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Abstract

We consider the problem of contextual bandits and imitation learning, where
the learner lacks direct knowledge of the executed action’s reward. Instead, the
learner can actively request the expert at each round to compare two actions and
receive noisy preference feedback. The learner’s objective is two-fold: to minimize
regret associated with the executed actions, while simultaneously, minimizing the
number of comparison queries made to the expert. In this paper, we assume
that the learner has access to a function class that can represent the expert’s
preference model under appropriate link functions and present an algorithm that
leverages an online regression oracle with respect to this function class. For the
contextual bandit setting, our algorithm achieves a regret bound that combines
the best of both worlds, scaling as O(min{

√
T , d/∆}), where T represents the

number of interactions, d represents the eluder dimension of the function class, and
∆ represents the minimum preference of the optimal action over any suboptimal
action under all contexts. Our algorithm does not require the knowledge of ∆, and
the obtained regret bound is comparable to what can be achieved in the standard
contextual bandits setting where the learner observes reward signals at each round.
Additionally, our algorithm makes only O(min{T, d2/∆2}) queries to the expert.
We then extend our algorithm to the imitation learning setting, where the agent
engages with an unknown environment in episodes of length H , and provide
similar guarantees regarding regret and query complexity. Interestingly, with
preference-based feedback, our imitation learning algorithm can learn a policy
outperforming a sub-optimal expert, matching the result from interactive imitation
learning algorithms [Ross and Bagnell, 2014] that require access to the expert’s
actions and also reward signals.

1 Introduction

Human feedback for training machine learning models has been widely used in scenarios including
robotics [Ross et al., 2011, 2013, Jain et al., 2015, Laskey et al., 2016, Christiano et al., 2017] and
natural language processing [Stiennon et al., 2020, Ouyang et al., 2022]. By integrating human
feedback into the training process, these prior works provide techniques to align machine-learning
models with human intention and enable high-quality human-machine interaction (e.g., ChatGPT).
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Existing methods generally leverage two types of human feedback. The first is the action from human
experts, which is the dominant feedback mode in the literature of imitation learning and learning from
demonstrations [Abbeel and Ng, 2004, Ziebart et al., 2008, Daumé et al., 2009, Ross et al., 2011, Ross
and Bagnell, 2014, Sun et al., 2017, Osa et al., 2018, Li et al., 2023]. The second type of feedback is
preference-based feedback, which involves comparing pairs of actions. In this approach, the expert
provides feedback by indicating their preference between two options selected by the learner. While
both types of feedback have their applications, our focus in this work is on preference-based feedback,
which is particularly suitable for scenarios where it is challenging for human experts to recommend
the exact optimal action while making pairwise comparisons is much easier.

Learning via preference-based feedback has been extensively studied, particularly in the field of
dueling bandits [Yue and Joachims, 2011, Yue et al., 2012, Zoghi et al., 2014, Ailon et al., 2014,
Komiyama et al., 2015, Wu and Liu, 2016, Saha and Gaillard, 2021, Bengs et al., 2021, Saha
and Gaillard, 2022] and contextual dueling bandits [Dudík et al., 2015, Saha, 2021, Saha and
Krishnamurthy, 2022, Bengs et al., 2022, Wu et al., 2023]. Different from the standard bandit setting,
the learner proposes two actions in dueling bandits and only gets noisy preference feedback from the
human expert. Follow-up works extend the preference-based learning model from the one-step bandit
setting to the multi-step decision-making (e.g., imitation learning and reinforcement learning) setting
[Chu and Ghahramani, 2005, Sadigh et al., 2017, Christiano et al., 2017, Lee et al., 2021b, Chen et al.,
2022, Saha et al., 2023]. These studies mainly focus on learning a high-quality policy from human
feedback, without concerning the question of active query in order to minimize the query complexity.

However, query complexity is an important metric to optimize when learning from human feedback,
as human feedback is expensive to collect [Lightman et al., 2023]. For instance, InstructGPT [Ouyang
et al., 2022] is trained only on around 30K pieces of human feedback, which is significantly fewer
than the internet-scale dataset used for pre-training the base model GPT3, indicating the challenge of
scaling up the size of human feedback datasets. In other areas, such as robotics, learning from human
feedback is also not easy, and prior studies (e.g., Cohn et al. [2011], Zhang et al. [2022], Myers
et al. [2023]) have explored this issue from various perspectives. Ross et al. [2013], Laskey et al.
[2016] pointed out that querying human feedback in the learning loop is challenging, and extensively
querying for feedback puts too much burden on the human experts.

In this work, we design principled algorithms that learn from preference-based feedback while at the
same time minimizing query complexity under the settings of contextual bandits [Auer et al., 2002]
and imitation learning [Ross et al., 2011]. Our main contributions can be summarized as follows.

• In the contextual dueling bandits setting, the stochastic preference feedback is generated based
on some preference matrix [Saha and Krishnamurthy, 2022]. We propose an algorithm (named
AURORA – in short of Active preference qUeRy fOR contextual bAndits) that achieves a best-of-
both-worlds regret bound (i.e., achieving the minimum of the worst-case regret and an instance
dependent regret), while at the same providing an instance-dependent query complexity bound.
For benign instances with small eluder dimension and large gap, our regret and query complexity
bounds both scale with ln(T ) where T is the total number of interactions in contextual bandits.

• In imitation learning, the stochastic preference feedback is generated based on the reward-to-go of
the expert’s policy (e.g., the expert prefers actions that lead to higher reward-to-go). We propose
an algorithm named AURORAE, in short of Active preference qUeRy fOR imitAtion lEarning,
which instantiates H instances of AURORA, one per each time step for the finite horizon Markov
Decision Process (MDP), where H is the horizon. By leveraging preference-based feedback,
we show that, interestingly, our algorithm can learn to outperform the expert when the expert is
suboptimal. Such a result is beyond the scope of the classic imitation learning algorithm DAGGER
and previously can only be achieved by algorithms like AGGREVATE(D) [Ross and Bagnell, 2014,
Sun et al., 2017, Cheng and Boots, 2018] and LOLS [Chang et al., 2015] which require direct
access to expert’s actions and reward signal – a much stronger feedback mode than ours.

To the best of our knowledge, for both contextual bandit and imitation learning with preference-based
feedback, our algorithms are the first to achieve best-of-both-worlds regret bounds via active querying.

1.1 Related works

Selective Sampling. Numerous studies have been conducted on selective sampling across various
settings [Cesa-Bianchi et al., 2005, Dekel et al., 2012, Agarwal, 2013, Hanneke and Yang, 2015,
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2021, Zhu and Nowak, 2022], with the work of Sekhari et al. [2023] being closest to ours. Sekhari
et al. [2023] presented a suite of provably efficient algorithms that are applicable to settings including
contextual bandits and imitation learning. The primary distinction between our setting and the prior
works lies in the feedback modality–we assume preference-based feedback, whereas they assume
direct label feedback or reward signals.

Contextual bandits with preference feedback. Dudík et al. [2015] is the first to consider contextual
dueling bandits, and one of their algorithms achieves the optimal regret rate. Saha and Krishnamurthy
[2022] studied contextual dueling bandits using a value function class and proposed an algorithm
based on a reduction to online regression, which also achieves an optimal worst-case regret bound. In
this paper, we mainly follow the setting of the latter and make notable improvements in two aspects:
(1) in addition to the O(

√
AT ) optimal regret rate where A is the number of actions and T is the

number of interaction rounds, we established an instance-dependent regret upper bound that can
be significantly smaller when the bandit exhibits a favorable structure; (2) our algorithm has an
instance-dependent upper bound on the number of queries, and thus when the underlying instance is
well behaved (has small eluder dimension and large gap), we will make significantly fewer queries.

Another related work is Saha and Gaillard [2022] which achieves the best-of-both-worlds regret for
non-contextual dueling bandits. Our setting is more general due to the context and general function
approximation, which enables us to leverage function classes beyond linear and tabular cases.

RL with preference feedback. RL with preference feedback has been widely employed in recent
advancements in AI [Ouyang et al., 2022, OpenAI, 2023]. According to Wirth et al. [2017], there
are generally three types of preference feedback: action preferences [Fürnkranz et al., 2012], state
preferences [Wirth and Fürnkranz, 2014], and trajectory preferences [Busa-Fekete et al., 2014,
Novoseller et al., 2020, Xu et al., 2020, Lee et al., 2021a, Chen et al., 2022, Saha et al., 2023,
Pacchiano et al., 2021, Biyik and Sadigh, 2018, Taranovic et al., 2022, Sadigh et al., 2017]. We focus
on the action preference with the goal of achieving tight regret bounds and query complexities.

The concurrent work from Zhan et al. [2023] investigates the experimental design in both the
trajectories-based and action-based preference settings, for which they decouple the process of
collecting trajectories from querying for human feedback. Their action-based setting is the same as
ours, but they mainly focus on linear parameterization, while our approach is a reduction to online
regression and can leverage general function approximation beyond linear function classes.

Imitation learning. In imitation learning, two common feedback modalities are typically considered:
expert demonstration and preference. The former involves directly acquiring expert actions [Ross
et al., 2011, Ross and Bagnell, 2014, Sun et al., 2017, Chang et al., 2015, Sekhari et al., 2023], while
the latter focuses on obtaining preferences between selected options [Chu and Ghahramani, 2005,
Lee et al., 2021b, Zhu et al., 2023]. Brown et al. [2019, 2020] leveraged both demonstrations and
preference-based information and empirically showed that their algorithm can learn to outperform
experts. Our imitation learning setting belongs to the second category, and we established bounds on
the regret and the query complexity for our algorithm. We show that our algorithm can learn a policy
that can provably outperform the expert (when it is suboptimal for the underlying environment).

2 Preliminaries

2.1 Contextual Bandits with Preference-Based Feedback

In this section, we introduce the contextual dueling bandits setting. For notation, we denote [N ] as
the integer set {1, . . . , N} and denote ∆(S) as the set of distributions over a set S.

We assume a context set X and an action space A = [A]. At each round t ∈ [T ], a context xt is
drawn adversarially, and the learner’s task is to pick a pair of actions (at, bt) ∈ A × A and then
decide whether to make a query to the expert. If making a query, a noisy feedback yt ∈ {−1, 1} is
revealed to the learner regarding whether at or bt is better. We assume that the expert relies on a
preference function f⋆ : X ×A×A → [−1, 1] to samples its preference feedback yt:

Pr(at is preferred to bt |xt) := Pr(yt = 1 |xt, at, bt) = ϕ
(
f⋆(xt, at, bt)

)
where ϕ(d) : [−1, 1]→ [0, 1] is the link function, which satisfies ϕ(d) + ϕ(−d) = 1 for any d. If the
learner does not make a query, it will not receive any feedback for the selected actions at and bt. Let
Zt ∈ {0, 1} indicate whether the learner makes a query at round t.
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We assume that the learner has access to a function class F ⊆ X ×A×A → [−1, 1] that realizes
f⋆. Furthermore, we assume that f⋆, as well as the functions in F , is transitive and anti-symmetric.
Assumption 1. We assume f⋆ ∈ F and any functions f ∈ F satisfies the following two properties:
(1) transitivity: for any x ∈ X and a, b, c ∈ A, if f(x, a, b) > 0 and f(x, b, c) > 0, then we must
have f(x, a, c) > 0; (2) anti-symmetry: f(x, a, b) = −f(x, b, a) for any x ∈ X and any a, b ∈ A.

We provide an example below for which Assumption 1 is satisfied.
Example 1. Assume there exists a function r⋆ : X ×A → [0, 1] such that f⋆(x, a, b) = r⋆(x, a)−
r⋆(x, b) for any x ∈ X and a, b ∈ A. Typically, such a function r⋆ represents the “reward
function” of the contextual bandit. In such a scenario, we can first parameterize a reward class
R ⊆ X ×A → [0, 1] and define F = {f : f(x, a, b) = r(x, a) − r(x, b), r ∈ R}. Moreover, it is
common to have ϕ(d) := 1/(1 + exp(−d)) in this setting, which recovers the Bradley-Terry-Luce
(BTL) model [Bradley and Terry, 1952] — a commonly used model in practice for learning reward
models [Christiano et al., 2017].

Assumption 1 ensures the existence of an optimal arm, as stated below.
Lemma 1. Under Assumption 1, for any function f ∈ F and any context x ∈ X , there exists an arm
a ∈ A such that f(x, a, b) ≥ 0 for any arm b ∈ A. We denote this best arm by πf (x) := a.2

The learner’s goal is to minimize the regret while also minimizing the number of queries, defined as:

RegretCB
T :=

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
, QueriesCB

T :=

T∑
t=1

Zt.

It is worth noting that when f⋆ is the difference in rewards (as in Example 1), the regret defined
above reduces to the standard regret of a contextual bandit. We also remark that our feedback model
generalizes that of Saha and Krishnamurthy [2022] in that we assume an additional link function ϕ,
while they assume the feedback is sampled from Pr(y = 1 |x, a, b) = (Pt[at, bt] + 1)/2 where Pt is
a preference matrix. Their loss function is captured in our setting (Example 2). However, Saha and
Krishnamurthy [2022] do not assume transitivity.

2.2 Imitation Learning with Preference-Based Feedback

In our imitation learning setup, we consider that the learner operates in a finite-horizon Markov
decision process (MDP), which is a tuple M(X ,A, r, P,H) where X is the state space, A is the
action space, P is the transition kernel, r : X ×A → [0, 1] is the reward function, and H is the length
of each episode. The interaction between the learner and the environment proceeds as follows: at each
episode t ∈ [T ], the learner receives an initial state xt,0 which could be chosen adversarially. Then,
the learner interacts with the environment for H steps. At each step h, the learner first decides whether
to make a query. If making a query, the learner needs to select a pair of actions (at,h, bt,h) ∈ A×A,
upon which a feedback yt,h ∈ {−1, 1} is revealed to the learner regarding which action is preferred
from the expert’s perspective. Here the feedback is sampled according to

Pr(at,h is preferred to bt,h |xt,h, h) := Pr(yt,h = 1 |xt,h, at,h, bt,h, h) = ϕ
(
f⋆
h(x, at,h, bt,h)

)
.

Irrespective of whether the learner made a query, it then picks a single action from at,h, bt,h and
transit to the next step (our algorithm will just pick an action uniformly at random from at,h, bt,h).
After H steps, the next episode starts. Let Zt,h ∈ {0, 1} indicate whether the learner decided to
query at step h in episode t. We assume that the function class F is a product of H classes, i.e.,
F = F0 × · · · FH−1 where, for each h, we use Fh = {f : X ×A×A → [−1, 1]} to model f⋆

h and
assume that Fh satisfies Assumption 1.

A policy is a mapping π : X → ∆(A). For a policy π, the state value function for a state x at step h

is defined as V π
h (x) := E[

∑H−1
i=h ri |xh = x] and the state-action value function for a state-action

pair (x, a) is Qπ
h(x, a) := E[

∑H−1
i=h ri |xh = x, ah = a], where the expectations are taken w.r.t. the

trajectories sampled by π in the underlying MDP.

In the imitation learning setting, we assume that the expert (who gives the preference-based feedback)
is equipped with a markovian policy πe, and that the preference of the expert is dependent on the

2When the best arms is not unique, the ties are broken arbitrarily but consistently.
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reward-to-go under πe (i.e. on a state x, actions with higher values of Qπe(s, a) will be preferred
by the expert). Formalizing this intuition, we assume that f⋆

h is defined such that as f⋆
h(x, a, b) :=

Qπe

h (x, a)−Qπe

h (x, b). The goal of the learner is still to minimize the regret and number of queries:

RegretILT :=

T∑
t=1

(
V πe
0 (xt,0)− V πt

0 (xt,0)
)
, QueriesILT :=

T∑
t=1

H−1∑
h=0

Zt,h.

Here πt is the strategy the learner uses to select actions at episode t.

2.3 Link Function and Online Regression Oracle

Following the standard practice in the literature [Agarwal, 2013], we assume ϕ is the derivative of
some α-strongly convex function (Definition 3) Φ : [−1, 1] → R and define the associated loss
function as ℓϕ(d, y) = Φ(d)− d(y + 1)/2. Additionally, in line with prior works [Foster et al., 2021,
Foster and Rakhlin, 2020, Simchi-Levi and Xu, 2022, Foster et al., 2018a, Sekhari et al., 2023], our
algorithm utilizes an online regression oracle, which is assumed to have a sublinear regret guarantee
w.r.t. F on arbitrary data sequences.
Assumption 2. We assume the learner has access to an online regression oracle pertaining to the loss
ℓϕ such that for any sequence {(x1, a1, b1, y1), . . . , (xT , aT , bT , yT )} where the label yt is generated
by yt ∼ ϕ(f⋆(xt, at, bt)), we have

T∑
t=1

ℓϕ
(
ft(xt, at, bt), yt

)
− inf

f∈F
ℓϕ
(
f(xt, at, bt), yt

)
≤ Υ(F , T )

for some Υ(F , T ) that grows sublinearly with respect to T .3 For notational simplicity, whenever
clear from the context, we define Υ := Υ(F , T ).

Here Υ represents the regret upper bound and is typically of logarithmic order in T or the cardinality
of the function class F in many cases (here we drop the dependence on T in notation for simplicity).
We provide a few examples below.
Example 2 (Squared loss). If we consider Φ(d) = d2/4 + d/2 + 1/4, which is 1/4-strongly
convex, then we obtain ϕ(d) = (d + 1)/2 and ℓϕ(d, y) = (d − y)2/4, thereby recovering the
squared loss, which has been widely studied in prior works. For example, Rakhlin and Sridharan
[2014] characterized the minimax rates for online square loss regression in terms of the offset
sequential Rademacher complexity, resulting in favorable bounds for the regret. Specifically, we
have Υ = O(log |F|) assuming the function class F is finite, and Υ = O(d log(T )) assuming F is
a d-dimensional linear class. We also kindly refer the readers to Krishnamurthy et al. [2017], Foster
et al. [2018a] for efficient implementations.
Example 3 (Logistic loss). When Φ(d) = log(1 + exp(d)) which is strongly convex at [−1, 1], we
have ϕ(d) = 1/(1 + exp(−d)) and ℓϕ(d, y) = log(1 + exp(−yd)). Thus, we recover the logistic
regression loss, which allows us to use online logistic regression and achieve Υ = O(log |F|)
assuming finite F . There have been numerous endeavors in minimizing the log loss, such as Foster
et al. [2018b] and Cesa-Bianchi and Lugosi [2006, Chapter 9].

3 Contextual Bandits with Preference-Based Active Queries

We first present the algorithm, named AURORA, for contextual dueling bandits, as shown in
Algorithm 1. At each round t ∈ [T ], the learner first constructs a version space Ft containing all
functions close to past predictors on the observed data. Here, the threshold β set to 4Υ/α+ (16 +
24α) log

(
4δ−1 log(T )

)
/α2 ensures that f⋆ ∈ Ft for any t ∈ [T ] with probability at least 1 − δ

(Lemma 9). Thus, At is non-empty for all t ∈ [T ] and correspondingly Line 17 is well defined. The
learner then forms a candidate arm set At consisting of greedy arms induced by all functions in the
version space. When |At| = 1, the only arm in the set is the optimal arm since f⋆ ∈ Ft, and thus no
query is needed (Zt = 0). However, when |At| > 1, any arm in At could potentially be the optimal
arm, and thus the learner needs to make a comparison query to obtain more information.

3The online regression oracle updates as follows: in each iteration, after seeing xt, at, bt, it proposes a
decision ft, then yt is revealed and the online regression oracle incurs loss ℓϕ(ft(xt, at, bt), yt).
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Algorithm 1 Active preference qUeRy fOR contextual bAndits (AURORA)

Require: Function class F , confidence parameter β = 4Υ
α + 16+24α

α2 log
(
4δ−1 log(T )

)
.

1: Online regression oracle produces f1.
2: for t = 1, 2, . . . , T do
3: Learner receives context xt, computes the version space

Ft ←

{
f ∈ F :

t−1∑
s=1

Zs

(
f(xs, as, bs)− fs(xs, as, bs)

)2
≤ β

}
.

and the candidate arm set At ← {πf (xt) : ∀f ∈ Ft}.
4: Learner decides whether to query Zt ← 1{|At| > 1}.
5: if Zt = 1 then
6: Set wt ← supa,b∈At

supf,f ′∈Ft
f(xt, a, b)− f ′(xt, a, b)

7: Set λt ← 1{
∑t−1

s=1 Zsws ≥
√

AT/β}.
8: if λt = 0 then
9: pt ← Uniform(At).

10: else
11: γt ←

√
AT/β.

12: Let pt be a solution of maxa∈At

∑
b ft(xt, a, b)pt(b) +

2
γtpt(a)

≤ 5A
γt

.
13: end if
14: Learner samples at, bt ∼ pt independently and receives the feedback yt.
15: Learner feeds ((xt, at, bt), yt) to the online regression oracle which returns ft+1.
16: else
17: Learner sets at and bt to be the only action in At, and plays them.
18: ft+1 ← ft.
19: end if
20: end for

Next, we explain the learner’s strategy for making queries. Firstly, the learner computes wt, which is
the “width” of the version space. Specifically, wt overestimates the instantaneous regret for playing
any arm in At (Lemma 8). Then, the learner defines λt that indicates if the estimated cumulative
regret

∑t−1
s=1 Zsws has exceeded

√
AT/β. Note that Zt is multiplied to wt since no regret is incurred

when Zt = 0. The learner then chooses the actions (to be queried) depending on the values of λt:

• If λt = 0, the cumulative reward has not yet exceeded
√
AT/β = O(

√
T ), so the learner will

explore as much as possible by uniform sampling from At.

• If λt = 1, the regret may have reached O(
√
T ), and therefore the learner uses a technique similar

to inverse gap weighting (IGW), as inspired by Saha and Krishnamurthy [2022], to achieve a better
balance between exploration and exploitation. Specifically, the learner solves the convex program4

in Line 12, which is feasible and whose solution pt satisfies (Lemma 11)

E
a∼pt

[
f⋆(xt, πf⋆(x), a)

]
= O

(
γt E

a,b∼pt

[(
ft(xt, a, b)− f⋆(xt, a, b)

)2]
+

A

γt

)
. (1)

As a result of the above relation, we can convert the instantaneous regret to the point-wise error
between the predictor ft and the truth f⋆ plus an additive A/γt. This allows us to bound the
cumulative point-wise error by the regret of the online regression oracle. In the special case where
there exists a “reward function” r : X × A → [0, 1] for each f ∈ F such that f(x, a, b) =
r(x, a)− r(x, b) (Example 1), the solution pt can be directly written as

pt(a) =


1

A+γt

(
rt(xt,πft (xt))−rt(xt,a)

) a ̸= πft(xt)

1−
∑

a′ ̸=πft (xt)
pt(a

′) a = πft(xt)
,

where rt is the reward function associated with ft, i.e., ft(x, a, b) = rt(x, a) − rt(x, b). This is
the standard IGW exploration strategy [Foster and Rakhlin, 2020] and leads to the same guarantee
as (1) (see Lemma 12).

4It is convex as it can be written as |At| convex constraints:
∑

b ft(xt, a, b)pt(b)+
2

γtpt(a)
≤ 5A

γt
,∀a ∈ At.
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We discuss the computational tractability of Algorithm 1 in Appendix A. In short, it is computationally
tractable for some structured function classes (e.g. linear and tabular function classes). For general
function classes, it is also efficient given a regression oracle.

3.1 Theoretical Analysis

Towards the statistical guarantees of Algorithm 1, we employ two quantities to characterize a
contextual bandit instance: the uniform gap and the eluder dimension, which are introduced below.
Assumption 3 (Uniform gap). We assume the optimal arm πf⋆(x) induced by f⋆ under any context
x ∈ X is unique. Further, we assume a uniform gap ∆ := infx infa ̸=πf⋆ (x) f

⋆(x, πf⋆(x), a) > 0.

We note that the existence of a uniform gap is a standard assumption in the literature of contextual
bandits [Dani et al., 2008, Abbasi-Yadkori et al., 2011, Audibert et al., 2010, Garivier et al., 2019,
Foster and Rakhlin, 2020, Foster et al., 2021]. Next, we introduce the eluder dimension [Russo and
Van Roy, 2013] and begin by defining “ϵ-dependence”.
Definition 1 (ϵ-dependence). Let G ⊆ X → R be any function class. We say an element x ∈ X is
ϵ-dependent on {x1, x2, . . . , xn} ⊆ X with respect to G if any pair of functions g, g′ ∈ G satisfying∑n

i=1(g(xi)− g′(xi))
2 ≤ ϵ2 also satisfies g(x)− g′(x) ≤ ϵ. Otherwise, we say x is ϵ-independent

of {x1, x2, . . . , xn}.
Definition 2 (Eluder dimension). The ϵ-eluder dimension of a function class G ⊆ X → R, denoted
by dimE(G, ϵ), is the length d of the longest sequence of elements in X satisfying that there exists
some ϵ′ ≥ ϵ such that every element in the sequence is ϵ′-independent of its predecessors.

Eluder dimension is a complexity measure for function classes and has been used in the literature of
bandits and RL extensively [Chen et al., 2022, Osband and Van Roy, 2014, Wang et al., 2020, Foster
et al., 2021, Wen and Van Roy, 2013, Jain et al., 2015, Ayoub et al., 2020, Ishfaq et al., 2021, Huang
et al., 2022]. Examples where the eluder dimension is small include linear functions, generalized
linear models, and functions in Reproducing Kernel Hilbert Space (RKHS).

Given these quantities, we are ready to state our main results. The proofs are provided in Appendix C.
Theorem 1. Under Assumptions 1 to 3, Algorithm 1 guarantees the following upper bounds of the
regret and the number of queries:

RegretCB
T = Õ

(
min

{√
ATβ,

A2β2dimE (F ,∆)

∆

})
,

QueriesCB
T = Õ

(
min

{
T,

A3β3dim2
E (F ,∆)

∆2

})
with probability at least 1−δ. We recall that β = O(α−1Υ+α−2 log(δ−1 log(T ))), and α represents
the coefficient of strong convexity of Φ. Logarithmic terms are hidden in the upper bounds for brevity.

For commonly used loss function (Examples 2 and 3), β only scales logarithmically with the size
(or effective size) of F and is thus mild. For instance, for a finite class F , β depends on log |F|.
Furthermore, when F is infinite, we can replace |F| by the covering number of F following the
standard techniques: for d-dimensional linear function class, β will have a dependence of O(d)
(effective complexity of F ), and for the tabular class, β will have a dependence of O(SA2). In other
words, the rate of β is acceptable as long as the complexity of the function class F is acceptable.

Best-of-both-worlds guarantee. We observe that both the regret bound and the query complexity
bound consist of two components: the worst-case bound and the instance-dependent bound. The
worst-case bound provides a guarantee under all circumstances, while the instance-dependent one
may significantly improve the upper bound when the underlying problem is well-behaved (i.e., has a
small eluder dimension and a large gap).

Lower bounds. To see whether these upper bounds are tight, we provide a lower bound which
follows from a reduction from regular multi-armed bandits to contextual dueling bandits.
Theorem 2 (Lower bounds). The following two claims hold: (1) For any algorithm, there exists
an instance that leads to RegretCB

T = Ω(
√
AT ); (2) For any algorithm achieving a worse-case

expected regret upper bound in the form of E[RegretCB
T ] = O(

√
AT ), there exists an instance with

gap ∆ =
√

A/T that results in E[RegretCB
T ] = Ω(A/∆) and E[QueriesCB

T ] = Ω(A/∆2) = Ω(T ).
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By relating these lower bounds to Theorem 1, we conclude that our algorithm achieves a tight
dependence on the gap ∆ and the number of rounds T up to logarithmic factors. Furthermore, as an
additional contribution, we establish an alternative lower bound in Section C.4.1 by conditioning on
the limit of regret, rather than the worst-case regret as assumed in Theorem 2.

Intuition of proofs. We next provide intuition for why our algorithm has the aforementioned
theoretical guarantees. First, we observe that from the definition of λt, the left term inside the
indicator is non-decreasing, which allows us to divide rounds into two phases. In the first phase, λt is
always 0, and then at some point, it changes to 1 and remains 1 for the rest rounds. After realizing this,
we first explain the intuition of the worst-case regret. In the first phase, as wt is an overestimate of
the instantaneous regret (see Lemma 8), the accumulated regret in this phase cannot exceed O(

√
T ).

In the second phase, we adapt the analysis of IGW to this scenario to obtain an O(
√
T ) upper bound.

A similar technique has been used in Saha and Krishnamurthy [2022], Foster et al. [2021]. As the
regret in both phases is at most O(

√
T ), the total regret cannot exceed O(

√
T ). Next, we explain the

intuition of instance-dependent regret. Due to the existence of a uniform gap ∆, we can first prove that
as long as |At| > 1, we must have wt ≥ ∆ (see Lemma 7). This means that for all rounds that may
incur regret, the corresponding width is at least ∆. However, this cannot happen too many times as
this frequency is bounded by the eluder dimension, which leads to an instance-dependent regret upper
bound. Leveraging a similar technique, we can also obtain an upper bound on the number of queries.

Comparison to regret bounds of dueling bandits. As established by prior works [Yue et al.,
2012, Saha and Gaillard, 2022], for dueling bandits, the minimax regret rate is Θ̃(

√
AT ) and the

instance-dependent rate is Θ̃ (A/∆). If we reduce our result (Theorem 1) into the dueling bandits
setting, we will get

RegretT = Õ

(
min

{
√
AT,

A2dimE(F , ∆
2A2 )

∆

})
= Õ

(
min

{√
AT,

A3

∆

})
where the second equality holds since the eluder dimension is upper bounded by A for dueling
bandits. We observe that the worst-case regret rate is the same, but there is a gap of A2 in the
instance-dependent bound. The improvement of this gap is an interesting future direction.

Comparion to MINMAXDB [Saha and Krishnamurthy, 2022]. In this prior work, the authors
assume that Pr(y = 1 |x, a, b) = (f⋆(x, a, b)+ 1)/2, which is a specification of our feedback model
(Example 2). While our worst-case regret bound matches their regret bound, our paper improves
upon their results by having an additional instance-dependent regret bound that depends on the eluder
dimension and gap. Furthermore, we also provide bounds on the query complexity which could be
small for benign instances while MINMAXDB simply queries on every round.

Comparion to ADACB [Foster et al., 2021]. Our method shares some similarities with Foster
et al. [2021], especially in terms of theoretical results, but differs in two aspects: (1) they assume
regular contextual bandits where the learner observes the reward directly, while we assume preference
feedback, and (2) they assume a stochastic setting where contexts are drawn i.i.d., but we assume
that the context is adversarially chosen. While these two settings may not be directly comparable, it
should be noted that [Foster et al., 2021] do not aim to minimize query complexity.

Results without the uniform gap assumption. We highlight that Theorem 1 can naturally extend to
scenarios where a uniform gap does not exist (i.e., when Assumption 3 is not satisfied) without any
modifications to the algorithm. The result is stated below, which is analogous to Theorem 1.
Theorem 3. Under Assumptions 1 and 2, Algorithm 1 guarantees the following upper bounds of the
regret and the number of queries:

RegretCB
T = Õ

(
min

{√
ATβ, min

ϵ>0

{
Tϵβ +

A2β2dimE (F , ϵ)
ϵ

}})
,

QueriesCB
T = Õ

(
min

{
T, min

ϵ>0

{
T 2
ϵ β/A+

A3β3dim2
E (F , ϵ)

ϵ2

}})
with probability at least 1 − δ. Here we define the gap of context x as Gap(x) :=
mina ̸=πf⋆ (x) f

⋆(x, πf⋆(x), a) and the number of rounds where contexts have small gap as Tϵ :=∑T
t=1 1{Gap(xt) ≤ ϵ}. We also recall that β = O(α−1Υ+ α−2 log(δ−1 log(T ))), and α denotes

the coefficient of strong convexity of Φ.
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Algorithm 2 Active preference qUeRy fOR imitAtion lEarning (AURORAE)
Require: Function class F0,F1, . . . ,FH−1, confidence parameter β.

1: Learner creates H instances of Algorithm 1: AURORAh(Fh, β) for h = 0, 1, . . . ,H − 1.
2: for t = 1, 2, . . . , T do
3: Learner receive initial state xt,0.
4: for h = 0, 1, . . . ,H − 1 do
5: Learner feeds xt,h to AURORAh(Fh, β), and receives back at,h, bt,h, Zt,h.
6: if Zt,h = 1 then
7: Learner receives feedback yt,h.
8: Learner feeds ((xt,h, at,h, bt,h), yt,h) to AURORAh(Fh, β) to update its online regres-

sion oracle and local variables.
9: end if

10: Learner executes a ∼ Uniform({at,h, bt,h}) and transits to xt,h+1.
11: end for
12: end for

Compared to Theorem 1, the above result has an extra gap-dependent term, Tϵ, measuring how
many times the context falls into a small-gap region. We highlight that Tϵ is small under certain
conditions such as the Tsybakov noise condition [Tsybakov, 2004]. It is also worth mentioning that
our algorithm is agnostic to ϵ, thus allowing us to take the minimum over all ϵ > 0.

Comparion to SAGE-BANDIT [Sekhari et al., 2023]. Theorem 3 is similar to Theorem 4 in Sekhari
et al. [2023], which studies active queries in contextual bandits with standard reward signal. Although
our result looks slightly worse in terms of the factor A, we believe that this inferiority is reasonable
since our approach requires two actions to form a query, thus analytically expanding the action space
to A2. Whether this dependency can be improved remains a question for future investigation.

4 Imitation Learning with Preference-Based Active Queries

In this section, we introduce our second algorithm, which is presented in Algorithm 2 for imitation
learning. In essence, the learner treats the MDP as a concatenation of H contextual bandits and runs
an instance of AURORA (Algorithm 1) for each time step. Specifically, the learner first creates
H instances of AURORA, denoted by AURORAh (for h = 0, . . . ,H − 1). Here, AURORAh

should be thought of as an interactive program that takes the context x as input and outputs a, b,
and Z. At each episode t, and each step h therein, the learner first feeds the current state xt,h to
AURORAh as the context; then, AURORAh decides whether to query (i.e. Zt,h) and returns the
actions at,h and bt,h. If it decides to make a query, the learner will ask for the feedback yt,h on the
proposed actions at,h, bt,h, and provide the information ((xt,h, at,h, bt,h), yt,h) back to AURORAh

to update its online regression oracle (and other local variables). We recall that the noisy binary
feedback yt,h is sampled as yt,h ∼ ϕ(Qπe

h (xt,h, at,h) − Qπe

h (xt,h, bt,h)), and also emphasize that
the learner neither has access to a ∼ πe(xt,h) like in DAGGER [Ross et al., 2011] nor reward-to-go
like in AGGREVATE(D) [Ross and Bagnell, 2014, Sun et al., 2017]. Finally, the learner chooses one
of the two actions uniformly at random, executes it in the underlying MDP, and transits to the next
state xt,h+1 in the episode. The above process is then repeated with AURORAh+1 till the episode
ends. We name this algorithm AURORAE, the plural form of AURORA, which signifies that the
algorithm is essentially a stack of multiple AURORA instances.

4.1 Theoretical Analysis

As Algorithm 2 is essentially a stack of Algorithm 1, we can inherit many of the theoretical guarantees
from the previous section. To state the results, we first extend Assumption 3 into imitation learning.

Assumption 4 (Uniform Gap). Let f⋆
h be defined such that for any x ∈ X , a, b ∈ A2, f⋆

h(x, a, b) =
Qπe

h (x, a) − Qπe

h (x, b). For all h, we assume the optimal action for f⋆
h under any state x ∈ X is

unique. Further, we assume a uniform gap ∆ := infh infx inf a̸=πf⋆
h
(x) f

⋆
h(x, πf⋆

h
(x), a) > 0.

This assumption essentially says that Qπe

h has a gap in actions. We remark that, just as Assumption 3
is a common condition in the bandit literature, Assumption 4 is also common in MDPs [Du et al.,
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2019, Foster et al., 2021, Simchowitz and Jamieson, 2019, Jin and Luo, 2020, Lykouris et al., 2021,
He et al., 2021]. The theoretical guarantee for Algorithm 2 is presented in Theorem 4. We note a
technical difference between this result and Theorem 1: although we treat the MDP as a concatenation
of H contextual bandits, the instantaneous regret of imitation learning is defined as the performance
gap between the combined policy πt derived from the H instances as a cohesive unit and the expert
policy. This necessitates the use of performance difference lemma (Lemma 5) to get a unified result.

Theorem 4. Under Assumptions 1, 2 and 4, Algorithm 2 guarantees the following upper bounds of
the regret and the number of queries:

RegretILT ≤ Õ

(
H ·min

{√
ATβ,

A2β2dimE (F ,∆)

∆

})
−AdvT ,

QueriesILT ≤ Õ

(
H ·min

{
T,

A3β3dim2
E (F ,∆)

∆2

})
with probability at least 1 − δ. Here AdvT :=

∑T
t=1

∑H−1
h=0 Ext,h∼d

πt
xt,0,h

[maxa A
πe

h (xt,h, a)] is

non-negative, and dπt

xt,0,h
(x) denotes the probability of πt

5 reaching the state x at time step h starting
from inital state xt,0. In the above, β = O(α−1Υ + α−2 log(Hδ−1 log(T ))) and α denotes the
coefficient of strong convexity of Φ.

Compared to Theorem 1, the main terms of the upper bounds for imitation learning are precisely
the bounds in Theorem 1 multiplied by H . In the proof presented in Appendix C.6, we use the
performance difference lemma to reduce the regret of imitation learning to the sum of the regret of H
contextual dueling bandits, which explains this additional factor of H .

Another interesting point is that the main term of the regret upper bound is subtracted by a
non-negative term AdvT , which measures the degree to which we can outperform the expert
policy. In other words, our algorithm not only competes with the expert policy but can also
surpass it to some extent. To see this, let us consider the average regret, which is defined as
AveRegretILT := RegretILT /T =

∑T
t=1(V

πe
0 (xt,0) − V πt

0 (xt,0))/T. Then, Theorem 4 implies
that AveRegretILT = O(H

√
Aβ/T ) − AdvT /T where we have simplified it by ignoring the

instance-dependent upper bound and logarithmic factors for clarity. Now, consider a case where
maxa A

πe

h (x, a) > α0 for some constant α0 > 0 for all x and h. This can happen when the expert
policy is suboptimal for every state. Consequently, we have AdvT > α0HT . In this case, the average
regret is further bounded by AveRegretILT = O(H

√
Aβ/T ) − α0H. When T → ∞, we have

AveRegretILT → −α0H < 0. This means that the best (or average) learned policy will eventually
outperform the expert policy. This guarantee is stronger than that of DAGGER [Ross et al., 2011]
in that DAGGER cannot ensure the learned policy is better than the expert policy regardless of how
suboptimal the expert may be. While this may look surprising at first glance since we are operating
under a somewhat weaker query mode than that of DAGGER, we note that by querying experts
for comparisons on pairs of actions with feedback sampling as y ∼ ϕ(Qπe(x, a) − Qπe(x, b)), it
is possible to identify the action that maximizes Qπe(x, a) (even if we cannot identify the value
Qπe(x, a)). Finally, we remark that our worst-case regret bound is similar to that of Ross and Bagnell
[2014], Sun et al. [2017], which can also outperform a suboptimal expert but require access to both
expert’s actions and reward signals — a much stronger query model than ours.

5 Conclusion

We presented interactive decision-making algorithms that learn from preference-based feedback
while minimizing query complexity. Our algorithms for contextual bandits and imitation learning
share worst-case regret bounds similar to the bounds of the state-of-the-art algorithms in standard
settings while maintaining instance-dependent regret bounds and query complexity bounds. Notably,
our imitation learning algorithm can outperform suboptimal experts, matching the result of Ross
and Bagnell [2014], Sun et al. [2017], which operates under much stronger feedback.

5Policy πt consists of H time-dependent policies πt,1, . . . , πt,H , where each πt,h is defined implicitly via
AURORAh, i.e., πt,h generates action as follows: given xt,h, AURORAh recommends at,h, bt,h, followed by
uniformly sampling an action from {at,h, bt,h}.
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A Computational tractability of Algorithm 1

We observe that the computational complexity of the proposed algorithm mainly depends on the
computation of the candidate arm set (Line 3) and the width (Line 6). When F is a d-dimensional
linear function class, the computational complexity can be Õ(dTA) since the version space exhibits
an ellipsoid structure and thus both the candidate arm and the width can be computed in Õ(dA) time.
When F is tabular, it can be considered as a special case of linear class with one-hot encoding. In
this case, we have d = S ×A, resulting in a computational complexity of Õ(TSA2).

For a more general convex function class F , we can design an efficient algorithm based on a weighted
regression oracle for F . To this end, we first note that an approach to efficiently compute the width
has been proposed by Foster et al. [2018a], and now we propose the following method to compute the
candidate arm set. An arm a belongs to the candidate arm set at round t if and only if the following
optimization problem (with an constant objective) is feasible

min
f∈F, ξ∈RA

1 s.t. f(x, a, a′) = ξa′ , ξa′ > 0 (∀a′ ̸= a),

and
t−1∑
s=1

Zs (f(xs, as, bs)− ft(xs, as, bs))
2 ≤ β.

Here we introduce the slack variable ξ so that the optimization part for f can be simply reduced to a
weighted regression oracle. Next, we convert the above into Lagrangian formulation and obtain

min
f∈F, ξ∈RA

max
α∈RA

+,γ∈RA
+,λ∈R+

1 +
∑
a′ ̸=a

αa′
(
f(x, a, a′)− ξa′

)2 −∑
a′ ̸=a

γa′ξa′

+ λ

(
t−1∑
s=1

Zs (f(xs, as, bs)− ft(xs, as, bs))
2 − β

)
= max

α∈RA
+,γ∈RA

+,λ∈R+

min
f∈F, ξ∈RA

1 +
∑
a′ ̸=a

αa′
(
f(x, a, a′)− ξa′

)2 −∑
a′ ̸=a

γa′ξa′

+ λ

(
t−1∑
s=1

Zs (f(xs, as, bs)− ft(xs, as, bs))
2 − β

)
.

Here we can swap the min and max since the objective is convex in the joint space of f and ξ. Then,
the inner minimization problem can be solved by updating f via the regression oracle and updating ξ
via gradient descent; for the outer maximization problem, we can do projected gradient ascent.

B Preliminaries

Lemma 2 (Kakade and Tewari [2008, Lemma 3]). Suppose X1, . . . , XT is a martingale difference
sequence with |Xt| ≤ b. Let

Vart Xt = Var (Xt | X1, . . . , Xt−1)

Let V =
∑T

t=1 Vart Xt be the sum of conditional variances of Xt ’s. Further, let σ =
√
V . Then we

have, for any δ < 1/e and T ≥ 3,

Pr

(
T∑

t=1

Xt > max{2σ, 3b
√

ln(1/δ)}
√

ln(1/δ)

)
≤ 4 ln(T )δ.

Lemma 3 (Foster and Rakhlin [2020, Lemma 3]). For any vector ŷ ∈ [0, 1]A, if we define p to be

p(a) =

{ 1

A+γ
(
ŷ(â)−ŷ(a)

) if a ̸= â,

1−
∑

a ̸=â p(a) if a = â

where â = argmaxa ŷ(a), then for any y⋆ ∈ [0, 1]A and γ > 0, we have

E
a∼p

[(
y⋆(a⋆)− y⋆(a)

)
− γ
(
ŷ(a)− y⋆(a)

)2]
≤ A

γ
.
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Lemma 4 (Zhu and Nowak [2022, Lemma 2]). Let (Zt)t≤T to be real-valued sequence of positive
random variables adapted to a filtration Ft. If |Zt| ≤ B almost surely, then with probability at least
1− δ,

T∑
t=1

Zt ≤
3

2

T∑
t=1

Et [Zt] + 4B log
(
2δ−1

)
,

and
T∑

t=1

Et [Zt] ≤ 2

T∑
t=1

Zt + 8B log
(
2δ−1

)
.

Lemma 5 (Performance difference lemma [Agarwal et al., 2019]). For any two policies π and π′

and any state x0 ∈ X , we have

V π
0 (x0)− V π′

0 (x0) =

H−1∑
h=0

E
xh,ah∼dπ

x0,h

[
Aπ′

h (xh, ah)
]

where Aπ
h(x, a) = Qπ

h(x, a) − V π
h (x, a) and dπx0,h

(x, a) is the probability of π reaching the state-
action pair (x, a) at time step h starting from initial state x0.

Lemma 6. For any two Bernoulli distributions Bern(x) and Bern(y) with x, y ∈ [b, 1− b] for some
0 < b ≤ 1/2, the KL divergence is bounded as

KL
(
Bern(x),Bern(y)

)
≤ 2(x− y)2

b
.

Proof of Lemma 6. Denote ∆ = x− y. Then, by definition, we have

KL
(
Bern(x),Bern(y)

)
=x ln

x

y
+ (1− x) ln

1− x

1− y

=x ln
x

x−∆
+ (1− x) ln

1− x

1− x+∆

=x ln

(
1 +

∆

x−∆

)
+ (1− x) ln

(
1− ∆

1− x+∆

)
Since ln(1 + x) ≤ x for all x > −1, we have

KL
(
Bern(x),Bern(y)

)
≤x · ∆

x−∆
− (1− x) · ∆

1− x+∆

=∆ ·
(

x

x−∆
− 1− x

1− x+∆

)
=∆ ·

(
∆

x−∆
+

∆

1− x+∆

)
≤∆2 ·

(
1

y
+

1

1− y

)
≤ 2∆2

b
.

C Missing Proofs

C.1 Supporting Lemmas

Definition 3 (Strong convexity). A function Φ : [−1, 1]→ R is α-strongly-convex if for all u, u′ ∈ R,
we have

α

2
(u′ − u)2 ≤ Φ(u′)− Φ(u)−∇Φ(u)(u′ − u).

where∇Φ means the derivative of Φ.

Lemma 7. For any t ∈ [T ], if f⋆ ∈ Ft, then we have wt ≥ ∆ whenever |At| > 1.
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Proof of lemma 7. When |At| > 1, we know there exists a function f ′ ∈ Ft satisfying
a′ := πf ′(xt) ̸= πf⋆(xt) =: a⋆t .

Then we have ∆ ≤ f⋆(xt, a
⋆
t , a

′) ≤ f⋆(xt, a
⋆
t , a

′)−f ′(xt, a
⋆
t , a

′) ≤ wt where the second inequality
holds since f ′(xt, a

⋆
t , a

′) ≤ 0.

Lemma 8. For any t ∈ [T ] and any arm a ∈ At, we have f⋆(xt, πf⋆(xt), a) ≤ wt.

Proof of Lemma 8. For any a ∈ At, by the definition of At, there must exists a function f for which
a = πf (xt). Hence,

f⋆(xt, πf⋆(xt), a) ≤ f⋆(xt, πf⋆(xt), a)− f(xt, πf⋆(xt), a) ≤ wt,

where the first inequality holds since f(xt, πf⋆(xt), a) ≤ 0.

The following lemma is adapted from Agarwal [2013, Lemma 2].
Lemma 9. The following holds with probability at least 1− δ for any T > 3,

T∑
t=1

Zt

(
f⋆(xt, at, bt)− ft(xt, at, bt)

)2 ≤ 4Υ

α
+

16 + 24α

α2
log
(
4δ−1 log(T )

)
.

Proof of Lemma 9. Throughout the proof, we denote zt := (xt, at, bt) for notational simplicity. We
define DΦ as the Bregman divergence of the function Φ:

DΦ(u, v) = Φ(u)− Φ(v)− ϕ(v)(u− v)

where we recall that ϕ = Φ′ is the derivative of Φ. Since Φ is α-strong convex, we have α(u−v)2/2 ≤
DΦ(u, v), and hence,

T∑
t=1

Zt

(
f⋆(zt)− ft(zt)

)2 ≤ 2

α

T∑
t=1

ZtDΦ(ft(zt), f
⋆(zt)). (2)

Hence, it suffice to derive an upper bound for the Bregman divergence in the right hand side above.
Define νt as below:

νt :=Zt

[
DΦ (ft(zt), f

⋆(zt))− (ℓϕ (ft(zt), yt)− ℓϕ (f
⋆(zt), yt))

]
=Zt

[
DΦ (ft(zt), f

⋆(zt))− (Φ (ft(zt))− (yt + 1)ft(zt)/2− Φ (f⋆(zt)) + (yt + 1)f⋆(zt)/2)
]

=Zt

[
Φ (ft(zt))− Φ (f⋆(zt))− ϕ (f⋆(zt)) (ft(zt)− f⋆(zt))

− (Φ (ft(zt))− (yt + 1)ft(zt)/2− Φ (f⋆(zt)) + (yt + 1)f⋆(zt)/2)
]

=Zt

(
ft(zt)− f⋆(zt)

)(
(yt + 1)/2− ϕ(f⋆(zt))

)
We note that Et[(yt + 1)/2] = ϕ(f⋆(zt)), and thus Et[νt] = 0, which means νt is a martingale
difference sequence. Now we bound the value and the conditional variance of νt in order to derive
concentration results.

1. Bound the value of νt:
|νt| ≤ |(yt + 1)/2− ϕ (f⋆(zt)) | · |ft(zt)− f⋆(zt)| ≤ 1 · 2 = 2.

2. Bound the conditional variance of νt:

E
t
[ν2t ] =Zt E

t

[
((yt + 1)/2− ϕ (f⋆(zt)))

2
(ft(zt)− f⋆(zt))

2
]

≤Zt E
t

[
(ft(zt)− f⋆(zt))

2
]

≤Zt E
t

[
2

α
·DΦ(ft(zt), f

⋆(zt))

]
≤2Zt

α
DΦ(ft(zt), f

⋆(zt))

where for the last line we note that xt, gt are measurable at t.
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Now we apply Lemma 2, which yields for any δ < 1/e and T > 3, with probability at least
1− 4δ log(T ),

T∑
t=1

νt ≤max

2

√√√√ T∑
t=1

2Zt

α
DΦ(ft(zt), f⋆(zt)), 6

√
log(1/δ)

√log(1/δ)

≤2

√√√√ T∑
t=1

2Zt

α
DΦ(ft(zt), f⋆(zt))log(1/δ) + 6log(1/δ) (since max(a, b) ≤ a+ b)

≤
T∑

t=1

1

2
ZtDΦ(ft(zt), f

⋆(zt)) +
4 log(1/δ)

α
+ 6log(1/δ) (AM-GM)

Recall the definition of νt, and we conclude that
T∑

t=1

ZtDΦ (ft(zt), f
⋆(zt))−

T∑
t=1

Zt

(
ℓϕ
(
ft(zt), yt

)
− ℓϕ

(
f⋆(zt), yt

))
≤

T∑
t=1

1

2
ZtDΦ(ft(zt), f

⋆(zt)) +
4 log(1/δ)

α
+ 6log(1/δ),

which implies

1

2

T∑
t=1

ZtDΦ (ft(zt), f
⋆(zt)) ≤

T∑
t=1

Zt

(
ℓϕ
(
ft(zt), yt

)
− ℓϕ

(
f⋆(zt), yt

))
+

4 log(1/δ)

α
+ 6log(1/δ).

Plugging this upper bound of Bregman divergence into (2), we obtain that, with probability at least
1− 4δ log(T ), for any δ < 1/e and T > 3, we have

T∑
t=1

Zt

(
f⋆(zt)− ft(zt)

)2 ≤ 4

α
Υ+

(
16

α2
+

24

α

)
log(δ−1) =: β

Finally, we finish the proof by adjusting the coefficient δ and taking a union bound to obtain the
desired result.

The following lemma is a variant of Russo and Van Roy [2013, Proposition 3], with the main
difference being that (1) the version space is established using the function produced by the oracle
instead of the least squares estimator, and (2) the extra multiplicative factor Zt.
Lemma 10. For Algorithm 1, it holds that

T∑
t=1

Zt1

{
sup

f,f ′∈Ft

f(xt, at, bt)− f ′(xt, at, bt) > ϵ

}
≤
(
4β

ϵ2
+ 1

)
dimE(F , ϵ) (3)

for any constant ϵ > 0,

Proof of Lemma 10. We first define a subsequence consisting only of the elements for which we
made a query in that round. Specifically, we define ((xi1 , ai1 , bi1), (xi2 , ai2 , bi2), . . . , (xik , aik , bik))
where 1 ≤ i1 < i2 < · · · < ik ≤ T and (xt, at, bt) belongs to the subsequence if and only if Zt = 1.
We further simplify the notation by defining zj := (xij , aij , bij ) and f(zj) := f(xij , aij , bij ). Then
we note that the left-hand side of (3) is equivalent to

k∑
j=1

1

{
sup

f,f ′∈Fj

f(zj)− f ′(zj) > ϵ

}
, (4)

and the version space in Algorithm 1 is equal to

Fj =

{
f ∈ F :

j−1∑
s=1

(
f(zs)− fs(zs)

)2
≤ β

}
. (5)
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Hence, it suffice to establish the lower bound for (4) under the version space of (5). To that end, we
make one more simplification in notation: we denote

w′
j := sup

f,f ′∈Fj

f(zj)− f ′(zj)

We begin by showing that if w′
j > ϵ for some j ∈ [k], then zj is ϵ-dependent on at most 4β/ϵ2 disjoint

subsequence of its predecessors. To see this, we note that when w′
j > ϵ, there must exist two function

f, f ′ ∈ Fj such that f(zj)− f ′(zj) > ϵ. If zj is ϵ-dependent on a subsequence (zi1 , zi2 , . . . , zin) of
its predecessors, we must have

n∑
s=1

(
f(zis)− f ′(zis)

)2
> ϵ2.

Hence, if zj is ϵ-dependent on l disjoint subsequences, we have
j−1∑
s=1

(
f(zs)− f ′(zs)

)2
> lϵ2. (6)

For the left-hand side above, we also have
j−1∑
s=1

(
f(zs)− f ′(zs)

)2 ≤ 2

j−1∑
s=1

(
f(zs)− fs(zs)

)2
+ 2

j−1∑
s=1

(
fs(zs)− f ′(zs)

)2 ≤ 4β (7)

where the first inequality holds since (a+ b)2 ≤ 2(a2 + b2) for any a, b, and the second inequality
holds by (5). Combining (6) and (7), we get that l ≤ 4β/ϵ2.

Next, we show that for any sequence (z′1, . . . , z
′
τ ), there is at least one element that is ϵ-dependent on at

least τ/d−1 disjoint subsequence of its predecessors, where d := dimE(F , ϵ). To show this, let m be
the integer satisfying md+1 ≤ τ ≤ md+d. We will construct m disjoint subsequences, B1, . . . , Bm.
At the beginning, let Bi = (z′i) for i ∈ [m]. If z′m+1 is ϵ-dependent on each subsequence B1, . . . , Bm,
then we are done. Otherwise, we select a subsequence Bi which z′m+1 is ϵ-independent of and append
z′m+1 to Bi. We repeat this process for all elements with indices j > m + 1 until either z′j is ϵ-
dependent on each subsequence or j = τ . For the latter, we have

∑m
i=1 |Bi| ≥ md, and since each

element of a subsequence Bi is ϵ-independent of its predecesors, we must have |Bi| = d for all i.
Then, zτ must be ϵ-dependent on each subsequence by the definition of eluder dimension.

Finally, let’s take the sequence (z′1, . . . z
′
τ ) to be the subsequence of (z1, . . . , zk) consisting of

elements zj for which w′
j > ϵ. As we have established, we have (1) each z′j is ϵ-dependent on

at most 4β/ϵ2 disjoint subsequences, and (2) some z′j is ϵ-dependent on at least τ/d − 1 disjoint
subsequences. Therefore, we must have τ/d− 1 ≤ 4β/ϵ2, implying that τ ≤ (4β/ϵ2 + 1)d.

The following lemma is adopted from Saha and Krishnamurthy [2022, Lemma 3].
Lemma 11. For any function f ∈ F and any context x ∈ X , the following convex program of
p ∈ ∆(A) is always feasible:

∀a ∈ A :
∑
b

f(x, a, b)p(b) +
2

γp(a)
≤ 5A

γ
.

Furthermore, any solution p satisfies:

E
a∼p

[
f⋆(x, πf⋆(x), a)

]
≤ γ

4
E

a,b∼p

[(
f(x, a, b)− f⋆(x, a, b)

)2]
+

5A

γ

whenever γ ≥ 2A.
Lemma 12. Assume that for each f ∈ F , there exists an associated function r : X × A → [0, 1]
such that f(x, a, b) = r(x, a) − r(x, b) for any x ∈ X and a, b ∈ A. In this case, for any context
x ∈ X , if we define p as

p(a) =


1

A+γ
(
r(x,πf (x))−r(x,a)

) a ̸= πf (x)

1−
∑

a ̸=πf (x)
p(a) a = πf (x)

,
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then we have

E
a∼p

[
f⋆(x, πf⋆(x), a)

]
≤ γ E

a,b∼p

[(
f(x, a, b)− f⋆(x, a, b)

)2]
+

A

γ

Proof of lemma 12. Fix any b ∈ A. Then, the distribution p can be rewritten as

p(a) =


(
A+ 2γ

(
r(x,πf (x))−r(x,b)+1

2 − r(x,a)−r(x,b)+1
2

))−1

a ̸= πf (x)

1−
∑

a ̸=πf (x)
p(a) a = πf (x)

.

Therefore, denoting f⋆(x, a, b) = r⋆(x, a)− r⋆(x, b) for some function r⋆, we have

E
a∼p

[
f⋆(x, πf⋆(x), a)

]
= E

a∼p

[
r⋆(x, πf⋆(x))− r⋆(x, a)

]
=2 E

a∼p

[
r⋆(x, πf⋆(x))− r⋆(x, b) + 1

2
− r⋆(x, a)− r⋆(x, b) + 1

2

]
≤2 · 2γ E

a∼p

[(
r(x, a)− r(x, b) + 1

2
− r⋆(x, a)− r⋆(x, b) + 1

2

)2
]
+

A

γ

=γ E
a∼p

[(
f(x, a, b)− f⋆(x, a, b)

)2]
+

A

γ

where for the inequality above we invoked Lemma 3 with ŷ(a) = (r(x, a) − r(x, b) + 1)/2 and
y⋆(a) = (r⋆(x, a) − r⋆(x, b) + 1)/2. We note that the above holds for any b ∈ A. Hence, we
complete the proof by sampling b ∼ p.

Lemma 13. Assume f⋆ ∈ Ft for all t ∈ [T ]. Suppose there exists some t′ ∈ [T ] such that λt = 0
for all t ≤ t′. Then we have

t′∑
t=1

Ztwt ≤ 56A2β · dimE (F ,∆)

∆
· log(2/(δ∆))

with probability at least 1− δ.

Proof. Since f⋆ ∈ Ft, we always have πf⋆(xt) ∈ At for all t ∈ [T ]. Hence, whenever Zt is zero,
we have At = {πf⋆(xt)} and thus we do not incur any regret. Hence, we know Ztwt is either 0 or at
least ∆ by Lemma 7. Let us fix an integer m > 1/∆, whose value will be specified later. We divide
the interval [∆, 1] into bins of width 1/m and conduct a refined study of the sum of Ztwt:
t′∑

t=1

Ztwt ≤
t′∑

t=1

(1−∆)m−1∑
j=0

Ztwt · 1
{
Ztwt ∈

[
∆+

j

m
, ∆+

j + 1

m

]}

≤
(1−∆)m−1∑

j=0

(
∆+

j + 1

m

) t′∑
t=1

Zt1

{
wt ≥ ∆+

j

m

}

=

(1−∆)m−1∑
j=0

(
∆+

j + 1

m

) t′∑
t=1

Zt1

{
sup

a,b∈At

sup
f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆+
j

m

}

=

(1−∆)m−1∑
j=0

(
∆+

j + 1

m

) t′∑
t=1

Zt sup
a,b∈At

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆+
j

m

}

≤
(1−∆)m−1∑

j=0

(
∆+

j + 1

m

) t′∑
t=1

Zt

∑
a,b

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥
(
∆+

j

m

)}

≤
(1−∆)m−1∑

j=0

(
∆+

j + 1

m

)
A2

t′∑
t=1

Zt E
a,b∼pt

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥
(
∆+

j

m

)}
︸ ︷︷ ︸

(∗)
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where in the third inequality we replace the supremum over a, b by the summation over a, b, and in
the last inequality we further replace it by the expectation. Here recall that pt(a) is uniform when
λt = 0, leading to the extra A2 factor. To deal with (∗), we first apply Lemma 4 to recover the
empirical at and bt, and then apply Lemma 10 to get an upper bound via the eluder dimension:

(∗) ≤2
t′∑

t=1

Zt1

{
sup

f,f ′∈Ft

f(xt, at, bt)− f ′(xt, at, bt) ≥
(
∆+

j

m

)}
+ 8 log(δ−1)

≤2

(
4β(

∆+ j
m

)2 + 1

)
dimE (F ; ∆) + 8 log(δ−1)

≤ 10β(
∆+ j

m

)2 · dimE (F ; ∆) + 8 log(δ−1)

with probability at least 1− δ. Plugging (∗) back, we obtain

t′∑
t=1

Ztwt ≤
(1−∆)m−1∑

j=0

(
∆+

j + 1

m

)
· 10A2β(

∆+ j
m

)2 · dimE (F ; ∆) + 8mA2 log(δ−1)

=10A2β · dimE (F ,∆)

(1−∆)m−1∑
j=0

∆+ j+1
m(

∆+ j
m

)2 + 8mA2 log(δ−1)

≤10A2β · dimE (F ,∆)

∆+ 1/m

∆2
+

(1−∆)m−1∑
j=1

2

∆ + j
m

+ 8mA2 log(δ−1)

≤10A2β · dimE (F ,∆)

(1−∆)m−1∑
j=0

2

∆ + j
m

+ 8mA2 log(δ−1)

≤20A2β · dimE (F ,∆)

(1−∆)m−1∑
j=0

∫ j

j−1

1

∆ + x
m

dx+ 8mA2 log(δ−1)

=20A2β · dimE (F ,∆)

∫ (1−∆)m−1

−1

1

∆ + x
m

dx+ 8mA2 log(δ−1)

=20A2β · dimE (F ,∆) ·m log

(
1

∆−m−1

)
+ 8mA2 log(δ−1)

where for the second inequality, we use the fact that (j + 1)/m ≤ 2j/m for any j ≥ 1; for the third
inequality, we assume m > 1/∆. Setting m = 2/∆, we arrive at

t′∑
t=1

Ztwt ≤40A2β · dimE (F ,∆)

∆
· log(2/∆) + 16A2 log(δ−1)/∆

≤56A2β · dimE (F ,∆)

∆
· log(2/(δ∆)),

which completes the proof.

Lemma 14. Whenever

56A2β · dimE (F ,∆) · log(2/(δ∆))/∆ <
√

AT/β,

we have λ1 = λ2 = · · · = λT = 0 with probability at least 1− δ.

Proof of Lemma 14. We prove it via contradiction. Assume the inequality holds but there exists t′
for which λt′ = 1. Without loss of generality, we assume that λt = 0 for all t < t′, namely that t′ is
the first time that λt is 1. Then by definition of λt′ , we have

t′−1∑
s=1

Zsws ≥
√
AT/β.
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On the other hand, by Lemma 13, we have

t′−1∑
s=1

Zsws ≤ 56A2β · dimE (F ,∆)

∆
· log(2/(δ∆)).

The combination of the above two inequalities contradicts with the conditions.

C.2 Proof of Lemma 1

Proof of Lemma 1. We prove it via contradiction. If no such arm exists, meaning that for any arm a,
there exists an arm b such that f⋆(x, a, b) < 0. Then we can find a sequence of arms (a1, a2, . . . , ak)
such that f⋆(x, ai, ai+1) < 0 for any i = 1, . . . , k− 1 and f⋆(x, ak, a1) < 0, which contradicts with
the transitivity (Assumption 1).

C.3 Proof of Theorem 1

We begin by showing the worst-case regret upper bound.

Lemma 15 (Worst-case regret upper bound). For Algorithm 1, assume f⋆ ∈ Ft for all t ∈ [T ]. Then,
we have

RegretCB
T ≤ 68

√
ATβ · log(4δ−1)

with probability at least 1− δ.

Proof of Lemma 15. We recall that the regret is defined as

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
.

Since at and bt are always drawn independently from the same distribution in Algorithm 1, we only
need to consider the regret of the at part in the following proof for brevity — multiplying the result
by two would yield the overall regret.

We first observe the definition of λt in Algorithm 1: the left term
∑t−1

s=1 Zsws in the indicator is
non-decreasing in t while the right term remains constant. This means that there exists a particular
time step t′ ∈ [T ] dividing the time horizon into two phases: λt = 0 for all t ≤ t′ and λt = 1 for all
t > t′. Now, we proceed to examine these two phases individually.

For all rounds before or on t′, we can compute the expected partial regret as

t′∑
t=1

E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
=

t′∑
t=1

Zt E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
≤

t′∑
t=1

Ztwt ≤
√

ATβ, (8)

where the equality holds since we have At = {πf⋆(xt)} whenever Zt = 0 under the condition that
f⋆ ∈ Ft, and thus we don’t incur regret in this case. The first inequality is Lemma 8, and the second
inequality holds by the definition of λt and the condition that λt = 0.
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On the other hand, for all rounds after t′, we have

T∑
t=t′+1

E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
=

T∑
t=t′+1

Zt E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
≤

T∑
t=t′+1

Zt

(
5A

γt
+

γt
4

E
a,b∼pt

[(
f⋆(xt, a, b)− ft(xt, a, b)

)2])

=

T∑
t=t′+1

Zt

(
5A√
AT/β

+

√
AT/β

4
E

a,b∼pt

[(
f⋆(xt, a, b)− ft(xt, a, b)

)2])

≤5
√
ATβ +

√
AT/β

4

T∑
t=t′+1

Zt E
a,b∼pt

[(
f⋆(xt, a, b)− ft(xt, a, b)

)2]

≤5
√
ATβ +

√
AT/β

2

T∑
t=t′+1

Zt

(
f⋆(xt, at, bt)− ft(xt, at, bt)

)2
+ 8
√

AT/β · log(4δ−1)

≤5
√
ATβ +

√
ATβ

2
+ 8
√
AT/β · log(4δ−1). (9)

where the first inequality holds by Lemma 11 (or Lemma 12 for specific function classes), the second
equality is by the definition of γt, the third inequality is by Lemma 4, and the fourth inequality holds
by Lemma 9.

Putting the two parts, (8) and (9), together, we arrive at

T∑
t=1

E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
≤ 7
√
ATβ + 8

√
AT/β · log(4δ−1) ≤ 15

√
ATβ · log(4δ−1).

Now we apply Lemma 4 again. The following holds with probability at least 1− δ/2,

T∑
t=1

f⋆(xt, πf⋆(xt), at) ≤ 2

T∑
t=1

E
a∼pt

[
f⋆(xt, πf⋆(xt), a)

]
+ 4 log(4δ−1) ≤ 34

√
ATβ · log(4δ−1).

The above concludes the regret of the at part. The regret of the bt can be shown in the same way.
Adding them together, we conclude that

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
≤ 68

√
ATβ · log(4δ−1).

Lemma 16 (Instance-dependent regret upper bound). For Algorithm 1, assume f⋆ ∈ Ft for all
t ∈ [T ]. Then, we have

RegretCB
T ≤ 3808A2β2 · dimE (F ,∆)

∆
· log2(4/(δ∆))

with probability at least 1− δ.

Proof of Lemma 16. We consider two cases. First, when

56A2β · dimE (F ,∆)

∆
· log(2/(δ∆)) <

√
AT/β, (10)
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we invoke Lemma 14 and get that λt = 0 for all t ∈ [T ]. Hence, we have

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
≤2

T∑
t=1

Ztwt

≤112A2β · dimE (F ,∆)

∆
· log(2/(δ∆))

≤3808A2β2 · dimE (F ,∆)

∆
· log2(4/(δ∆))

where the first inequality is by Lemma 8 and the fact that we incur no regret when Zt = 0 since
f⋆ ∈ Ft. The second inequality is by Lemma 13.

On the other hand, when the contrary of (10) holds, i.e.,

56A2β · dimE (F ,∆)

∆
· log(2/(δ∆)) ≥

√
AT/β, (11)

applying Lemma 15, we have

RegretCB
T ≤68

√
ATβ · log(4δ−1)

=68β · log(4δ−1) ·
√
AT/β

≤68β · log(4δ−1) · 56A2β · dimE (F ,∆)

∆
· log(2/(δ∆))

≤3808A2β2 · dimE (F ,∆)

∆
· log2(4/(δ∆))

where we apply the condition (11) in the second inequality.

Lemma 17 (Query complexity). For Algorithm 1, assume f⋆ ∈ Ft for all t ∈ [T ]. Then, we have

QueriesCB
T ≤ min

{
T, 3136A3β3 dim

2
E (F ,∆)

∆2
· log2(2/(δ∆))

}
with probability at least 1− δ.

Proof of Lemma 17. We consider two cases. First, when

56A2β · dimE (F ,∆)

∆
· log(2/(δ∆)) <

√
AT/β (12)

we can invoke Lemma 14 and get that λt = 0 for all t ∈ [T ]. Hence,

QueriesCB
T =

T∑
t=1

Zt

=

T∑
t=1

Zt1{wt ≥ ∆}

=

T∑
t=1

Zt sup
a,b∈At

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆

}

≤
T∑

t=1

Zt

∑
a,b

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆

}

≤A2
T∑

t=1

Zt E
a,b∼pt

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ∆

}
︸ ︷︷ ︸

(∗)
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where the second equality is by Lemma 7, the second inequality holds as pt(a) is uniform for any
a, b when λt = 0. We apply Lemma 4 and Lemma 10 to (∗) and obtain

(∗) ≤2
T∑

t=1

Zt1

{
sup

f,f ′∈Ft

f(xt, at, bt)− f ′(xt, at, bt) ≥ ∆

}
+ 8 log(δ−1)

≤2
(
4β

∆2
+ 1

)
dimE(F ; ∆) + 8 log(δ−1)

≤10β

∆2
· dimE(F ; ∆) + 8 log(δ−1).

Plugging this back, we obtain

QueriesCB
T ≤10A2β

∆2
· dimE(F ; ∆) + 8A2 log(δ−1)

≤3136A3β3 dim
2
E (F ,∆)

∆2
· log2(2/(δ∆)).

On the other hand, when the contrary of (12) holds, i.e.,

56A2β · dimE (F ,∆)

∆
· log(2/(δ∆)) ≥

√
AT/β.

Squaring both sides, we obtain

3136A4β2 dim
2
E (F ,∆)

∆2
· log2(2/(δ∆)) ≥ AT/β

which leads to

T ≤ 3136A3β3 dim
2
E (F ,∆)

∆2
· log2(2/(δ∆)).

We note that we always have QueriesCB
T ≤ T , and thus,

QueriesCB
T ≤ T ≤ 3136A3β3 dim

2
E (F ,∆)

∆2
· log2(2/(δ∆)).

Hence, we complete the proof.

Having established the aforementioned lemmas, we are now able to advance towards the proof of
Theorem 1.

Proof of Theorem 1. By Lemma 9 and the construction of version spaces Ft in Algorithm 1, we have
f⋆ ∈ Ft for all t ∈ [T ] with probability at least 1 − δ. Then, the rest of the proof follows from
Lemmas 15 to 17.

C.4 Proof of Theorem 2

In this section, we will prove the following theorem, which is stronger than Theorem 2.
Theorem 5 (Lower bounds). The following two claims hold:

(1) for any algorithm, there exists an instance that leads to RegretCB
T = Ω(

√
AT );

(2) for any algorithm achieving a worse-case expected regret upper bound in the form of
E[RegretCB

T ] = O(
√
A · T 1−β) for some β > 0, there exists an instance with gap ∆ =√

A · T−β that results in E[RegretCB
T ] = Ω(A/∆) = Ω(

√
A · T β) and E[QueriesCB

T ] =
Ω(A/∆2) = Ω(T 2β).

We observe that Theorem 2 can be considered as a corollary of the above theorem when setting
β = 1/2.

In what follows, we will first demonstrate lower bounds in the setting of multi-armed bandits (MAB)
with active queries and subsequently establish a reduction from it to contextual dueling bandits in
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order to achieve these lower bounds. We start by formally defining the setting of MAB with active
queries below.

Multi-armed bandits with active queries. We consider a scenario where there exist A arms. Each
arm a is assumed to yield a binary reward (0 or 1), which is sampled from a Bernoulli distribution
Bern(r̄a), where r̄a denotes the mean reward associated with arm a.The arm with the highest mean
reward is denoted by a⋆ := argmaxa r̄a. Let ∆a := r̄a⋆ − r̄a denote the gap of arm a ∈ [A]. The
interaction proceeds as follows: at each round t ∈ [T ], we need to pull an arm but can choose whether
to receive the reward signal (denote this choice by Zt). The objective is to minimize two quantities:
the regret and the number of queries,

RegretT =

T∑
t=1

∆at , QueriesT =

T∑
t=1

Zt. (13)

Towards the lower bounds, we will start with a bound on the KL divergence over distributions of runs
under two different bandits. This result is a variant of standard results which can be found in many
bandit literature (e.g., Lattimore and Szepesvári [2020]).
Lemma 18. Let I1 and I2 be two instances of MAB. We define p1 and p2 as their respective distribu-
tions over the outcomes of all pulled arms and reward signals when a query is made. Concretely, p1
and p2 are measuring the probability of outcomes (denoted by O) in the following form:

O =
(
Z1, a1, (r1), . . . , ZT , aT , (rT )

)
where the reward rt is included only when Zt = 1, and we added parentheses above to indicate
this point. We denote Pr1 (resp. Pr2) as the reward distribution of I1 (resp. I2). We define
n̄a =

∑T
t=1 Zt1{at = a} as the number of times arm a is pulled when making a query. Then, given

any algorithm A, the Kullback–Leibler divergence between p1 and p2 can be decomposed in the
following way

KL(p1, p2) =

A∑
a=1

E
p1

[n̄a] ·KL
(
Pr1(r | a),Pr2(r | a)

)
.

Proof of Lemma 18. We define the conditional distribution

Pr1(rt |Zt, at)

{
Pr1(rt | at) if Zt = 1

1 if Zt = 0
,

and similarly for Pr2. Additionally, we denote PrA as the probability associated with algorithm A.
Then, for any outcome O, we have

p1(O) =

T∏
t=1

PrA
(
Zt, at |Z1, a1, (r1), . . . , Zt−1, at−1, (rt−1)

)
Pr1(rt |Zt, at),

and we can write p2(O) in a similar manner. Hence,

KL(p1, p2) = E
O∼p1

[
log

(∏T
t=1 PrA

(
Zt, at |Z1, a1, (r1), . . . , Zt−1, at−1, (rt−1)

)
Pr1(rt |Zt, at)∏T

t=1 PrA
(
Zt, at |Z1, a1, (r1), . . . , Zt−1, at−1, (rt−1)

)
Pr2(rt |Zt, at)

)]

= E
O∼p1

[
T∑

t=1

log

(
Pr1(rt |Zt, at)

Pr2(rt |Zt, at)

)]

= E
O∼p1

[
T∑

t=1

Zt log

(
Pr1(rt | at)
Pr2(rt | at)

)]

= E
O∼p1

[
T∑

t=1

Zt E
rt∼Pr1(· | at)

[
log

(
Pr1(rt | at)
Pr2(rt | at)

)]]

= E
O∼p1

[
T∑

t=1

Zt ·KL
(
Pr1(· | at),Pr2(· | at)

)]

=

A∑
a=1

E
O∼p1

[n̄a] ·KL
(
Pr1(· | at),Pr2(· | at)

)
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where the third equality holds by the definition of Pr1 and Pr2.

The following lemma establishes lower bounds for MAB with active queries. It presents a trade-off
between the regret and the number of queries.
Lemma 19. Let I denote the set of all MAB instances. Assume ALG is an algorithm that achieves
the following worst-case regret upper bound for some C and β:

E
[
RegretT

]
≤ CT 1−β ,

for all I ∈ I. Then, for any MAB instance I ∈ I, the regret and the number of queries made by
algorithm ALG are lower bounded:

E
[
RegretT

]
≥
∑
a̸=a⋆

ζ

∆a
log

(
∆a

4CT−β

)
, E

[
QueriesT

]
≥
∑
a̸=a⋆

ζ

∆2
a

log

(
∆a

4CT−β

)
where the coefficient ζ = mina min{r̄a, 1− r̄a} depends on the instance I .

Proof of Lemma 19. For any MAB instance I and any arm a†, we define a corresponding MAB
instance I ′ as follows. Denote r̄ and r̄′ as the mean reward of I and I ′, respectively. For I ′, we set
the mean reward r̄′a = r̄a for any a ̸= a† and r̄′a† = r̄a† +2∆a† . Consequently, the optimal arm of I ′

is a† with margin ∆a† . Let na denote the number of times that arm a is pulled. We define the event

E = {na† > T/2}.
Then, we have

E
p

[
RegretT

]
≥ T∆a†

2
· p(E), E

p′

[
RegretT

]
≥ T∆a†

2
· p′(E∁).

Hence,

2CT 1−β ≥E
p

[
RegretT

]
+ E

p′

[
RegretT

]
≥T∆a†

2

(
p(E) + p′(E∁)

)
=
T∆a†

2

(
1−

(
p′(E)− p(E)

))
≥T∆a†

2

(
1− TV

(
p, p′

))
≥T∆a†

2

(
1−

√
1− exp

(
−KL(p, p′)

))
≥T∆a†

2
exp

(
−1

2
·KL(p, p′)

)
.

By Lemma 18, we have

KL(p, p′) =

A∑
a=1

E
p
[n̄a] ·KL

(
Pr(r | a),Pr′(r | a)

)
=E

p
[n̄a† ] ·KL

(
Pr(r | a†),Pr′(r | a†)

)
≤E

p
[n̄a† ] ·∆2

a† · 2/ζ

where the last inequality is by Lemma 6. Putting the above two inequality together, we arrive at

E
p
[n̄a† ] ≥ ζ

∆2
a†

log

(
∆a†

4CT−β

)
.

This establishes a query lower bound for arm a†. Consequently, we have

E[RegretT ] ≥
∑
a̸=a⋆

E
p
[n̄a] ·∆a ≥

∑
a ̸=a⋆

ζ

∆a
log

(
∆a

4CT−β

)
,
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and similarly,

E[QueriesT ] ≥
∑
a̸=a⋆

E
p
[n̄a] ≥

∑
a̸=a⋆

ζ

∆2
a

log

(
∆a

4CT−β

)
.

Now we can proceed with the proof of Theorem 5.

Proof of Theorem 5. We provide a reduction from the multi-armed bandits with active queries to
the contextual dueling bandits. Our desired lower bound for the contextual dueling bandit setting
thus follows from the above lower bound for Multi-Armed Bandits (MABs). Let ALG denote any
algorithm for contextual dueling bandits.

Reduction. Since we focus on the multi-armed bandit where no context is involved, we just ignore
the notation of context everywhere for brevity. We will start from an MAB instance, and then simulate
a binary feedback and feed it to a dueling bandit algorithm ALG which is used to solve the original
MAB instance. Particularly, consider the MAB instance with A-many actions each with an expected
reward denoted as r̄a.

At the beginning of iteration t in the MAB instance, the learner calls the dueling algorithm ALG to
generate two actions at and bt. The learner plays at at iteration t to receive a reward yat

; the learner
then moves to iteration t+ 1 to play bt, and receives reward ybt . At the end of iteration t+ 1, the
learner simulates a binary feedback by setting o = 1 if yat

> ybt ; o = −1 if yat
< ybt ; o being 1 or

−1 uniform randomly if yat
= ybt . Then, the learner sends (at, bt, o) to the dueling algorithm ALG

to query for two actions which will be played at iterations t+ 2 and t+ 3, respectively.

From the dueling algorithm ALG’s perspective, given two actions a and b, we can verify that the
probability of seeing label 1 is (r̄a− r̄b +1)/2. So we can just specify the link function to be ϕ(d) =
(d+ 1)/2. As we verified earlier, the corresponding Φ is strongly convex (Example 2). Moreover,
since f⋆(a, b) = r̄a − r̄b, if we define the gap of the MAB instance as ∆̄ := mina̸=a⋆(r̄a⋆ − r̄a)
where a⋆ := argmaxi r̄i, then we have ∆̄ = ∆ in this reduction where ∆ is the definition of the gap
in the dueling setting. We further note that the regret of the MAB instance is

T∑
t=1

(r̄a⋆ − r̄at
) +

T∑
t=1

(r̄a⋆ − r̄bt),

which, by our definition of f⋆, is equivalent to the preference-based regret that occurred to the
dueling algorithm ALG. The number of queries is clearly equivalent as well. Thus, the regret and the
query complexity of the dueling algorithm ALG can be directly translated to the regret and the query
complexity of the MAB instance.

Now, we are ready to prove the two claims in our statement.

Proof of the first claim. We refer the reader to Lattimore and Szepesvári [2020, Theorem 15.2] for a
proof of the minimax regret lower bound of Ω(

√
AT ) for the MAB. Through the reduction outlined

above, that lower bound naturally extends to the dueling bandits setting, yielding RegretCB
T ≥

Ω(
√
AT ) (otherwise, via the above reduction, we would have achieved an approach that breaks the

lower bound of MAB).

Proof of the second claim. We choose an arbitrary MAB for which ζ = mina min{r̄a, 1− r̄a} > 0.2
and the gaps of all arms are equal to ∆. Invoking Lemma 19, we have

E
[
RegretT

]
≥ 0.2(A− 1)

∆
log

(
∆

4CT−β

)
≥ Ω

(
A

∆

)
,

E
[
QueriesT

]
≥ 0.2(A− 1)

∆2
log

(
∆

4CT−β

)
≥ Ω

(
A

∆2

)
.

We further choose ∆ = 40CT−β and C =
√
A, leading to

E
[
RegretT

]
≥ 0.2(A− 1)

40
√
A

· T β = Ω
(√

A · T β
)
,

E
[
QueriesT

]
≥ 0.2(A− 1)

1600A
· T 2β = Ω

(
T 2β

)
.
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Via the reduction we have shown above, these lower bounds naturally extend to the contextual dueling
bandit setting, thereby completing the proof.

C.4.1 Alternative Lower Bounds Conditioning on the Limit of Regret

In this section, we establish an analogue of Theorem 5 but under a different condition. We first
introduce the concept of diminishing regret.

Definition 4. We say that an algorithm guarantees a diminishing regret if for all contextual dueling
bandit instances and p > 0, it holds that

lim
T→∞

E[RegretCB
T ]

T p
= 0.

The lower bounds under the assumption of diminishing regret guarantees are stated as follows.

Theorem 6 (Lower bounds). The following two claims hold:

(1) for any algorithm, there exists an instance that leads to RegretCB
T ≥ Ω(

√
AT );

(2) for any gap ∆ and any algorithm achieving diminishing regret, there exists an instance
with gap ∆ that results in E[RegretCB

T ] ≥ Ω(A/∆) and E[QueriesCB
T ] ≥ Ω(A/∆2) for

sufficiently large T .

We should highlight that the condition of diminishing regret (Theorem 6) and the worst-case regret
upper bounds (Theorems 2 and 5) are not comparable in general. However, Theorem 6 is also
applicable to our algorithm (Algorithm 1) since our algorithm possesses an instance-dependent regret
upper bound that is clearly diminishing.

To prove Theorem 6, we first show the following lemma, which is a variant of Lemma 19.

Lemma 20. Let I denote the set of all MAB instances. Assume ALG is an algorithm that achieves
diminishing regret for all MAB instances in I, i.e., for any I ∈ I and p > 0, it holds that

lim
T→∞

E[RegretT ]
T p

= 0.

Then, for any MAB instance I ∈ I, the regret and the number of queries made by algorithm ALG are
lower bounded in the following manner:

lim inf
T→∞

E
[
RegretT

]
log T

≥
∑
a̸=a⋆

ζ

∆a
, lim inf

T→∞

E
[
QueriesT

]
log T

≥
∑
a̸=a⋆

ζ

∆2
a

where the coefficient ζ := mina min{r̄a, 1 − r̄a} depends on the instance I . Recall that RegretT
and QueriesT are defined in (13).

Proof of Lemma 20. The proof is similar to Lemma 19. For any MAB instance I ∈ I and any arm
a†, we define a corresponding MAB instance I ′ as follows. Denote r̄ and r̄′ as the mean reward of I
and I ′, respectively. For I ′, we set the mean reward r̄′a = r̄a for any a ̸= a† and r̄′a† = r̄a† + 2∆a† .
Consequently, the optimal arm of I ′ is a† with margin ∆a† . Let na denote the number of times that
arm a is pulled. We define the event

E = {na† > T/2}.

Let p and p′ denote the probability of I and I ′, respectively. Then, we have

E
p

[
RegretT

]
≥ T∆a†

2
· p(E), E

p′

[
RegretT

]
≥ T∆a†

2
· p′(E∁)
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where E∁ means the complement of event E. Hence,

E
p

[
RegretT

]
+ E

p′

[
RegretT

]
≥T∆a†

2

(
p(E) + p′(E∁)

)
=
T∆a†

2

(
1−

(
p′(E)− p(E)

))
≥T∆a†

2

(
1− TV

(
p, p′

))
≥T∆a†

2

(
1−

√
1− exp

(
−KL(p, p′)

))
≥T∆a†

2
exp

(
−1

2
·KL(p, p′)

)
.

Here TV denotes the total variation distance. By Lemma 18, we have

KL(p, p′) =

A∑
a=1

E
p
[n̄a] ·KL

(
Pr(r | a),Pr′(r | a)

)
=E

p
[n̄a† ] ·KL

(
Pr(r | a†),Pr′(r | a†)

)
≤E

p
[n̄a† ] ·∆2

a† · 2/ζ

where the last inequality is by Lemma 6. Putting it all together, we arrive at

E
p
[n̄a† ] ≥ ζ

∆2
a†

log

 T∆a†

2
(
Ep

[
RegretT

]
+ Ep′

[
RegretT

])
 .

Taking the limit on both sides yields

lim inf
T→∞

Ep[n̄a† ]

log T
≥ lim inf

T→∞

ζ

∆2
a†
·

log

 T∆
a†

2

(
Ep

[
RegretT

]
+Ep′

[
RegretT

])


log T

= lim inf
T→∞

ζ

∆2
a†
·

1 +
log(∆a†/2)

log T︸ ︷︷ ︸
(i)

−
log
(
Ep

[
RegretT

]
+ Ep′

[
RegretT

])
log T︸ ︷︷ ︸
(ii)

 .

Here the limit of (i) is clearly 0. For the limit of (ii), we note that by the definition of diminishing
regret, for any C > 0, there exists a T ′ such that E[RegretT ]/T p ≤ C for any T > T ′. This implies

log
(
Ep

[
RegretT

]
+ Ep′

[
RegretT

])
log T

≤
log
(
2CT p

)
log T

=
log(2C)

log T
+ p

for any p > 0. Therefore, the limit of (ii) is also 0. Plugging these back, we obtain

lim inf
T→∞

Ep[n̄a† ]

log T
≥ ζ

∆2
a†
.

This establishes a query lower bound for arm a†. Consequently, we have

lim inf
T→∞

E[RegretT ]
log T

≥ lim inf
T→∞

∑
a ̸=a⋆

Ep[n̄a] ·∆a

log T
≥
∑
a ̸=a⋆

ζ

∆a
,

and similarly,

lim inf
T→∞

E[QueriesT ]

log T
≥ lim inf

T→∞

∑
a̸=a⋆

Ep[n̄a]

log T
≥
∑
a̸=a⋆

ζ

∆2
a

.
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Now, we proceed with the proof of Theorem 6.

Proof of Theorem 6. The proof of the first claim is the same as Theorem 5, so we will omit it here.
Let us now focus on the proof of the second claim. By Lemma 20, for any algorithm achieving
diminishing regret, the following is true for any MAB instance:

lim inf
T→∞

E
[
RegretT

]
log T

≥
∑
a ̸=a⋆

ζ

∆a
, lim inf

T→∞

E
[
QueriesT

]
log T

≥
∑
a ̸=a⋆

ζ

∆2
a

.

We choose an arbitrary MAB for which ζ ≥ 0.2 and the gaps of all suboptimal arms are equal to ∆.
Then, for this instance, we have

lim inf
T→∞

E
[
RegretT

]
log T

≥ 0.2(A− 1)

∆
, lim inf

T→∞

E
[
QueriesT

]
log T

≥ 0.2(A− 1)

∆2
.

By the definition of limit, when T is large enough (exceeding a certain threshold), we have

E
[
RegretT

]
log T

≥ 0.1(A− 1)

∆
,

E
[
QueriesT

]
log T

≥ 0.1(A− 1)

∆2
.

Via the reduction we have shown in the proof of Theorem 5, these lower bounds naturally extend to
the contextual dueling bandit setting, thereby completing the proof.

C.5 Proof of Theorem 3

Proof of Theorem 3. We establish the bounds for regret and the number of queries, consecutively.
First, we set an arbitrary gap threshold ϵ > 0. Since our algorithm is independent of ϵ, we can later
choose any ϵ that minimizes the upper bounds.

Proof of regret. We start with the regret upper bound. By definition, we have

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
.

Since at and bt are always drawn independently from the same distribution in Algorithm 1, we only
need to consider the regret of the at part in the following proof for brevity — multiplying the result
by two would yield the overall regret.

The worst-case regret upper bound presented in Lemma 15 doesn’t reply on the gap assumption and
thus remains applicable in this setting. Hence, we only need to prove the instance-dependent regret
upper bound. To that end, we first need an analogue of Lemma 14.

Lemma 21. Fix any ϵ > 0. Whenever

2Tϵ + 56A2β · dimE (F , ϵ)
ϵ

· log(2/(δϵ)) <
√

AT/β,

we have λ1 = λ2 = · · · = λT = 0 with probability at least 1− δ.

Proof of Lemma 21. The proof is similar to Lemma 14 and is via contradiction. Assume the inequality
holds but there exists t′ for which λt′ = 1. Without loss of generality, we assume that λt = 0 for all
t < t′, namely that t′ is the first time that λt is 1. Then by definition of λt′ , we have

t′−1∑
s=1

Zsws ≥
√
AT/β.

On the other hand, we have
t′−1∑
s=1

Zsws =

t′−1∑
s=1

1{Gap(xt) ≤ ϵ}Zsws +

t′−1∑
s=1

1{Gap(xt) > ϵ}Zsws

≤2Tϵ + 56A2β · dimE (F , ϵ)
ϵ

· log(2/(δϵ))

where the inequality is by Lemma 13. The above two inequalities contradicts with the conditions.
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Towards an instance-dependent regret upper bound, we adapt the proof of Lemma 16 to this setting.
We consider two cases. First, when

2Tϵ + 56A2β · dimE (F , ϵ)
ϵ

· log(2/(δϵ)) <
√

AT/β, (14)

we invoke Lemma 21 and get that λt = 0 for all t ∈ [T ]. Hence, we have

RegretCB
T =

T∑
t=1

(
f⋆(xt, πf⋆(xt), at) + f⋆(xt, πf⋆(xt), bt)

)
≤2

T∑
t=1

1{Gap(xt) ≤ ϵ}Ztwt + 2

T∑
t=1

1{Gap(xt) > ϵ}Ztwt

≤4Tϵ + 112A2β · dimE (F , ϵ)
ϵ

· log(2/(δϵ))

≤136β · log(4δ−1) · Tϵ + 3808A2β2 · dimE (F , ϵ)
ϵ

· log2(4/(δϵ))

where the first inequality is by Lemma 8 and the fact that we incur no regret when Zt = 0 since
f⋆ ∈ Ft. The second inequality is by Lemma 13.

On the other hand, when the contrary of (14) holds, i.e.,

2Tϵ + 56A2β · dimE (F , ϵ)
ϵ

· log(2/(δϵ)) ≥
√

AT/β, (15)

applying Lemma 15, we have

RegretCB
T ≤68

√
ATβ · log(4δ−1)

=68β · log(4δ−1) ·
√

AT/β

≤68β · log(4δ−1) ·
(
2Tϵ + 56A2β · dimE (F , ϵ)

ϵ
· log(2/(δϵ))

)
≤136β · log(4δ−1) · Tϵ + 3808A2β2 · dimE (F , ϵ)

ϵ
· log2(4/(δϵ))

where we apply the condition (15) in the second inequality.

Proof of the number of queries. To show an upper bound for the number of queries, we also
consider two cases. First, when

2Tϵ + 56A2β · dimE (F , ϵ)
ϵ

· log(2/(δϵ)) <
√

AT/β, (16)

we can invoke Lemma 21 and get that λt = 0 for all t ∈ [T ]. Hence, similar to the proof of Lemma 17,
we have

QueriesCB
T =

T∑
t=1

Zt

=

T∑
t=1

Zt1{Gap(xt) < ϵ}+
T∑

t=1

Zt1{Gap(xt) ≥ ϵ}

=Tϵ +

T∑
t=1

Zt sup
a,b∈At

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ϵ

}

≤Tϵ +

T∑
t=1

Zt

∑
a,b

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ϵ

}

≤Tϵ +A2
T∑

t=1

Zt E
a,b∼pt

1

{
sup

f,f ′∈Ft

f(xt, a, b)− f ′(xt, a, b) ≥ ϵ

}
︸ ︷︷ ︸

(∗)
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where the second inequality holds as pt(a) is uniform for any a, b when λt = 0. We apply Lemma 4
and Lemma 10 to (∗) and obtain

(∗) ≤2
T∑

t=1

Zt1

{
sup

f,f ′∈Ft

f(xt, at, bt)− f ′(xt, at, bt) ≥ ϵ

}
+ 8 log(δ−1)

≤2
(
4β

ϵ2
+ 1

)
dimE(F ; ϵ) + 8 log(δ−1)

≤10β

ϵ2
· dimE(F ; ϵ) + 8 log(δ−1).

Plugging this back, we obtain

QueriesCB
T ≤Tϵ +

10A2β

ϵ2
· dimE(F ; ϵ) + 8A2 log(δ−1)

≤8T 2
ϵ β/A+ 6272A3β3 dim

2
E (F , ϵ)
ϵ2

· log2(2/(δϵ))
where the second line corresponds to the upper bound derived from the alternative case, which is
shown below.

When the contrary of (16) holds, i.e.,

2Tϵ + 56A2β · dimE (F , ϵ)
ϵ

· log(2/(δϵ)) ≥
√

AT/β.

Squaring both sides and leveraging the inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain

8T 2
ϵ + 6272A4β2 dim

2
E (F , ϵ)
ϵ2

· log2(2/(δϵ)) ≥ AT/β

which leads to

T ≤ 8T 2
ϵ β/A+ 6272A3β3 dim

2
E (F , ϵ)
ϵ2

· log2(2/(δϵ)).

We note that we always have QueriesCB
T ≤ T and thus

QueriesCB
T ≤ T ≤ 8T 2

ϵ β/A+ 6272A3β3 dim
2
E (F , ϵ)
ϵ2

· log2(2/(δϵ)).

Minimizing on ϵ. Given that the aforementioned proofs hold for any threshold ϵ, we can select the
specific value of ϵ that minimizes the upper bounds. Hence, we deduce the desired result.

C.6 Proof of Theorem 4

Proof of Theorem 4. The upper bound of the number of queries is straightforward: Algorithm 2 is
simply running H instances of Algorithm 1, so the total number of queries is simply the sum of these
H instances. For bounding the regret, we have

RegretILT =

T∑
t=1

V πe
0 (xt,0)− V πt

0 (xt,0)

≤
H−1∑
h=0

T∑
t=1

E
xt,h,at,h∼d

πt
xt,0,h

[
Qπe

h (xt,h, π
πe

h (xt,h))−Qπe

h (xt,h, at,h)
]

≤
H−1∑
h=0

T∑
t=1

E
xt,h,at,h∼d

πt
xt,0,h

[
Qπe

h (xt,h, π
+
h (xt,h))−Qπe

h (xt,h, at,h)
]

−
H−1∑
h=0

T∑
t=1

E
xt,h∼d

πt
xt,0,h

[
Aπe

h (xt,h, π
+
h (xt,h))

]
≤H · E

[
RegretCB

T

]
−AdvT .

where the first inequality holds by Lemma 5, and we denote π+
h (xt,h) = argmaxa Q

πe

h (xt,h, a) in
the second inequality. Then, we can plug the upper bound of RegretCB

T (Theorem 1). Moreover, we
need to take a union bound over all h ∈ [H].
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