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Abstract

Unsupervised semantic segmentation is a challenging task that segments images
into semantic groups without manual annotation. Prior works have primarily fo-
cused on leveraging prior knowledge of semantic consistency or priori concepts
from self-supervised learning methods, which often overlook the coherence prop-
erty of image segments. In this paper, we demonstrate that the smoothness prior,
asserting that close features in a metric space share the same semantics, can signifi-
cantly simplify segmentation by casting unsupervised semantic segmentation as an
energy minimization problem. Under this paradigm, we propose a novel approach
called SmooSeg that harnesses self-supervised learning methods to model the
closeness relationships among observations as smoothness signals. To effectively
discover coherent semantic segments, we introduce a novel smoothness loss that
promotes piecewise smoothness within segments while preserving discontinuities
across different segments. Additionally, to further enhance segmentation quality,
we design an asymmetric teacher-student style predictor that generates smoothly
updated pseudo labels, facilitating an optimal fit between observations and labeling
outputs. Thanks to the rich supervision cues of the smoothness prior, our SmooSeg
significantly outperforms STEGO in terms of pixel accuracy on three datasets:
COCOStuff (+14.9%), Cityscapes (+13.0%), and Potsdam-3 (+5.7%).

1 Introduction

Semantic segmentation is a crucial task in computer vision that allows for a better understanding
of the visual content and has numerous applications, including autonomous driving [1] and remote
sensing imagery [2]. Despite advancements in the field, most traditional semantic segmentation
models heavily rely on vast amounts of annotated data, which can be both arduous and costly to
acquire. Consequently, unsupervised semantic segmentation [3; 4; 5; 6; 7; 8] has emerged as a
promising alternative. Prior knowledge is fundamental to the success of unsupervised semantic
segmentation models. One key prior knowledge is the principle of semantic consistency, which
stipulates that an object’s semantic label should remain consistent despite photometric or geometric
transformations. Recent advances [3; 9; 4; 10] use contrastive learning to achieve consistent features
or class assignments. Another essential prior knowledge is the priori concepts implicitly provided
by self-supervised learning techniques, e.g., DINO [11] and precedent arts [12; 8; 6] whose learned
features can be employed to partition each image into different segments. Despite their effectiveness,
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Figure 1: A case study of our SmooSeg with two state-of-the-arts, STEGO [8] and TransFGU
[6], on the COCOStuff dataset. Our observations reveal that the segmentation maps generated by
STEGO and TransFGU for regions such as the sand beach (first row) and the grassland (second row)
are incomplete and lack smoothness and coherence. In contrast, our SmooSeg exhibits improved
segmentation results for all these regions by considering the smoothness prior.

these methods often overlook the coherence property of image segments, resulting in predicted
segments that are incomplete and lacking in coherence, as shown in Fig. 1.

Real-world images often demonstrate a natural tendency towards piecewise coherence regarding
semantics, texture, or color. Observations close to each other, either in the form of adjacent pixels in
the coordinate space or close features in a metric space, are expected to share similar semantic labels,
and vice versa. This essential property, known as the smoothness prior, plays a crucial role in various
computer vision tasks [13; 14; 15]. Surprisingly, it is still under-explored in the field of unsupervised
semantic segmentation.

In this paper, we attempt to tackle unsupervised semantic segmentation from the perspective of
smoothness prior. As a dense prediction task, semantic segmentation aims at finding a labeling
f ∈ F that assigns each observation (pixel, patch, features) p ∈ P a semantic category f(p), which
could be formulated within an energy minimization framework [16]: E(f) = Esmooth(f) +Edata(f).
Esmooth is a pairwise smoothness term that promotes the coherence between observations, and Edata
represents a pointwise data term that measures how well f(p) fits the observation p. However, directly
applying smoothness prior to unsupervised semantic segmentation faces several obstacles. 1) Due to
the large intra-class variations in appearances within an image, it is difficult to define a well-suited
similarity (dissimilarity) relationship among low-level observations. This makes it challenging to
discover groups of complex observations as coherent segments. 2) Esmooth can lead to a trivial solution
where f becomes smooth everywhere, a phenomenon known as model collapse. 3) Optimizing Edata
without any observed label can be challenging.

In this study, we propose a novel approach called SmooSeg for unsupervised semantic segmentation to
address the aforementioned challenges. By leveraging the advantages of self-supervised representation
learning in generating dense discriminate representations for images, we propose to model the
closeness relationships among observations by using high-level features extracted from a frozen
pre-trained model. This helps capture the underlying smoothness signals among observations.
Furthermore, we implement a novel pairwise smoothness loss that encourages piecewise smoothness
within segments while preserving discontinuities across image segments to effectively discover
various semantic groups. Finally, we design an asymmetric teacher-student style predictor, where the
teacher predictor generates smooth pseudo labels to optimize the data term, facilitating a good fit
between the observations and labeling outputs.

Specifically, our model comprises a frozen feature extractor, a lightweight projector, and a predictor.
The projector serves to project the high-dimensional features onto a more compact, low-dimensional
embedding space, and the predictor employs two sets of learnable prototypes to generate the final
segmentation results. We optimize our model using a novel energy minimization objective function.
Despite its simplicity, our method has demonstrated remarkable improvements over state-of-the-art
approaches. In particular, our method significantly outperforms STEGO [8] in terms of pixel accuracy
on three widely used segmentation benchmarks: COCOStuff (+14.9%), Cityscapes (+13.0%), and
Potsdam-3 (+5.7%).
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2 Related work

Unsupervised semantic segmentation has gained increasing attention for automatically partitioning
images into semantically meaningful regions without any annotated data. Early CRF models [17; 18]
incorporate smoothness terms that maximize label agreement between similar pixels. They define
adjacency for a given pixel in the coordinate space, e.g., using 4-connected or 8 connected grid,
which relies heavily on the low-level appearance information and falls short in capturing high-level
semantic information in images. Recently, many methods [3; 4; 10] have attempted to learn semantic
relationships at the pixel level with semantic consistency as a supervision signal. For example, IIC [3]
is a clustering method that discovers clusters by maximizing mutual information between the class
assignments of each pair of images. PiCIE [4] enforces semantic consistency between an image and its
photometric and geometric augmented versions. HSG [10] achieves semantic and spatial consistency
of grouping among multiple views of an image and from multiple levels of granularity. Recent
advances [19; 12; 6; 8; 20] have benefited from self-supervised learning techniques, which provide
priori concepts as supervision cues. For instance, InfoSeg [19] segments images by maximizing
the mutual information between local pixel features and high-level class features obtained from a
self-supervised learning model. The work in [12] directly employs spectral clustering on an affinity
matrix constructed from the pre-trained features. TransFGU [6] generates pixel-wise pseudo labels
by leveraging high-level semantic concepts discovered from DINO [11]. Additionally, STEGO [8]
utilizes knowledge distillation to learn a compact representation from the features extracted from
DINO based on a correspondence distillation loss, which also implies a smoothness regularization
through the dimension reduction process. However, the utilization of smoothness prior in STEGO
is implicit and entails separate post-process, such as min-batch K-Means, for the final semantic
clustering. Besides, MaskContrast [21] and FreeSOLO [22] leverage mask priors and primarily focus
on foreground object segmentation. In contrast, we propose to leverage the smoothness prior as
a supervision cue to directly optimize the generated semantic map, achieving more coherent and
accurate segmentation results.

Self-supervised representation learning (SSL) aims to learn general representations for images
without additional labels, which has offered significant benefits to various downstream tasks, including
detection and segmentation [6; 8]. One main paradigm of SSL is based on contrastive learning
[23; 24; 25; 26; 27; 11; 28; 29], which seeks to maximize the feature similarity between an image
and its augmented pairs while minimizing similarity between negative pairs. For example, MoCo
[24] trains a contrastive model by using a memory bank that stores and updates negative samples in a
queue-based fashion. SimCLR [23] proposes to learn a nonlinear transformation, i.e., a projection
head, before the contrastive loss, to improve performance. Notably, DINO [11], built upon Vision
Transformer (ViT) [30], has a nice property of focusing on the semantic structure of images, such as
scene layout and object boundaries. Features extracted by DINO exhibit strong semantic consistency
and have demonstrated significant benefits for downstream tasks [12; 6; 8]. Another mainstream
belongs to the generative learning approach [31; 32; 33]. MAE [32] and SimMIM [31] propose to
predict the raw masked patches, while MaskFeat [32] proposes to predict the masked features of
images. Our work also leverages recent progress in SSL for unsupervised semantic segmentation.

3 Method

Problem setting. Given a set of unannotated images I = [I1, . . . , IB ] ∈ RB×3×H×W , where B
denotes the number of images, and 3, H,W represent the channel, height, and width dimensions
respectively, the objective of unsupervised semantic segmentation is to learn a labeling function
f ∈ F that predicts the semantic label for each pixel in each image. We represent the predicted
semantic maps as Y = [Y1, . . . , YB ] ∈ {1, · · · ,K}B×H×W , where K refers to the number of
predefined categories.

Architecture. To achieve this goal, we introduce the SmooSeg approach, which capitalizes on self-
supervised representation learning and smoothness prior within an energy minimization framework,
as illustrated in Fig. 2. SmooSeg comprises three primary components: a feature extractor fθ, a
projector hθ, and a predictor gθ. Initially, for each image Ii, we employ a pre-trained backbone
network, such as a frozen version of DINO, to acquire feature representations Xi = fθ(Ii) ∈ RC×N ,
where C and N denote the number of feature channels and image patches, respectively. Subsequently,
the projector hθ maps these features onto a low-dimensional embedding space, resulting in a set
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Figure 2: Overview of our SmooSeg framework, showing the application of the smoothness prior
within image Ii and across images Ii and Ii′ . sg denotes the stop-gradient operation.

of compact features Zi = hθ(Xi) ∈ RD×N , where D denotes the reduced feature dimensionality.
Finally, the predictor gθ generates the label assignments A{s,t}

i ∈ RK×N by computing the similarity
scores between the compact features Zi and the prototypes P {s,t}. Here, P s and P t represent student
and teacher prototypes, respectively. The semantic map Yi for image Ii can be obtained by reshaping
the output Y t

i of the teacher branch.

3.1 Smoothness Prior

Real-world images typically exhibit inherent continuity and coherence in terms of semantics, texture,
and color. Within a single object, semantic labels tend to demonstrate smoothness and consistency,
ensuring a cohesive representation of the object. In contrast, labels between distinct objects manifest
discontinuity and divergence, facilitating the separation of different object instances. This essential
property, known as the smoothness prior, is expected to play a critical role in guiding unsupervised
semantic segmentation tasks toward more accurate and meaningful segmentation results. We therefore
consider the following pairwise smoothness term:

Esmooth =

B∑
i=1

N∑
p,q=1

W ii
pq · δ(Yi,p, Yi,q), (1)

where W ii ∈ RN×N is the closeness matrix of image Ii. δ(Yi,p, Yi,q) is the penalty that takes the
value of 1 if Yi,p ̸= Yi,q, and 0 otherwise. By minimizing this smoothness term, two close patches
with different labels will be penalized. In other words, the segmentation model is encouraged to
assign similar labels to close patches, thereby promoting the coherence within objects.

Closeness matrix. It is worth noting that the large intra-class variation in appearances within
the raw pixel space renders the discovery of well-suited closeness relationships among low-level
observations challenging. We therefore propose to model the closeness relationships by the cosine
distance in the high-level feature space. Specifically, W ii can be calculated by:

W ii
pq =

Xi,p ·Xi,q

∥Xi,p∥∥Xi,q∥
, (2)

where Xi,p and Xi,q represent the feature vectors for patches p and q of image Ii, respectively.
Theoretically, a large element value in the closeness matrix, i.e., a high cosine similarity, suggests
a high possibility of a close patch pair, and vice versa. We apply a zero-mean normalization to
this matrix: W̄ ii

p = W ii
p − 1

N

∑
q W

ii
pq. This normalization balances the negative and positive

forces during optimization, which prevents excessive influence from either the negative or positive
components of the closeness matrix and ensures that the optimization process is more stable.

Label penalty. Directly minimizing Eq. 1 to optimize our segmentation model is not feasible due
to the non-differentiable property of δ(·, ·) and the hard label assignment Y . As a result, we have to
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resort to another form of penalty cost. Suppose we have the soft label assignment At
i ∈ RK×N of

image Ii (which will be introduced later), by which we can redefine the penalty cost function as:

δ(At
i,p, A

t
i,q) = 1−

At
i,p ·At

i,q

∥At
i,p∥∥At

i,q∥
. (3)

Because the non-negative property of the softmax output, i.e., 0 ≤ At, 0 ≤ δ(·, ·) ≤ 1 always holds.
A larger value of δ(·, ·) denotes a greater dissimilarity between two labels, thereby indicating a higher
penalty cost, and vice versa.

Smoothness prior within and across images. To prevent the model from converging to a trivial
solution where the labeling function becomes smooth everywhere, we also apply the smoothness prior
across images, acting as a strong negative force, by introducing another image Ii′ that is randomly
selected from the current batch. We then obtain the final smoothness term:

Esmooth = Ewithin
smooth+Eacross

smooth =

B∑
i=1

N∑
p,q=1

{(W̄ ii
pq−b1)·δ(At

i,p, A
t
i,q)+(W̄ ii′

pq −b2)·δ(At
i,p, A

t
i′,q)}. (4)

Here, we introduce a scalar b1 to adjust the threshold for applying the penalty. That is, when
W̄ ii

pq − b1 > 0, indicating that two patches p, q with a high closeness degree are nearby patches in
the embedding space, patches p, q with different labels will be penalized, encouraging the piecewise
smoothness within segments; otherwise, they are rewarded to assign different labels, leading to
the discontinuities across segments. By doing so, SmooSeg is capable of finding globally coherent
semantic segmentation maps.

Discussion with CRF and STEGO. CRF methods [17; 18] model the closeness relationship of
pixels using their spatial coordinates, emphasizing the local smoothness within each image. On
the contrary, our SmooSeg encodes the global closeness relationship of image patches based on
the cosine distance in the feature space, which can discover the high-level semantic groups of
images. Our smoothness term appears to be similar to the correlation loss in STEGO: Lcorr =
−
∑

(F − b)max(S, 0), but essentially the two losses model different things. In STEGO, S denotes
the feature correlation, by which STEGO aims to learn low-dimensional compact representations for
images through a learnable projection head. A separate clustering algorithm, e.g., k-means, is required
to obtain the final segmentation maps. However, even with the learned compact representations,
the coherence of image segments is not guaranteed in STEGO as slight differences in features may
lead to inconsistent labels in the clustering stage. In contrast, our SmooSeg aims to directly learn a
labeling function (projector + predictor) based on the smoothness prior, which encourages piecewise
smoothness within segments and preserves disparities across segments, leading to more coherent
and semantically meaningful segmentation maps. Additionally, the negative part of S contradicts
the learning intention of STEGO and therefore requires a 0-clamp via max(S, 0), which however,
represents discontinuities between image patches and should be preserved. In contrast, our label
penalty 0 ≤ δ(·, ·) ≤ 1 has a desirable property compared to S.

3.2 Asymmetric Predictor

A desirable labeling function learnt through energy minimization should on the one hand produce
piecewise smooth results, and on the other hand be well fit between the observations and labeling
outputs. For semantic segmentation, we expect the labeling output of an image to align well with
its semantic map. In other words, the labeling output should accurately predict a category for each
individual pixel with high confidence or low entropy. However, this goal is a nutshell in unsupervised
semantic segmentation as there is no observed semantic map.

Self-training [34; 29] emerges as a promising solution for tasks involving unlabeled data. To address
the above challenge, we design an asymmetric student-teacher style predictor to learn the labeling
function through a stable self-training strategy. The student branch employs a set of K learnable
prototypes (class centers) P s = [ps1, · · · , psK ] ∈ RK×D to predict the semantic maps of images.
The teacher branch holds the same number of prototypes P t as the student, and P t is updated as an
exponential moving average of P s. We then compute the soft assignment A{s,t}

i of the embeddings
Zi with the prototypes P {s,t} by computing their cosine similarity. With ℓ2-normalized embeddings
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Algorithm 1 SmooSeg: PyTorch-like Pseudocode

# f, h: extractor, projector
# Ps, Pt, tau, alpha: student prototypes, teacher prototypes, temperature, momentum

for img in dataloader:
x = f(img) # feature extraction
z = h(x) # feature projection
{x, z, Ps, Pt} = F.normalize({x, z, Ps, Pt}, dim=1)
As = matmul(z.T.detach(), Ps) # student label assignment
At = softmax(matmul(z.T, Pt.detach())/tau, dim=1) # teacher label assignment
loss_data = F.cross_entropy(As, argmax(At))

At = F.normalize(At, dim=1)
{x_p, At_p} = shuffle({x, At}) # shuffle along the batch dimension
W = matmul(x.T, x) - matmul(x.T, x).mean(dim=-1)
W_p = matmul(x.T, x_p) - matmul(x.T, x_p).mean(dim=-1)
delta = 1 - matmul(At.T, At)
delta_p = 1 - matmul(At.T, At_p)
loss_smooth = sum((W - b1) * delta + (W_p - b2) * delta_p)

(loss_smooth + loss_data).backward()
update(h, Ps) # update projector and student prototypes
Pt = alpha * Pt + (1 - alpha) * Ps # momentum update teacher prototypes

Z̄i = Zi/∥Zi∥ and prototypes P̄ {s,t} = P {s,t}/∥P {s,t}∥, we have

As
i = softmax(P̄ s · sg(Z̄i)), At

i = softmax((sg(P̄ t) · Z̄i)/τ) ∈ RK×N , (5)

where temperature parameter τ > 0 controls the sharpness of the output distribution of the teacher
branch. The teacher branch is responsible for generating smoothly updated pseudo labels to supervise
the student prototypes’ learning. By using a patch-wise cross-entropy loss, we have the data term as

Edata = −
B∑
i=1

N∑
p=1

K∑
k=1

IY t
i,p=k logA

s
i,p,k, (6)

where I· is an indicator that outputs 1 if the argument is true, and 0 otherwise. Y t
i = argmax At

i
is the hard pseudo label for patch p of image Ii. By minimizing Edata, the segmentation model is
expected to generate label assignments for each patch with high confidence, thus ensuring a better fit
between the observations and their predicted labels.

3.3 Overall Optimization Objective

Our final optimization objective function for training SmooSeg is obtained by incorporating the
smoothness term and the data term as follows:

L =

B∑
i=1

N∑
p,q=1

{(W̄ ii
pq − b1) · δ(At

i,p, A
t
i,q) + (W̄ ii′

pq − b2) · δ(At
i,p, A

t
i′,q)}

−
B∑
i=1

N∑
p=1

K∑
k=1

IY t
i,p=k logA

s
i,p,k.

(7)

In practice, L could be approximately minimized using Stochastic Gradient Descent (SGD). During
each training iteration, the projector is optimized using gradients from the smoothness loss, while
the student prototypes are optimized using gradients from the data loss. The teacher prototypes are
updated as an exponential moving average of the student prototypes: P t = αP t + (1− α)P s, with
α denoting the momentum value. After training, we use the output from the teacher branch as the
segmentation results. The overall procedure in pytorch-like pseudocode of SmooSeg is summarized
in Algorithm 1.
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4 Experiments

4.1 Experimental Setup

Datasets. Our experimental setup mainly follows that in previous works [8; 4] in datasets and
evaluation protocols. We test on three datasets. COCOStuff [35] is a scene-centric dataset with
a total of 80 things and 91 stuff categories. Classes are merged into 27 categories for evaluation,
including 15 stuff and 12 things. Cityscapes [36] is a collection of street scene images from 50 cities,
with classes merged into 27 classes by excluding the "void" class. Potsdam-3 [3] is a remote sensing
dataset with 8550 images belonging to 3 classes, in which 4545 images are used for training and 855
for testing.

Evaluation metrics. For all models, we utilize the Hungarian matching algorithm to align the
prediction and the ground-truth semantic map for all images. We also use a CRF [17; 8] as the post-
processing to refine the predicted semantic maps. Two quality metrics including mean Intersection
over Union (mIoU) and Accuracy (Acc) over all the semantic categories are used in the evaluation.

Implementation details. Our experiments were conducted using PyTorch [37] on an RTX 3090
GPU. To ensure a fair comparison with previous works [6; 8], we use DINO [11] with a ViT-small
8 × 8 backbone pre-trained on ImageNet as our default feature extractor, which is frozen during
model training. Our projector consists of a linear layer and a two-layer SiLU MLP whose outputs
are summed together. The predictor contains two sets of prototypes with the same initialization.
The exponential moving average (EMA) hyper-parameter is set to α = 0.998. The dimension of
the embedding space is D = 64. The temperature is set to τ = 0.1. We use the Adam optimizer
[38] with a learning rate of 1 × 10−4 and 5 × 10−4 for the projector and predictor, respectively.

Table 1: Performance on the COCOStuff dataset
(27 classes).

Methods backbone Acc. mIoU

ResNet50 [39] ResNet50 24.6 8.9
IIC [3] R18+FPN 21.8 6.7
MDC [4] R18+FPN 32.2 9.8
PiCIE [4] R18+FPN 48.1 13.8
PiCIE+H [4] R18+FPN 50.0 14.4
SlotCon [29] ResNet50 42.4 18.3

MoCoV2 [40] ResNet50 25.2 10.4
+ STEGO [8] ResNet50 43.1 19.6
+ SmooSeg ResNet50 52.4 18.8

DINO [11] ViT-S/8 29.6 10.8
+ TransFGU [6] ViT-S/8 52.7 17.5
+ STEGO [8] ViT-S/8 48.3 24.5
+ SmooSeg ViT-S/8 63.2 26.7

Table 2: Performance on the Cityscapes Dataset
(27 Classes).

Methods backbone Acc. mIoU

IIC [3] R18+FPN 47.9 6.4
MDC [4] R18+FPN 40.7 7.1
PiCIE [4] R18+FPN 65.5 12.3

DINO [11] ViT-S/8 40.5 13.7
+ TransFGU [6] ViT-S/8 77.9 16.8
+ STEGO [8] ViT-S/8 69.8 17.6
+ SmooSeg ViT-S/8 82.8 18.4

We set a batch size of 32 for all datasets. For
Cityscapes and COCOStuff datasets, we employ
a five-crop technique to augment the training
set size. We train our model with a total of
3000 iterations for Cityscapes and Potsdam-3
datasets, and 8000 iterations for the COCOStuff
dataset.

4.2 Comparison with State-of-the-Arts

Quantitative results. We summarise the quan-
titative results on three datasets in Tables 1,
2 and 3, respectively. Results of baselines,
ResNet50[39], MoCoV2[40] and DINO[11] are
directly cited from the paper [8], while the re-
sults of DINOV2 [41] (Table 3) are obtained
by our implementation. For these baselines, we
first extracted dense features for all images, then
utilized a minibatch k-means algorithm to per-
form patches grouping, which resulted in the
final segmentation maps. Our SmooSeg sig-
nificantly outperforms all the state-of-the-art
methods in terms of both pixel accuracy and
mIoU on all datasets. In particular, on the CO-
COStuff dataset in Table 1, with DINO ViT-S/8
as backbone, SmooSeg gains a 14.9% improve-
ment in pixel accuracy and a 2.2% improve-
ment in mIoU over the best-performing baseline
STEGO.

We observe that TransFGU outperforms STEGO
in terms of accuracy, but is inferior in mIoU on
both COCOStuff and Cityscapes. This is due to
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Figure 3: Qualitative results on COCOStuff (left) and Cityscapes (right) datasets.

Table 3: Performance on the Potsdam-3 Dataset.

Methods backbone Acc. mIoU

Random CNN [3] VGG11 38.2 -
K-means [42] VGG11 45.7 -
SIFT [43] VGG11 38.2 -
IIC [3] R18+FPN 65.1 -
Deep Cluster [44] R18+FPN 41.7 -
InfoSeg [19] CNN 71.6 -

DINO [11] ViT-B/8 62.2 43.3
+ STEGO [8] ViT-B/8 77.0 62.6
+ SmooSeg ViT-B/8 82.7 70.3
DINOV2 [41] ViT-B/14 81.8 69.0
+ SmooSeg ViT-B/14 86.3 75.7
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Figure 4: Qualitative results on Postdam-3 dataset.

the fact that TransFGU adopts a pixel-wise cross-entropy loss, which focuses more on the overall
accuracy of pixels, while STEGO achieves better class-balanced segmentation results through mini-
batch k-means. Our SmooSeg significantly outperforms both TransFGU and STEGO in both accuracy
and mIoU, We attribute this superiority to our energy minimization loss, which optimizes both the
smoothness term and the data term simultaneously.

Same conclusions can be drawn on the Postdam-3 dataset, as shown in Table 3. We can see that
SmooSeg, with DINO ViT-B/8 as the backbone, significantly outperforms STEGO, with gains of
5.7% in accuracy and 7.7% in mIoU. The improvement is particularly significant in terms of mIoU.
This is not surprising as Potsdam-3 is a remote sensing image dataset that contains only 3 classes,
so segments on the Potsdam-3 are often relatively large. In such a scenario, the smoothness prior
becomes even more important in ensuring coherent segmentation maps.

Qualitative results. We present qualitative examples of SmooSeg, STEGO and TransFGU on
three datasets in Figs. 3 and 4. Additional qualitative results, along with color maps, can be found
in Appendix C. As shown in Fig. 3, SmooSeg produces high-quality fine-grained segmentation
maps that outperform those obtained by STEGO and TransFGU. Though STEGO uses a feature
correspondence loss to encourage features to form compact clusters, its segmentation maps still
suffer from incoherence problems. It can be observed that, slight differences in features can result
in inconsistent labels in STEGO. The second image from the left column of Fig. 3 shows such an
example: the slight variations in light on the sea surface results in differences in features, leading to an
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Figure 5: t-SNE [45] visualization of feature embeddings for DINO, STEGO, and our SmooSeg on
the Potsdam-3 dataset. The large-scale image is partitioned into 25 sub-images with a resolution of
224× 224 before being input into each algorithm. We highlight the distribution of three sub-images
using square, star and triangle_up markers, respectively, and plot the class centers of each algorithm
using three pentagon markers with different colors, where teal, yellow and purple represent buildings
+ clutter, roads + cars, vegetation + trees, respectively. Best viewed in color and zoomed in.

incomplete and incoherent water segment. Similar phenomenon can be observed in the segmentation
maps on Cityscapes and Potsdam-3 too. Besides, although TransFGU is a top-down approach, it still
overlooks the relationship between image patches in its top-down approach, and therefore achieves
much worse segmentation results. In contrast, SmooSeg with the aim of generating smooth label
assignments within segments while preserving differences across different segments by leveraging
the smoothness prior, the semantic maps produced by SmooSeg show more coherent and semantically
meaningful results. In Fig. 4, we can see that SmooSeg outperforms the other methods in terms of
accurate boundaries.

4.3 Analyses

Visualization. Feature visualizations of DINO, STEGO and SmooSeg are illustrated in Fig. 5. We
can see that the feature distribution of DINO with ViT-base/8 as the backbone exhibits some semantic
consistency, with compact clusters within each image but disperse across images. The embeddings
of STEGO, which are distilled from DINO features using feature correspondence loss, show higher
semantic consistency than DINO, with more compact clusters across images, such as the yellow
markers, and improved performance. However, STEGO still suffers from the label incoherence
problem due to the large intra-class variation of embeddings, indicating that feature distillation alone
is insufficient to capture the high-level semantic coherence of segments. Our SmooSeg leverages
the smoothness prior to encourage smooth label assignments, measured by the cosine distance
between patch embeddings and prototypes (centers), and achieves remarkable improvement in the
semantic consistency of feature embeddings. As shown in the right part of Fig. 5, SmooSeg produces
highly semantically compact and coherent clusters with clear class boundaries for all images, and
the performance, at 87.4% Acc and 77.8% mIoU, significantly higher than STEGO. These results
further prove the effectiveness of our SmooSeg in using smoothness prior for unsupervised semantic
segmentation.

Objective function. To assess the effectiveness of our energy minimization objective function, we
conduct an ablation study on the COCOStuff dataset by comparing SmooSeg with four variants of
the objective function, each with a different term removed. For the variant of w/o Edata, we only
keep the prototypes in the teacher branch to generate the label map for the smoothness term. The
results are shown in Table 4, where Eacross

smooth denotes the smoothness term across different images. We
can see that the performance drops by 10.2% on Acc and 1.2% on mIoU when removing the data
term Edata, which highlights the importance of the data term in promoting the fitting of the labeling
function. Besides, removing Eacross

smooth results in a much larger drop in performance, with a decrease
of 27.1% on Acc and 16.3% on mIoU. Moreover, our segmentation model fails when removing
the entire Esmooth. The smoothness term utilizes a closeness matrix constructed from high-level
features of a pre-trained model, acting as strong supervision signals to guide the label learning for all
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Table 4: Analysis of objective
function on the COCOStuff
dataset.

Methods Acc. mIoU

SmooSeg 63.2 26.7

w/o Edata 53.0 25.5

w/o Eacross
smooth 36.1 10.4

w/o Esmooth 16.8 0.6 Figure 6: Sensitivity study on
the temperature parameter τ .

Figure 7: Sensitivity study on
the momentum parameter α.

image patches. Therefore, it is reasonable to see that Esmooth contributes significantly to the overall
performance. On the contrary, the data term operates in a self-training fashion with pseudo labels
derived from the teacher branch, which alone cannot generate accurate segmentation maps. These
findings demonstrate the crucial role of both the data and smoothness terms for optimal performance
of SmooSeg in unsupervised semantic segmentation.

Temperature parameter τ . We investigate the effect of the temperature parameter τ on the
performance of SmooSeg on the COCOStuff dataset, and report the results in Fig. 6. Theoretically, a
smaller τ sharpens the softmax output, providing greater gradients and supervision signals for model
training. Fig. 6 shows that τ plays a critical factor in the success of SmooSeg. Specifically, SmooSeg
achieves good results when τ ≤ 0.1, while performance drops considerably when τ ≥ 0.2 because
the softmax output tends to become uniformly distributed.

Momentum parameter α. We also study the impact of the α on SmooSeg. α controls the
smoothness of the update of the teacher predictor from the student predictor. We plot the performance
on the COCOStuff dataset as α changes from 0.1 to 1 in Fig. 7. The performance of SmooSeg
gradually improves as α increases, and reaches stable when 0.99 ≤ α.

Limitation. Setting hyper-parameters without cross-validation is always a challenge for unsuper-
vised learning methods. The main limitation of our method is that it involves two dataset-specific
hyper-parameters in the smoothness term. We present a feasible strategy in Appendix A to alleviate
this issue.

5 Conclusions

In this paper, we propose SmooSeg, a simple yet effective unsupervised semantic segmentation
approach that delves into the potential of the smoothness prior, emphasizing the coherence property
of image segments. In particular, we implement a pairwise smoothness loss to effectively discover
semantically meaningful groups. We also design an asymmetric teacher-student style predictor
to generate high-quality segmentation maps. SmooSeg comprises a frozen extractor, as well as
a lightweight projector and a predictor which could be optimized using our energy minimization
objective function. Experimental results show that SmooSeg outperforms state-of-the-art approaches
on three widely used segmentation benchmarks by large margins.
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Appendix

A Setting Hyper-parameters

Tuning hyperparameters without cross-validation on labels is particularly challenging for unsupervised
learning methods. For example, STEGO [8] contains six parameters that are both dataset- and
network-specific. Inspired by their hyperparameter tuning methods, we introduce a similar strategy
for manual hyperparameter tuning. Recall that our SmooSeg introduces two hyperparameters b1 and
b2 in the smoothness loss, which are used to adjust the threshold for applying the penalty. Ideally, a
segmentation model should promote smoothness within segments while maintaining discontinuity
between different segments. To achieve this, we can monitor the distribution of δ, referred to as the
smoothness degree, during the model training (see Fig. 8). In a balanced setting, the smoothness
degree distribution should exhibit bimodality, as demonstrated in the first column of Fig. 8. Otherwise,
the segmentation model will generate semantic maps that are either too smooth or too discontinuous.
Specifically, The hyperparameters used in SmooSeg with DINO as the backbone are summaried in
Table 5.

step step step

m
Io
U

m
Io
U

m
Io
U

b. Smoothness degree distribution  

a. Performance

Balanced Too smooth Too discontinuous

Figure 8: Distributions of the label penalty δ = 1−cos(A,A) within an image and their corresponding
performance under three different parameter settings. If the distribution of δ tends toward single-
modal with peaks at 0.0 (or 1.0), the semantic maps will be overly smooth (or discontinuous).

Table 5: Hyperparameters used in SmooSeg.

Parameter COCOStuff Cityscapes Potsdam-3

b1 0.5 0.5 0.5
b2 -0.02 -0.02 0.1

B The impact of CRF

CRF postprocessing is a common practice in both supervised and unsupervised semantic segmentation
[8], and that the use of CRF does not overshadow the contribution of the smoothness term in our work.
The smoothness prior in this work performs on the high-level feature maps and mainly contributes
to semantic smoothness, while CRF operates on pixels to refine the fine details and remedy the
resolution loss caused by the final upsample operation that exists in most semantic segmentation
models (a normal upsample rate is 8x8). Therefore, the application of a CRF serves as a supplement
to our smoothness prior to further refine low-level smoothness.
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Table 6: Experimental results of the impact of CRF on SmooSeg and STEGO.

COCOStuff Cityscapes Potsdam-3 Avg.

Acc mIoU Acc mIoU Acc mIoU Acc mIoU

STEGO w/o CRF 46.5 22.4 63.5 16.8 74.1 58.9 61.4 32.7
STEGO w CRF 48.3 24.5 69.8 17.6 77.0 62.6 65.0 (+3.6) 34.9 (+2.2)
SmooSeg w/o CRF 60.6 25.2 79.8 18.0 81.4 68.4 73.9 37.2
SmooSeg w CRF 63.2 26.7 82.8 18.4 82.7 70.3 76.2 (+2.3) 38.5 (+1.3)

Table 6 demonstrates that SmooSeg still achieves state-of-the-art without CRF. Overall, the perfor-
mance degradation in STEGO is notably more pronounced compared to SmooSeg. Importantly, the
application of a CRF serves as an effective supplement to our smoothness prior. Moreover, we also
present qualitative visualizations with and without CRF in Figures 9 and 10. It is found that CRF
is able to refine the quality of fine details on both STEGO and SmooSeg. However, SmooSeg is
consistently more semantically coherent than STEGO either with or without CRF.

C Additional Qualitative Results

To provide further evaluation, we have included some difficult samples from the COCOStuff dataset
that were predicted by our Smooseg and STEGO in Figure 11. In these cases, Smooseg and STEGO
tend to generate inaccurate semantic maps. However, it is noteworthy that even in challenging
scenarios, SmooSeg consistently generates more semantically coherent segmentation maps compared
to STEGO. This observation underscores the advantages of incorporating our smoothness prior in
semantic segmentation tasks.

We provide the visualization of more results in Fig. 12 for the COCOStuff dataset, Fig 13 for
the Cityscapes dataset, Figs 14 and 15 for the Potsdam-3 datasets. Overall, SmooSeg consistently
produces more coherent segmentation maps when compared to both STEGO and TransFGU. These
visual results provide further evidence of the efficacy of the smoothness prior in enhancing the label
coherence and the overall segmentation quality in unsupervised settings.
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Figure 9: Qualitative results of STEGO and SmooSeg with and without CRF on the COCOStuff
dataset.
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Figure 10: Qualitative results of STEGO and SmooSeg with and without CRF on the Cityscapes and
Potsdam-3 datasets.
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Figure 11: Difficult examples predicted by SmooSeg and STEGO on the COCOStuff dataset.
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Figure 12: Additional qualitative results on the COCOStuff dataset. It’s evident that SmooSeg
produces higher-quality segmentation maps compared to STEGO and TransFGU.
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Figure 13: Additional qualitative results on the Cityscapes dataset.
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Buildings + clutter Roads + cars Low vegetation + trees

Figure 14: Additional qualitative results on the Potsdam-3 dataset. The large-scale image have
a resolution of 4800 × 4800, which will be partitioned into 225 sub-images with a resolution of
320× 320 before being input into each algorithm.
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Figure 15: Additional qualitative results on the Potsdam-3 dataset.
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