurs when all vitals are normal and all treatments are turned off, whereas death occurs if three or
more vitals are abnormal. Rewards are sparse and only assigned at the end of each episode, with +1
for survival and −1 for death. Episodes that reach the maximum length of 20 are truncated with zero
terminal reward.

Evaluation Setup. Following prior work [22], we collected 50 offline datasets from the sepsis
simulator (using different random seeds) each with 1000 episodes by following an ϵ-greedy behavior
policy with respect to the optimal policy where ϵ = 0.1. For the evaluation policies, we created a set
of deterministic policies by perturbing the optimal policy such that each policy takes the non-optimal
actions in a randomly selected subset of states. We varied the number of “action-flipped” states in
{50, 100, 200, 300, 400} and generated 5 different evaluation policies for each; we also included the
optimal policy in the candidate set, resulting in a total of 26 candidate evaluation policies. These
represent policies that may be derived from offline data by typical RL approaches that aim to learn
deterministic policies, and are of diverse quality where approximately half are superior to the behavior
policy while the other half are inferior (Figure 9). As the baseline estimator that only makes use
of offline data, we applied standard PDIS which does not rely on counterfactual annotations. To
apply C*-PDIS, we assume all counterfactual annotations are collected in our main experiments in
which they may be drawn from different annotation functions; we explore the impact of missing
annotations in subsequent sensitivity analyses. For C*-PDIS, we considered three different annotation
functions: (i) G = Qπe , the Q-function of the evaluation policy πe; (ii) G = Qπb , the Q-function
of the behavior policy, and (iii) G = Qπb 7→ Qπe , where we apply the bias correction procedure
discussed in Appendix D.1. We also compare to two naive baselines (given perfect annotations):
“naive unweighted” simply adds counterfactual annotations as new trajectories and has the same
issue discussed in Section 3.1, whereas “naive weighted” reweights the annotations at the trajectory
level instead of per-decision. More formally, assuming a binary action space A = {0, 1} (without
loss of generality), given a trajectory of length T with counterfactual annotations at each step,
τ = [st, at, rt]

T
t=1, g = {g1−at

t }Tt=1 where 1 − at is the counterfactual action for at, the naive
weighted estimator is defined as

(1−∑T
t=1 wt)ρ1:T (

∑T
t=1 rt) +

∑T
t=1

(
wtρ1:t−1ρ

1−at
t (

∑t−1
t′=1 rt′ + g1−at

t )
)

Intuitively, this first converts each annotation into a sub-trajectory that terminates at the step of
annotation with the counterfactual action [s1, a1, r1, · · · , st, 1 − at, gt], and then performs IS on
each sub-trajectory (including the original trajectory), and finally computes a weighted sum of these
T + 1 estimates (1 factual estimate, T counterfactual estimates) using weights (1 −∑T

t=1 wt),
w1, · · · , wT . The reason why “naive weighted” does not work is more subtle: while reweighting the
(partial) trajectories constructed from the counterfactual annotations correctly maintains the initial
state distribution, it does not correctly maintain the intermediate state distributions.
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Figure 9: The true value v(πe) of each of the 26 evaluation policies. The two dashed line are,
respectively, the value of the optimal policy and the value of the behavior policy v(πb) (which is
ϵ-greedy with respect to the optimal policy where ϵ = 0.1). On the right, we additionally plot error
bars representing ± standard deviation of the values at initial states for each of the policies. The
average std of initial state values over all 26 policies is 0.312.

E.2.2 Results

C*-PDIS outperforms all baselines in all metrics for the ideal setting. As shown in Table 5, when
all counterfactuals are available and annotated with the evaluation policy’s Q-function (G = Qπe),
C*-PDIS outperforms baseline PDIS (without annotations) in all metrics, suggesting that it provides
more accurate OPE estimates. In contrast, the two naive approaches fail to provide accurate estimates
and often underperform standard PDIS.

C*-PDIS is robust to biased annotations. Under the more realistic scenario where G = Qπb , i.e.,
annotations summarize the future returns under πb rather than πe, we observe a degradation in all
metrics compared to the ideal case, though C*-PDIS is still superior to PDIS (Table 5). Applying
the bias correction procedure G = Qπb 7→ Q̂πe (see Appendix D.1) helps recover performance to be
closer to the ideal case, and is especially helpful for πe that are far away from πb (Figure 10).

Table 5: Comparison of baseline and proposed estimators in terms of OPE performance (RMSE,
ESS), ranking performance (Spearman’s rank correlation) and binary classification performance
(accuracy, FPR, FNR) on the sepsis simulator, reported as mean ± std from 50 repeated runs. Bolded
results are the best for each metric, whereas highlighted results outperform all baselines. The upper
table shows the overall results; the lower table shows the breakdown by ordinary IS and weighted IS
(OIS vs WIS) applied to each approach.

Estimator ↓ RMSE ↑ ESS ↑ Spearman ↑ %Accuracy ↓ %FPR ↓ %FNR

B
as

el
in

e PDIS (w/o annot.) 0.113 ±0.038 76.8 ±44.0 0.596 ±0.110 76.5 ±3.5 33.7 ±8.7 15.9 ±4.6

Naive unweighted (G = Qπe ) 0.128 ±0.006 207.2 ±91.5 0.089 ±0.089 50.0 ±6.0 11.6 ±8.3 78.1 ±13.6

Naive weighted (G = Qπe ) 0.097 ±0.006 300.8 ±117.6 0.420 ±0.097 64.3 ±4.7 24.0 ±12.7 44.3 ±11.4

Pr
op

os
ed C*-PDIS (G = Qπe ) 0.013 ±0.005 994.0 ±10.1 0.995 ±0.003 95.7 ±3.1 4.5 ±6.9 4.2 ±5.3 } ⋆ ideal case

C*-PDIS (G = Qπb ) 0.070 ±0.003 994.0 ±10.1 0.961 ±0.011 86.8 ±8.2 22.0 ±20.1 8.2 ±11.3
}

relaxing
Assump. 2C*-PDIS (G = Qπb 7→ Q̂πe ) 0.028 ±0.007 994.0 ±10.1 0.979 ±0.010 90.1 ±5.4 4.2 ±6.6 14.1 ±9.7

Estimator ↓ RMSE ↑ ESS ↑ Spearman ↑ %Accuracy ↓ %FPR ↓ %FNR

B
re

ak
do

w
n

O
IS

vs
W

IS PDOIS (w/o annot.) 0.079 ±0.054 76.8 ±44.0 0.868 ±0.087 79.8 ±5.3 6.4 ±7.3 30.3 ±8.8

PDWIS (w/o annot.) 0.136 ±0.033 76.8 ±44.0 0.523 ±0.178 73.2 ±5.1 61.1 ±13.9 1.6 ±3.4

C*-PDOIS (G = Qπe ) 0.013 ±0.005 994.0 ±10.1 0.995 ±0.003 95.6 ±3.2 4.5 ±6.9 4.3 ±5.5

C*-PDWIS (G = Qπe ) 0.013 ±0.005 994.0 ±10.1 0.995 ±0.003 95.7 ±3.0 4.5 ±6.9 4.1 ±5.1

C*-PDOIS (G = Qπb ) 0.070 ±0.003 994.0 ±10.1 0.962 ±0.012 86.7 ±8.3 20.2 ±20.1 8.3 ±11.4

C*-PDWIS (G = Qπb ) 0.070 ±0.003 994.0 ±10.1 0.961 ±0.012 86.9 ±8.1 19.8 ±20.1 8.1 ±11.2

C*-PDOIS (G = Qπb 7→ Q̂πe ) 0.028 ±0.007 994.0 ±10.1 0.979 ±0.010 90.1 ±5.4 4.2 ±6.6 14.1 ±9.7

C*-PDWIS (G = Qπb 7→ Q̂πe ) 0.028 ±0.007 994.0 ±10.1 0.979 ±0.010 90.1 ±5.4 4.2 ±6.6 14.1 ±9.7
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Figure 10: RMSE of C*-PDIS vs. distance to πb (in terms of KL divergence) for each πe, plotted
with linear trend lines. OPE error increases as πe becomes more different from behavior.

Variance reduction of C*-PDIS outweighs the effect of noisy annotations. To understand the
robustness of our estimator to annotation noise, we perturbed the annotations with varying amounts
of noise. Specifically, each annotation is added with a noise value drawn from zero-mean Gaussian
distributions with a pre-specified standard deviation which we vary. As the level of annotation
noise increases (Figure 11-left), performance degradation is minimal even at the highest level of
noise tested (with a std of 1, which is large relative to the reward range [−1, 1], and most notably
larger than 0.31, the std of initial state values of this domain). Our estimator remains competitive
relative to the baseline PDIS, suggesting that the benefit of variance reduction from additional data
(through counterfactual annotations) outweighs the variance increase from annotation noise, even
when annotations are much noisier than factual data. The same trend holds when only 10% of the
counterfactual annotations are collected (Figure 11-right).
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Figure 11: Performance of our proposed C*-PDIS estimator is generally robust to noisy annotations.
Trend lines show average of 50 runs ± one std. When all annotations are available (left), the
performance degradation of C*-PDIS is minimal even at the highest level of noise tested. When only
10% of the counterfactuals are annotated (right), performance degradation is more noticeable and
eventually becomes worse than baseline PDIS without annotations.
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Collecting more annotations and imputing missing annotations improves performance. As the
amount of available annotations increases (Figure 12), our approach interpolates between baseline
PDIS and the ideal case of C*-PDIS with an monotonic improvement in performance. Furthermore,
imputing annotations (as described in Appendix D.2) achieves better performance, suggesting it is a
promising strategy to handle missing annotations when not all annotations can be obtained in practice.
The same trend holds under different amounts of annotation noise (Figure 12 left vs right).
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Figure 12: Performance of our proposed C*-PDIS estimator is robust to missing annotations, espe-
cially when the missing annotations are imputed. Trend lines show average of 50 runs ± one std. As
the fraction of annotated samples increases, performance interpolates between baseline PDIS and
the ideal case where all counterfactual annotations are available. The imputed version outperforms
the unimputed version and maintains a competitive performance (relative to the ideal case) even in
the presence of high degrees of missingness. The same general trend holds across the two settings
with different amounts of annotation noise (left: std of 0.2, right: std of 1.0), though the imputed
annotations have a larger bias when annotations are noisier, leading to slightly worse performance
even when all annotations are available.
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