
Non-adversarial training of Neural SDEs with
signature kernel scores

Zacharia Issa∗1 Blanka Horvath2,3,4 Maud Lemercier2,4 Cristopher Salvi4,5

Abstract

Neural SDEs are continuous-time generative models for sequential data. State-
of-the-art performance for irregular time series generation has been previously
obtained by training these models adversarially as GANs. However, as typical
for GAN architectures, training is notoriously unstable, often suffers from mode
collapse, and requires specialised techniques such as weight clipping and gradient
penalty to mitigate these issues. In this paper, we introduce a novel class of scoring
rules on pathspace based on signature kernels and use them as objective for training
Neural SDEs non-adversarially. By showing strict properness of such kernel
scores and consistency of the corresponding estimators, we provide existence and
uniqueness guarantees for the minimiser. With this formulation, evaluating the
generator-discriminator pair amounts to solving a system of linear path-dependent
PDEs which allows for memory-efficient adjoint-based backpropagation. Moreover,
because the proposed kernel scores are well-defined for paths with values in infinite
dimensional spaces of functions, our framework can be easily extended to generate
spatiotemporal data. Our procedure permits conditioning on a rich variety of
market conditions and significantly outperforms alternative ways of training Neural
SDEs on a variety of tasks including the simulation of rough volatility models, the
conditional probabilistic forecasts of real-world forex pairs where the conditioning
variable is an observed past trajectory, and the mesh-free generation of limit order
book dynamics.

1 Introduction

Stochastic differential equations (SDEs) are a dominant modelling framework in many areas of
science and engineering. They naturally extend ordinary differential equations (ODEs) for modelling
dynamical systems that evolve under the influence of randomness.

A neural stochastic differential equation (Neural SDE) is a continuous-time generative model
for irregular time series where the drift and diffusion functions of an SDE are parametrised by
neural networks [TR19, JB19, HvdHRM20, LWCD20, KFL+21, MSKF21]. These models have
become increasingly popular among financial practitioners for pricing and hedging of derivatives and
overall risk management [ASS20, GSVŠ+20, CJB23, HFH+23]. Training a Neural SDE amounts to
minimising over model parameters an appropriate notion of distance between the law on pathspace
generated by the SDE and the empirical law supported on observed data sample paths.

∗Corresponding author: zacharia.issa@kcl.ac.uk
1Department of Mathematics, King’s College London, London, United Kingdom.
2Department of Mathematics, Oxford University, Oxford, United Kingdom.
3The Oxford Man Institute, Oxford, United Kingdom.
4The Alan Turing Institute, London, United Kingdom.
5Department of Mathematics, Imperial College London, London, United Kingdom.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

mailto:zacharia.issa@kcl.ac.uk

Various choices of training mechanisms have been proposed in the literature; state-of-the-art perfor-
mance has been achieved by training Neural SDEs adversarially as Wasserstein-GANs [KFL+21].
However, as typical for GAN architectures, training is notoriously unstable, often suffers from mode
collapse, and requires specialised techniques such as weight clipping and gradient penalty.

In this paper we introduce a novel class of scoring rules based on signature kernels, a class of
characteristic kernels on paths [LSD+21, CFC+21, SLL+21, LSC+21, CLS23, HLL+23], and use
them as objective for training Neural SDEs non-adversarially. We provide existence and unique-
ness guarantees for the minimiser by showing strict properness of the signature kernel scores and
consistency of the corresponding estimators.

With this training formulation, the generator-discriminator pair becomes entirely mesh-free and can
be evaluated by solving a system of linear path-dependent PDEs which allows for memory-efficient
adjoint-based backpropagation. In addition, because the proposed kernel scores are well-defined for
classes of paths with values in infinite dimensional spaces of functions, our framework can be easily
extended to the generation of spatiotemporal signals.

We demonstrate how our procedure is more stable and outperforms alternative ways of training Neural
SDEs on a variety of tasks from quantitative finance including the simulation of rough volatility
models, the conditional probabilistic forecasts of real-world forex pairs where the conditioning
variable is an observed past trajectory, and the mesh-free generation of limit order book dynamics.

2 Related work

Prior to our work, two main approaches have been proposed to fit a Neural SDE as a time series
generative model, differing in their choice of divergence to compare laws on pathspace.

The SDE-GAN model introduced in [KFL+21] uses the 1-Wasserstein distance to train a Neural SDE
as a Wasserstein-GAN [ACB17]. Namely, the "witness functions" of the 1-Wasserstein distance are
parameterised by neural controlled differential equations [KMFL20, MSK+20] and the generator-
discriminator pair is trained adversarially. SDE-GANs are relatively unstable to train mainly because
they require a Lipschitz discriminator. Several techniques such as weight clipping and gradient penalty
have been introduced to enforce the Lipschitz constraint and partially mitigate the instability issue
[Kid22]. SDE-GANs are also sensitive to other hyperparameters, such as the choice of optimisers,
their learning rate and momentum, where small changes can yield erratic behavior.

The latent SDE model [LWCD20] trains a Neural SDE with respect to the KL divergence using
the principles of variational inference for SDEs [Opp19]. This approach consists in maximising an
objective that includes the KL divergence between the laws produced by the original SDE (the prior)
and an auxiliary SDE (the approximate posterior). The two SDEs have the same diffusion term but
different initial conditions and drifts, and a standard formula for their KL divergence exists. After
training, the learned prior can be used to generate new sample paths. Latent SDEs can be interpreted
as variational autoencoders, and generally yield worse performance than SDE-GANs, which are more
challenging to train, but offer greater model capacity.

Besides Neural SDEs, other time series generative models have been proposed, including discrete-time
models such as [YJVdS19] and [NSW+20]2 which are trained adversarially, continuous-time flow
processes [DCB+20] and score-based diffusion models for audio generation [CZZ+20, KPH+20].

The class of score-based generative models (SGMs) seeks to map a data distribution into a known
prior distribution via an SDE [SSDK+20, VKK21]. During training, the (Stein) score [LLJ16] of the
SDE marginals is estimated and then used to construct a reverse-time SDE. By sampling data from
the prior and solving the reverse-time SDE, one can generate samples that follow the original data
distribution. We note that our techniques for generative modelling via scoring rules, although similar
in terminology, are fundamentally different, as we train Neural SDEs with respect to a loss function
that directly consumes the law on pathspace generated by the SDE.

Scoring rules [GR07] have been used to define training objectives for generative networks [BMN16,
GSvdB+20] which have been shown to be easier to optimize compared to GANs [PADD21, PD22].
Closer to our work is [PADD21] which constructs statistical scores for discrete (spatio-)temporal

2In [NSW+20] the discriminator is formulated in continuous-time based on a different parametrisation to
approximate the 1-Wasserstein distance, also later used in [NSSV+21].

2

signals. However, their strict properness is ensured under Markov-type assumptions and their
continuous-(space-)time limit has not been studied. A key aspect of our work is to develop consistent
and effective scoring rules for generative modelling in the continuous-time setting. While [BO21]
has also introduced scoring rules for continuous-time processes, our emphasis lies in constructing
so-called kernel scores specifically for training Neural SDE and Neural SPDE generative models.

The Neural SPDE model introduced in [SLG22] parametrises the solution operator of stochastic
partial differential equations (SPDEs), which extend SDEs for modelling signals that vary both in
space and in time. So far, Neural SPDEs have been trained in a supervised fashion by minimizing the
pathwise L2 norm between pairs of spatiotemporal signals. While this approach has proven effective
in learning fast surrogate SPDE solvers, it is not well-suited for generative modeling where the goal is
to approximate probability measures supported on spatiotemporal functions. In this work, we propose
a new training objective for Neural SPDEs to improve their generative modeling capabilities.

3 Training Neural SDEs with signature kernel scores

3.1 Background

We take (Ω,F ,P) as the underlying probability space. Let T > 0 and dx ∈ N. Denote by X be the
space of continuous paths of bounded variation from [0, T] to Rdx with one monotone coordinate3.
For any random variable X with values on X , we denote by PX := P ◦X−1 its law.

The signature map S : X → T is defined for any path x ∈ X as the infinite collection S(x) =(
1, S1(x), S2(x), ...

)
of iterated Riemann-Stieltjes integrals

Sk(x) :=

∫
0<t1<...<tk<T

dxt1 ⊗ dxt2 ⊗ ...⊗ dxtk , k ∈ N,

where ⊗ is the standard tensor product of vector spaces and T := R⊕ Rdx ⊕ (Rdx)⊗2 ⊕ ...

Any inner product ⟨·, ·⟩1 on Rdx yields a canonical Hilbert-Schmidt inner product ⟨·, ·⟩k on (Rdx)⊗k

for any k ∈ N, which in turn yields, by linearity, a family of inner products ⟨·, ·⟩T on T . We refer the
reader to [CLX21] for an in-depth analysis of different choices. By a slight abuse of notation, we use
the same symbol to denote the Hilbert space obtained by completing T with respect to ⟨·, ·⟩T .

3.2 Neural SDEs

Let W : [0, T] → Rdw be a dw-dimensional Brownian motion and a ∼ N (0, Ida
) be sampled from

da-dimensional standard normal. The values dw, da ∈ N are hyperparameters describing the size of
the noise. A Neural SDE is a model of the form

Y0 = ξθ(a), dYt = µθ(t, Yt)dt+ σθ(t, Yt) ◦ dWt, Xθ
t = AθYt + bθ (1)

for t ∈ [0, T], with Y : [0, T] → Rdy the strong solution, if it exists, to the Stratonovich SDE, where

ξθ : Rda → Rdy , µθ : [0, T]× Rdy → Rdy , σθ : [0, T]× Rdy → Rdy×dw

are suitably regular neural networks, and Aθ ∈ Rdx×dy , bθ ∈ Rdx . The dimension dy ∈ N is a
hyperparameter describing the size of the hidden state. If µθ, σθ are Lipschitz and Ea[ξθ(a)

2] < ∞
then the solution Y exists and is unique.

Given a target X -valued random variable X true with law PX true , the goal is to train a Neural SDE so
that the generated law PXθ is as close as possible to PX true , for some appropriate notion of closeness.

3.3 Signature kernels scores

Scoring rules are a well-established class of functionals to represent the penalty assigned to a
distribution given an observed outcome, thereby providing a way to assess the quality of a probabilistic
forecast. Scoring rules have been applied to a wide range of areas including econometrics [MS13],

3This is a technical assumption needed to ensure characteristicness of the signature kernel. See Proposition
(3.1). The monotone coordinate is usually taken to be time.

3

weather forecasting [GR05], and generative modelling [PADD21]. How to effectively select a
scoring rule is a challenging and somewhat task-dependent problem, particularly when the data is
sequential. Scoring rules based on kernels offer the advantages of working on unstructured and
infinite dimensional data without some of the concomitant drawbacks, such as the absence of densities.
Next, we introduce a class of scoring rules on paths based on signature kernels to measure closeness
between path-valued random variables. These will be used in the next section to train Neural SDEs.

The signature kernel ksig : X ×X → R is a symmetric positive semidefinite function defined for any
pair of paths x, y ∈ X as ksig(x, y) := ⟨S(x), S(y)⟩T . In [SCF+21] the authors provided a kernel
trick proving that the signature kernel satisfies

ksig(x, y) = f(T, T) where f(s, t) = 1 +

∫ s

0

∫ t

0

f(u, v)⟨dxu, dyv⟩1, (2)

which reduces to a linear hyperbolic PDE in the when the paths x, y are almost-everywhere dif-
ferentiable. Several finite difference schemes are available for numerically evaluating solutions to
Equation (2), see [SCF+21, Section 3.1] for details.

We denote by H the unique reproducing kernel Hilbert space (RKHS) of ksig. From now on we endow
X with a topology with the respect to which the signature is continuous; see [CT22] for various
choices of such topologies. Denote by P(X) the set of Borel probability measures on X .

Proposition 3.1. The signature kernel is characteristic for every compact set K ⊂ X , i.e. the map
P 7→

∫
ksig (x, ·)P (dx) from P(K) to H is injective.

Remark 3.2. The proof of this statement is classical and is a simple consequence of the universal
approximation property of the signature [KBPA+19, Proposition A.6] and the equivalence between
universality of the feature map and characteristicness of the corresponding kernel [SGS18, Theorem
6]. In particular, Proposition (3.1) implies that the signature kernel is cc-universal, i.e. for every
compact subset K ⊂ X , the linear span of the set of path functionals {ksig(x, ·) : x ∈ K} is dense in
C(K) in the the topology of uniform convergence.

We define the signature kernel score ϕsig : P(X)×X → R for any P ∈ P(X) and y ∈ X as

ϕsig(P, y) := Ex,x′∼P[ksig(x, x
′)]− 2Ex∼P[ksig(x, y)].

A highly desirable property to require from a score is its strict properness, consisting in assigning the
lowest expected score when the proposed prediction is realised by the true probability distribution.

Proposition 3.3. For any compact K ⊂ X , ϕsig is a strictly proper kernel score relative to P(K), i.e.
Ey∼Q[ϕsig(Q, y)] ≤ Ey∼Q[ϕsig(P, y)] for all P,Q ∈ P(K), with equality if and only if P = Q.

The proof of this statement can be found in the appendix and follows from [GR07, Theorem 4] and
Proposition 3.1. We note that the signature kernel score induces a divergence on P(X) known as the
signature kernel maximum mean discrepancy (MMD), defined for any P,Q ∈ P(X) as

Dksig(P,Q)2 = Ey∼Q[ϕsig(P, y)] + Ey,y′∼Q[ksig(y, y
′)]. (3)

The following result provides a consistent and unbiased estimator for evaluating the signature kernel
score from observed sample paths. The proof can be found in the appendix and follows from standard
results for the associated MMD [GBR+12, Lemma 6].

Proposition 3.4. Let P ∈ P(X) and y ∈ X . Given m sample paths {xi}mi=1 ∼ P, the following is a
consistent and unbiased estimator of ϕsig

ϕ̂sig(P, y) =
1

m(m− 1)

∑
j ̸=i

ksig(x
i, xj)− 2

m

∑
i

ksig(x
i, y). (4)

3.4 Non-adversarial training of Neural SDEs via signature kernel scores

We now have all the elements to outline the procedure we propose to train the Neural SDE model (1)
non-adversarially using signature kernel scores introduced in the previous section.

4

Unconditional setting We are given a target X -valued random variable X true with law PX true .
Recall the notation PXθ for the law generated by the SDE (1). The training objective is given by

min
θ

L(θ) where L(θ) = Ey∼PXtrue [ϕsig(PXθ , y)]. (5)

Note that training with respect to Dksig is an equivalent optimisation as the second expectation in
equation (3) is constant with respect to θ. This means that in the unconditional setting our model
corresponds to a continuous time generative network of [LSZ15].

Combining equations (1), (2), (4) and (5) the generator-discriminator pair can be evaluated by solving
a system of linear PDEs depending on sample paths from the Neural SDE; in summary:

Generator: Xθ ∼ SDESolve(θ) Discriminator: L(θ) ≈ PDESolve
(
Xθ, X true) . (6)

Remark 3.5. The generation of sample paths from Xθ from the SDE solver and the evaluation
of the objective L via the PDE solver can in principle be performed concurrently, although, in our
implementation we evaluate the full model (6) in a sequential manner.

Conditional setting It is straightforward to extend our framework to the conditional setting where
Q is some distribution we wish to condition on, and PX true(·|x) is a target conditional distribution
with x ∼ Q. By feeding the observed sample x as an additional variable to all neural networks of the
Neural SDE (1), the generated strong solution provides a parametric conditional law PXθ (·|x), and
the model can be trained according to the modified objective

min
θ

L′(θ) where L′(θ) = min
θ

Ex∼QEy∼PXtrue (·|x) [ϕsig(PXθ (·|x), y)] . (7)

Because ϕsig is strictly proper, the solution to (7) is PXθ (·|x) = PX true(·|x) Q-almost everywhere.
With data sampled as {(xi, yi)}ni=1 where xi ∼ Q and yi ∼ PX true(·|xi) we can replace eq. (7) by

min
θ

1

n

n∑
i=1

ϕsig(PXθ (·|xi), yi), (8)

We note that in our experiments we focus on the specific case where the conditioning variable x is a
path in X corresponding to the observed past trajectory of some financial assets (see Figure 2).

3.5 Additional details

Interpolation Samples from X true are observed on a discrete, possibly irregular, time grid while
samples from Xθ are generated from (1) by means of an SDE solver of choice (see [Kid22, Section
5.1] for details). Interpolating in time between observations produces a discrete measure on path
space, the ones desired to be modelled. The interpolation choice is usually unimportant and simple
linear interpolation is often sufficient. See [MKYL22] for other choices of interpolation.

Backpropagation Training a Neural SDE usually means backpropagating through the SDE solver.
Three main ways of differentiating through an SDE have been studied in the literature: 1) Discretise-
then-optimise backpropagates through the internal operations of the SDE solver. This option is
memory inefficient, but will produce accurate and fast gradient estimates. 2) Optimise-then-discretise
derives a backwards-in-time SDE, which is then solved numerically. This option is memory efficient,
but gradient estimates are prone to numerical errors and generally slow to compute. We note that
unlike the case of Neural ODEs, giving a precise meaning to the backward SDE falls outside the
usual framework of diffusions. However, rough path theory [Lyo98, FLMS23] provides an elegant
remedy by allowing solutions to forward and backward SDEs to be defined pathwise, similarly to
the case of ODEs; see [Kid22, Appendix C.3.3] for a precise statement. 3) Reversible solvers are
memory efficient and accurate, but generally slow. Here we do not advocate for any particular choice
as all of the above backpropagation options are compatible with our pipeline.

Similarly, because the signature kernel score can be evaluated by solving a system of PDEs, backprop-
agation can be carried out by differentiating through the PDE solver analogously to the discretise-then-
optimise option for SDEs. We note that [LSC+21] showed that directional derivatives of signature
kernels solve a system of adjoint-PDEs, which can be leveraged to backpropagate through the
discriminator using an optimise-then-discretise approach. We used this approach in our experiments.

5

Itô vs Stratonovich Stratonovich SDEs are slightly more efficient to backpropagate through using
an optimise-then-discretise approach. In the case of Itô SDEs, the backward equation is derived by
applying the Itô-Stratonovich correction term to convert it into a Stratonovich SDE, deriving the
corresponding backward equation through rough path theoretical arguments, and then converting it
back to an Itô SDE by applying a second Stratonovich-Itô correction.

Paths with values in infinite dimensional spaces While we have defined the signature kernel for
paths of bounded variation with values in Rdx , the kernel is still well-defined when Rdx is replaced
with a generic Hilbert space V . Remarkably, even when V is infinite dimensional, the evaluation
of the kernel can be carried out, as Equation (2) only depends on pairwise inner products between
the values of the input paths. In particular, the kernel can be evaluated on paths taking their values
in functional spaces, which has far-reaching consequences in practice. For example, this gives the
flexibility to map the values of finite dimensional input paths into a possibly infinite dimensional
feature space, such as the reproducing kernel Hilbert space of a kernel κ on Rdx , that is, V = Hκ.
This also provides a natural kernel for spatiotemporal signals, such as paths taking their values in
V = L2(D), the space of square-integrable functions on a compact domain D ⊂ Rd. For practical
applications, the inner product in Equation (2) can be approximated using discrete observations of
the input signals on a mesh of the spatial domain D. The inner product in L2(D) can be replaced
with more general kernels as those introduced in [WD22]. While it has become common practice to
use signature kernels on the RKHS-lifts of Euclidean-valued paths, the ability to define and compute
signature kernels on spatiotemporal signals has been, to our knowledge, overlooked in the literature.

4 Experiments

We perform experiments across five datasets. First is a univariate synthetic example, the benchmark
Black-Scholes model, which permits to readily verify the quality of simulated outputs. The second
synthetic example is a state of-the-art univariate stochastic volatility model, called rough Bergomi
model. The rough Bergomi model realistically captures many relevant properties of options data,
but due to its rough (and hence non-Markovian) nature it is well-known to be difficult to simulate.
The third is a multidimensional example with foreign exchange (forex, or FX) currency pairs, which
was chosen not only because of the relevance and capitalisation of FX markets but also due to its
well-known intricate complexity. Fourth is a univariate example, where we demonstrate the method’s
ability to condition on relevant variables, given by paths. Finally we present a spatiotemporal
generative example, where we seek to simulate the dynamics of the NASDAQ limit order book.

For the unconditional examples, we compare against the SDE-GAN from [KFL+21] and against
the same pipeline as the one we proposed, but using an approximation ϕN

sig of the signature kernel
score ϕsig obtained by truncating signatures at some level N ∈ N. We evaluate each training instance
with a variety of metrics. The first is the Kolmogorov-Smirnov (KS) test, which is a nonparameteric
two-sample test between two empirical probability distributions on R, see [Smi39] for more details.
We apply the KS test on the marginals between a batch of generated paths against an unseen batch
from the real data distribution. We repeated this test 5000 times at the 5% significance level and
reported the average KS score along with the average Type I error. Each training instance was kept to
a maximum of 2 hours for the synthetic examples, and 4 hours for the real data example. Finally, as
mentioned at the end of Section 3.5, when training with respect to ϕsig we mapped path state values
into (H, κ) where κ denotes the RBF kernel on Rd. Additional details on hyperparameter selection,
learning rates, optimisers and further evaluation metrics can be found in the Appendix.

4.1 Geometric Brownian motion

As a toy example, we seek to learn a geometric Brownian motion (gBm) of the form

dyt = µytdt+ σytdWt, y0 = 1, (9)

We chose µ = 0, σ = 0.2 and generated time-augmented paths of length 64 over the grid ∆ =
{0, 1, . . . , 63} with dt = 0.01. Thus our dataset is given by time-augmented paths y : [0, 63] → R2

embedded in path space via linear interpolation. For all three discriminators, the training and test set
were both comprised of 32768 paths and the batch size was chosen to be N = 128. We trained the
SDE-GAN for 5000 steps, ϕsig for 4000 and ϕN

sig for 10000 steps. Table 1 gives the KS scores along

6

each of the specified marginals, along with the percentage Type I error. Here the generator trained
with ϕsig performs the best, achieving a Type I error at the assumed confidence level.

Model t = 6 t = 19 t = 32 t = 44 t = 57

SDE-GAN 0.1641, 41.1% 0.1094, 5.2% 0.1421, 24.2% 0.1104, 5.9% 0.1427, 26.2%

ϕN
sig (N = 3) 0.1298, 15.4% 0.1277, 16.1% 0.1536, 37.4% 0.2101, 78.8% 0.2416, 92.3%

ϕsig (ours) 0.1071, 5.0% 0.1084, 6.0% 0.1086, 5.9% 0.1089, 5.8% 0.1075, 5.5%

Table 1: KS test average scores and Type I errors on marginals on gBm.

4.2 Rough Bergomi volatility model

It is well-known that the benchmark model (9) oversimplifies market reality. More complex models,
(rough) stochastic volatility (SV) were introduced in the past decades, that are able to capture relevant
properties of market data are used by financial practitioners to price and hedge derivatives. Prominent
examples of stochastic volatility mdoels include the Heston and SABR models [HKLW02, HLW15,
Hes93]. State-of-the-art models in this context have been introduced in [GJR18]. They display a
stochastic volatility with rough sample paths. Most notable among these for pricing and hedging is
the rough Bergomi (rBergomi) model [BFG16] which is of the form

dyt = −1

2
Vtdt+

√
VtdWt where dξut = ξut η

√
2α+ 1(u− t)αdBt, (10)

and where ξut is the instantaneous forward variance for time u at time t, with ξtt = Vt, and α =
H − 1/2 where H is the Hurst exponent. The parameter set is given by (η, ρ,H) with initial
conditions X0 = x and ξut = ξ0. It has been a well-known headache for modellers that—despite
their many modelling advantages—rough volatility models (such as (10)) are slow to to simulate
with traditional methods. We demonstrate how our method can be used to capture the dynamics of
the rough Bergomi model (10), and in passing we also note that our method provides a significant
simulation speedup for (10) compared to previously available simulation methods.

Model t = 6 t = 19 t = 32 t = 44 t = 57

SDE-GAN 0.1929, 68.3% 0.2244, 86.2% 0.2273, 87.0% 0.2205, 83.4% 0.1949, 68.7%

ϕN
sig (N = 5) 0.1126, 8.1% 0.1172, 10.1% 0.1146, 8.2% 0.1153, 8.5% 0.1134, 7.0%

ϕsig (ours) 0.1086, 5.4% 0.1129, 5.9% 0.1118, 5.2% 0.1127, 6.2% 0.1159, 6.9%

Table 2: KS test average scores and Type I errors on marginals on rBergomi model

To do so, we simulate paths of length 64 over the time window to [0, 2], and specify dt = 1/32. Thus
paths are of length 64. The parameters are (ξ0, η, ρ,H) = (0.04, 1.5,−0.7, 0.2) and set d = 1. Paths
are again time-augmented. The hyperparameters for training are the same as in the previous section.
The results on the marginal distributions are summarized in Table 2. We see that that training with
respect to ϕsig vastly outperforms the other two discriminators.

4.3 Foreign exchange currency pairs

We consider an example where samples from the data measure PX true are time-augmented paths
y : [0, T] → R3 corresponding to hourly market close prices of the currency pairs EUR/USD and
USD/JPY4. To deal with irregular sampling, we linearly interpolate each sample y over a fixed grid
∆ = {t0, t1, . . . , t63}. Training hyperparameters were kept the same as per the rBergomi example:
paths are comprised of 64 observations, the batch size was taken to be N = 128, and the number
of training epochs was taken to be 10000 for the SDE-GAN, 4000 for ϕsig and 15000 for ϕN

sig. KS
scores for each of the marginals are given in Table 3 and 4. We note that only the generator trained
with ϕsig is able to achieve strong performance on nearly all marginals.

4Data is obtained from https://www.dukascopy.com/swiss/english/home/

7

https://www.dukascopy.com/swiss/english/home/

Model t = 6 t = 19 t = 32 t = 44 t = 57

SDE-GAN 0.1889, 62.9% 0.2760, 98.2% 0.3324, 99.9% 0.3781, 100.0% 0.4209, 100.0%

ϕN
sig (N = 5) 0.1098, 4.2% 0.1279, 12.0% 0.1399, 18.7% 0.1507, 28.1% 0.1608, 37.5%

ϕsig (ours) 0.1270, 12.8% 0.1085, 5.2% 0.1060, 4.3% 0.1065, 5.1% 0.1049, 4.0%

Table 3: KS test average scores on marginals (EUR/USD)

Model t = 6 t = 19 t = 32 t = 44 t = 57

SDE-GAN 0.1404, 20.5% 0.1665, 44.2% 0.1771, 56.4% 0.1855, 63.8% 0.1948, 70.3%

ϕN
sig (N = 5) 0.1666, 43.8% 0.1877, 72.4% 0.2008, 84.7% 0.2154, 93.2% 0.2311, 98.3%

ϕsig (ours) 0.1189, 9.2% 0.1121, 5.8% 0.1069, 4.9% 0.1075, 3.8% 0.1051, 3.3%

Table 4: KS test average scores on marginals (USD/JPY).

We also present a histogram of sample correlations between generated EUR/USD and USD/JPY
paths for each of the three discriminators alongside those from the data distribution. From Figure 1
it appears that only the Neural SDE trained with ϕsig correctly identifies the negative correlative
structure between the two pairs. This is likely due to the fact that these dependencies are encoded in
higher order terms of the signature that the truncated method does not capture.

Figure 1: Histogram of correlation coefficients between EURUSD and USDJPY pairs, 1024 samples.

We now consider a conditional generation problem, where the conditioning variables are time-
augmented paths Q ∼ x : [t0−dt, t0] → R2 representing the trajectory of prior dt = 32 observations
of EUR/USD 15-minute close prices, and the target distribution is X true : [t0, t0 + dt′] → R2

representing the following dt′ = 16 observations. Given batched samples {xi, yi}Ni=1, where xi ∼ Q
and yi ∼ PX true(·|xi), we train our generator according to equation (7). We encoded the conditioning
paths via the truncated (log)signatures of order 5, and fed these values into each of the neural networks
of the Neural SDE. In Figure 2, it is evident that the conditional generator exhibits the capability to
produce conditional distributions that frequently encompass the observed path. Furthermore, it is
noteworthy that these generated distributions capture certain distinctive characteristics of financial
markets, such as martingality, mean reversion, or leverage effects when applicable.

4.4 Simulation of limit order books

Here, we consider the task of simulating the dynamics of a limit order book (LOB), that is, an
electronic record of all the outstanding orders for a financial asset, representing its supply and demand
over time. Simulating LOB dynamics is an important challenge in quantitative finance and several syn-
thetic market generators have been proposed [LWL+20],[VBP+20],[SCC21],[CPC+21],[CMVB22].
An order o = (to, xo, vo) submitted at time to with price xo and size vo > 0 (resp., vo < 0) is a
commitment to sell (resp., buy) up to |vo| units of the traded asset at a price no less (resp., no greater)

8

Figure 2: Given a conditioning path x ∼ Q, the generator provides (in blue) the conditional
distribution PXθ (·|x). The dotted line gives the true path y ∼ PX true(·|x).

than xo. Various events are tracked (e.g. new orders, executions, and cancellations) and the LOB
B(t) is the set of all active orders in a market at time t. While prior work typically fit a generator that
produces the next event, and run it iteratively to generate a sequence of events, we propose to model
directly the spatiotemporal process Yt(x) =

∑
o∈B(t):xo=x vo. To generate LOB trajectories, we use

the Neural SPDE model and train it by minimising expected spatiotemporal kernel scores constructed
by composing the signature kernel ksig with 3 different SE-T type kernels introduced in [WD22],
namely the ID, SQR and CEXP kernels. We fit our model on real LOB data from the NASDAQ
public exchange [NMK+18] which consists of about 4M timestamped events with L = 10 price
levels. We split this LOB trace into sub-traces of size T = 30 to construct our dataset. On Figure 3
report the average KS scores for each of the L× T marginals, using the 3 different kernel scores.

Figure 3: KS test average scores for each spatiotemporal marginal, 100 runs, NASDAQ data.

5 Conclusion and future work

This work showcases the utilization of Neural SDEs as a generative model, highlighting their
advantages over competitor models in terms of simplicity and stability, particularly via non-adversarial
training. Additionally, we show how Neural SDEs exhibit the ability to be conditioned on diverse
and intricate data structures, surpassing the capabilities of existing competitor works. We have
achieved this by introducing the signature kernel score on paths and by showing their applicability
to our setting (by proving strict properness). Performance of our methods are given computational
time and memory is competitive with state-of-the-art methods. Moreover, we have shown that this
approach extends to the generation of spatiotemporal signals, which has multiple applications in
finance including limit order data generation. Further extensions of this work may include extending
its generality to include jump processes in the driving noise of the approximator process (Neural
SDEs) used. On the theoretical level extensions may include the validity of results to paths with
lower regularity than currently considered. Although sample paths from a Stratonovich SDE are not
of bounded variation almost surely, sample paths generated by an SDE solver, once interpolated, are
piecewise linear, and hence of bounded variation. A similar point can be made about compactness
of the support of the measures. It is possible to ensure characteristicness of the signature kernel
on non-compact sets of less regular paths using limiting arguments and changing the underlying

9

topology on pathspace. Further extensions for practical applications can (and should) include the
inclusion of more varied evaluation metrics and processes. Notably, in a later step, the generated data
should be tested by assessing whether existing risk management frameworks and investment engines
can be improved when data used for backtesting is augmented with synthetic samples provided by
our methods. Furthermore, the spatiotemporal results can be extended to more complex structures,
including being used for the synthetic generation of implied volatility surface dynamics, which has
been a notoriously difficult modelling problem in past decades.

Acknowledgements

ML was supported by the EPSRC grant EP/S026347/1. ZI was supported by EPSRC grant
EP/R513064/1.

References

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-
sarial networks. In International conference on machine learning, pages 214–223.
PMLR, 2017.

[ASS20] Imanol Perez Arribas, Cristopher Salvi, and Lukasz Szpruch. Sig-sdes model for
quantitative finance. In ACM International Conference on AI in Finance, 2020.

[BCR84] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic analysis on
semigroups: theory of positive definite and related functions, volume 100. Springer,
1984.

[BFG16] Christian Bayer, Peter Friz, and Jim Gatheral. Pricing under rough volatility. Quanti-
tative Finance, 16(6):887–904, 2016.

[BMN16] Diane Bouchacourt, Pawan K Mudigonda, and Sebastian Nowozin. Disco nets:
Dissimilarity coefficients networks. Advances in Neural Information Processing
Systems, 29, 2016.

[BO21] Patric Bonnier and Harald Oberhauser. Proper scoring rules, gradients, divergences,
and entropies for paths and time series. arXiv preprint arXiv:2111.06314, 2021.

[CFC+21] Thomas Cochrane, Peter Foster, Varun Chhabra, Maud Lemercier, Cristopher Salvi,
and Terry Lyons. Sk-tree: a systematic malware detection algorithm on streaming
trees via the signature kernel. arXiv preprint arXiv:2102.07904, 2021.

[CJB23] Vedant Choudhary, Sebastian Jaimungal, and Maxime Bergeron. Funvol: A multi-
asset implied volatility market simulator using functional principal components and
neural sdes. arXiv preprint arXiv:2303.00859, 2023.

[CLS23] Nicola Muca Cirone, Maud Lemercier, and Cristopher Salvi. Neural signature kernels
as infinite-width-depth-limits of controlled resnets. arXiv preprint arXiv:2303.17671,
2023.

[CLX21] Thomas Cass, Terry Lyons, and Xingcheng Xu. General signature kernels, 2021.

[CM21] Rama Cont and Marvin S Müller. A stochastic partial differential equation model for
limit order book dynamics. SIAM Journal on Financial Mathematics, 12(2):744–787,
2021.

[CMVB22] Andrea Coletta, Aymeric Moulin, Svitlana Vyetrenko, and Tucker Balch. Learning to
simulate realistic limit order book markets from data as a world agent. In Proceedings
of the Third ACM International Conference on AI in Finance, pages 428–436, 2022.

[CPC+21] Andrea Coletta, Matteo Prata, Michele Conti, Emanuele Mercanti, Novella Bartolini,
Aymeric Moulin, Svitlana Vyetrenko, and Tucker Balch. Towards realistic market
simulations: a generative adversarial networks approach. In Proceedings of the
Second ACM International Conference on AI in Finance, pages 1–9, 2021.

[CT22] Thomas Cass and William F Turner. Topologies on unparameterised path space. arXiv
preprint arXiv:2206.11153, 2022.

10

[CZZ+20] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William
Chan. Wavegrad: Estimating gradients for waveform generation. In International
Conference on Learning Representations, 2020.

[DCB+20] Ruizhi Deng, Bo Chang, Marcus A Brubaker, Greg Mori, and Andreas Lehrmann.
Modeling continuous stochastic processes with dynamic normalizing flows. Advances
in Neural Information Processing Systems, 33:7805–7815, 2020.

[FLMS23] Adeline Fermanian, Terry Lyons, James Morrill, and Cristopher Salvi. New directions
in the applications of rough path theory. IEEE BITS the Information Theory Magazine,
2023.

[GBR+12] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. A kernel two-sample test. The Journal of Machine Learning
Research, 13(1):723–773, 2012.

[GJR18] Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough. Quanti-
tative finance, 18(6):933–949, 2018.

[GPW+13] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald, Daniel J Fenn,
and Sam D Howison. Limit order books. Quantitative Finance, 13(11):1709–1742,
2013.

[GR05] Tilmann Gneiting and Adrian E Raftery. Weather forecasting with ensemble methods.
Science, 310(5746):248–249, 2005.

[GR07] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and
estimation. Journal of the American statistical Association, 102(477):359–378, 2007.

[GSvdB+20] Alexey Gritsenko, Tim Salimans, Rianne van den Berg, Jasper Snoek, and Nal
Kalchbrenner. A spectral energy distance for parallel speech synthesis. Advances in
Neural Information Processing Systems, 33:13062–13072, 2020.

[GSVŠ+20] Patryk Gierjatowicz, Marc Sabate-Vidales, David Šiška, Lukasz Szpruch, and Žan
Žurič. Robust pricing and hedging via neural sdes. arXiv preprint arXiv:2007.04154,
2020.

[Hes93] Steven L Heston. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. The review of financial studies, 6(2):327–
343, 1993.

[HFH+23] Melker Höglund, Emilio Ferrucci, Camilo Hernández, Aitor Muguruza Gonzalez,
Cristopher Salvi, Leandro Sánchez-Betancourt, and Yufei Zhang. Solving and learning
non-markovian stochastic control problems in continuous-time with neural RDEs,
2023.

[HKLW02] Patrick S Hagan, Deep Kumar, Andrew S Lesniewski, and Diana E Woodward.
Managing smile risk. The Best of Wilmott, 1:249–296, 2002.

[HKN20] Ben Hambly, Jasdeep Kalsi, and James Newbury. Limit order books, diffusion ap-
proximations and reflected spdes: from microscopic to macroscopic models. Applied
Mathematical Finance, 27(1-2):132–170, 2020.

[HLL+23] Blanka Horvath, Maud Lemercier, Chong Liu, Terry Lyons, and Cristopher Salvi.
Optimal stopping via distribution regression: a higher rank signature approach. arXiv
preprint arXiv:2304.01479, 2023.

[HLW15] Patrick Hagan, Andrew Lesniewski, and Diana Woodward. Probability distribution in
the sabr model of stochastic volatility. In Large deviations and asymptotic methods in
finance, pages 1–35. Springer, 2015.

[HvdHRM20] Liam Hodgkinson, Chris van der Heide, Fred Roosta, and Michael W Mahoney.
Stochastic normalizing flows. arXiv preprint arXiv:2002.09547, 2020.

[JB19] Junteng Jia and Austin R Benson. Neural jump stochastic differential equations.
Advances in Neural Information Processing Systems, 32, 2019.

[KBPA+19] Patrick Kidger, Patric Bonnier, Imanol Perez Arribas, Cristopher Salvi, and Terry
Lyons. Deep signature transforms. Advances in Neural Information Processing
Systems, 32, 2019.

11

[KFL+21] Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry Lyons.
Neural sdes as infinite-dimensional gans. arXiv preprint arXiv:2102.03657, 2021.

[Kid22] Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435,
2022.

[KMFL20] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled
differential equations for irregular time series. arXiv preprint arXiv:2005.08926,
2020.

[KPH+20] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave:
A versatile diffusion model for audio synthesis. In International Conference on
Learning Representations, 2020.

[LLJ16] Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for
goodness-of-fit tests. In International conference on machine learning, pages 276–
284. PMLR, 2016.

[LSC+21] Maud Lemercier, Cristopher Salvi, Thomas Cass, Edwin V Bonilla, Theodoros
Damoulas, and Terry J Lyons. Siggpde: Scaling sparse gaussian processes on se-
quential data. In International Conference on Machine Learning, pages 6233–6242.
PMLR, 2021.

[LSD+21] Maud Lemercier, Cristopher Salvi, Theodoros Damoulas, Edwin Bonilla, and Terry
Lyons. Distribution regression for sequential data. In International Conference on
Artificial Intelligence and Statistics, pages 3754–3762. PMLR, 2021.

[LSZ15] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks.
In International conference on machine learning, pages 1718–1727. PMLR, 2015.

[LWCD20] Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David K Duvenaud.
Scalable gradients and variational inference for stochastic differential equations. In
Symposium on Advances in Approximate Bayesian Inference, pages 1–28. PMLR,
2020.

[LWL+20] Junyi Li, Xintong Wang, Yaoyang Lin, Arunesh Sinha, and Michael Wellman. Gener-
ating realistic stock market order streams. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(01):727–734, 2020.

[Lyo98] Terry J Lyons. Differential equations driven by rough signals. Revista Matemática
Iberoamericana, 14(2):215–310, 1998.

[MKYL22] James Morrill, Patrick Kidger, Lingyi Yang, and Terry Lyons. On the choice of
interpolation scheme for neural cdes. Transactions on Machine Learning Research,
2022(9), 2022.

[MS13] Edgar C Merkle and Mark Steyvers. Choosing a strictly proper scoring rule. Decision
Analysis, 10(4):292–304, 2013.

[MSK+20] James Morrill, Cristopher Salvi, Patrick Kidger, James Foster, and Terry Lyons. Neu-
ral rough differential equations for long time series. arXiv preprint arXiv:2009.08295,
2020.

[MSKF21] James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough
differential equations for long time series. In International Conference on Machine
Learning, pages 7829–7838. PMLR, 2021.

[NMK+18] Adamantios Ntakaris, Martin Magris, Juho Kanniainen, Moncef Gabbouj, and Alexan-
dros Iosifidis. Benchmark dataset for mid-price forecasting of limit order book data
with machine learning methods. Journal of Forecasting, 37(8):852–866, 2018.

[NSSV+21] Hao Ni, Lukasz Szpruch, Marc Sabate-Vidales, Baoren Xiao, Magnus Wiese, and
Shujian Liao. Sig-wasserstein gans for time series generation. In Proceedings of the
Second ACM International Conference on AI in Finance, pages 1–8, 2021.

[NSW+20] Hao Ni, Lukasz Szpruch, Magnus Wiese, Shujian Liao, and Baoren Xiao. Conditional
sig-wasserstein gans for time series generation. arXiv preprint arXiv:2006.05421,
2020.

[Opp19] Manfred Opper. Variational inference for stochastic differential equations. Annalen
der Physik, 531(3):1800233, 2019.

12

[PADD21] Lorenzo Pacchiardi, Rilwan Adewoyin, Peter Dueben, and Ritabrata Dutta. Probabilis-
tic forecasting with conditional generative networks via scoring rule minimization.
arXiv preprint arXiv:2112.08217, 2021.

[PD22] Lorenzo Pacchiardi and Ritabrata Dutta. Likelihood-free inference with generative
neural networks via scoring rule minimization. arXiv preprint arXiv:2205.15784,
2022.

[SCC21] Zijian Shi, Yu Chen, and John Cartlidge. The lob recreation model: Predicting the
limit order book from taq history using an ordinary differential equation recurrent
neural network. Proceedings of the AAAI Conference on Artificial Intelligence,
35(1):548–556, 2021.

[SCF+21] Cristopher Salvi, Thomas Cass, James Foster, Terry Lyons, and Weixin Yang. The
signature kernel is the solution of a goursat pde. SIAM Journal on Mathematics of
Data Science, 3(3):873–899, 2021.

[SGS18] Carl-Johann Simon-Gabriel and Bernhard Schölkopf. Kernel distribution embeddings:
Universal kernels, characteristic kernels and kernel metrics on distributions. The
Journal of Machine Learning Research, 19(1):1708–1736, 2018.

[SLG22] Cristopher Salvi, Maud Lemercier, and Andris Gerasimovics. Neural stochastic pdes:
Resolution-invariant learning of continuous spatiotemporal dynamics. Advances in
Neural Information Processing Systems, 35:1333–1344, 2022.

[SLL+21] Cristopher Salvi, Maud Lemercier, Chong Liu, Blanka Hovarth, Theodoros Damoulas,
and Terry Lyons. Higher order kernel mean embeddings to capture filtrations of
stochastic processes. arXiv preprint arXiv:2109.03582, 2021.

[Smi39] Nikolai V Smirnov. On the estimation of the discrepancy between empirical curves
of distribution for two independent samples. Bull. Math. Univ. Moscou, 2(2):3–14,
1939.

[SSDK+20] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Er-
mon, and Ben Poole. Score-based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020.

[TR19] Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep
latent gaussian models in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

[VBP+20] Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Dervovic,
Manuela Veloso, and Tucker Balch. Get real: Realism metrics for robust limit order
book market simulations. In Proceedings of the First ACM International Conference
on AI in Finance, pages 1–8, 2020.

[VKK21] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in
latent space. Advances in Neural Information Processing Systems, 34:11287–11302,
2021.

[WD22] George Wynne and Andrew B Duncan. A kernel two-sample test for functional data.
Journal of Machine Learning Research, 23(73):1–51, 2022.

[YJVdS19] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative
adversarial networks. Advances in neural information processing systems, 32, 2019.

13

A Signature Kernel Scores

Proof of Proposition 3.3

Proof (Appendix). The general result was first shown in [GR07]. We first show that ϕsig is proper.
By Proposition 3.1 the signature kernel is positive definite and characteristic on P(K). It remains to
show that Ey∼Q[ϕsig(Q, y)] ≤ Ey∼Q[ϕsig(P, y)]. This means we must have

Ex∼P,y∼Q[ksig(x, y)] ≤
1

2
Ex,x′∼P[ksig(x, x

′)] +
1

2
Ey,y′∼Q[ksig(y, y

′)].

Writing M = 1
2P+ 1

2Q, a modification of Theorem 2.1 in Berg et al. [BCR84] (pg. 235) gives that∫
ksig(x, y) d(P⊗Q)(x, y) ≤

∫
ksig(x, y) d(M⊗M)(x, y), (11)

where P⊗Q denotes the natural product measure on K ×K. Re-arranging (11), one arrives at the
desired result.

To show strict properness, we need to show that Ey∼Q[ϕsig(Q, y)] ≤ Ey∼Q[ϕsig(P, y)] holds with
equality iff P = Q for all P,Q ∈ P(K). Suppose that there exists another P′ ∈ P(K) such that
Ey∼Q[ϕsig(Q, y)] = Ey∼Q[ϕsig(P′, y)]. Then we would have that

Ex,x′∼P′ [ksig(x, x
′)]− 2Ex∼P′,y∼Q[ksig(x, y)] + Ey,y′∼Q[ksig(y, y

′)] = 0,

or that Dksig(P′,Q) = 0, which is only true if P′ = Q due to characteristicness of the kernel ksig.

Proof of Proposition 3.4

Proof (Appendix). The proof follows directly from [GBR+12], Lemma 6. Note that an unbiased
estimator for Ex,x′∼P[ksig(x, x

′)] from i.i.d samples (x1, . . . , xm), xi ∼ P is given by the U-statistic

T 1
U (x1, . . . , xm) =

1

m(m− 1)

∑
i ̸=j

ksig(xi, xj).

Moreover, an unbiased estimate of Ex∼P[ksig(x, y)] is given by

T 2
U (x1, . . . , xm, y) =

1

m

m∑
i=1

ksig(xi, y).

Writing ϕ̂sig(P, y) = T 1
U (x1, . . . , xm)− 2T 2

U (x1, . . . , xm, y) completes the proof.

B Experiments

All experiments were run on a NVIDIA GeForce RTX 3070 Ti GPU, except the experiment in
Section 4.4 for which the NSPDE model was trained using a NVIDIA A100 40GB GPU.

Here we provide details for each of the experiments outlined in the body of the paper. We also provide
some extra methods of evaluation aside from the KS test. These include the following:

1. Qualitative plot: We give a plot of samples PXθ from a trained generator against the true
data measure PX true .

2. Autocorrelation: To measure temporal dependencies or correlations, we leverage the
autocorrelation function

ACFℓ =
1

Nσ2

N∑
t=l

(Xt − µ)(Xt−l − µ),

where µ is the average of the path Xt over [0, N] and σ2 is the corresponding variance. We
provide a qualitative plot of ACFℓ for each generator against the real data measure. We also
provide a table summarizing the scores for some of the earliest lags ℓ ∈ N.

14

3. Cross-correlation: We provide average cross-correlation scores (rt, r
2
t,ℓ) between the

returns process associated to Xt ∼ PXθ and the squared, lagged returns process r2t,ℓ. We
present the scores in matrix form. Finally, we provide the MSE between the matrix obtained
from PX true and those obtained from each generator.

We make a note here that each of the three discriminators performed similarly in the additional
quantitative metrics omitted from the body. Finally, we wish to first make the following general notes
about each of the three methods studied in this paper:

• Speed: Training a Neural SDE with respect to ϕN
sig was the fastest, followed by the SDE-

GAN, and finally with ϕsig being the slowest. It was possible to decrease training time
respect to the latter by using a coarser dyadic refinement in the PDE solver. However, we felt
that achieving more accurate gradients at the cost of longer training time was worthwhile.

• Stability: The Wasserstein SDE-GAN was the least stable, in terms of the difficulty in
obtaining a training instance where the loss converged in reasonable time. Even with fine-
tuning of both generator and discriminator parameters, the loss associated to the SDE-GAN
tended to oscillate, making obtaining a converged model a very difficult task with the
hardware available to us.

• Scaling: All of the results in the paper are sensitive to path scalings; moreso with the
signature kernel-based approaches, less so with the Wasserstein approach. The basic idea
is as follows: the signature kernel-based methods will tend to fail if paths are scaled too
low (resulting in lower-order terms dominating the calculation of ksig) or too high (the sum,
although finite, can exceed a 64-bit float quite easily). Path scaling (and transformations)
form an integral part in training a successful generative model, and we have tried to be as
descriptive as possible regarding this matter. The details as to why scalings matter have been
touched upon in [CLX21]; we intend to expand upon this in a future work.

• Standardisation: On a similar note, standardizing path data before training was often
found to improve the stability of training in any setting. By standardization we are referring
to transforming each marginal of paths X ∼ PX true via the transformation X̂t = (Xt −
µT)/σT , where µT = EPXtrue [XT] and σT = EPXtrue [(XT − µT)

2]. By having the terminal
marginal distributed standard normal, the task of finding suitable path scalings and smoothing
parameters in the RBF kernel was made much simpler, as this task became less problem-
specific.

B.1 Geometric Brownian motion

Data processing and hyperparameters To generate our data measure, we simulate 32768 paths
according to eq. (9) using the torchsde package. These were solved over the interval [0, 64]
by setting y0 = 1, µ = 0, σ = 0.2, with dt = 0.1. Paths were then interpolated along the grid
∆ = {0, 1, 2, . . . , 63}, so each element of the training set had total length 64. Stochastic integrals
were taken in the Itô sense and the driving noise W was taken in the general sense. We used the SRK
method to solve the corresponding SDE. Each path is time-augmented, so X̂t = (t,Xt) at each point
on the grid. After we have simulated our dataset, we standardized each path as outlined in the dot
points above.

Generator hyperparameters The generator is a Neural SDE with vector fields µθ : [0, T]×Ry →
Ry and σθ : [0, T]× Ry×w → Ry taken to be neural networks with 1 hidden layer, and 16 neurons
in said layer. As per [KFL+21] the LipSwish activation function was used to ensure the Lipschitz
condition held on the vector fields of the Neural SDE. We also used the final tanh regularisation
which we found was necessary for training success. Thus we have that

µθ, σθ ∈ NN (1, 16, 1,LipSwish, tanh).

The size of the hidden state of the neural SDE was chosen to be y = 8, and the noise dimension was
chosen to be w = 3. Stochastic integration was taken in the Itô sense and we set dt = 1 over [0, 63].
As we are not learning an initial distribution in this instance, we modified the generator architecture
to have ξθ(X0) = a for some a ∈ R, where ξθ is the network acting on the initial condition. Before
passing to the discriminator, both generated and real paths were translated to start at 0.

15

Discriminator hyperparameters For the signature kernel-based discriminators, we applied the
time normalisation transformation so the time component of both the real and generated paths was
over [0, 1] as opposed to [0, 63]. This was to ensure each channel of the generated and real data
evolved over a similar scale. For training with respect to ϕsig, we set the order of dyadic refinement
associated to the PDE solver for the signature kernel to 1. We also used three different kernels,
corresponding to three different scalings of the paths, for increased expressivity. For ϕN

sig, we set the
order of truncation equal to N = 3. Finally, for the SDE-GAN, we chose the drift and diffusion
vector fields to be feed-forward neural networks

fϕ, gϕ ∈ NN (1, 16, 1,LipSwish, tanh),

matching that from the generator.

Training hyperparameters All methods used a batch size of 128 and the Adam optimisation
algorithm for backpropagating through the generator optimisers, except for the SDE-GAN, which as
suggested by the authors we used Adadelta. As a remark, we did not see much difference in using
either Adam, Adadelta, or RMSProp, although we did see poorer performance using pure SGD, with
or without momentum. Learning rates were roughly proportional to the average size of the batched
loss: as a rough guide, proportionality like ηG × L(θ) ≈ 10−5 tended to yield good results, with the
generator learning rate being around ηG ≈ 10−4 for the signature kernel(s), and ηD ≈ ηG × 10−2

for the SDE-GAN. As mentioned in the body, we trained for 4000 steps with ϕsig, 10000 with ϕN
sig

and 5000 with the SDE-GAN to normalise for training time.

Results We begin with a qualitative plot of the results from each generator.

Figure 4: Qualitative plot of generator output versus data measure. Trained with (from left to right):
ϕsig, ϕN

sig, SDE-GAN

Table 5 gives the autocorrelation scores for the first five lags for each of the three models, along with
plots of the mean ACF values in Figure 5 and the associated 95% confidence intervals. We can see
that all three models do well at capturing temporal effects, with the Neural SDE trained with respect
to ϕsig most closely matching the data measure, except in the first lag.

Discriminator Lags
l = 1 l = 2 l = 3 l = 4 l = 5

SDE-GAN 0.887 ± 0.120 0.782± 0.211 0.686± 0.282 0.597± 0.342 0.515± 0.384

ϕN
sig (N = 3) 0.883± 0.115 0.781± 0.197 0.684± 0.261 0.594± 0.320 0.514± 0.364

ϕsig 0.886± 0.111 0.785 ± 0.199 0.696 ± 0.267 0.612 ± 0.315 0.535 ± 0.350
Data measure 0.892± 0.105 0.793± 0.183 0.702± 0.258 0.616± 0.319 0.532± 0.374

Table 5: Sample autocorrelation scores, gBm

Finally, we present the cross-correlation matrices between the returns process rt and the lagged
squared returns process r2t−l for lags l = {0, 1, 2, 3, 4, 5}. Again all models tend to perform quite
well in that they match relational dynamics observed in the data measure. Table 6 gives the MSE
between the generated matrices and the data matrix. We see that the Neural SDE trained with ϕsig

16

Figure 5: Qualitative plot of ACF scores, generator output versus data measure. Trained with (from
left to right): ϕsig, ϕN

sig, SDE-GAN

achieves the lowest score of the three, however again performance is strong regardless of method
used for training.

(a) Data measure. (b) ϕsig (c) ϕN
sig (d) SDE-GAN.

Figure 6: Cross-correlation matrices, gBm

Discriminator MSE

SDE-GAN 0.014688

ϕN
sig (N = 3) 0.066745

ϕsig 0.010718

Table 6: MSE between cross-correlation matrices, gBm

B.2 Rough Bergomi

Data processing and hyperparameters We simulate 32768 paths to make up our data measure via
the rBergomi Python package5. We fixed the time window to be [0, 2], and specified dt = 1/32, so
paths were of length 64. We chose (ξ0, η, ρ,H) = (0.04, 1.5,−0.7, 0.2) and set d = 1. Paths started
at 1. As always, paths were time-augmented. Paths were normalised to start at 0 via translation
and were standardized again according to the terminal data from the train set. A final point is that
although the data was generated over [0, 2], the time grid passed to the generators in an optimiser
step was ∆ = {0, 1, . . . , 63}. We found that this improved performance.

Generator hyperparameters Given the increased complexity of the data generating model, we
increased the expressivity of the vector fields governing the drift and diffusion vector fields µθ and
σθ. This was done by increasing the depth and width of the constituent feed-forward networks to
include 3 hidden layers of size 32. We also increased the size of the hidden state to y = 16 and the

5See https://github.com/ryanmccrickerd/rough_bergomi

17

https://github.com/ryanmccrickerd/rough_bergomi

noise dimension to w = 8. Thus

µθ ∈ NN (17, 32, 32, 32, 16; LipSwish,LipSwish,LipSwish, tanh)

and
σθ ∈ NN (17, 32, 32, 32, 128; LipSwish,LipSwish,LipSwish, tanh).

Discriminator hyperparameters For training with respect to ϕsig, we mapped path state values to
(H, κ) where κ denotes the RBF kernel on R2. We set associated the smoothing parameter σ = 1.
For ϕN

sig, we increased the truncation level to N = 5. In both these settings we again applied the
time normalisation transformation on both the generated and data measure paths before being passed
through the loss function. For the SDE-GAN, we increased the expressiveness of the vector fields
governing the Neural CDE in the same way as we did the Neural SDE.

Training hyperparameters Learning rates for the Neural SDE trained according to ϕsig was set to
ηG = 1× 10−4. Due to the increasing number of terms in the expected signature for the truncated
MMD approach, we had to reduce the learning rate to ηG = 1×10−6 - larger values caused instability
in the training procedure. The SDE-GAN was again quite difficult to train, however we were able
to have some success by setting ηD ≈ 2× 10−3 and ηG ≈ 1× 10−3. Initialisation of the generator
vector fields was especially important for the Wasserstein method, as initialisation too far from the
data measure cause oscillatory patterns in the training loss, which leads to more epochs required
for the loss to converge. We again used the Adam optimisation algorithm for the MMD-based
discriminator/generators and Adadelta for the SDE-GAN. We trained for the same number of steps as
per the gBm method.

Results Figure 7 gives a qualitative plot of the simulated paths.

Figure 7: Qualitative plot of generator output versus data measure. Trained with (from left to right):
ϕsig, ϕN

sig, SDE-GAN

Figure 8 gives the same plot of the ACF scores at corresponding lags for the data measure and each of
the generated models, along with the 95% confidence interval. Table 7 explicitly gives these scores.

Figure 8: Qualitative plot of ACF scores, generator output versus data measure. Trained with (from
left to right): ϕsig, ϕN

sig, SDE-GAN

18

Discriminator Lags
l = 1 l = 2 l = 3 l = 4 l = 5

SDE-GAN 0.893± 0.105 0.795± 0.191 0.705± 0.262 0.622± 0.319 0.543± 0.377

ϕN
sig (N = 5) 0.897± 0.115 0.799± 0.208 0.710± 0.289 0.628± 0.338 0.546± 0.383

ϕsig 0.890 ± 0.115 0.790 ± 0.203 0.702 ± 0.269 0.618 ± 0.316 0.521 ± 0.382
Data measure 0.885± 0.121 0.778± 0.215 0.685± 0.278 0.600± 0.336 0.521± 0.380

Table 7: Sample autocorrelation scores, rBergomi

Finally, we present the same cross-correlation matrices, along with the MSE between either of the
three generators and the data measure. Although each of the models perform well, the generator
trained with ϕsig achieves the best results.

(a) Data measure. (b) ϕsig (c) ϕN
sig (d) SDE-GAN

Figure 9: Cross-correlation matrices, rBergomi

Discriminator MSE

SDE-GAN 0.091707

ϕN
sig (N = 5) 0.054731

ϕsig 0.016785

Table 8: MSE between cross-correlation matrices, rBergomi

B.3 Multidimensional real data

We now give the details regarding the unconditional generation of foreign exchange data.

Data processing and hyperparameters Data is given by hourly returns associated to the currency
pairs EUR/USD and USD/JPY. We stride the concatenated time series (corresponding to close prices
at each time) into paths of length ℓ = 64. Paths are normalized to start at 1. We augmented the state
values with their original timestamps, (as epoch seconds). Call this dataset Y . As we are dealing with
financial data, one can expect the time intervals between prices to be irregular. This is not usually an
issue when using signature methods. However, in this setting we found training to be less stable if
paths were not normalised to evolve over the same time grid as that which the neural SDE was solved
over in a forward pass.

To circumvent this issue, for every y ∈ Y we find the median terminal time T̃ , where

T̃ = Mediani=1,...,|Y|[t
i
ℓ/t

i
0].

All paths whose terminal time is greater than T̃ were filtered out of the dataset which we call Ỹ .
We then define an evenly-spaced time grid ∆∗ = {0, . . . , T̃} containing 64 observations in total,
and linearly interpolate each y ∈ Ỹ over this grid, where we use these interpolated coefficients to

19

form our train and test sets. Again we standardize using the terminal values of the train set data. We
simulate our generators over the time grid ∆ = {0, . . . , 63} as we found that using ∆∗, the realistic
time-grid (in fractions of a year) induced little variability in the generated paths; i.e., the quadratic
variation associated to the generated paths was significantly lower than that obtained from the real
data measure.

Generator hyperparameters The generator maintains the same architecture as outlined in the
rBergomi section. We tried increasing the size of the hidden state to x = 32 and the noise state
w = 16 but found that this had little impact on training performance. We also found that increasing
the expressivity of the neural vector fields did not overly impact performance; neither refining the
mesh over which the Neural SDE was solved.

Discriminator hyperparameters We used the same discriminator hyperparameters for each of the
three methods as per the rBergomi section.

Training hyperparameters We used the same batch size (128) as per the previous sections. We
allowed for increased training time here, training with respect ϕsig for 4000 steps, 15000 for ϕN

sig
and 10000 for the SDE-GAN. The same learning rate parameters were used as well. We did not use
any learning rate annealers. The Adam optimisation algorithm was employed for the MMD-based
generators, whereas again Adadelta was used for the Wasserstein case.

Results Extended results are provided as per the previous sections. We being with the qualitative
plots.

(a) EUR/USD

(b) USD/JPY

Figure 10: Qualitative plot of generator output versus data measure. Trained with (from left to right):
ϕsig, ϕN

sig, SDE-GAN

Visual inspection gives that the generator trained with respect to ϕsig appears to have most accurately
captured the data measure, in particular the less regular, outlier paths. In contrast the SDE-GAN and
truncated kernel methods tend to over-represent the mean element. For the GAN this could be the
“mode collapse” phenomenon in effect, whereas in the case of the Neural SDE trained with ϕN

sig, it is
likely that higher-order terms cannot be discarded if one wishes to accurately model the data measure.

20

We now provide the plot associated to the ACF scores obtained from training with respect to each
generator, along with the summarizing table. Table 9 shows that that each of the discriminators
perform relatively well, aside from the EURUSD autocorrelative factors obtained via traning the
Neural SDE in the SDE-GAN framework. Finally we give the cross-correlation matrices and the
associated MSEs. The Neural SDE trained with respect to ϕsig appears to perform the best by this
evaluation metric.

(a) EUR/USD

(b) USD/JPY

Figure 11: Qualitative plot of ACF scores, generator output versus data measure. Trained with (from
left to right): ϕsig, ϕN

sig, SDE-GAN

Discriminator Lags
l = 1 l = 2 l = 3 l = 4 l = 5

SDE-GAN 0.905± 0.108 0.817± 0.195 0.736± 0.264 0.660± 0.319 0.590± 0.362

ϕN
sig (N = 5) 0.889 ± 0.123 0.788 ± 0.215 0.695 ± 0.289 0.610± 0.345 0.532± 0.388

ϕsig 0.890± 0.123 0.790± 0.218 0.699± 0.291 0.615 ± 0.347 0.538 ± 0.388
Data measure 0.885± 0.140 0.785± 0.236 0.696± 0.302 0.615± 0.302 0.541± 0.387

(a) EUR/USD

Discriminator Lags
l = 1 l = 2 l = 3 l = 4 l = 5

SDE-GAN 0.891± 0.121 0.791± 0.216 0.700± 0.290 0.616± 0.346 0.539 ± 0.389

ϕN
sig (N = 5) 0.887 ± 0.123 0.785 ± 0.218 0.692 ± 0.292 0.607± 0.348 0.529± 0.390

ϕsig 0.891± 0.121 0.790± 0.215 0.698± 0.288 0.614 ± 0.344 0.537± 0.385
Data measure 0.885± 0.132 0.784± 0.227 0.694± 0.296 0.613± 0.347 0.539± 0.385

(b) USD/JPY.

Table 9: Sample autocorrelation scores, forign exchange data

21

(a) EUR/USD (b) ϕsig (c) ϕN
sig (d) SDE-GAN

(e) USD/JPY (f) ϕsig. (g) ϕN
sig (h) SDE-GAN

Figure 12: Cross-correlation matrices, foreign exchange data

Discriminator MSE

EUR/USD USD/JPY

SDE-GAN 0.051728 0.027539

ϕN
sig (N = 5) 0.045966 0.036628

ϕsig 0.035791 0.003898

Table 10: MSE between cross-correlation matrices, foreign exchange data

B.4 Conditional generation

In this section we describe in detail the training procedure for the conditional generator.

Problem setting The conditioning variables are given by path segments x : [t0 − dt, t0] → R2,
representing time-augmented asset price values. At time t0, one wishes to make a prediction about the
resultant path y : [t0, t0 + dt′] → R2 conditional on x. Here, dt, dt′ are hyperparameters describing
how much of the past one wishes to consider and how far into the future one wishes to forecast. With
x ∼ Q We thus want to train a conditional generator so that PXθ (·|x) = PX real(·|x). We briefly state
the three major difficulties associated to this generation problem:

1. Unobservable true conditional distribution. In practice, one never observes the entire
true conditional distribution PX real(·|x): only a sample from it. This means that classical
metrics on path space (MMD, Wasserstein, and so on) cannot be used without modification,
or making assumptions about the relationship between the conditioning and resultant paths.

2. Using paths as conditioning variables. It is not immediately clear what is the best way to
consume a path as a conditioning variable for a given generator.

3. “Unseen” conditioning variables. It is not guaranteed that the conditional generator will
behave in an expected way if an as-yet unseen conditioning variable is provided (by unseen,
we are referring to within the training procedure). These conditioning variables are often the
ones of interest.

22

Our procedure attempts to solve the first and second problems with our architecture choices on the
conditional generator, and our choice of loss function. The third issue is omnipresent in conditional
modelling.

The generator now is given by a (conditional) Neural SDE with architecture given by

Y0 = ξθ(xt0 , C(x)), dYt = µθ(t, Yt, C(x))dt+ σθ(t, Yt, C(x)) ◦ dWt, Xt = πθ(Yt, C(x))

for µθ : [t0, t0+dt′]×Ry×RdC → Ry , σθ : [t0, t0+dt′]×Rx×RdC → Rx×w, ξθ : Rx×RdC → Ry ,
and πθ : Ry × RdC → Rx. Here, C(x) denotes the function acting on the conditioning path and
encoding it as a vector in RdC . A natural way to perform this encoding is via the truncated signature
SM (X) of the path x. In this way the neural networks defining the vector fields in the generator (for
instance) are now mappings

µθ : [t0, t0 + dt′]× Ry × R1+d+d2+···+dN

→ Ry,

σθ : [t0, t0 + dt′]× Ry × R1+d+d2+···+dN

→ Ry×w.

We note here that all of the regularity conditions required to ensure a strong solution to the standard
Neural SDE here remain satisfied; we are only augmenting each of the trainable components to accept
the encoded conditioning path. We also note here that this technique is flexible enough to include any
amount of Rd−valued conditioning variables.

Data processing and hyperparameters Data comes from 15-minute close prices associated to the
EUR/USD price pair. We again extracted paths of length 48 (normalising for erroneous terminal times
as per the unconditional setting) and split these paths into conditioning-resultant pairs {xi, yi}Ni=1
with xi representing the first 32 observations and yi the next 16. We normalized both sets of paths by
their initial value. Instead of standardizing, in this setting we scaled all path values up by a factor of
100. We found this was crucial so that the lower-order signature terms did not overly contribute to
the value of the signature kernel. Both conditioning and resultant paths were then translated to start
at 0. In total the dataset size was comprised of 52428 conditioning/resultant pairs.

Generator hyperparameters The generator is a conditional Neural SDE. Stochastic integration
was again taken in the Itô sense and we used the Euler method. The noise size was set to w = 8,
the size of the hidden state was taken y = 16. The MLPs governing the vector fields were the
same as per the rBergomi and multidimensional unconditional examples, except we increased the
width of the layers in the neural networks to 64 neurons. We conditionalized the input paths via the
truncated log-signature of order 5. In order to estimate the batched loss, we need to specify the size
of the conditional distribution PXθ (·|x) output by the conditional generator, which we set to 32 paths.
Finally, we applied the time normalisation and lead-lag transformations to the input paths x before
taking their truncated log-signature.

Discriminator hyperparameters We trained with respect to ϕsig. Again we lifted paths via the
RBF kernel and chose the smoothing parameter σ = 1. We used a dyadic refinement level of 1 for
the PDE solver associated to ksig. All paths had the time normalisation transformation applied to
them before having the loss evaluated.

Training hyperparameters We set the batch size equal to 128 and trained the conditional generator
for 10000 steps. We set the learning rate ηG = 2× 10−6 and used the Adam optimisation algorithm
in PyTorch. No learning rate annelears were used.

Results Results are presented in the body of the paper.

B.5 Simulation of limit order books

The Neural SPDE model introduced in [SLG22] extends Neural SDEs to model spatiotemporal
dynamics by parametrising the differential operator, drift and diffusion of SPDEs of the type

dYt = (LYt + µ(Yt))dt+ σ(Yt)dWt (12)

23

where both µ and σ are local operators acting on the function Yt that is, µ(Yt)(x) and σ(Yt)(x)
only depend on Yt(x). Moreover, it is assumed that L is a linear differential operator generating a
semigroup etL which can be written as a convolution with a kernel Kt.

Let D ⊂ Rd be a bounded domain. Let W : [0, T] → L2(D,Rdw) be a Wiener process and a
an L2(D,Rda)-valued Gaussian random variable. The values dw, da ∈ N are hyperparameters
describing the size of the noise. A Neural SPDE is a model of the form

Y0(x) = ℓθ(a(x)), Yt = Kt ∗ Y0 +

∫ t

0

Kt−s ∗ (µθ(Ys) + σθ(Ys)Ẇ
ϵ
s)ds, Xθ

t (x) = πθ(Yt(x)).

for t ∈ [0, T] and x ∈ D where Y : [0, T] → L2(D,Rdy) is the mild solution, if it exists to the
SPDE in Equation (12) with regularised driving noise W ϵ and where ∗ denotes the convolution in
space with the kernel Kt : D×D → Rdy×dy (see [SLG22] for more details). Similarly to the Neural
SDE model,

ℓθ : Rda → Rdy , µθ : Rdy → Rdy , σθ : Rdy → Rdy×dw , πθ : Rdy → Rdx

are feedforward neural networks. Imposing globally Lipschitz conditions (by using ReLU or tanh
activation functions in the neural networks µθ and σθ) ensures the existence and uniqueness of the
mild solution Y . Finally, we note that in [SLG22], the authors propose two distinct algorithms to
evaluate the Neural SPDE model based on two different parameterisations of the kernel K.

Next, we provide more details on how we trained such a Neural SPDE model to generate Limit
Order Book (LOB) dynamics [GPW+13]. The increasing availability of LOB data has instigated
a significant interest in the development of statistical models for LOB dynamics. In recent years,
new models based on SPDEs have been proposed to accurately describe and analyse these complex
dynamics [HKN20, CM21].

Data processing and hyperparameters We used real LOB data from the NASDAQ public ex-
change made publicly available in [NMK+18] which consists of about 4 million timestamped events
over 10 consecutive trading days with L = 10 price levels on each side (bid and ask) of the LOB.
Three versions of this dataset are provided, each normalised using a different technique. We used the
data normalised with z-scores and split the LOB trace into sub-traces of length T = 30.

Generator hyperparameters The generator is a Neural SPDE driven by a cylindrical Wiener
process W with dw = 2. The vector fields µθ and σθ are taken to be single layer perceptrons with
dy ∈ {16, 32} followed by batch normalization and tanh activation function. Thus we obtain

µθ ∈ NN (dh, dh,BatchNorm, tanh), σθ ∈ NN (dh, dh × dw,BatchNorm, tanh)

We used the second evaluation method proposed in [SLG22, Section 3.3] with 4 Picard’s iterations
and maximum number of frequency modes in {10, 20} in the spatial direction and fixed to 20 in the
temporal direction. Instead of sampling the initial condition a from a L2(D,Rda)-valued Gaussian,
we simply used the samples from X true

0 , in which case da = 1.

Discriminator hyperparameters We integrated in time the output trajectories from the generator,
as we observed this yielded more stable kernel scores. We mapped the path state values into Hκ where
κ denotes a SE-T kernel on L2(D) with D = [0, 1], that is, a kernel defined for all f, g ∈ L2(D)

by κ(f, g) = e−
1

2σ2 ∥T (f)−T (g)∥2
Y where T : L2(D) → Y is a Borel measurable, continuous and

injective map. We considered three SE-T kernels respectively termed ID, SQR and CEXP:

1. (ID) SE-T kernel with T : L2(D) → L2(D) defined for all f ∈ L2(D) by T (f) = f

2. (SQR) SE-T kernel with T : L2(D) → L2(D)⊕ L2(D) defined by T (f) = (f, f2)

3. (CEXP) SE-T kernel with T : L2(D) → L2(D) defined by T (f) = CF,l(f) where CF,l is
the covariance operator associated to the kernel kF,l defined for all x, x′ ∈ D by

kF,l(x, x
′) = e−

1
2l2

(x−x′)2
F−1∑
n=0

cos(2πn(x− x′))

For ID and SQR, we used σ ∈ {1, 10}, and for CEXP we used (σ, l, F) ∈ {(1, 1, 5), (10, 10, 5)}.
We then used a dyadic order of 1 to compute the signature kernel.

24

Training hyperparameters We set the learning rate of the generator ηG to be 1× 10−3 and trained
it for a maximum number of 1 500 epochs. We used a batch size of 64 due to memory constraints and
the Adam optimizer with the default parameters of PyTorch.

25

	Introduction
	Related work
	Training Neural SDEs with signature kernel scores
	Background
	Neural SDEs
	Signature kernels scores
	Non-adversarial training of Neural SDEs via signature kernel scores
	Additional details

	Experiments
	Geometric Brownian motion
	Rough Bergomi volatility model
	Foreign exchange currency pairs
	Simulation of limit order books

	Conclusion and future work
	Signature Kernel Scores
	Experiments
	Geometric Brownian motion
	Rough Bergomi
	Multidimensional real data
	Conditional generation
	Simulation of limit order books

