
6 Supplementary material410

6.1 Animal ethics statement411

All experiments on animals were conducted with approval of the Animal Care and Use Committee of412

the University of California, Berkeley.413

6.2 Compute414

All computational procedures were performed either on a desktop workstation running Ubuntu 18.04415

with an Intel Xeon E5-2620 v4 CPU, four GTX 1080 Ti GPUs, and 112GB RAM, or on the Axon416

computer cluster based at [redacted for anonymity] using nodes comprised of two Xeon E5-2660 v4417

CPUs, eight GTX 1080 Ti GPUs, and 125GB RAM.418

6.3 Broader societal impact419

Our work is significant for interventional approaches to studying the brain and its connection420

to disease. By minimising off-target activation, Bayesian target optimisation could enable (e.g.)421

more precise synaptic connectivity mapping, improving our understanding of neural circuitry. This422

advancement has potential implications for understanding brain disorders like epilepsy, where423

abnormal synaptic connections are central to seizure generation and propagation. Deepening our424

understanding of these diseases can lead to enhanced targeted interventions and more effective425

therapeutic strategies, benefiting individuals with neurological disorders.426

6.4 Code availability427

An open-source implementation of Bayesian target optimisation is available in Python at https:428

//anonymous.4open.science/r/bataro-4401/.429

6.5 Single-target holographic stimulus optimisation with posterior uncertainty430

Here we provide further mathematical details for optimising holographic stimuli. First, we develop431

the approach for single optogenetic targets, as this is most closely related to existing GP-based432

receptive field inference techniques. The single-target case also allows us to have a full treatment433

of posterior uncertainty (unlike for optimising ensemble stimuli) which may be desired in certain434

applications.435

Optogenetic receptive field model. We use a GP-Bernoulli approach to model the response ynt of436

neuron n on trial t to a single-target stimulus xt,437

ynt ⇠ Bernoulli(�(gn(xt))), (9)

where the stimulus xt = (c1t, c2t, It) 2 R3 represents the two-dimensional coordinates and laser438

power of the t-th hologram. Each ORF follows a three-dimensional GP prior gn ⇠ GP(mn(·), k(·, ·)),439

where mn and k again are the mean and covariance functions of the GP.440

Posterior inference. Unlike for ensemble stimulation, for single-target stimulation we do not require441

that the ORF gn is non-negative. Consequently, the posterior of gn is a GP, which allows us to work442

with a full description of posterior uncertainty. To compute the posterior, we use the conventional443

Laplace approximation. Briefly, this consists of approximating the posterior using a multivariate444

normal q(gn | µn,⌃n) = Normal(gn | µn,⌃n) ⇡ p(gn | yn,X,�). The mean µn is obtained by445

maximising the log-posterior, given by the expression446

ln p(gn | yn,X,�) =
TX

t=1

ln p(ynt | xt, gn) + ln p(gn(x1), . . . , gn(xT ) | �) + const, (10)

where X = (x1, . . . ,xT ) and where const does not depend on gn. Since the posterior is log-concave447

in gn, we use Newton’s method to identify the global optimum of Equation 10, and adaptively set the448

Newton step-size using a standard backtracking line-search method. Letting H = rrgn ln p(gn |449

yn,X,�) be the Hessian of the log-posterior, the posterior covariance matrix is obtained by setting450

⌃n = �H�1 |gn=µn .451
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Target optimisation. Let G = (g1, . . . , gN ), and define the predicted evoked activity for single452

holographic targets as ŷ(x, G) = (�(g1(x)), . . . ,�(gN (x))). To minimise the error between a target453

binary activity pattern ⌦ 2 {0, 1}N and the predicted evoked activity, we solve an optimisation454

problem that accounts for the uncertainty in the ORF estimates:455

xoptimal = argmin
x

Eq(G|µ,⌃)

h
k⌦� ŷ(x, G)k2

i
such that 0  I  Imax, (11)

where q(G | µ,⌃) =
QN

n=1 q(gn | µn,⌃n) gives the joint posterior across all ORFs. To solve456

Equation 11, we first sample ORFs g(s)n (for s = 1, . . . , S) from their posterior distributions to457

approximate the expected error at the current estimate x
⇤,458

Eq(G|µ,⌃)

h
k⌦� ŷ(x⇤, G)k2

i
⇡ 1

S

SX

s=1

NX

n=1

⇣
⌦n � �(g(s)n (x⇤))

⌘2
. (12)

Then, we compute the partial derivative (in dimension d) of the expected error by differentiating459

through the Monte Carlo approximation,460

@

@x⇤
d

Eq(G|µ,⌃)

h
k⌦� ŷ(x⇤, G)k2

i
⇡ � 2

S

SX

s=1

NX

n=1

(⌦n � �(g(s)n (x⇤))�0(g(s)n (x⇤))
@

@x⇤
d

g(s)n (x⇤).

(13)

Next we must evaluate the partial derivative on the right-hand side of Equation 13. We use the fact461

that a GP and its derivative are jointly GP-distributed, and hence infer the derivative from observations462

of the ORF. The covariance between a GP and its derivative is given by [40, Sec 9.4]463

cov
✓
gn(xt),

@

@x⇤
d

gn(x
⇤)

◆
=

@k(xt,x⇤)

@x⇤
d

=
↵2

�2
d

(xdt � x⇤
d) exp

✓
�kxt � x

⇤k2

2�2
d

◆
, (14)

where the second equality is specific to the RBF covariance. Thus, we can use Equation 14 to obtain464

the posterior predictive mean for the derivative GPs in closed form as [46, Sec 2.7]465

Eq(gn|µn,⌃n)


@gn(x⇤)

@x⇤
d

�
=

@mn(x⇤)

@x⇤
d

+ cov
✓
gn(X),

@gn(x⇤)

@x⇤
d

◆>
K

�1(µn �mn(X)). (15)

Here X = (x1, . . . ,xT ) is the collection of unique points on the ORF probed during calibration.466

If Equation 15 is combined with an expression for the posterior predictive variance, one obtains a467

full predictive distribution over derivative functions consistent with the observed neural responses.468

However, rather than working with this full distribution, we instead use Equation 15 to approximate469

the derivatives of the Monte Carlo samples by replacing the posterior mean µn with a Monte Carlo470

sample,471

@g(s)n (x⇤)

@x⇤
d

⇡ @mn(x⇤)

@x⇤
d

+ cov
✓
gn(X),

@gn(x⇤)

@x⇤
d

◆>
K

�1(g(s)n (X)�mn(X)). (16)

Equation 16 then allows us to define a closed-form approximate gradient r̃x⇤g(s)n at test point x⇤,472

defined as473

r̃x⇤g(s)n =

"
@g(s)n (x⇤)

@x⇤
1

, . . . ,
@g(s)n (x⇤)

@x⇤
D

#>

, (17)

which we use in the single-target projected gradient descent algorithm (Algorithm 2). Note that one474

could also consider a quadrature approach to solving Equation 12, which may be more efficient than475

Monte Carlo sampling. However, the presentation of the Monte Carlo approach is instructive for476

deriving the optimisation of ensemble stimuli below.477

6.6 Additional details on ensemble stimulus optimisation approach478

The approach for optimising holographic ensemble stimuli is based on the approach for single-target479

optimisation, but modified to account for differences in the ORF model and inference. In particular,480

we again seek to minimise the error between a target activity pattern ⌦ and the predicted evoked481
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Algorithm 2: Projected Monte Carlo gradient descent algorithm for optimising single-target
holograms

1 Infer ORF posterior q(G | µ,⌃) from calibration data {yn}Nn=1, X using the Laplace
approximation.

2 Precompute the negative of the Hessian Wn = �rr ln p(yn | X, gn) |gn=µn for each n.
3 Initialise x to random location near soma of target neuron and with random laser power.
4 while target not converged do

5 for n = 1, . . . , N do

6 Compute mean and variance of posterior predictive distribution at current target estimate
x via µn(x) = mn(x) + k(X,x)>K�1(µn �mn(X)), and
�2
n(x) = k(x,x)� k(X,x)>(K+W

�1
n )�1k(X,x).

7 Sample ORFs at the current target estimate, g(s)n (x) ⇠ Normal(µn(x),�2
n(x)) for

s = 1, . . . , S.
8 Construct approximate gradients r̃xg

(s)
n for s = 1, . . . , S using Equation 17.

9 end

10 Set �x = � 2
S

PS
s=1

PN
n=1(⌦n � �(g(s)n (x))�0(g(s)n (x))r̃xg

(s)
n (x) as per Equation 13.

11 Perform gradient descent update, x x+ ��x with step-size �.
12 Project laser power onto feasible domain, I  min(I, Imax).
13 end

activity, but now using the MAP estimates G = {ĝn, ✓̂n}Nn=1 in place of the full posterior distributions.482

Let ŷ(x,G) = (�(�̂1(x) � ✓̂1), . . . ,�(�̂N (x) � ✓̂N )) be the predicted population response to an483

ensemble stimulus, where �̂n(x) =
PJ

j=1 ĝn
�
x
j
�
. The optimal ensemble stimulus is now484

xoptimal = argmin
x
k⌦� ŷ(x,G)k2 = argmin

x

NX

n=1

⇣
⌦n � �(�̂n(x)� ✓̂n)

⌘2
(18)

such that 0  I  Imax. Evaluating the partial derivative of Equation 18 with respect to dimension d485

of a test point x⇤ yields,486

@

@x⇤
d

k⌦� ŷ(x⇤,G)k2 = �2
NX

n=1

(⌦n � �(�̂n(x
⇤)� ✓̂n))�

0(�̂n(x
⇤)� ✓̂n)

@

@x⇤
d

�̂n(x
⇤). (19)

The derivative on the right-hand side of Equation 19 is given by @
@x⇤

d
�̂n(x) =

PJ
j=1

@
@x⇤

d
ĝn(xj),487

which requires computing the derivative of ĝn(xj). To evaluate this derivative, we use a similar trick488

to Equation 16, but substituting the MAP estimate in place of the posterior mean or Monte Carlo489

sample,490

@

@x⇤
d

ĝn(x
⇤) =

@

@x⇤
d

mn(x
⇤) + cov

✓
gn(X),

@

@x⇤
d

gn(x
⇤)

◆>
K

�1(ĝn(X)�mn(X)). (20)

This expression can also be arrived at by first evaluating the posterior predictive mean of gn(x⇤), and491

then differentiating with respect to x⇤
d.492

We use Equation 20 to define a closed-form gradientrx⇤ �̂n at test point x⇤ via493

rx⇤ �̂n =


@�̂n(x⇤)

@x⇤
1

, . . . ,
@�̂n(x⇤)

@x⇤
D

�>
. (21)

Finally, Equation 21 is used in the projected gradient descent algorithm for optimising ensemble494

stimuli (Algorithm 1).495

6.7 Further details on simulations and "synthetic" optogenetics experiments496

Simulations consisted of both ORF mapping and stimulus optimisation phases. ORF mapping497

required probing responses to stimulation at a range of laser powers and stimulus locations. We498
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Figure S1: Effect of reducing the number of points at which each ORF is probed. (a) In the high
coverage case (left), each ORF is probed by stimulating at a 5⇥5 grid of points near the soma (grid
points separated by 10 µm), at three different laser powers. In the low coverage case (right), this
reduces to stimulating at just a 3⇥3 grid (grid points separated by 12 µm) at three powers. However,
as the density of opsin-expressing neurons increases, ORFs are probed at high density even in the low
coverage case as the grids from different neurons increasingly overlap. (b) Minimal performance
difference between the high and low coverage cases in simulations with 50 neurons. (c) Reduction in
optical write-in error using cell-attached recordings as in Figure 4, but with low coverage. Reduction
in average write-in error, 74% (c.f. 85% with high coverage, Figure 4c).

defined a grid of stimulation points surrounding each neuron. In the spatial dimensions, the grid499

ranged from �20 µm to 20 µm relative to the centroid of the neuron in steps of 10 µm, and powers500

ranged from 30 mW to 70 mW in steps of 20 mW. The complete grid was thus given by the Cartesian501

product {�20,�10, 0, 10, 20}⇥{�20,�10, 0, 10, 20}⇥{30, 50, 70}. For opsin-expressing neurons502

that were spaced far apart, this coarse-resolution grid was sufficient because risk of OTS was low,503

and therefore ORF mapping was not needed at high detail. On the other hand, as the density of504

opsin-expressing neurons increased, the grids surrounding each neuron increasingly overlapped with505

each other, resulting in much denser sampling of the ORFs.506

For the synthetic optogenetics experiments (based on the cell-attached recordings), we used the same507

spatial grid spacing but used laser powers of 10, 25, and 40 mW to match the range of powers used508

in the underlying slice experiment, though note that the slice experiment had a denser spacing than509

our chosen 15 mW (see example loose-patch recordings below), which we chose to reduce the ORF510

mapping time. For the optogenetics experiments involving three spatial dimensions, we extended511

the grid sampling to include depths of �60 µm to 60 µm in steps of 30 µm. We also explored the512

effect of reducing the number of probed grid points to further reduce the time spent mapping ORFs,513

and found that Bayesian target optimisation maintained high performance when probing with a 3⇥ 3514

spatial grid of {�12, 0, 12}⇥ {�12, 0, 12} (Figure S1).515

We selected the parameters of the GP covariance kernel using 5-fold cross-validation on a separate set516

of recordings that were made on the same set of four cells, ensuring the hyperparameter selection was517

using out-of-sample data. Cross-validation was performed using a grid search over a set of possible518

hyperparameters: the possible radial lengthscales were 2, 4, 8, 16, the power lengthscales were 2,519

4, 8, 16, and the amplitudes were 1, 2, 4, 8, 16. For each hyperparameter combination ✓ and for520

each cell, we used Newton’s method to fit the GP-Bernoulli model to 80% of the trials in the loose-521

patch data, yielding an ORF estimate ĝ✓. On the remaining 20% of the trials (denoted as Theld-out),522

we evaluated the log-likelihood,
P

t2Theld-out
{yt ln(�(ĝ✓(xt))) + (1� yt) ln(1� �(ĝ✓(xt)))} . We523

averaged the log-likelihood across all five folds and across all four cells, and chose the hyperparameter524

combination ✓ that yielded the largest average log-likelihood, resulting in a radial lengthscale of 8, a525

power lengthscale of 16, and a kernel amplitude of 8.526

The GP parameters for generating the simulations in Figure 3, inferring the resulting ORFs, and527

generating synthetic optogenetics experiments with two and three spatial dimensions are given in528

Table S1. For reference, a typical ORF mean function is given in Figure S2.529
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Figure S2: Example mean function (shown at three powers) used for simulations (left column). Also
shown are four samples from the ORF prior corresponding to this mean function (right four columns).
Parameters given in Table S1.
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Parameter Symbol Value
Simulations (data generation)

Mean function excitability ⇢ 0.125
Mean function width �2

m 3⇥ 102 µm
Spike threshold ✓ 3.5
Kernel radial lengthscale �s 8 µm
Kernel power lengthscale �I 20 mW
Kernel amplitude ↵2 0.2
Kernel marginal variance �2

d 10�5

Simultaneously stimulated neurons during ORF mapping J 10
Simulations (ORF inference)

Mean function excitability ⇢ 0.125
Mean function width �2

m 3⇥ 102 µm
Kernel radial lengthscale �s 5 µm
Kernel power lengthscale �I 16 mW
Kernel amplitude ↵2 1
Kernel marginal variance �2

d 10�5

Learning rate for spike thresholds ({✓n}Nn=1) � 5

Number of random initialisations � 5

Synthetic optogenetics experiments (two spatial dimensions)

Mean function excitability ⇢ 0.175
Mean function width �2

m 3⇥ 102 µm
Kernel radial lengthscale �s 8 µm
Kernel power lengthscale �I 16 mW
Kernel amplitude ↵2 8
Kernel marginal variance �2

d 10�5

Learning rate for spike thresholds ({✓n}Nn=1) � 5

Number of random initialisations � 5

Synthetic optogenetics experiments (three spatial dimensions)

Mean function excitability ⇢ 0.175
Mean function width (x/y dimensions) �2

m 3⇥ 102 µm
Mean function width (z dimension) � 3⇥ 103 µm
Kernel radial lengthscale (x/y dimensions) �s 8 µm
Kernel axial lengthscale (z dimension) �z 32 µm
Kernel power lengthscale �I 16 mW
Kernel amplitude ↵2 8
Kernel marginal variance �2

d 10�5

Learning rate for spike thresholds ({✓n}Nn=1) � 5

Number of random initialisations � 5

Table S1: Parameters used for simulations and generating synthetic optogenetics experiments.
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6.8 Additional examples of optogenetic receptive fields from cell-attached recordings530

Figures S3 to S6 show examples of four ORFs that have been comprehensively mapped using two-531

photon optogenetic stimulation and cell-attached recordings of evoked spikes. Note the unpredictable532

differences in ORF shape across laser powers and depths, motivating a nonparametric approach.533

Figure S3: Loose-patch recording and inferred ORF (experiment 1/4).
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Figure S4: Loose-patch recording and inferred ORF (experiment 2/4)
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Figure S5: Loose-patch recording and inferred ORF (experiment 3/4)
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Figure S6: Loose-patch recording and inferred ORF (experiment 4/4)
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