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Abstract

Robust fine-tuning aims to achieve competitive in-distribution (ID) performance
while maintaining the out-of-distribution (OOD) robustness of a pre-trained
model when transferring it to a downstream task. Recently, projected gradient
descent has been successfully used in robust fine-tuning by constraining the
deviation from the initialization of the fine-tuned model explicitly through
projection. However, algorithmically, two limitations prevent this method from
being adopted more widely, scalability and efficiency. In this paper, we propose
a new projection-based fine-tuning algorithm, Fast Trainable Projection (FTP) for
computationally efficient learning of per-layer projection constraints, resulting in
an average 35% speedup on our benchmarks compared to prior works. FTP can be
combined with existing optimizers such as AdamW, and be used in a plug-and-play
fashion. Finally, we show that FTP is a special instance of hyper-optimizers that
tune the hyper-parameters of optimizers in a learnable manner through nested
differentiation. Empirically, we show superior robustness on OOD datasets,
including domain shifts and natural corruptions, across four different vision tasks
with five different pre-trained models. Additionally, we demonstrate that FTP is
broadly applicable and beneficial to other learning scenarios such as low-label
and continual learning settings thanks to its easy adaptability. The code will be
available at https://github.com/GT-RIPL/FTP.git.

1 Introduction

With new progress being made in pre-training of foundation models every year, such as self-
supervised [1, 2, 3] or language-supervised training [4], their potential has gone far beyond merely
speeding up convergence [5]. They have demonstrated superior transferability to other tasks, reducing
the need for data and improving robustness and generalization capabilities [6, 7, 8]. The problem of
how to fine-tune (transfer) a foundation model such that we maintain its robustness and generalization
capabilities acquired during pre-training on large datasets has therefore become an essential research
topic. This problem is hard because the conventional machine learning paradigm of validating on
held-out training data does not impose any constraints on robustness and generalization w.r.t. the
foundation models. For example, fine-tuning with a slightly large learning rate can easily destroy
capabilities that reside in the foundation models [8], while performing well on the target task.

To maintain the robustness and generalization capability of the pre-trained model when fine-tuning,
recent projection-based methods explicitly constrain the distance between the fine-tuned and the
pre-trained models through projection. For example, MARS-SP [9] specifies a distance constraint
shared by all layers in a neural network. However, it is practically intractable to tune a constraint
for each layer (poor scalability). TPGM [10] proposes to automatically learn different constraints
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Figure 1: (a): FTP updates the model using (unconstrained) gradient descent (UGD) to calculate W̃t,
then updates the projection constraint γt (ProjUpdate), and finally projects W̃t to Wt (Projection),
all in a single forward pass. (b),(c): Visualizations of in-distribution (Real/Clean, labeled as ID),
out-of-distribution (Sketch/Fog, etc.) accuracy and computation time (iterations/sec) as a percentage
of vanilla fine-tuning (FT) for classification on DomainNet (Tab. 2) and semantic segmentation on
PASCAL-Context (Tab. 4) respectively. FTP improves the OOD robustness of FT and is much more
computationally efficient than prior work TPGM.

for each layer, solving the issue of scalability in MARS-SP, however, with increased computational
overhead (poor efficiency). These limitations prevent the method from being adopted more widely.

To achieve scalability and efficiency simultaneously, we propose Fast Trainable Projection (FTP),
for learning both the projection constraints and the main model in a single forward pass (Fig. 1a),
significantly reducing computation overhead in prior works while achieving competitive performance.
Specifically, FTP removes the algorithmic redundancy of extra training procedures required in
TPGM [10], which requires sampling a separate batch of data and running a nested training loop.
FTP achieves this by 1) utilizing different batches of training data sampled at consecutive steps
and 2) re-using gradients calculated for the main model update (Sec. 3.2). This leads to a 35%
speedup with comparable performance in fine-tuning (Fig. 1b, 1c). The efficiency improvement
and easy adaptability as a drop-in replacement with existing optimizers are essential to making
projection-based methods applicable to more fine-tuning problems. For example, we implement
SGDP, an SGD variant with built-in FTP. SGDP can be used as a drop-in replacement for SGD
(details in Appendix 8.7) as:

optimiser = SGDP(param_group ,** optimizer_params) #See Appendix 8.7.

To demonstrate this, we test FTP on four different vision tasks, image classification, semantic
segmentation, human parts segmentation, and surface normal estimation. FTP shows superior OOD
performance under domain shift or natural corruptions on all benchmarks. Moreover, we apply FTP
to a continual learning (CL) benchmark and achieve state of the art performance when combined with
a simple CL technique.

Finally, we show that FTP is a special instance of hyper-optimizers [11, 12, 13, 14, 15, 16, 17, 18]
that aims to reduce the manual tuning of optimization hyper-parameters such as learning rate by
learning them automatically through automatic differentiation and nested optimization. Theoretically,
to understand why FTP and other projection methods can maintain the robustness of the pre-trained
models, we propose to establish a theoretical connection between robustness and projection through
the lens of Liptschitz continuity, a widely adopted measure of robustness [19, 20, 21]. In summary,
our contributions are:

• We present a new fine-tuning algorithm, Fast Trainable Projection, to efficiently learn
the projection constraints and fine-tune the model simultaneously, bringing significantly
improved computation efficiency w.r.t. prior works [10] in Sec. 3.2.

• We show that FTP is a special instance of hyper-optimizers that aims to reduce manual
tuning of hyper-parameters through nested optimization in Sec. 3.3.

• We discuss a dual perspective of the fine-tuning robustness in the feature space and the
weight space of a model to mathematically understand why projection can maintain the
robustness of the pre-trained models in Sec. 3.4.

2



• We show superior robustness on OOD datasets on four vision tasks with five pre-trained
models and SOTA performance on a continual learning benchmark, all with a 35% speedup
in Sec. 4.

2 Related Works

We summarize related works in (general) robust fine-tuning into three categories: when, where, and
how much to fine-tune, depending on their underlying strategy. Moreover, we discuss recent advances
in fine-tuning language-image pre-trained models, which have inspired specialized fine-tuning
strategies. When to fine-tune: LP-FT [7] discovers that fine-tuning the entire network can distort
features in the pre-trained models and proposes to first only fine-tune the last linear layer followed by
training the entire network with a small learning rate. We will include LP-FT in our experiments.
Where to fine-tune: Instead of fine-tuning the entire network, some methods investigate the choice
of weights to fine-tune. SpotTune [22] learns where to fine-tune through an additional policy network.
However, SpotTune needs to retain the policy network, the pre-trained model, and the fine-tuned model
in memory for inference, adding significant computation at inference time. Recently, SurgicalFT [23]
proposes to use the GradientNorm heuristic, the ratio of the gradient norm to the parameter norm, to
determine which layer to fine-tune. Parameter-efficient fine-tuning methods are another example of
this category. While they aim to minimize the parameters tuned, they have been shown to improve
OOD generalization performance as well in NLP applications [24, 25, 26, 27, 28, 29]. We specifically
compare to two recent parameter-efficient methods that only tune the bias terms: Bitfit [30] for
Transformers [31] and Partial Fusion [32] for ResNets [33]. How much to fine-tune: Our work
belongs to this category where the entire neural network is fine-tuned simultaneously. Specifically, we
can split works into two sub-categories: regularization and projections. Regularization: DELTA [34]
proposes to regularize the output (feature maps) of a neural network to that of its pre-trained model.
This requires two separate passes through the pre-trained model and the fine-tuned model increasing
both memory and computation overhead. L2-SP [35] instead regularizes the L2 distance between
the fine-tuned model and the pre-trained model, serving as a strong baseline. Projection: Utilizing
projection to enforce a close distance to the pre-trained model has been studied in prior works:
MARS-SP [9] and TPGM [10]. We dedicate a section to revisit them later in the method section
(Sec. 3.1). Language-Image Pre-trained Models. Several recent works have proposed special
fine-tuning strategies for language-image pre-trained models with zero-shot capability. WISE-FT [8]
achieves SOTA performance by linearly interpolating a fine-tuned model and its initialization at the
end of fine-tuning. However, it only applies to a subset of pre-trained models with linear connectivity
such as CLIP [4]. FT-Like-Pretrain [36] proposes to use a contrastive fine-tuning strategy, the same
strategy used in pre-training for those models, instead of the conventional cross-entropy loss for many
vision tasks. The method has demonstrated superior results when combined with WISE-FT, where
WISE-FT contributes the most to the improvement. Similarly, we will also combine our method with
WISE-FT to show improved OOD performance using CLIP.

3 Method

3.1 Review: Enforcing Projection and Learning Constraints

In this work, we focus on fine-tuning a pre-trained model, where W0 ∈ Rn×m is the weights of a
linear layer in the pre-trained model, to a downstream task. We denote Wt as the fine-tuned model
at training iteration t and wi as the ith row of a matrix W ∈ Rn×m. Several prior works [9, 10]
have attempted to use projection to improve fine-tuning robustness. The most vanilla formulation in
MARS-SP [9] has two steps: unconstrained gradient descent and projection.

Unconstrained Gradient Descent (Abbrev. UGD), the projection-based methods first compute the
updated model weights W̃t without projection. For example, at iteration t, given a batch of training
data Dtr

t , we first obtain W̃t as the following,

gt ← ∇LDtr
t
(Wt−1) ∈ Rn×m, W̃t ← Opt(Wt−1,gt). (1)

where gt is the derivative of the loss function LDtr
t
(Wt−1) calculated onDtr

t w.r.t. Wt−1 and Opt(·)
is an existing optimization algorithm, such as SGD, AdamW [37].
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Projection. MARS-SP [21] projects the updated model W̃t towards its initialization W0 with a
pre-defined projection constraint γ for all layers using the MARS matrix norm (see Appendix . 8.2)
as shown below in Eq. 2.

Wt = Π(W̃t,W0, γt) =

w
i⊺
t
...

wi⊺
t

 =


(

γ
∥w̃i

t−wi
0∥1

(w̃i
t −wi

0) +wi
0

)⊺
...(

γ
∥w̃n

t −wn
0 ∥1

(w̃n
t −wn

0 ) +wn
0

)⊺
 (2)

However, MARS-SP has poor scalability because it is practically intractable to hand-tune different
constraints for each layer, which results in sub-optimal performance as reported by TPGM [10].
Instead of a pre-defined γ for all layers, TPGM proposes to learn a different constraint γt for each
layer1. and updates them iteratively during training. This enables TPGM to customize a different
regularization strength for each layer and to have superior performance for both ID and OOD data.

ProjUpdate. Given as input the frozen unconstrained model W̃t from UGD (Eq. 1), TPGM adds
an intermediate ProjUpdate function before projection, which samples a separate set of data from
the validation dataset Dval

t and uses a standalone training loop to update the projection constraints
γt while keeping the model W̃t frozen. Specifically, ProjUpdate creates a temporary projected
model Wp by projecting W̃t towards W0 based on the previous constraint γt−1 using Eq. 2, i.e.,

Wp = Π( W̃t ,W0, γt−1). Therefore, Wp(γt−1)
2 can be viewed as a function of γt−1. Then FTP

calculates the gradient∇γt by taking a derivative of the loss function LDval
t

(Wp(γt−1)) w.r.t. γt−1:

∇γt ← ∇LDval
t

(Wp(γt−1)) , γt = Opt(γt−1,∇γt) (3)

where Wp = [wi
p, . . . ,w

n
p ]

⊺ and wi
p =

γt−1

∥w̃i
t −wi

0∥1
(w̃i

t −wi
0) +wi

0.

With the calculated gradient, TPGM uses an existing optimizer Opt(·) to update γt. This procedure,
sampling Dval

t and calculating the derivative∇LDval
t

(Wp(γt−1)), is the key to learning projection
constraints because the unconstrained model W̃t (highlighted above and calculated in Eq. 1), was
updated on the training data Dtr

t and γt is now updated on separate data Dval
t . The discrepancy

between Dtr
t and Dval

t allows TPGM to find a better projected model Wp (projected between W̃t

and W0) by updating γt, which balances between fitting the training data Dtr
t and generalizing to

Dval. Finally, with an updated γt, TPGM again projects W̃t towards W0 to obtain the final model
Wt using Eq. 2, replacing the pre-defined γ with a learned γt. A flow chart of TPGM is in Fig. 2.

The algorithm demonstrated the capability to automatically learn different constraints for each layer,
solving the scalability issue in MARS-SP. However, TPGM introduces extra computation in the
additional training loop. In the next section, we propose a scalable and efficient projection algorithm
that learns the projection constraints for each layer without separate validation data and loops.

3.2 FTP: Fast Trainable Projection

To inherit the scalability of TPGM while reducing the computational overhead, we propose Fast
Trainable Projection (FTP) (Algorithm 1). Similar to TPGM, the algorithm has three components:
UGD, ProjUpdate, Projection. The ProjUpdate component is the major contributor to efficient
computation. It builds on a key insight: Instead of sampling separate data Dval

t each time, we use two
training data batches sampled independently at consecutive steps, e.g., Dtr

t−1 and Dtr
t . Specifically,

we use Dtr
t to update γt instead of Dval

t . As a result, the optimization of γt re-uses most of the
computation used for the optimization of the main model.

ProjUpdate. Specifically, instead of taking a derivative of LDval
t

(Wp) w.r.t. γt−1 as in TPGM,
FTP calculates the gradient of γt−1 by the derivative of the loss function on the current training

data LDtr
t
(Wt−1) w.r.t. γt−1. Note that Wt−1 = Π( W̃t−1 ,W0, γt−1) is also a function of the

1We omit the index for different layers to avoid notation clutter and the subscript t indicates training iterations.
2We use this functional form Wp(γt−1) to highlight the dependency on γt−1.
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Algorithm 1 FTP: Fast Trainable Projection.

Require: W0 the pre-trained model
Require: κ positive gradient annealing rate
Require: µ← 1e− 2, β1, β2 ← (0.9, 0.999) fixed parameters for AdamUpdate

for t = 1...T do{
gt ← ∇LDtr (Wt−1)

W̃t ← Opt(Wt−1,gt)
▷ Unconstrained Gradient Descent (Eq. 1)

if t = 1 then
γt = 1e− 8 ▷ Initialize γ

else
∇γt ←

∑
i

(
gi,⊺
t (w̃i

t−1 −wi
0)

1
∥w̃i

t−1−wi
0∥1

)
if∇γt > 0 : ∇γt = κ∇γt
γt ← AdamUpdate(γt−1,∇γt, t)

▷ ProjUpdate (Eq. 4,Eq. 5, Alg. 2)

Wt = Π(W̃t,W0, γt) ▷ Projection (Eq. 2)

Unconstrained GD ProjUpdate Projection
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Figure 2: Computation Flow Chart of TPGM (top) and FTP (bottom) at iteration t. The main
difference between TPGM and FTP is in the PorjUpdate step. FTP uses the previous model Wt−1

and cached gradients from LDt
tr
(Wt−1) to update the projection constraints γt.

constraint γt−1 as a result of projection from the previous step. Hence, by virtue of the chain rule,
the gradient of LDtr

t
(Wt−1(γt−1)) w.r.t. γt−1 is,

∇γt =
n∑

i=1

∇LDtr
t
(wi

t−1(γt−1))
⊺︸ ︷︷ ︸

gi
t

∂wi
t−1

∂γt−1
=

n∑
i=1

gi,⊺
t (w̃i

t−1 −wi
0)

1

∥w̃i
t−1 −wi

0∥1
(4)

where the summation loops over each row in the matrix Wt−1 because the same constraint γt−1 is
enforced for all rows (see MARS norm in Appendix Eq. 15 and Eq. 2 ) so the final gradient is the
summation of all gradients for each row. Similar to TPGM, because the starting point of projection
W̃t−1 (highlighted above) was updated using the previous training batch Dtr

t−1 and the gradient ∇γt
is calculated using the current batch Dtr

t , the discrepancy between Dtr
t−1 and Dtr

t enables FTP to
learn meaningful projection constraints. Crucially, we proposed a novel formulation that allows for
re-using the gradient gt used for calculating the unconstrained model W̃t in the UGD step (Eq. 1).

Gradient Annealing. Prior work [10] noticed that learning projection constraints for each layer
can suffer from underfitting because the learned constraints can be too conservative, and used an
additional regularization to help reduce this negative effect. For FTP, we introduce a simple technique
that uses a single gradient annealing factor for all layers, κ ∈ [0, 1] to modulate the magnitude of the
positive gradient∇γt > 0, which contributes to the shrinkage of the constraints. When∇γt > 0,

∇γt = κ∇γt. (5)

For example, when κ = 0, the projection constraint γ will not receive any positive gradient and is
therefore non-decreasing. With the annealed gradients∇γt, we update the constraint using the Adam
update rule [38] because Adam is suitable for non-stationary optimization, where the optimal values
change over time. Please see Appendix 8.3 for a detailed algorithmic description of AdamUpdate
and additional discussion on how FTP saves computation.
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Finally, after obtaining the updated γt from AdamUpdate, FTP applies the learned constraints to
project the current unconstrained model W̃t towards the pre-trained model W0 using Eq. 2 with a
different constraint for each layer. The complete algorithm is summarized in Alg. 1. For a quick
comparison with TPGM, we provide a side-by-side computation flow chart of FTP in Fig. 2.

Implicit Assumption. The algorithmic difference between TPGM and FTP makes an implicit
assumption. Specifically, after obtaining the updated constraints γt after AdamUpdate, if the
algorithm were to follow TPGM, the next step would be applying the updated constraints to re-
calculate the previous model Wt−1 since γt is updated based on Wt−1 (Eq. 4). However, instead of
rolling back, FTP applies the updated constraints directly to the current unconstrained model W̃t

to calculate Wt. This step assumes smoothness in the update of γt, i.e., the γt does not change
drastically in consecutive steps. The assumption is valid since γt is updated by AdampUpdate (Alg. 2
in Appendix 8.3) which uses a moving average update with a momentum of 0.9. So the change of γt
is very smooth because of the high discount factor of 0.9. Importantly, it enables us to re-use the
same gradient gt available for computing the current unconstrained model W̃t to update γt. This is
the key to saving computation because the separate training loop as a result of “rolling back” is the
main computation bottleneck in TPGM.

3.3 FTP as a Hyper-Optimizer for Fine-Tuning

The FTP algorithm in Alg. 1 bears motivational and algorithmic similarity to a recent resurrection
of hyper-optimizers [11, 12, 13, 14, 15, 16, 17, 18]. Specifically, hyper-optimizers aim to learn the
hyper-parameters such as the learning rate in an optimizer by treating them as learnable parameters
through nested differentiation and optimization because manual tuning of those hyper-parameters can
be time-consuming and can lead to sub-optimal performance. FTP stems from the same motivation
as the manual specification of projection constraints can be computationally infeasible [10].

To understand the algorithmic similarity better, let’s use SGD as an example. Suppose at iteration
t− 1, we have updated the model parameters Wt−2 through SGD with a learning rate αt−1.

Wt−1 = Wt−2 − αt−1∇L(Wt−2) (6)

At the current step t, hyper-optimizers first calculate the gradient w.r.t to the learning rate αt−1 and
update it using another SGD optimizer with a new learning rate parameter κ.

αt = αt−1 − κ
∂L(Wt−1)

∂α
= αt−1 + κ∇L(Wt−1)

T∇L(Wt−2) (7)

Finally, using the updated αt, hyper-optimizers update the main model parameters.

Wt = Wt−1 − αt∇L(Wt−1) (8)

It’s not hard to spot the algorithmic similarity between the FTP algorithm and hyper-optimizers. Both
algorithms first update the hyper-parameters (projection constraints γt in Eq. 4 vs. the learning rate αt

in Eq. 7) using the cached information from the previous iteration and the gradient from the current
iteration (known as hyper-gradients). Then, they apply the updated hyper-parameters to calculate
the current model. Finally, hyper-optimizers make the same assumption of smoothness in the update
of the hyper-parameters such that the update of the hyper-parameters and the model parameters can
be performed consecutively in a single forward pass. In this regard, FTP can be seen as a special
instance of hyper-optimizer for fine-tuning.

3.4 Dual Perspective: Fine-tuning Robustness in Feature Space and Weight Space

It is not immediately clear why FTP’s and other methods’ projections in the weight space maintain
the robustness of the pre-trained model in the feature space besides the intuition that the closer to
the pre-train model the more likely the fine-tuned model will behave like it. To fully understand
this, we study the mathematical connection between projection and robustness. Let x ∈ Rm denote
an input vector and h(x) : Rm → Rn a function mapping it to a feature space. Given two input
vectors x,x′ ∈ Rm, we denote the distance between them in the original space by their vector norms
∥x − x′∥x and in the feature space by ∥h(x) − h(x′)∥h. Let hf (·) and h0(·) denote a fine-tuned
model and its pre-trained initialization, and ∆h(·) ≡ hf (·)− h0(·) denotes the difference function.
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To capture the robustness of a fine-tuned model, we apply the notion of Lipschitz continuity on the
difference function because its Lipschitz constant captures the maximum rate of change of differences
between the fine-tuned model and the pre-trained model in the feature space. Formally,

∥∆h(x)−∆h(x′)∥h ≤ Ld∥x− x′∥x ∀(x,x′) ∈ Rm. (9)

where Ld ≥ 0 is the Lipschitz constant of the difference function ∆h(x). If the inequality is satisfied,
in this paper, we call hf (·) Ld-Lipschitz-robust w.r.t. the pre-trained initialization h0(·).
The definition has a natural intuition stemming from Lipschitz continuity, a measure of robustness [19,
20, 21]. A Lipschitz function is limited by how fast it can change, governed by the Lipschitz constant.
Traditionally, a small Lipschitz constant is associated with better robustness, because a small constant
means less sensitivity to changes in the input. We provide the following lemma (proof in Appendix 8.1)
to illustrate the connection between the difference function and the robustness of the fine-tuned model.
Lemma 1. If a fine-tuned model hf (·) is Ld-Lipschitz-robust with respect to its L0-Lipschitz pre-
trained initialization h0(·), i.e., ∀(x,x′) ∈ Rm,

∥∆h(x)−∆h(x′)∥h ≤ Ld∥x− x′∥x and ∥h(x)0 − h(x′)0∥h ≤ L0∥x− x′∥x
then, hf (·) is (Ld + L0)-Lipschitz, i.e.,

∥hf (x)− hf (x
′)∥h ≤ (Ld + L0)∥x− x′∥x ∀(x,x′) ∈ Rm.

Feature Space. From Lemma 1, we can see that minimizing Ld can improve the robustness of
the fine-tuned model, defined by its Lipschitz constant (Ld + L0), which equals L0 when Ld = 0.
Therefore, the fine-tuned model can achieve a similar level of robustness as the pre-trained model if
Ld is minimized. Colloquially, given two inputs (x,x′), where x′ is a perturbed version of x, hf (·)
will be just as sensitive/robust to the perturbation as h0(·) is if Ld is small.

Weight Space. The definition of fine-tuning robustness (Eq. 9) not only leads to an interpretation of
robustness in the feature space (Lemma 1) but also conveniently a projection operation in the weight
space. Specifically, we investigate a single linear layer in a neural network and show that enforcing
the inequality in Eq. 9 leads to a projection operation by virtue of linear operators and matrix norms.
We illustrate this in the following lemma with a full discussion and proof in Appendix 8.2.
Lemma 2. Assuming linear models h(x) = Wx + b,W ∈ Rn×m,b ∈ Rn, and both the input
space vector norm ∥ ·∥x and the feature space vector norm ∥ ·∥h are defined by l∞ norm. wi

p satisfies
the inequality in Eq. 9 if

wi
p = min

(
1,

Ld

∥̃wi
f −wi

0∥1

)
(wi

f −wi
0) +wi

0, ∀i ∈ {1, ..., n}. (10)

where wi denotes the i-th row of the matrix W and wi
p is the new projected fine-tuned model.

This is an equation of projection between Wf and W0 defined by the MARS norm in the weight
space for a single linear layer and is the projection operation used in FTP and prior works [9, 10]
(Eq. 2). It indicates that we can choose an arbitrarily small Ld and enforce it through Eq. 10,
potentially trading off fitting the downstream task and preserving robustness. In summary, this section
demonstrates the connection between robustness and projection. Specifically, we have shown that to
achieve good fine-tuning robustness, we can enforce a small Lipschitz constant Ld on the difference
function ∆h(x) in the feature space (Lemma 1), which can be physically enforced through the
projection of the fine-tuned model towards the pre-trained model in the weight space (Lemma. 2).

4 Experiments

Overview. To validate the effectiveness of FTP in fine-tuning pre-trained models, we benchmark
FTP on both image classification (Sec. 4.1) and dense vision tasks (Sec. 4.2) with different network
architectures and pre-trained models. For each benchmark, we report both in-distribution (ID)
performance as well as out-of-distribution (OOD) performance. We show that FTP not only achieves
competitive ID performance and superior OOD performance but is also much more computationally
efficient than prior works. We further test FTP’s regularization capability on a continual learning
benchmark and show state of art performance against recent SOTA methods (Sec. 4.3).
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Table 1: DomainNet Results using MOCO-V3 pre-trained ResNet50 with 100% Real Data. FTP
achieves the best OOD performance and is much faster than prior work TPGM [10] by 36%.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg. ID ∆ (%) OOD ∆ (%) Time (s/it)↓

Vanilla FT 81.99 (0.03) 31.52 (0.33) 42.89 (0.53) 18.51 (0.28) 44.98 (0.24) 34.47 0.00 0.00 0.35
Linear Prob. 73.01 (0.03) 24.10 (0.23) 39.56 (0.15) 12.27 (0.02) 30.38 (0.08) 26.58 -10.96 -22.90 0.10

Partial Fusion [32] 78.27 (0.03) 27.72 (0.07) 39.74 (0.12) 15.56 (0.08) 38.18 (0.12) 30.30 -4.55 -12.11 0.21
L2-SP [35] 81.51 (0.02) 34.91 (0.22) 45.76 (0.16) 18.97 (0.11) 45.29 (0.18) 36.23 -0.59 5.09 0.46

MARS-SP [9] 81.89 (0.01) 34.44 (2.54) 45.05 (1.91) 19.97 (1.48) 46.36 (1.29) 36.45 -0.13 5.74 0.43
LP-FT [7] 82.92 (0.01) 34.50 (0.22) 45.42 (0.31) 20.12 (0.43) 47.11 (0.27) 36.79 1.13 6.72 -

TPGM [10] 82.66 (0.13) 35.35 (0.33) 46.20 (0.20) 20.13 (0.12) 45.75 (0.12) 36.86 0.82 6.91 0.80

FTP 82.17 (0.02) 36.26 (0.06) 46.58 (0.10) 20.67 (0.03) 46.97 (0.06) 37.62 0.22 9.13 0.51

Table 2: DomainNet Results using CLIP pre-trained ResNet50 with 100% Real Data. FTP achieves
competitive OOD performance and is much faster than prior work TPGM [10] by 36%.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg. ID ∆ (%) OOD ∆ (%) Time (s/it)↓

Vanilla FT 80.93 (0.08) 31.81 (0.06) 41.02 (0.10) 20.29 (0.08) 43.59 (0.15) 34.18 0.00 0.00 0.58
Linear Prob. 52.56 (0.09) 20.05 (0.21) 24.92 (2.49) 19.18 (0.46) 21.15 (0.18) 21.33 -35.05 -37.60 0.14

Partial Fusion [32] 78.27 (0.11) 36.77 (0.32) 42.13 (0.35) 24.71 (0.18) 43.31 (0.53) 36.73 -3.29 7.46 0.33
L2-SP [35] 82.07 (0.09) 36.67 (0.11) 45.62 (0.35) 22.97 (0.42) 47.78 (0.30) 38.26 1.40 11.94 0.62

MARS-SP [9] 77.19 (0.63) 25.33 (1.07) 33.43 (2.06) 14.81 (0.43) 39.20 (0.74) 28.19 -4.62 -17.53 0.61
LP-FT [7] 80.82 (0.95) 34.85 (1.93) 44.03 (0.05) 22.23 (2.01) 46.13 (2.34) 36.81 -0.14 7.69 -

TPGM [10] 83.64 (0.01) 38.78 (0.42) 43.11 (0.25) 28.70 (0.31) 48.01 (0.25) 39.65 3.34 16.01 1.07

FTP 84.22 (0.11) 37.66(0.45) 46.11(0.29) 28.33 (0.33) 47.67 (0.18) 39.94 4.05 16.87 0.68

4.1 Image Classification Experiments

4.1.1 DomainNet

For the DomainNet experiment (image classification), which consists of five domains, Real, Sketch,
Painting, Infographics, and Clipart, we follow the setup of the prior work [10] and use its released
code to train FTP. Specifically, we use two pre-trained models, an ImageNet pre-trained MOCO-V3
ResNet50 [3] and a CLIP pre-trained ResNet50 [4]. For FTP, we only tuned the learning rate while
keeping the other hyper-parameters fixed as in the prior work. We use the Real domain as the ID
training dataset and the rest as OOD testing datasets. Please refer to Appendix 8.4 for more details.

FTP achieves the best OOD accuracy and is much more efficient. In Tab. 1 and Tab. 2, we show
results training on 100% DomainNet-Real data using CLIP and MOCO-V3 pre-trained initialization
respectively. Compared to the previous SOTA methods TPGM [10], FTP achieves competitive ID
accuracy and better OOD generalization performance. More importantly, in addition to favorable
results, FTP is 36% faster on average on both benchmarks compared to TPGM. Following TPGM [10],
we also report results training only on 10% DomainNet-Real data in Appendix Tab. 6.

4.1.2 ImageNet

Recently, zero-shot language-vision pre-trained models such as CLIP [4] have demonstrated strong
generalization capability to other tasks. Notably, WISE [8] showed that linear interpolation between
a fine-tuned model and its initialization achieves significant improvement in OOD generalization.
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Figure 3: ImageNet WISE Interpola-
tion [8] Result using CLIP ViT-Base
Fine-tuned models.

Table 3: ImageNet Fine-tuning Result using CLIP ViT-Base.

ID OOD Statistics
Im ImV2 Im-A Im-R Im-S OOD Ave. Ave.

zero-shot 67.68 61.41 30.60 56.77 45.53 48.58 52.40
vanilla FT 83.66 73.82 21.40 43.06 45.52 46.98 54.29

Linear Prob. 78.25 67.68 26.54 52.57 48.26 48.76 54.66
LP-FT [7] 82.99 72.96 21.08 44.65 47.56 46.56 53.85
L2-SP [35] 83.44 73.2 20.55 43.89 46.60 46.06 53.54

FTP 84.19 74.64 26.50 47.23 50.23 49.65 56.56
WISE-FT [8] 80.94 72.47 33.18 63.33 54.20 55.58 60.82
WISE-FTP 82.61 74.09 34.56 61.18 55.06 56.22 61.50

8



However, there are two limitations: 1) not all pre-trained models have this property of linear
connectivity and 2) a zero-shot classifier head is needed to initialize the linear classifier head. Our
contribution is orthogonal to WISE because FTP is a general optimization algorithm whereas
WISE is a post-training algorithm for specific zero-shot models. Therefore, we first compare FTP
to vanilla fine-tuning and then apply WISE to both models. We follow the public code base of
DEIT [39] to train our CLIP pre-trained ViT-Base. Specifically, we use weight-decay (0.1), drop-path
(0.2) [40], label-smoothing (0.1) [41], Mixup (0.8) [42] and Cutmix (1.0) [43]. We train our model on
ImageNet and report OOD performance on ImageNet-V2 [44], ImageNet-A [45], ImageNet-R [46],
and ImageNet-S [47]. Please refer to Appendix 8.4 for more details on implementation.

FTP outperforms vanilla fine-tuning and improves WISE performance. In Tab. 3, we report
performance for competing methods. Even with various regularizations and augmentations in place,
FTP can further improve ID performance on ImageNet. Furthermore, FTP brings better OOD
performance on all four OOD datasets. This shows that FTP successfully maintains the robustness of
the pre-trained CLIP model while existing regularization such as weight decay and drop-path do not.
We also report the interpolation results using WISE [8] for the vanilla fine-tuned and FTP fine-tuned
models. We sweep a range of interpolation ratios ∈ {0.1, 0.2, ..., 0.9} and show the trajectory of ID
vs. OOD performance plot in Fig. 3. The models with the best average performance are reported in the
lower portion of Tab. 3. As expected, WISE interpolation significantly improves OOD generalization
for both methods. However, WISE-FTP has significantly better ID performance while still having
better OOD performance. This shows that improvement to the base fine-tuning strategy can further
benefit pose-training methods such as WISE.

4.2 PASCAL Dense Vision Task Experiments

Table 4: Pascal Semantic Segmentation Results using SWIN-Tiny transformers pre-trained on
ImageNet21K. Performance is measured by mIoU↑. FTP achieves the best OOD performance and is
much faster than prior work TPGM [10] by 34%.

ID OOD Statistics
Clean Fog Defocus Gaussian Brightness OOD Avg. ID ∆ (%) OOD ∆ (%) Time (s/it)↓

Vanilla FT 66.03 (0.37) 56.72 (0.83) 38.04 (0.83) 23.21 (0.96) 58.03 (0.66) 44.00 0.00 0.00 0.288
Adapter [24] 71.85 (0.06) 69.36 (0.07) 50.94 (0.25) 37.43 (0.64) 68.26 (0.08) 56.50 8.82 28.40 0.233
BitFit [30] 70.31 (0.11) 67.00 (0.24) 46.39 (0.35) 30.61 (0.51) 66.22 (0.16) 52.56 6.49 19.44 0.248
L2-SP [35] 73.47 (0.06) 69.87 (0.04) 49.20 (0.43) 39.10 (0.84) 68.61 (0.24) 56.70 11.27 28.85 0.347

MARS-SP [9] 66.24 (0.23) 56.97 (0.79) 37.29 (1.20) 21.82 (2.06) 58.27 (0.33) 43.59 0.32 -0.94 0.318
LLRD [48] 72.09 (0.06) 68.13 (0.25) 46.18 (1.30) 37.28 (2.54) 66.30 (0.29) 54.47 9.18 23.79 0.289
TPGM [10] 72.56 (0.06) 69.51 (0.57) 50.88 (0.97) 38.62 (1.04) 68.82 (0.25) 56.96 9.89 29.44 0.611

FTP 73.79 (0.10) 71.10 (0.23) 52.63 (0.75) 40.25 (0.21) 69.81 (0.49) 58.45 11.76 32.83 0.401

To further demonstrate the effectiveness of FTP in more diverse scenarios, we test it on PASCAL-
Context [49]. Specifically, following the prior work [50], we use the PASCAL-Context datasets [49],
which consist of labels for semantic segmentation, human parts segmentation, and surface normal
estimation. For OOD performance, following the popular natural robustness literature [51], we report
results on various degradations including fog, defocus blur, Gaussian noise, and brightness corruption,
with 5 severity each. We use a combination of Swin ViT-Tiny [52] (pre-trained on ImageNet-22K)
and Segformer [53]. In this architecture, Swin Transformer serves as the feature extraction backbone
and Segformer is the task-specific decoder. While the feature backbone is initialized with pre-trained
weights, a significant part of the entire model (the Segformer decoder) is randomly initialized; In
contrast, in simple classification (Sec. 4.1.1), only the last linear classification layer is randomly
initialized. Please refer to Appendix 8.5 for details.

FTP achieves the best ID performance and OOD generalization. We report results for semantic
segmentation, human parts segmentation, and surface normal estimation in Tab. 4, Appendix Tab. 7,
and Appendix Tab. 8 respectively. We additionally add Layer-Wise Learning Rate decay [48] (
LLRD) as a strong baseline. Notably, in all three tasks, FTP outperforms vanilla fine-tuning on ID
performance by 11.71%, 4.48%, and 18.30% respectively. This demonstrates the effectiveness of
projection as a regularization technique for transfer learning. More importantly, the OOD performance
improves as large as 33.02% in semantic segmentation. This shows that 1) FTP can effectively
maintain the robustness of the original pre-trained model; 2) even though the entire decoder component
is randomly initialized, it is worthwhile to put regularizations on the pre-trained feature backbone.
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Table 5: CL Results on ImageNet-R

Method A1:N (↑) FN (↓)
FT++ [54] 48.93± 1.15 9.81± 0.31

LwF.MC [55] 66.73± 1.25 3.52± 0.39
L2P++ [56] 71.66± 0.64 1.78± 0.16

DualPrompt [57] 71.32± 0.62 1.71± 0.24
CODA-P [54] 75.45± 0.56 1.64± 0.10

EWC [58] 64.66± 2.04 1.55± 0.25
L2 [54] 76.06± 0.65 1.68± 0.16

FTP 76.06± 0.35 2.27± 0.18
FTP + EWC 77.26± 0.40 1.48± 0.15

4.3 Continual Learning (CL) Experiments

Recently, pre-trained models have been shown to greatly improve the performance of CL algo-
rithms [59]. We follow the settings in this work [59] to partition ImageNet-R (200 classes) into
10 sequential tasks with 20 non-overlapping classes in each task. A model is trained on each task
only once sequentially. To use FTP for CL tasks, unlike supervised vision tasks (Sec. 4.1, 4.2), we
re-initialize FTP after each task and use the current model as the “pre-trained model” for the next task.
Moreover, inspired by the prior work [59], we use FTP to only fine-tune the attention blocks. We report
both the final task accuracy across all tasks A1:N ↑ and the global forgetting FN ↓ in Tab. 5 to analyze
plasticity and forgetting. Please refer to Appendix 8.6 for more on the metrics and experimental setup.
In Table 5, we benchmark against the popular and recent rehearsal-free continual learning methods.
FTP alone achieves state of art accuracy against all methods and relatively good forgetting compared
to vanilla FT, a sign of superior plasticity and balanced forgetting. We visualize the learned constraints
for each task in Fig. 4. We observe that while each task is independent and FTP is re-initialized each
time, FTP learns stronger regularization for later tasks. This contributes to lower forgetting compared
to FT. We found that FTP combined with a simple continual learning method, EWC [58], achieves
state-of-the-art in this setting. Compared to the prompting methods L2P, DualPrompt, and the recent
CODA-Prompt, FTP has clear and significant improvements. Our intuition is that the combination
of the superior plasticity of FTP and the low forgetting of EWC is the key to the improvement.

5 Limitations

Like any regularization method, FTP has a hyper-parameter to adjust its regularization strength.
In this case, the positive gradient annealing factor 0 ≤ κ ≤ 1 (default 1) (Sec. 3.2) controls the
strength of projection with smaller values indicating weaker regularization. Note that κ = 0 means
that the projection constraints are non-decreasing during training. In this case, FTP still provides
regularization. For example, we found that a κ = 0 is necessary to obtain the best performance for
some dense vision tasks in Appendix 8.5. Generally, we recommend starting with the default κ and
only tuning it if underfitting is observed.

6 Conclusion

In this paper, we proposed Fast Trainable Projection, a fine-tuning algorithm to maintain the robustness
and the generalization capability of the pre-trained model. FTP learns projection constraints for each
layer in a neural network efficiently by carefully re-using past information to save computation. To
understand the connection between robustness and projection, we provided a holistic discussion of
fine-tuning robustness from its feature space definition to the weight space dual. The new perspective
lends a mathematical foundation to the idea of using projection in fine-tuning. Across four vision tasks
with different pre-trained models, FTP demonstrated superior ID and OOD generalization capability
and significantly better computation efficiency. Furthermore, the continual learning experiments
demonstrated FTP’s potential in other deep learning paradigms beyond simple fine-tuning. Combined
with its compatibility with popular optimization algorithms, we believe FTP can be broadly beneficial
in improving the performance of learning tasks using pre-trained initialization.
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8 Appendix

8.1 Proof of Lemma 1

Prior works [9, 10] have used the high-level notion that staying “close” to the pre-trained model can
help maintain its robustness capability to justify using projection for fine-tuning. However, there is
more than one way to encourage this, for example, regularization [35], a small learning rate [7], and
projection [10]. It is not immediately clear why projection is a principled approach. To understand
FTP’s capability to maintain the pre-trained mode’s robustness, we first propose to establish a
connection between Lipschitz continuity, a commonly used measure of robustness [19, 20, 21], and
fine-tuning through a new definition of difference function in the Lemma 1.

Proof. We first expand the difference functions in Eq. 9, i.e. plugging in ∆h(·) = hf (·)− h0(·),

∥∆h(x)−∆h(x′)∥h ≤ Ld∥x− x′∥x ∀(x,x′) ∈ Rm (11)

→∥ (hf (x)− h0(x))− (hf (x
′)− h0(x

′)) ∥h ≤ Ld∥x− x′∥x
→∥ (hf (x)− hf (x

′))− (h0(x)− h0(x
′)) ∥h ≤ Ld∥x− x′∥x

Then we apply the reverse triangular inequality to the left-hand side of Eq. 11.

|∥hf (x)− hf (x
′)∥h − ∥h0(x)− h0(x

′)∥h| ≤ ∥ (hf (x)− hf (x
′))− (h0(x)− h0(x

′)) ∥h
Therefore, we have,

∥hf (x)− hf (x
′)∥h − ∥h0(x)− h0(x

′)∥h ≤ Ld∥x− x′∥x (12)

→ ∥hf (x)− hf (x
′)∥h ≤ Ld∥x− x′∥x + ∥h0(x)− h0(x

′)∥h
Assuming that the pre-trained model h0 is L0-Lipschitz, we know that ∥h0(x) − h0(x

′)∥h ≤
L0∥x− x′∥x, ∀(x,x′) ∈ Rm. Plug this into Eq. 12,

∥hf (x)− hf (x
′)∥h ≤ (Ld + L0)∥x− x′∥x (13)

8.2 Proof of Lemma 2

In the previous section, we established a connection between the robustness of a fine-tuned model
hf (·) and its difference function ∆h(·). Naturally, if we can limit the Lipschitz constant Ld of the
difference function, we can maintain the robustness of the pre-trained model. In this section, we show
projection as an effective method to enforce the Ld-Lipschitz condition in Eq 9.

Proof. Linear Operators. A neural network is composed of linear operators with connecting
non-linear activations. Following prior works [9, 10], we analyze the linear operators3: h(x) =
Wx + b,W ∈ Rn×m,b ∈ Rn. Let’s define hf (x) = Wfx + bf and h0(x) = W0x + b0, and
plug them in Eq. 9.

∥(Wf −W0)(x− x′)∥h ≤ Ld∥x− x′∥x ∀(x,x′) ∈ Rm.

Rearranging the above equation gives us an upper bound on Ld,

Ld = sup

{
∥(Wf −W0)(x− x′)∥h

∥x− x′∥x
∀(x,x′) ∈ Rm

}
. (14)

Matrix Norms. Eq. 14 matches the definition of a matrix norm for a matrix W ∈ Rn×m: ∥W∥h,x =

sup
{

∥Wx∥h

∥x∥x
, ∀x ∈ Rn with x ̸= 0

}
. Therefore, to minimize Ld in Eq. 9, we just need to

minimize the matrix norm ∥Wf −W0∥h,x. Note that different vector norm combinations (∥ · ∥h
and ∥ · ∥x) will lead to a different matrix norm ∥ · ∥h,x. Certain vector norm combinations have a
closed-form matrix norm while the majority do not. Following prior works [9, 10], we use Maximum
Absolute Row Sum (MARS) matrix norm, which is characterized by l∞ vector norms in both domains.

3Convolutional layers can be also written in the matrix multiplication form using Toeplitz matrix.
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Specifically, given a desired constraint Ld, we want ∥Wf −W0∥∞,∞ ≤ Ld. Per the definition of
the MARS matrix norm, which is the largest l1 norm of each row of a matrix, the inequality can be
equivalently enforced for each row independently, i.e.,

∥Wf −W0∥∞,∞ ≤ Ld ⇐⇒ ∥wi
f −wi

0∥1 ≤ Ld, ∀i ∈ {1, ..., n}. (15)

where wi denotes the i-th row of the matrix W.

Projection. To ensure the inequality in Eq. 15, we can project Wf towards W0 using the following
projection equation. For each row wi in a matrix W, the projected weight w̃i

p is calculated by

wi
p = min

(
1,

γ

∥wi
f −wi

0∥1

)
(wi

f −wi
0) +wi

0.

It is easy to check that wi
p satisfies Eq. 15, i.e., ∥wi

p −wi
0∥1 ≤ Ld if 0 ≤ γ ≤ Ld.

Lipschitz Bound. Since a neural network is a composition of linear operators and non-linear
activations, by the composition rule of the Lipschitz functions, an upper bound of the entire network
is just the product of the Lipschitz constant for each linear operator and non-linear activations, where
most non-linear activations are 1-Lipschitz [21]. However, the Lipschitz bound obtained by using
the composition rule is not a tight bound on the entire network. While it is an active research area to
find tighter bounds for neural networks without relying on the layer-wise composition rule [60, 20],
the layer-wise approach is particularly suitable for connecting the fine-tuning process and Lipschitz
continuity because it leads to layer-wise regularization techniques as we demonstrated above.

8.3 FTP: Additional Discussion

In the main paper Sec. 3.2, we described the algorithmic difference between TPGM and FTP. However,
there is an implicit assumption made as a result of the difference. We now discuss the implications of
it. After obtaining the updated constraints γt in Eq. 5, if the algorithm were to follow TPGM, the next
step would be applying the updated constraints to re-calculate the previous model Wt−1. However,
instead of rolling back, FTP applies the updated constraints directly to the current unconstrained
model W̃t. This step assumes smoothness in the update of γt, i.e., the γt does not change drastically
in consecutive steps. The assumption is valid since γt is updated by AdampUpdate (Alg. 2 below)
which uses a moving average update with a momentum of 0.9. So the change of γt is very smooth
because of the high discount factor of 0.9. Importantly, we have re-used the same gradient gt

available for computing the current unconstrained model W̃t. This is the key to saving computation
because calculating the forward and backward pass through the model is the main computation
bottleneck in TPGM because it requires a separate training loop as a result of “rolling back”.

Algorithm 2 AdampUpdate: AdamUpdate implements one step update of Adam [38]

Require: γt−1,∇γt, t ▷ Input
Require: µ← 1e− 2, (β1, β2)← (0.9, 0.999), ϵ← 1e− 8 ▷ Fixed parameters for AdamUpdate
Require: m1 ← 0 ▷ Initialize 1st moment vector
Require: v1 ← 0 ▷ Initialize 2nd moment vector

mt ← β1mt−1 + (1− β1)∇γt
vt ← β2vt−1 + (1− β2)∇γ2

t
m̂t ← mt/(1− βt

1)
v̂t ← vt/(1− βt

2)
γt ← γt−1 − µm̂t/(

√
v̂t + ϵ)

8.4 Image Classification Experiments Details and Additional Results

In Sec. 4.1.1, we presented image classification results on DomainNet-100% data (111,307 images).
Now we further present results using only 10% (11,031 images) of the training data in Tab. 6. In this
case, projection-based methods, TPGM and FTP achieved the best performance, demonstrating their
regularization capability under low-label conditions. Similar to findings in the main paper, FTP is
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Table 6: DomainNet Results using CLIP pre-trained ResNet50 with 10% Real Data. FFTP
achieves competitive OOD performance and is much faster than prior work TPGM [10] by 37%.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg. ID ∆ (%) OOD ∆ (%) Time (s/it)↓

Vanilla FT 57.35 (1.43) 17.48 (0.68) 25.60 (0.70) 10.30 (1.57) 23.01 (0.65) 19.10 0.00 0.00 0.54
LP 47.19 (0.93) 17.81 (0.25) 22.71 (2.08) 17.13 (0.75) 17.59 (0.69) 18.81 -17.71 -1.52 0.13

PF [32] 71.04 (0.91) 27.87 (1.04) 38.31(1.05) 19.85 (0.70) 33.92 (1.53) 29.99 23.86 57.01 0.31
L2-SP [35] 61.41 (0.92) 22.61 (0.52) 30.48 (0.42) 12.28 (0.50) 26.59 (0.57) 22.99 7.08 20.37 0.61

MARS-SP [9] 52.53 (0.84) 15.34 (0.54) 21.57 (0.45) 8.49 (0.60) 19.96 (0.01) 16.34 -8.41 -14.44 0.60
LP-FT [7] 64.11 (0.78) 20.54 (0.27) 30.89 (0.41) 13.58 (0.63) 29.55 (0.82) 23.64 11.78 23.77 -

TPGM [10] 73.16 (1.27) 29.88 (0.81) 36.80 (1.42) 19.72 (0.12) 35.28 (0.74) 30.42 27.56 59.27 1.10

FTP 72.89 (0.34) 27.44 (0.13) 38.11 (0.26) 20.20 (0.26) 33.58 (0.49) 29.83 27.10 56.19 0.69
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FTP Constraints for Each Layer in a ResNet50

Figure 5: Visualization of learned FTP constraints. Settings: We fine-tune a pre-trained ResNet50 on
DomainNet-Real for 150 epochs. There are in total 174 constraints imposed on the model excluding
the last linear layer. Observations: 1) Early layers (dark colors) generally have smaller constraints
than the latter layers (light colors) throughout training. 2) Constraints grow from small to large and
converge in the end.

up to 37% faster than TPGM during training. Next, we describe the hyper-parameters for all image
classification experiments in Sec. 4.1 and above.

DomainNet. We use the released code from the prior work, TPGM [10] to train our FTP model.
Therefore, we directly use the reported results from TPGM for competing methods. For FTP, we apply
constraints to all trainable layers except for the last linear classification layers. For all experiments,
we use SGD as the base optimizer with a weight decay of 5e − 4. For DomainNet-100% and
DomainNet-10% experiments, we train models for 50 and 150 epochs respectively with a batch size
of 256. We sweep a range of learning rates and use the validation split to determine the best learning
rate for FTP for each experiment. Here is the list of best-validated learning rates for all DomainNet
experiments. We also provide a visualization of the learned constraints in Fig. 1b.

• DomainNet-100% MOCO-V3 ResNet50 (Tab. 1): 1e− 2

• DomainNet-100% CLIP ResNet50 (Tab. 2): 1e− 2

• DomainNet-10% CLIP ResNet50 (Tab. 6): 1e− 1

Note that we use the default κ = 1 for all these experiments. Every DomainNet experiment was
conducted using 4 RTX 2080 GPUs.
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ImageNet. For ImageNet experiments (Tab. 3, Fig. 3), we use a CLIP pre-trained ViT-Base [4].
Unlike the DomainNet experiments, we also initialize the last linear layer with zero-shot weights
extracted from a CLIP text encoder, following the prior work WISE [8]. Therefore, FTP is applied to
all trainable layers including the last linear layer. Training Transformers have been well-studied with
abundant regularization and augmentation techniques. To obtain the best fine-tuning performance, we
follow the public code base of DEIT [39] to fine-tune all methods. Specifically, we use weight-decay
(0.1), drop-path (0.2) [40], label-smoothing (0.1) [41], Mixup (0.8) [42] and Cutmix (1.0) [43]. One
exception is Linear-Probing (LP), where we do not use any of the above augmentations because
they have been shown to degrade linear probing performance [3, 1]. We train all methods using
AdamW [37] as the base optimizer with a weight decay of 0.1, cosine learning rate schedule, and
a batch size of 256 for 30 epochs. We also sweep relevant hyper-parameters for each method and
document them below.

• FT: learning rate 2e− 5

• LP: learning rate 5e− 3

• LP-FT: learning rate 2e− 5. We take the best LP model (trained for 30 epochs) and then
fine-tune it for another 15 epochs with the learning rate specified above.

• L2-SP: learning rate 2e− 5, regularization hyper-parameter 1e− 5.
• FTP: learning rate 3e− 5, regularization hyper-parameter default κ = 1.

Every ImageNet classification experiment was conducted on 2 A40 GPUs.

8.5 PASCAL Dense Vision Task Experiments Details and Additional Results

In Sec. 4.2, we presented results on semantic segmentation. In this section, we provide the additional
results on semantic segmentation and surface normal estimation in Tab, 7 and Tab. 8. FTP achieves the
best ID and OOD performance with significantly improved computation efficiency over TPGM [10].
Next, we will give more details on implementation.

Table 7: Pascal Human Parts Segmentation Results using SWIN-Tiny transformers pre-trained on
ImageNet21K. Performance is measured by mIoU↑. FTP achieves the best OOD performance and is
much faster than prior work TPGM [10] by 34%.

ID OOD Statistics
Clean Fog Defocus Gaussian Brightness OOD Avg. ID ∆ (%) OOD ∆ (%) Time (s/it)↓

Vanilla FT 62.61 (0.31) 57.50 (0.73) 40.76 (0.19) 30.64 (0.88) 57.47 (0.33) 46.59 0.00 0.00 0.280
Adapter 60.84 (1.27) 57.11 (0.39) 45.03 (3.96) 33.12 (1.92) 57.25 (0.68) 48.13 -2.81 3.30 0.221
BitFit 59.06 (0.97) 55.66 (1.36) 45.81 (1.27) 32.18 (2.59) 55.89 (0.97) 47.39 -5.67 1.70 0.235
L2-SP 62.26 (3.17) 58.46 (2.83) 45.35 (1.30) 34.36 (2.79) 58.40 (2.52) 49.14 -0.56 5.47 0.336

MARS-SP 62.92 (0.94) 58.04 (1.75) 42.51 (1.72) 32.66 (2.53) 58.33 (1.15) 47.89 0.50 2.77 0.308
LLRD 64.37 (1.80) 60.10 (2.58) 44.61 (1.95) 36.90 (4.84) 59.84 (2.06) 50.36 2.81 8.09 0.278
TPGM 63.29 (1.72) 60.16 (1.44) 46.91 (1.78) 37.30 (2.60) 59.81 (1.00) 51.04 1.10 9.55 0.602

FTP 65.50 (0.17) 61.73 (0.36) 44.97 (0.70) 40.55 (1.71) 61.23 (0.12) 52.12 4.63 11.86 0.397

Table 8: Pascal surface normal Results using SWIN-Tiny transformers pre-trained on ImageNet21K.
Performance is measured by RMSE↓. FTP achieves the best OOD performance and is much faster
than prior work TPGM [10] by 35%.

ID OOD Statistics
Clean Fog Defocus Gaussian Brightness OOD Avg. ID ∆ (%) OOD ∆ (%) Time (s/it)↓

Vanilla FT 18.98 (0.05) 22.25 (0.08) 23.51 (0.06) 27.33 (0.20) 20.83 (0.06) 23.48 0.00 0.00 0.288
Adapter 18.19 (0.05) 20.15 (0.04) 21.46 (0.02) 23.90 (0.14) 19.23 (0.06) 21.19 -4.15 -9.77 0.229
BitFit 20.01 (0.05) 21.93 (0.03) 23.95 (0.12) 26.92 (0.18) 21.28 (0.05) 23.52 5.43 0.17 0.240
L2-SP 16.51 (0.04) 19.26 (0.13) 20.49 (0.11) 24.46 (0.29) 18.08 (0.04) 20.57 -13.01 -12.38 0.343

MARS-SP 19.01 (0.04) 22.15 (0.13) 23.69 (0.11) 27.53 (0.29) 20.86 (0.04) 23.56 0.18 0.32 0.313
LLRD 15.54 (0.08) 18.31 (0.03) 20.01 (0.20) 26.47 (1.45) 17.36 (0.07) 20.54 -18.11 -12.54 0.279
TPGM 18.17 (0.02) 19.74 (0.04) 21.00 (0.15) 23.53 (0.27) 19.02 (0.03) 20.82 -4.24 -11.32 0.616

FTP 15.51 (0.10) 18.19 (0.09) 20.01 (0.21) 26.39(0.78) 17.32 (0.10) 20.48 -18.30 -12.79 0.403

Following prior works [50], we use a combination of Swin-Tiny Transformer [52] encoder and
Segformer [53] decoder. The decoder is customized to allow different output formats. Only the Swin
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Figure 6: Performance Breakdown for each Level of Corruption on PASCAL-Context Vision Tasks.

encoder is initialized with pre-trained weights (pre-trained on ImageNet-22k). Therefore, we only
apply FTP to the encoder. For all methods, we use Adam as the base optimizer with a weight decay of
1e− 4 and a learning rate of 1e− 4 for 60 epochs. For methods with regularization hyper-parameters,
we sweep a range of values and report the best one. We provide Tab. 9 for reference.

Table 9: Hyper-parameters for PASCAL Dense Vision Tasks Experiments.

Semseg Human Parts Surface Normal

L2-SP 5e-4 1e-4 1e-4
LLRD 0.65 0.45 0.65

MARS-SP 4 8 4
FTP 1.0 0.0 0.0

To test OOD robustness on the PASCAL-Context benchmark, we apply natural corruptions to the orig-
inal clean images. Specifically, we select four types of corruptions from the popular benchmark [51],
each of which is sampled from a main category: noise, blur, weather, and digital. Each corruption
has five levels of severity. We report the average values over the five severity in our paper. Here, we
also provide a detailed breakdown for each level of corruption in Fig. 6. Every PASCAL experiment
was conducted on a single RTX 2080 GPU.

8.6 Continual Learning Experiments Details and Additional Results

In this section, we provide a brief overview of the settings in continual learning (CL). In CL, a
model θ is trained on a sequence of task n ∈ {1, ..., N}. Each task has a non-overlapping set of
class labels Tn, and we denote the number of classes as |Tn|. For ImageNet-R, we split the 200
classes into 10 tasks with 20 labels each, i.e., N = 10, |Tn| = 20. Our experiments belong to the
class-incremental category in CL. With each new task, the final linear classifier layer is expanded
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with randomly initialized weights. We denote θi,1:n as the model that has been trained on i tasks and
the classifier has all classes up to and including the n-th task (i ≥ n).

To measure global performance, we first define the global task accuracy A1:N as,

A1:N =
1

|Dtest|
∑

(x,y)∈Dtest

I(ŷ(x, θN,1:N ) = y).

where Dtest is the test dataset which has data from all N tasks and ŷ(x, θ) denotes the predicted class
from the model with weights θ. Then we define the global forgetting FN [61] as,

FN =
1

N − 1

N∑
i=2

i−1∑
n=1

|TN |
T1:n

(Rn,n −Ri,n)

where,

Ri,n =
1

|Dtest
n |

∑
(x,y)∈Dtest

n

I(ŷ(x, θi,1:n) = y).

Following the prior work [59], all experiments in Tab. 5 use a ViT-Base pre-trained on ImageNet.
We tune FTP with the code provided by the authors and directly compare it to the results from the
prior work. Specifically, all methods use Adam as the base optimizer with no weight decay and a
batch size of 128. All results are averaged over 3 random seed trials where the class allocation to
each task is shuffled. For FTP, we train the model for 25 epochs with an initial learning rate of 5e− 4
and a cosine learning rate schedule. For all methods, we freeze the majority of the backbones and
only fine-tune the QKV attention layers in the ViT. Please refer to the prior work for a more detailed
description of the compared methods. Every CL experiment was conducted on 4 RTX2080 GPUs.

8.7 Pytorch Code Example of FTP

Here is an example of using SGDP (SGD+FTP) in Pytorch format. SGDP requires the common
arguments for initializing an SGD optimizer class in Pytorch with two additional inputs: k and
exclude_set. k is the hyper-parameter for positive gradient annealing (Sec. 3.2) and exclude_set
contains the set of the names of parameters to be excluded from the projection operation. A complete
demonstration of image classification is provided in the supplementary. You should be able to
reproduce FTP results in Tab. 1 and Tab. 2.

from FTP import SGDP

# Parameters to be optimized
params_to_opt = [x[1] for x in model.named_parameters ()]
# Names of parameters to be optimized
params_to_opt_name = [x[0] for x in model.named_parameters ()]
# Copy the initial parameters as the anchor
params_anchor = copy.deepcopy(params_to_opt)
# Set up the parameter groups
param_group = [{"params":params_to_opt ,

"pre": params_anchor ,
"name": params_to_opt_name }]

# Set up the optimization hyper -parameters
optimizer_params = {

"lr": 1e-2,
"weight_decay": 5.0e-4,
"momentum": 0.9,
"nesterov": True ,
"k":1.0,
"exclude_set":{"module.head.weight","module.head.bias"}

}
optimizer = SGDP(param_group ,** optimizer_params)
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