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Abstract

Instruction following vision-language (VL) models offer a flexible interface that
supports a broad range of multimodal tasks in a zero-shot fashion. However,
interfaces that operate on full images do not directly enable the user to “point to"
and access specific regions within images. This capability is important not only to
support reference-grounded VL benchmarks, but also, for practical applications that
require precise within-image reasoning. We build Localized Visual Commonsense
models, which allow users to specify (multiple) regions-as-input. We train our
model by sampling localized commonsense knowledge from a large language
model (LLM): specifically, we prompt a LLM to collect commonsense knowledge
given a global literal image description and a local literal region description
automatically generated by a set of VL models. With a separately trained critic
model that selects high-quality examples, we find that training on the localized
commonsense corpus can successfully distill existing VL models to support a
reference-as-input interface. Empirical results and human evaluations in a zero-
shot set up demonstrate that our distillation method results in more precise VL
models of reasoning compared to a baseline of passing a generated referring
expression to an LLM 1.

1 Introduction

Large language models are capable of efficiently performing a wide array of tasks in a zero-shot
fashion. For text-only models, one commonly adopted interface is a flexible, language specifica-
tion of inputs coupled with an imperative request, e.g., “[article text]. Summarize this
article." Similarly, a natural extension allowing visual inputs manifests as, e.g., “[image].
Describe this image".

But, as models expand beyond text-only modalities, they should incorporate more flexible forms of
user input as well. Allowing users to specify individual objects/actors/regions within an image as part
of the input query is an important challenge, e.g., the [image] [request] interface above would
not directly a user to ask Why is [this person in the image] sad?. One option would to
simply require users specifically describe the piece of the image they are attempting to specify,
e.g., “[image] [description of specific region] [request]". But authoring concrete
referring expressions is not only cumbersome, particularly for scenes with lots of objects (e.g., “the
person in the red jacket on the left of the scene with their arms crossed") but also challenging, even for
humans: [11] argue that a good referring expression should both specify the reference precisely, but
also, follow Grice’s maxim of Quantity, i.e., provide no extra information. Given this tension, many

1Code will be released in https://github.com/jamespark3922/lskd
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popular referring expression datasets are gathered in a sophisticated “gamified" fashion [53, 22],
which aims to balance underspecification vs. verbosity.

We argue instead that users of vision-augmented LLMs should instead be able to pass localized visual
references simply by “pointing" to regions within the image [4, 48, 40]. This enables models to
focus on the region while interpreting the user’s request in a more intuitive fashion, and provide
more accurate and contextually relevant responses. By incorporating localized visual references, the
model can better understand and interpret complex scenes, thereby improving its performance on
tasks requiring a detailed understanding of the visual context.

We propose Localized Symbolic Knowledge Distillation (LSKD): the core idea is to provide literal
descriptions of images to a large language model, and allow that model to connect-the-dots between
these literal descriptors (e.g., lists of objects) and a holistic perspective of the scene. Different
from recent works which also distill from an LLM conditioned on visual descriptors symbolically
[34, 74], we additionally provide a localized reference to a particular region within the image and
design prompts to encourage the LLM to generate commonsense inference about that specific region.
After sampling, we train Localized Visual Commonsense models to generate commonsense triples
conditioned on the image and the region directly; we show that this process effectively distills the
LLM’s capacity for global+local scene understanding highlighted by zero-shot results on localized
visual reasoning benchmarks and human evaluation.

In summary, our main contributions are:

1. A new scalable framework that can generate reliable and localized visual commonsense statements.
2. The Localized Commonsense Knowledge Corpus: 1M localized commonsense inferences posed

over 250K images. This dataset can be used to expand the capacity of existing vision+language
models to incorporate references-as-input with no architectural modifications.

3. Achieving the SoTA zero-shot performance for three localized visual reasoning tasks.
4. Human evaluation results suggesting that a strong student model outperforms the teacher model in

answering localized visual commonsense questions.

2 Distilling Localized Visual Commonsense from a LLM

Here, we describe our LSKD pipeline to distill visual commonsense from a LLM. Prior works have
explored powerful LLM as the teacher model (GPT-3, ChatGPT) to apply knowledge distillation for
language-only reasoning tasks [58, 33, 3]. Multimodal inputs offer additional challenges in grounding
regions to relevant texts. Our work addresses this challenge by automatically generating reliable and
diverse knowledge statements for multimodal input, to further reason about regions within an image.

Figure 1 shows the overall framework of LSKD2. To learn from the LLM as our teacher model, we
verbalize the image into a set of dense text statements generated by global descriptors that provide
relevant, general overall semantics of the image, and local descriptors that talk about specific regions
in the image. We then pass these automatically generated descriptions to LLM and prompt to mine
localized, commonsense statements about the image at scale (See the Appendix for the exact prompt).

As LLMs comprehend multimodal input only through machine-generated image-to-text verbalization,
they are prone to hallucination and generation of inconsistent statements about the image. For
instance, an incorrect verbalizer output, as in Figure 1, might cause the LLM to produce visually
incoherent statements like "[1] is holding a surfboard". To minimize errors in modality translation,
we construct a critic model, trained on a limited set of high-quality, hand-annotated instances to
detect and remove such inconsistencies. This critic model mimics human judgment in evaluating the
generated commonsense knowledge, so that we can intentionally oversample localized knowledge
data, and utilize it to filter out non-relevant instances. Finally, we finetune a vision-language model
on the high-quality synthetic data to facilitate zero-shot localized visual commonsense reasoning.
We use 250K images in union of Visual Genome [26] and VCR [66], which include a diverse
set of social situations involving people and objects, as the seed images to collect the knowledge
corpus. After filtering, we collect 1M instances of Localized Commonsense Knowledge Corpus with
information grounded to specific regions in the image (see Appendix A for more details).

2For visualization purposes, we provide a shortened version of verbalizations. The full verbalization output
with the prompt to call ChatGPT is shown in the Appendix.
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[0] man in black shorts [(0.56, 0.3), (0.8, 0.84)] 
[1] little girl in striped bathing suit [(0.22, 0.61), (0.49, 1.0)] 
[2] a woman wearing a pink shirt [(0.3, 0.3), (0.44, 0.62)] 
[3] sunglasses on a woman's face [(0.32, 0.33), (0.4, 0.35)] 
[4] a white surfboard on the sand [(0.0, 0.73), (0.1, 0.96)]

[5] a surfboard [(0.44, 0.03), (0.69, 0.75)]

Place: place at raft, or beach.

Objects: surfboard, paddle, and board.

Concepts: board short, surfboard, stand 
up paddle surfing, surfboard shaper.G
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1. Question: What is the lighting of the image?  Answer: natural light

2. Question: What is the brief description of the image?  Answer: a family on a beach

3. Question: Does this take place inside or outside?  Answer: outside

4. Question: What is the little girl doing in the image? Answer: holding a surfboard

5. Question: Are there any other people besides the man, woman, and girl? Answer: no

6. Question: Is the ocean calm or wavy in the background? Answer: wavy

Man and woman standing. The man is 
holding a surfing board. In front of him a 
girl is there. At the background there is 
water and a sky. To the left side there is 
a surf board.

1. Image to 
Text 

Verbalization

1M Localized  
Commonsense 

Knowledge Corpus
Question: What might be [0] and [2] discussing as they hold the surfboard?
Answer: [0] and [2] might be discussing how to teach [1] how to surf.
Rationale: The man and woman are holding a surfboard and the little girl [1] is standing in front 
of them holding a smaller surfboard. It is possible that they are discussing how to teach the little 
girl how to surf.

Q
ue

st
io

n 
An

sw
er

4. Localized  
Knowledge Distillation 

on VL models

3. Supervised 
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Filtering

BLIP-2

Question: What is [1] holding in the image?
Answer: [1] is holding a surfboard in the image.
Rationale: By focusing on [1]'s activity, we can infer that she is likely interested in surfing and 
may be learning from the adults.

2. Localized Knowledge Generation with LLMChatGPT
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Localized Commonsense Knowledge Corpus

Figure 1: Pipeline of our LSKD framework. 1) Diverse vision-language descriptors are used
to verbalize images. 2) LLMs leverage the global and local descriptors to generate grounded
commonsene knowledge. 3) We annotate a small subset of data to train a supervised critic model that
can filter instances displaying incorrect visual details or incoherent reasoning. The critic model filters
the rest of generated statements to finalize the data pool. 4) A multimodal model is finetuned on the
synthetic data to support localized visual commonsense reasoning in a zero-shot manner.

2.1 Image to Text Verbalization

We first describe our methods for verbalizing (i.e., writing out in natural language) images/regions
to text. Note that this step does not require images with text annotations for the target datasets,
unlike prior work [34], and can be applied to any set of images. We focus on deriving global image
descriptions, local region descriptions, and dynamic question-answer pairs for each image. Figure 1
gives a schematic of our process which includes an example image verbalization.

Global descriptors: Image Verbalizers Following [69], we use the CLIP-ViTL model in a zero-
shot fashion to extract basic concept information about the image using a template. We retrieve places
from the Place365 [71], objects from TencentML-Images [59], and concepts from OpenImages [27]
to arrive at global concepts. Specifically: we use the top 2 places, the top 3 object labels, and the top
3 concepts. In addition to concepts, we also get narrative descriptions of the entire image. For this,
we fine-tuned OFA-Huge [54] on the Localized Narratives [44] corpus, which pairs 849K images
with multi-sentence descriptions (we ignore the mouse trace information and simply treat the task as
image-to-text captioning). We sample 5 localized narratives for each image using a temperature of
1.1.

Local descriptors: Region Verbalizers. Global descriptors alone often fail to capture the intricate
details of specific regions within an image, leading to a potential bottleneck in understanding scenes
with more visual precision and enabling localized reasoning. We employ local descriptors that provide
more grounded visual statements. To do so, we sample bounding box regions for the image using
region proposal models from object detection literature [32]. We then train a region captioning model
that maps from (image, region) Ñ description of the region. We fine-tuned the generative version of
BLIP-2 [29] with the FLAN-t5-xxl [7] backbone. We trained on datasets that provide descriptions
of regions within images. a combination of RefCOCO/RefCOCO+/RefCOCOg [64, 37], Sherlock
Clues-only [19] (277K), and VisualGenome [26] (1.96M): all of these datasets provide descriptions
of given regions within images. Following [68, 62], we render the bounding box in the image itself to
allow the model access to the bounding box’s location. More details of the local descriptors are in
Appendix E.
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QA MSE Rationale MSE Precision Recall F1
64.7 64.2 64.3

X 66.3 65.2 65.7
X 66.0 64.3 64.8

X X 66.8 65.7 66.0

Table 1: Analysis of BLIP-2 based critic model.
We see that adding the multi-class regression loss
further improves the performance of critic model. Figure 2: Precision of Critic Model with vary-

ing threshold values to filter the corpus size.
Precision is increased significantly by using
the supervised critic model to filter the corpus.

Dynamic descriptors: Q+A Verbalizers Finally, to support a holistic understanding and enable
models to dynamically probe for potentially missing context, we acquire more fine-grained details
about the scene using a series of questions and answers. Following [73], we prompt an LLM to ask
short, simple questions conditioning on the global and local descriptors as context, and query BLIP-2
[29] in a zero-shot fashion to answer the questions. We specifically collect 15 question/answer pairs
for each image.

2.2 Localized Commonsense Knowledge Generation

For all experiments, we use ChatGPT as our LLM,3 though in principle, any instruction-tuned LLM
could be used. We use question-answering-rationale (QAR) for knowledge representations. QAR
representations are flexible, and have been successfully adopted as meaning representations in areas
ranging from formal semantics [17, 38, 24] to commonsense reasoning [50, 66].

Given the verbalization of images, we prompt ChatGPT to come up with an interesting and complex
question with the possible answer that requires rationale to justify the reasoning. We support
two versions of localized knowledge generation. One that refers to specific regions in the image
either by their assigned numerical IDs and bounding box coordinates (e.g. What is [2] doing
in the image?) for more precise localization, and one that uses descriptive phrases (e.g. What
is [the woman wearing a pink shirt] doing in the image?) for more contextual and
detailed references. Qualitatively, we observe that the LLM is able to connect the IDs and the region
descriptions successfully, and create a convincing set of localized commonsense knowledge corpus.
For each image, we prompt ChatGPT three times to generate three unique QARs sequentially. We do
this for ID-based and description-based references (see Appendix for the prompts), and collect 18
localized instances per image.

2.3 Training the Critic Model

We train a supervised critic model to reflect the human acceptability of generated data. We allocate a
subset of 20K statements to train the critic model, and 4k for evaluation. The “accepted" instances
should generally deliver the visually correct information and exhibit coherent reasoning. For each
QAR, we ask two human annotators to rate from 1 to 3 (reject / maybe / accept) if 1) the QA displays
visually correct information (QA rating), and 2) the rationale justifies the answer while being aligned
with the image (QA Ñ R rating)4. We then assign binary label if at least one annotator has included
reject for any of the two rating criteria. Using this labeling scheme, we found that only 45% of the
instances are labeled as accepted, suggesting that aggressive filtering by the critic model is required.

For the model, we use a stage-1 pre-trained BLIP2 [29] with ViT-G [12] image encoder to do
the critique. Following their finetuning scheme on retrieval tasks, we train the image encoder and
Q-Former together, not freezing the weights. We add a linear layer to the image-text matching head
that has been pre-trained to capture the multimodal content, and train it to perform the classification.

3https://openai.com/blog/chatgpt
4The second criterion is automatically rejected if the QA has already rejected in the first pass
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Descriptors Used Average Critic Score
Full Descriptors 58.4
(-) CLIP Concepts 52.1
(-) Localized Narratives 56.1
(-) Global Descriptors 54.3
(-) Local Descriptors 49.8
(-) QAs 49.0

Table 2: Ablation study of the descriptors.
We remove one of the descriptors from full
descriptors when calling ChatGPT to gen-
erate the corpus, and calculate the average
critic score to rate the generations (higher
the better).

0

1

2

3

QA Correctness Rationale Justification

1.871.97
2.342.41

With Filtering (threshold = 0.8) Without Filtering

Figure 3: Human judgment of corpus with
and without filtering. We get the average
ratings in Likert scale (from 1 to 3) from
three human annotators.

We utilize the two rating criteria (QA and QA Ñ R) to further inform the critic model to know what
caused the humans to reject the QARs. We achieve this by multi-task training of critic model. The
ratings containing reject are given the regression label of 0, while the average of two QA and QA Ñ R
ratings is calculated to get the regression label yQA and yQAÑR. Along with the binary classification
loss, the image-text matching head is further trained with mean squared error (MSE) losses with
yQA and yQAÑR. Table 1 shows the performance of critic model on the above train and eval split.
We empirically see that adding the multi-task loss (QS MSE and Rationale MSE) further helps the
performance of classification.

Analysis of Supervised Critic How reliable is the critic model on filtering erroneous instances?
In the annotation stage, we have observed that only 45% of the instances would be considered as
valid by humans. We explore tuning different thresholds of critic model to filter the data (e.g. keep
instances whose predicted scores are higher than the threshold), and see if higher acceptability can
be achieved with higher threshold. Figure 2 shows a plot of precision value (instances labeled as
“accept") by the filtered corpus size. We see a consistent trend where removing the corpus with more
critical criteria yields higher acceptability. Specifically, it jumps from 45% of 70% acceptance if 20%
are maintained by the critic model. We use this threshold value of 0.8 to apply the critic model. Note
that filtering the corpus randomly, on the other hand, doesn’t have any influence on the acceptability.

In addition, we run human evaluation to measure the acceptability of data with and without filtering.
We collect 500 instances the same way critic model labels are collected: 1) is the QA visually correct?
and 2) does the rationale justify the answer? Likert scores from [1-3] are calculated for each criteria
(higher the better). Figure 3 shows the human evaluation results, and we see that the dataset with
filtering is more favored by humans than without filtering.

Are All the Descriptors Necessary? We run ablation studies of the descriptor components in
the ChatGPT prompt and use the critic model to score the ChatGPT generations. We collect QAR
instances for 500 images and calculate the average critic score, with higher score aligned with human
preference. Table 2 shows the result when one of the descriptors is removed from full verbalizations.
We see that using all descriptors provides the best results, and in fact the QA descriptor provides the
biggest jump (from 49.0 to 58.4).

2.4 Training with the Localized Corpus

We explore the distillation of localized commonsense knowledge by finetuning discriminative and
generative vision language model on our corpus. For the corpus that mentions IDs and bounding box
coordinates, we follow [68, 62, 67, 19] by directly drawing colored highlights around the regions in
the images where the region IDs and highlights are consistent throughout the corpus (e.g. [0] always
gets the color pink).

During training, we additionally apply region-based augmentation by reassigning the IDs with a
random order while still keeping a consistent color coding (e.g. What might be [0] and [1] discussing?
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Ñ What might be [1] and [3] discussing?). We similarly vary the number of regions to be shown
in the image, while ensuring that the mentioned IDs are drawn in the image. With these tricks, the
modifications are performed in the input image and text to enable localization, while the architecture
and training objectives of the vision-language model remain unchanged.

We use the BLIP-2 [29] as the vision and language backbone model. Given the recent success and
efficiency of visual instruction methods, [34, 74, 29, 10], we freeze the weights of visual and language
model and only train the Qformer [34] learns to map visual to text tokens. For discriminative tasks,
we apply the stage 1 pre-training objective with Image-Text Contrastive, Image-Text Matching, and
Image-Text Grounding Losses. We further explore generative performance with the FlanT5XXL [57]
language model and Mini-GPT4 that tunes the Vicuna-13b-v0 language model [6, 52] to understand
visual tokens. We refer to [29] for more training details.

3 Experiments & Results

We use the OpenAI Chat API with gpt-3.5-tubro engine and a temperature of 0.8 to prompt the LLM
to collect knowledge data. The BLIP-2 critic model is trained with total batch size of 256, learning
rate of 1e-5, max 10 epochs. The visual encoder (ViT-G) model is additionally trained instead of kept
it as frozen.

The discriminative BLIP2 is trained with 256 batch size and 128 max sequence length for 1e4
iterations. The BLIP-2 FlanT5XXL and Mini-GPT4 models are trained with 64 batch size and 2e4
iterations. All models are trained with learning rate of 1e-5, Adam optimizer [23], linear warmup with
cosine annealing, and image size of 480 using 80GB 4 A100 GPUS. We do not finetune the ViT or
the language model, and only train the QFormer shown by the success from prior work [29, 10, 34].

3.1 Downstream Tasks

Localized Visual Commonsense Reasoning We evaluate on a set of visual commonsense reasoning
tasks that involve identifying and referring specific regions in the image in a zero-shot setting.
VCR [66] is a task that requires choosing the right answers for question (Q Ñ A), and rationales
justifying the answer (QAÑ R) from four multiple choice options. The results are combined with
(Q Ñ AR) metric that requires selecting the right answer and rationale. VisualCOMET [41] is
a commonsense knowledge graph of understanding specific people’s intent, and what they would
do before and after, and adopt their Acc@50 task of retrieving ground truth inferences from 50
candidates . Sherlock [19] is a visual abductive dataset that includes the comparison evaluation of
ranking of 10 text inference candidates aligned with human preference. All the aligned tasks require
reasoning about specific regions or people in the image, and getting the image-text similarity score
from a model.

Non-Localized Visual Reasoning We measure the effectiveness of the localized knowledge corpus
on other vision-language tasks not limited to datasets with no bounding box annotations. We specifi-
cally focus on ones that require high-level reasoning that would benefit from visual commonsense
corpus. AOKVQA [47] requires outside world-knowledge to answer questions and we evaluate
on their multiple choice setting. SNLI-VE [61] is an inference based visual entailment that tests
fine-grained image understanding. The task is to predict whether the image semantically entails
the text, and specifically classify if the image-text is one of {entailment, neutral, contradiction}.
Visual7W [75] is visual QA with focus on visual grounding, and we evaluate on the subset of telling
questions that have textual answers (Telling QA).

Baseline models We include CLIP as our baseline as it has shown strong zero-shot generalization
results for various image-text alignment tasks [45]. Following [56], we exclude the question in
the text input and acquire the image-text cosine similarity score to do the task. CLIP-Event is a
CLIP model pre-trained on their VOA dataset crawled from news websites [31]. BLIP is image-text
alignment model trained with additional generation objective and boostrapped image captions [30].
We lastly evaluate the zero shot performance of BLIP-2 [29] varying the visual encoders before
applying knowledge distillation. We do not draw bounding boxes in the image nor include id tags in
the text description, as these models have not been pre-trained in this domain.
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Localized Non-Localized
VCR Sherlock VisualCOMET AOKVQA SNLI-VE Visual 7w

Approach Q Ñ A QA Ñ R Q Ñ AR Comparison Acc@50 Mult. Choice Classification Telling QA

CLIP-Event [31] 52.4 49.2 - - 22.4 - - -
CLIP ViT-B-16˚ [45] 54.8 48.6 26.6 9.9 33.0 58.3 36.0 65.9
CLIP ViT-L-14x336 [45] 56.3 51.3 29.9 10.9 34.8 61.0 31.9 66.7
BLIP ViT-L [30] 47.2 42.5 20.1 18.6 31.3 61.3 34.2 69.4
BLIP-2 ViT-L [29] 52.3 48.1 25.3 18.7 36.7 65.0 31.7 73.6
BLIP-2 ViT-G [29] 56.1 49.8 28.0 19.5 39.0 68.0 33.4 77.1

BLIP-2 ViT-G + LSKD 59.0 56.4 33.4 29.7 40.3 68.9 40.3 79.5

Table 3: Zero-shot results on the localized and non-localized visual reasoning tasks. ˚Zero shot VCR
results directly obtained from [56]. For CLIP, we follow [56] by omitting the question and having the
answer (with rationale) as text input to calculate the image-text similarity. For BLIP-2, we maintain
the question text input as it improves the performance.

Figure 4: Effect of data quality controlled by filtering threshold on different datasets. The x-axis
shows the threshold for filtering and the y-axis is the accuracy metric in percentage. We compare
training our model on the LLaVA-instruct dataset (red) and ours (blue).

3.2 Zero-Shot Visual reasoning results

Table 3 shows the zero-shot results on the downstream tasks. For localized reasoning tasks, we first
observe that scaling the visual encoder size (CLIP ViTB-16 vs ViT-L-14x336; BLIP-2 ViT-L vs
ViT-G) in general improves the performance. CLIP outperforms BLIP-2 on VCR tasks but fall short
on Shlerock and VisualCOMET. After applying localized symbolic knowledge distillation (LSKD) to
BLIP-2, there is a consistent improvement over the BLIP-2 model on all downstream tasks (5.4% on
VCR Q Ñ AR, 10.2 on Sherlock Comparison, 1.3% on VisualCOMET Acc@50).

For non-localized reasoning tasks, we observe a similar pattern. Interestingly, applying LSKD
improves the performance of BLIP2 model further across all the tasks (AOKVQA, SNLI-VE,
Visual7W) over the vanilla model, despite these tasks not being the primary target domain. This
demonstrates that the advantages of distilling models with localized reasoning can be transferred to
high-level visual commonsense tasks, thanks to the visual precision and enhanced reasoning abilities
learned from the generated knowledge corpus.

Influence of Critic Filtering on Downstream Tasks How does the process of critic filtering
influence the performance of downstream tasks? Keeping the size of the selected statements the
same at „ 300K, we select qualified knowledge statements with varying prediction thresholds.
We also compare with training on the LLaVA-instruct dataset which similarly prompts an LLM
(GPT-4) to generate complex questions using ground truth verbalizers [34]. Figure 4 presents the
resulting performances at these diverse thresholds across different datasets. Compared to LLaVA,
we observe that localized knowledge statements without filtering does not show any improvement
for the downstream model, while any thresholding over 0.2 is consistently better than LLaVA across
all datasets. For tasks that demand relatively moderate commonsense, such as VCR QÑA and
Sherlock Comparison, increasing the threshold consistently improves the model performance. For
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Localized Non-Localized
VCR Sherlock VisualCOMET AOKVQA SNLI-VE Visual 7w

Dataset Size Annotator Q Ñ AR Comparison Acc@50 Mult. Choice Classification Telling QA

Zero-Shot NA NA 28.0 19.5 39.0 68.0 33.4 77.1

Sherlock [19] 300K Human 34.6 30.5 39.7 67.2 38.6 70.1
VisualCOMET [41] 1.2M Human 31.8 25.3 50.2 68.5 35.6 70.8

LLAVA-Instruct [34] 150K GPT-4 28.1 26.9 37.5 71.0 42.6 79.5
LSKD (Ours) 150K ChatGPT 33.3 28.6 39.7 69.6 38.0 75.9
LSKD (Ours) 1M ChatGPT 33.4 29.7 40.3 68.9 40.3 79.5

Table 4: Ablations of BLIP-2 ViT-G trained with varying sources of visual-knowledge corpus
annotated by humans and machines. We break down to visual reasoning tasks that require localized
reasoning and those do not. Critic filtering is applied to the LSKD corpus (Ours).

tasks requiring a higher degree of commonsense such as VCR QAÑR and VisualCOMET Hit@50,
the performance increases until a certain threshold and then fluctuates. We speculate that a more
grounded critic model could potentially mitigate this fluctuation, and we intend to investigate this in
our future work. Overall, our findings suggest that higher thresholds (i.e., more critical filtering) tend
to yield superior quality generations, thereby enhancing the performance on downstream tasks.

3.3 Human vs Machine Annotated Corpus

Can training on machine annotated corpus result in competitive performance with human annotations?
In Table 4, we compare the performance of BLIP-2 ViT-G trained on existing human-annotated
corpora with our machine-annotated corpus across various scales. First, we found that increasing the
size of our training corpus (150K vs 1M) leads to consistent improvement across all tasks, indicating
a promising trend of scaling law for synthetic training data. Regardless of the size, training on our
dataset yields considerable benefits over the zero-shot model on localized reasoning tasks.

Next, we observe that training on human annotated corpus vastly improves the performance of their
relative tasks (e.g. training on VisualCOMET boosts performance from 39.0 to 50.2). However,
this can lead to inferior results on other visual reasoning tasks than the zero-shot counterpart. For
instance, the performance on Visual7W drops from 77.1 (Zero-shot) to 70.1 (Sherlock) and 70.8
(VisualCOMET). This suggests that human-designed datasets may limit task generalization due to
their lack of diversity. Interestingly, we see that training the model our full LSKD corpus (1M)
leads to uniform gains over the zero-shot model across the tasks, and even outperforms the human
annotation corpus for the non-localized tasks as well. This shows that machine-annotated datasets,
when curated and scaled adequately, can indeed rival or even surpass the performance of models
trained on human-annotated corpora.

We directly compare training on ours and the LLaVA dataset. Regardless of our dataset scale, we
observe that LSKD + filtering wins over training on the LLaVA corpus on localized reasoning
benchmarks, even when using a less powerful teacher model (ChatGPT vs GPT-4). This suggests that
our creation of a new localization corpus is crucial to support the model with grounded reasoning. On
the other hand, LLAVA wins on non-localized reasoning tasks as they are aligned with the nature of
training corpus. We thus observe that the appropriate application of the corpus can be task-dependent,
and adopting a selective approach towards generating the corpus may result in significantly enhanced
performance across various benchmarks.

3.4 Localized Reasoning with Generative Models

We extend LSKD to train generative models that can refer and talk about highlighted regions in image.
We finetune BLIP-2 FlanT5 and Mini-GPT4 and prompt them to answer questions from the VCR data.
As there is no baseline zero-shot model that can reason about regions to answer questions, we make a
direct comparison of the student LSKD model to the teacher LLM with access to verbalizations. We
ask annotators on Amazon Mechanical Turk (AMT) platform to run head-to-head comparisons (with
ties) on three criteria, if the answer delivers: 1) visually correct details, 2) informative and interesting
information, and 3) content that sounds plausible. Finally, they select their overall preference. We
take the majority vote of 3 annotators, and disregard the instance if there is no clear majority.
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Model Correctness Informativeness Plausibility Overall
ChatGPT w/ Vebalizers 34.7 33.9 39.6 45.0
BLIP-2 (FlanT5XXL-11B) + LSKD 31.7 41.0 30.2 41.2

Tie 33.7 25.1 30.2 13.1

ChatGPT w/ Vebalizers 29.8 31.7 36.8 40.6
Mini-GPT4 (Vicuna-13B) + LSKD 34.3 53.0 34.2 49.1

Tie 35.9 15.3 30.0 10.3

Table 5: Human evaluation of generative models with LSKD vs Chat-GPT with verbalizers. Humans
are asked to choose the better generation or tie if they share the same quality.

Table 5 shows the human evaluation results. We observe that the LSKD generally wins in informa-
tiveness over ChatGPT, but not in plausibility. We see a conflicting pattern in correctness and overall
preference, where Mini-GPT4 is equipped with a more powerful language model that outperforms
the teacher model while BLIP-2 falls short. Unlike previous language-based distillation where a
relatively weak student model can outperform the teacher [58, 3], we see that a strong student model
may be required to outperform the teacher LLM in the multimodal domain.

Qualitative Results Figure 5 presents a comparative analysis of question-answering with ratio-
nale results on VCR samples generated by ChatGPT, LLaVA [34] and Ours. Both Ground Truth
(GT) and Ours consistently identify the correct entities, with Ours model often providing broader
context, which is uncertain on rare occasions (e.g. “likely the bride”). On the other hand, ChatGPT
predominantly focuses on observable actions or states as described in the text context, occasionally
resulting in the misidentification of the visual entities and their relations. In the third example in
Figure 5, “waiting for someone” focuses on the observable state “standing still”, missing visual detail
such as a cave, holding a flame, and surrounding context. LLaVA, in contrast, generally provided a
broad overview while identifying a specific visual entity in most cases. However, it often struggled
to accurately identify specific entities within the complex scene (e.g. “holding a wine glass” in
Figure 5.(1), “cigarette” in Figure 5.(3) ). Compare to LLaVA, Ours often aligned closely with
GroundTruth and incorporated both actions and inferred knowledge in its answer. Overall, Ours
delivers a more nuanced and contextually-rich response.

4 Related Work
Knowledge Distillation Recent research [1] has extensively explored the use of language models
as knowledge bases, highlighting their potential in reasoning, explainability, and consistency, which
can enhance downstream tasks by distilling knowledge from LMs. [15] demonstrated how knowledge
augmentation explicitly from knowledge bases and implicitly from GPT-3 improved open-domain
multimodal tasks. [33] showed that overgeneration with GPT-3 from exemplars to filter, as well
as reviewed by humans, is a new and reliable way to create an NLI dataset with human and AI
collaboration. This setup also has the advantage of bringing forth cultural internalization via human
collaboration [9]. Previous works have explored knowledge distillation in the multimodal domain by
prompting the teacher LLM with human-annotated verbalizations [34, 74, 10]. Our work is different
in that it generated localized commonsense descriptions and the knowledge generation framework
can operate a scale without the need for aligned descriptions.

Filtering [2] filters the generated sentences using a classifier trained on original sentences and a set
of generated sentences. [55] used the same technique to filter out synthetic data created, which is of
low quality. Large language models can be used to refine the commonsense knowledge retrieved from
web contents by filtering the data generated from these models [39]. They perform a consolidation
step that filters topical and relevant assertions based on OpenIE.

Multimodal commonsense reasoning requires more profound real-world knowledge, potentially
spanning logical, causal, and temporal relationships between concepts. For example, elements of
causal reasoning are required to answer the questions regarding images in VCR [66] and Visual-
COMET [41], while other works have also introduced datasets with video and text inputs to test for
temporal reasoning (e.g., Social-IQ [65], MovieQA [51], MovieFIB [36], TVQA [28]). Benchmarks
for multimodal commonsense typically require leveraging external knowledge from knowledge
bases [49] or pretraining paradigms on large-scale datasets [35, 68].
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Question & Image GT Answer ChatGPT LLaVA Ours
Answer: [6] is most 
likely to make the 
toast.

Rationale: she is 
already holding a 
wine chalice in her 
hand .

Answer: [2]

Rationale: The woman in the 
pink dress [2] is holding a glass 
of champagne, which is 
commonly used for celebratory 
toasts.

Answer: In the scene, several 
women are gathered in a room and 
appear to be in a celebratory mood. 

Rationale: The woman in a white 
dress is most likely to make a 
celebratory toast because she is 
holding a wine glass and seems to 
be engaging in a cheerful 
interaction with the other women .

Answer: the bride in [6] seems to 
be the most likely person to make a 
celebratory toast given the occasion 
of the wedding reception.
Rationale: the fact that she is 
holding a glass of wine and in a 
dress suggests that she is most 
likely the bride, and a toast would 
be an appropriate and celebratory 
way for her to express gratitude and 
appreciation.

Answer: he’s the 
driver.

Rationale: he's 
holding a whip and 
the reins.

Answer: [0] might be a groom 
or an important guest of the 
wedding party.

Rationale: [0] is seated in a 
horse-drawn carriage, which 
suggests that he holds some 
significance in the wedding.

Answer: In the image, a man in a 
suit and hat is riding in a horse-
drawn carriage with a woman. 

Rationale: The man's role appears 
to be that of a carriage driver, as he 
is steering the horse-drawn 
carriage .

Answer: [0] is riding in a horse-
drawn carriage, which suggests that 
[0] is a driver or a rider.

Rationale: the fact that [0] is sitting 
in the driver's seat of the carriage 
suggests that it is their job to direct 
the carriage and keep it in a safe 
riding position.

Answer: [1] is 
contemplating 
something.

Rationale: person in 
[1] is looking down 
and examining 
something .

Answer: [1] might be waiting 
for something or someone.

Rationale: [1] is standing still 
and does not seem to be 
engaged in any action.

Answer: The man is holding a 
cigarette lighter in his hand and 
using it to light the cigarette. 

Rationale: He appears to be 
focused on the task at hand.

Answer: [1] is holding a flame and 
appears to be in a cave, suggesting 
that he may be on a mission or 
searching for something

Rationale: [1] is holding a flame, 
which can suggest a sense of 
mystery or danger, while the 
presence of a cave suggests that he 
may be searching for something.

Answer: she seems 
to be covering her 
nose from something 
.

Rationale: person in 
[3] doesn ' t look as 
dire as person in [0] 
so it is probably just 
a smell that only she 
is smelling .

Answer: [0] might be covering 
her face to protect the baby 
from the cold weather.

Rationale: [0] is seen wearing 
a hat and coat which indicates 
cold weather, and she is 
holding a baby which could 
indicate that she is trying to 
protect the baby ..

Answer: The woman on the left is 
covering her face, likely because 
she is either shy, trying to hide her 
emotions, or reacting to something 
that happened ..
Rationale: Since she is with a 
group of people, it is possible that 
they are engaged in a conversation 
or an activity that involves sharing 
personal thoughts or experiences.

Answer: [0] is hiding her face from 
the smoke and dirt in the 
background, which suggests a 
serious situation.

Rationale: [0] is covering their 
face, which implies that the 
situation in the background is 
unhealthy or dangerous.

Which person is most likely to make a 
celebratory toast ?

What is [0] ' s function ?

What is [1] doing ?

Why is [0] covering her face ?

[6]

[2]

[0]

[1]

[0]
[3]

(1)

(2)

(3)

(4)

Figure 5: Qualitative examples comparing ChatGPT (the teacher model), LLAVA trained for complex
visual reasoning [34], and ours. Each person referenced in the question has been assigned a unique
number with a bounding box and their mention has been marked with a corresponding color. Any
errors within the generated results are emphasized with a red highlight.

Region Understanding with Multimodal alignment Capturing elements across modalities that
have a common meaning and is exemplified by tasks such as visual coreference resolution [25, 42],
visual referring expression recognition [8], multimodal question answering [19, 66], and cross-modal
retrieval [13, 43]. Alignment between modalities is challenging since it may depend on long-range
dependencies, involves ambiguous segmentation (e.g., words or utterances), and could be either
one-to-one, many-to-many, or not exist at all. Resources for fine-grained alignment include Visual
Genome [26] and dense captioning [21], diverse reasoning [63]. Recent methods have adopted
either generative or retrieval-based methods for alignment: generative methods create localized
verbalizations of the region of interest [72, 14, 21, 70], while retrieval aims to select the most
accurate caption for the region of interest despite possibly given only coarse-grained paired data of
captions for entire images [5, 18].

5 Conclusion

We present LSKD, a method for sampling localized commonsense knowledge from a large language
model. With the help of supervised critic model aligned with human judgements, we create a diverse,
reliable 1M localized commmonsense corpus. Training on the resulting corpus supports models that
can accept region references as input, which allows users to interact with specific parts of images by
“pointing;" all without having to write out a referring expression explicitly. We show that training
on our corpus improves the zero-shot performance of vision-language models for tasks requiring
regions-as-input. Making the critic model more critical by strict thresholding improved performance
further. We present a state of the art zero-short performance with our approach opening avenues for
visual commonsense models with our localized commonsense knowledge corpus.
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