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A vMF Mixtures

This section contains the expressions for vMF Normalizer and the Approximation of logCd(τ).

The vMF Normalizer is

Cd(τ) =
τd/2−1

(2π)d/2Id/2−1(τ)
(1)

where Id/2−1 is the modified Bessel function of the first kind with order d/2− 1.

The well-known approximation of logCd(τ) [5] is
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B Implementation Details

This section offers insights into the implementation details of our method.

Feature extraction: Our feature extraction utilized the official weights of XCiT-small with patch size
of 8, trained in accordance with the self-supervised learning approach detailed in [2]. For DAVIS-
2017, we evaluated images at a 480p resolution, following the standard practice. To encourage
accurate clustering and avoid numerical errors caused by small clusters, we upsampled the features
by a factor of two through bilinear interpolation.

vMF distribution: The implementation of our vMF distribution is based on [3].

PAC-CRF Model: Our PAC-CRF model is comprised of two parallel 5×5 Position-Adaptive
Convolution (PAC) kernels with dilation factors of 64 and 16. The selection of the PAC kernel size
and dilation factors was guided by the objective of capturing both local and global context information
effectively. We determined that these specific kernel sizes and dilation factors strike a balance between
the receptive field size and computational efficiency, resulting in optimal performance.

Hyperparameters: The number of components in each mixture, denoted as (ks)Ss=1, was determined
based on the size and complexity of the regions. To adaptively adjust the number of components, we
evenly distributed ks between the minimal and maximal values based on the value of S. Specifically,
for objects, we evenly distributed between 2 (the minimal) and the square root of the number of pixels
in the object mask in the first frame. Similarly, for the background, we evenly distributed between
50 (the minimal value) and the square root of the number of pixels in the background mask in the
first frame. This approach ensures that the number of components in the mixture aligns with the
complexity of the scene, allowing our model to effectively capture diverse appearances. Additionally
the weight wρ for positional embeddings was set to 15.

To enforce spatial constraints while ensuring computational efficiency, we utilized an indicator
function with thresholds (rs)Ss=1. This function determines the membership of a pixel by evaluating
the similarity between its appearance and the learned appearance of the model. The thresholds rs
are evenly distributed in the range of 0.68 to 0.78, depending on the number of mixtures. Increasing
the number of mixtures requires tighter similarity constraints, enabling more precise capture of finer
details in the segmentation process.

To enable efficient processing and effective model adaptation, we stored and utilized the sufficient
statistics from the last previous 15 frame. That is, at time t, we are using the sufficient statistics from
times (t− 15, t− 14, . . . , t− 1, t). These statistics provide valuable information about the previous
frames, allowing our method to maintain contextual knowledge and adapt to dynamic changes in the
video. By retaining this limited-legnth history of sufficient statistics, we strike a balance between
memory utilization and the ability to capture long-term dependencies within the video sequence.

Furthermore, for computational efficiency, we applied spatial constraints by considering a fixed
rectangle of size 18× 36 for each pixel. We observed that removing this constraint did not impact the
performance of our method. This finding demonstrates that our current spatial constraints effectively
capture the relevant information within the defined radius.
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C Results

This section presents additional qualitative results to complement the main paper.

For video demonstrations, please visit the project page: https://github.com/BGU-CS-VIL/
Training-Free-VOS.
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Figure 1: Qualitative examples on DAVIS-2017
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Figure 2: Qualitative examples on DAVIS-2017
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Figure 3: Qualitative examples on DAVIS-2017
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Figure 4: Qualitative examples on DAVIS-2017

5



t → 5 25 53 65

DULVS [1]

INO [4]

Ours

Figure 5: Qualitative examples on DAVIS-2017
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D Examples of Failure Cases

The figure below shows typical failure cases of our proposed method. For more details about the
associated limitations (related to either re-identification or motion blur), see the paper.

Figure 6: Failure cases. Rows 1 and 3 display two frames from different scenarios in the
YouTube-VOS 2018 dataset, while rows 2 and 4 show our segmentation predictions for each
scenario, respectively.

7



References
[1] Nikita Araslanov, Simone Schaub-Meyer, and Stefan Roth. Dense unsupervised learning for video segmen-

tation. NeurIPS, 2021. 4, 5, 6

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021. 3

[3] Minyoung Kim. On pytorch implementation of density estimators for von mises-fisher and its mixture. In
arXiv preprint, 2021. 3

[4] Xiao Pan, Peike Li, Zongxin Yang, Huiling Zhou, Chang Zhou, Hongxia Yang, Jingren Zhou, and Yi Yang.
In-n-out generative learning for dense unsupervised video segmentation. In Proceedings of the 30th ACM
International Conference on Multimedia, 2022. 4, 5, 6

[5] Tyler R Scott, Andrew C Gallagher, and Michael C Mozer. von mises-fisher loss: An exploration of
embedding geometries for supervised learning. In ICCV, 2021. 2

8


