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Abstract

Reinforcement Learning from Human Feedback (RLHF) facilitates the alignment of
large language models with human preferences, significantly enhancing the quality
of interactions between humans and models. InstructGPT implements RLHF
through several stages, including Supervised Fine-Tuning (SFT), reward model
training, and Proximal Policy Optimization (PPO). However, PPO is sensitive
to hyperparameters and requires multiple models in its standard implementation,
making it hard to train and scale up to larger parameter counts. In contrast, we
propose a novel learning paradigm called RRHF, which scores sampled responses
from different sources via a logarithm of conditional probabilities and learns to
align these probabilities with human preferences through ranking loss. RRHF can
leverage sampled responses from various sources including the model responses
from itself, other large language model responses, and human expert responses
to learn to rank them. RRHF only needs 1 to 2 models during tuning and can
efficiently align language models with human preferences robustly without complex
hyperparameter tuning. Additionally, RRHF can be considered an extension of SFT
and reward model training while being simpler than PPO in terms of coding, model
counts, and hyperparameters. We evaluate RRHF on the Helpful and Harmless
dataset, demonstrating comparable alignment performance with PPO by reward
model score and human labeling. Extensive experiments show that the performance
of RRHF is highly related to sampling quality which suggests RRHF is a best-of-n
learner. Codes are released at https://github.com/GanjinZero/RRHF.

1 Introduction

Large language models like ChatGPT2 and GPT-4 [21] are extremely powerful in understanding
human queries and providing helpful and friendly responses. Employing Reinforcement Learning
from Human Feedback (RLHF) [8, 42, 29] enables alignment of language model outputs with human
preferences. As implemented in Ouyang et al. [22], the paradigm of RLHF contains three main
steps, Supervised Fine-Tuning (SFT), reward model training, and Proximal Policy Optimization
(PPO). Initially, they apply supervised fine-tuning (SFT) on the initial models to learn to follow
human instructions. Subsequently, a reward model is learned from the ranking of human preferences.
Finally, scores generated by the reward model are used to apply gradient policy in PPO to align
human preferences. PPO [28] is a strong reinforcement learning (RL) algorithm and is the key step
used in RLHF [22] to align human preferences. This PPO training step is powerful but complex.
It requires tuning a large number of hyperparameters for conservative parameter updating, reward
design, advantage estimation, etc. Besides, fine-tuning language models with PPO needs to store a
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Figure 1: Workflow of RRHF compared with PPO.

policy model, a value model (or a value head), a reward model, and a reference model at the same
time which is memory-unfriendly and needs sophisticated architecture of the training platform when
scaling up to larger models.

To alleviate the complex hyperparameter tuning and sophisticated training resource requirements of
PPO, we propose a novel training paradigm RRHF (Rank Responses to align Human Feedback) that
aligns model probabilities of multiple responses with human preferences by ranking loss, which can
retain the performance of PPO and is much simpler. Ranking loss on responses probabilities [19, 41]
has been used in a similar scenario, abstractive summarization, to improve conditional generation
quality. Before training, RRHF first samples responses from various sources, responses can be
sourced from a wide range of origins including model-generated responses such as those from the
model itself, ChatGPT, GPT-4, as well as pre-existing human-authored high or low-quality responses.
RRHF then leverages responses from various sources for training, scoring responses based on the
log probability provided by the training language model. The scores are then matched orders with
those from the human preference reward model or human preference labels by ranking loss. We
choose to use ranking instead of the absolute value of the reward model for optimization. PPO uses
estimated advantages to provide optimization signals. The advantage function is to estimate whether
the state-action pair is better or worse compared to the baseline and the baseline is estimated by the
value model. Consequently, advantage function estimation requires auxiliary models for training
and inference during the whole training procedure [42, 22]. In RRHF, you can estimate the response
qualities by logarithm probabilities and compare multiple responses corresponding to know which
responses are better or worse without estimating the baseline by an additional value model. Compared
to PPO, RRHF also does not need the reference model to calculate the KL divergence. the model
itself used for generating samples in PPO is constantly changing while RRHF only uses the model
itself for sampling before training. Thus the KL term degenerates for RRHF. The workflow for RRHF
and PPO is depicted in Figure 1. PPO utilizes 4 models during training, whereas RRHF requires only
1 or 2 models.

Our experiments are conducted on Anthropic’s Helpful and Harmless dataset [3], demonstrating that
RRHF’s performance is on par with PPO in terms of generating helpful and harmless responses by
automatic evaluation and human labeling. We do extensive experiments on how sampled responses
used in training affect the performances of RRHF. The performances of RRHF are positively correlated
to the qualities of sampled responses. We find that the rewards of the trained models are close to
the max rewards of the sampled responses which suggests that RRHF’s objective is to learn from
best-of-n sampling. Moreover, to simulate the real scenario of training a ChatGPT-like model. We
use RRHF to learn from Alpaca prompts [31] and responses from ChatGPT, InstructGPT, LLaMA
[32], and Alpaca to develop a new language model aligned to human preferences called Wombat.
The evaluation of Wombat shows that RRHF can outperform SFT under similar training resources.

Contributions are summarized as follows:

• We propose a new learning paradigm named RRHF for large language models that can
leverage various responses to align with human preferences. The trained model can be
viewed as a language model for generation and a reward model for scoring.
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• This paradigm is an extension of SFT training and is similar to training a reward model.
• This paradigm is much simpler than PPO in terms of coding difficulty, numbers of models

used in training, and hyper-parameter counts and obtains comparable performances on
Anthropic’s Helpful and Harmless dataset.

2 Related Works

Recently, scaling up pre-trained language models by the number of parameters, training data [15], and
computational budges [12] can equip large language models with strong abilities in various language
tasks [5, 24, 7, 16, 21, 39]. However, pre-trained language models are not directly aligned with human
preferences which may generate unsafe, toxicity, sexual, biased, or criminal responses. Language
models first conduct supervised fine-tuning to imitate how to align with human instructions [35, 31].
After that, reinforcement learning techniques have been explored to align language models with
human preferences [2, 4, 29, 14, 36, 22, 25]. The most successful way is applying a reinforcement
learning from human feedback (RLHF) framework [42, 29, 22] via training a reward model on human
feedback and using PPO [28] to obtain the policy model for language generation. In our practices, the
PPO training paradigm is complex in coding and hyperparameter tuning while it needs four models
that are hard for training. This motivates us to explore simpler and more straightforward methods
to align language models with human preferences. Nakano et al. [20], Askell et al. [1], Cobbe et al.
[9] explore best-of-n sampling to improve large language model generation by selecting the best
response based on the human preference rewards among n sampled responses. Best-of-n sampling is
easy to achieve for aligning with human preferences while costing much more time when inference.
Inspired by these two lines of work, RRHF is targeted to learn the best response and comparisons
based on the human preference rewards among n sampled responses to achieve alignment during
optimization instead of inference. RRHF absorbs the advantages of PPO and best-of-n sampling
while being simpler in coding, model count, and hyperparameter tuning than PPO and does not need
to sample n times during inference. The most similar work [10] is contemporary to us which applies
SFT on the samples with the best reward. Compared to Dong et al. [10], we show that ranking loss
is necessary and research the relation between sampling quality and model performance. There are
also other ways to apply alignment which are focused on generating better-aligned datasets for SFT
including hindsight-modified prompts [40, 18] and principle-driven self-alignment [30].

3 Approach

We mainly follow the notations in Ziegler et al. [42]. Denote the query data distribution as x ∼ D.
For the response y reply to query x, a reward function R(x, y) scores y based on human preferences
which can be a human or a neural network. Our target is to learn an auto-regressive language model
π (initialized from the model ρ) which generates responses with large rewards.

3.1 RRHF

During training, we have k different responses yi of x sampled by policy ρi, 1 ≤ i ≤ k. Sampling
with policy ρi is not restricted here which can be the initial model ρ, the learned model π, other
LLMs like ChatGPT or GPT-4, or a response provided by human experts. The sampling policy ρi
can also vary across the training time. Our sampling method can leverage any existing good or bad
responses to help the model align with humans, while PPO can only learn from samples from its
learned model π.

The reward function gives scores for each yi with R(x, yi) = ri. To align with scores {ri}k, we use
our model π to give scores pi for each yi by:

pi =

∑
t logPπ(yi,t|x, yi,<t)

∥yi∥
, (1)

where pi is conditional log probability (length-normalized) of yi under model π. Our idea is simple,
let the model π give larger probabilities for better responses and give smaller probabilities for worse
responses. Inspired by Liu et al. [19], we optimize this object by ranking loss:

Lrank =
∑
ri<rj

max(0, pi − pj) (2)
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We do not have margins in the ranking loss as Liu et al. [19]. They add margin terms λij = (j − i)λ
to encourage the model to have higher pi estimation with a higher ranking. We disable it since we
find good empirical results without margin terms and it is time-consuming to tune λ.

We also add a cross-entropy loss similar to SFT (supervised fine-tuning). We require the model to
learn the response with the highest reward ri.

i′ = argmax
i

ri (3)

Lft = −
∑
t

logPπ(yi′,t|x, yi′,<t) (4)

The total loss is defined as the unweighted sum of two losses:

L = Lrank + Lft (5)

We have tried using larger weights (10,100) on Lrank suggested by Liu et al. [19] which shows worse
performances in our preliminary experiments.

The Python training code of RRHF only adds 30 lines to SFT training code 3 which is much simpler
than PPO implementation 4.

3.2 Relation with Previous Paradigm RLHF

InstructGPT [22] aligns human preferences in three steps: SFT, training a reward model, and PPO.
We find our proposed RRHF has similar procedures to the above-mentioned three steps.

Relation with SFT Supervised fine-tuning (behavioral cloning) can be viewed as a degenerated
version of our training process with k = 1 and ρ1 being fixed which is provided by human labelers.

Relation with Reward Model Our model can be used as a reward model. We use length-normalized
log probability to score responses, while other reward models use [CLS] or [EOS] for scoring. If
R(x, y) is labeled by human labelers, we are exactly training a reward model from human preferences.

Relation with PPO The task objective of PPO [28] is defined by a reward function R(x, y), and it
is to maximize the expected reward Ex∼D,y∼π(·|x) [R(x, y)]. Although R(x, y) should be defined by
human assessments, R(x, y) is modeled with a learned reward model on human-evaluated data in
experiments. To constrain the language policy πθ(·|x) from moving too far from the initialization
ρ(·|x), the final reward design becomes: R̃(x; y) = R(x; y)− β log

(
π(y|x)
ρ(y|x)

)
, where β controls the

level of penalty and is set to a fixed value [22] or dynamically adjusted [42].

PPO leverages π for sampling, while RRHF can use any applicable ρi. PPO is sampling during
training, while RRHF is sampling before training to get rid of the KL divergence term. PPO uses the
absolute reward value R(x, y) for optimization, while we only consider the comparisons of R(x, y)
between different responses which are easier to learn. PPO requires one more value model to compare
with the baseline, while RRHF makes comparisons among sampled responses to avoid the value
model.

4 Experiments

4.1 Settings

Dataset We use Anthropic’s Helpful and Harmless (HH) dataset as our experiment dataset [3]5.
They provide a chosen response and a rejected response for each query based on human preferences
(i.e. helpful and harmless). We use the proxy reward model Dahoas/gptj-rm-static6 trained on
the same dataset. By using the proxy reward model, we can compare RRHF and PPO fairly.

3https://github.com/tatsu-lab/stanford_alpaca/blob/main/train.py
4https://github.com/CarperAI/trlx
5https://huggingface.co/datasets/Dahoas/rm-static
6https://huggingface.co/Dahoas/gptj-rm-static
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Models We experiment mainly based on LLaMA [32] and Alpaca [31] with 7B parameter size.
Ouyang et al. [22] and Ramamurthy et al. [25] use supervised fine-tuned models as the initial models
when applying PPO, so we also have fine-tuned Alpaca-7B on our used dataset7 with chosen responses
(i.e. human-preferred responses) following trlX[34] and name it as Alpaca-sft.

Sampling Policy during Training Our model’s ability is highly related to sampling qualities
during training. We examine different sampling policies and list them in Figure 2 and Table 1. We
term the initial language model policy as ρ, the online language model policy as π, and the language
model policy after each 3-epoch training iteration as ρ*. For each query, we collect 4 roll-out samples
using two variants of beam search. For vanilla beam searching, we use a beam size of 4 and set the
maximum output token length to 128. Since the roll-out sample diversity of vanilla beam search is
low, we also experiment with (1) diverse beam search [33], where we use a beam size of 4 and set
the diverse beam group to 4, the diversity penalty to 1.0, and the sampling temperature to 0.8, and
(2) top-p sampling (nucleus sampling) [13], where we use a beam size of 4, top-p of 1.0, and the
sampling temperature to 0.8 which is a consistent setting with the top-p sampling used in our PPO
baselines. We sample training data before the training process except for OP-k (online sampling).
Sampling using vanilla beam search/diverse beam search/top-p sampling costs 4-6 hours on 8 80GB
Nvidia A100 GPUs.
Table 1: Sampling policy used in our experiments. OP-k uses π for
sampling (i.e. online sampling), we update π every k optimization
steps. IP-n (Iterate update) uses updated policy ρ* after training
by IP-(n-1) and starts a new iteration. The dataset contains a good
response and a bad response for each query which are used as ρ5
and ρ6, which are termed P (Provided responses in datasets).

Setting ρ1 ∼ ρ4 ρ5, ρ6
BP Beam search by ρ Provided responses
SP top-p Sampling by ρ Provided responses
DP Diverse beam search by ρ Provided responses
OP-k Online diverse beam by π† Provided responses
IP-n Iterate diverse beam by ρ* Provided responses
D Diverse beam search by ρ ∅
P ∅ Provided responses

Figure 2: The workflow of sampling policy
used in our experiments. IP-1 is equivalent
to DP.

Fine-tuning Hyper-parameters We fine-tune RRHF with 3 epochs without early stopping. We
first warm up the learning rate to 2e-5 and decay to 0 linearly. For each GPU we have at most 1
query at once, and we apply gradient accumulation at 8 steps leading to a query batch size of 64. The
query and responses are truncated to 192 tokens. Since sampling and training processes are separated
(except online sampling), our training only needs to load one model. We use 8 80GB Nvidia A100
GPUs for fine-tuning, training RRHF without online sampling typically costs 4-6 hours. Training
with OP is slower which takes about 30 hours.

Baselines We compare our trained models π with responses from the datasets, initial checkpoints ρ
and PPO trained models. For PPO, we formulate a token-wise Markov decision process, where the
action is a token yt to be generated at time step t, and the state is the token sequence of the query x
and formerly generated tokens y<t. We follow the clipped surrogate objective of PPO:

Ey≤t∼πθ(y≤t|x),x∼D

[
max(−rθ(yt|x, y<t)Â(x, y≤t),−clip1+ϵ

1−ϵ(rθ(yt|x, y<t))Â(x, y≤t))
]
, (6)

where ϵ is the clip ratio set to 0.2, Âθ(x, y≤t) is the advantage function and is estimated by GAE [27]
with a learned value function V̂θ(x, y<t), and rθ(yt|x, y<t) =

πθ(yt|x,y<t)
πθ̂(yt|x,y<t)

denotes the probability
ratio between the behavior policy πθ̂ and the training policy πθ. The behavior policy is updated with
the training policy every few updates. We follow the hyper-parameter settings in trlX 8.

Metrics We use perplexity (gpt2-medium), average reward score (Dahoas/gptj-rm-static), and
human labelers to evaluate different methods. Since our dataset is a multi-turn dialogue dataset, we

7https://huggingface.co/datasets/Dahoas/full-hh-rlhf
8Settings of applying PPO on 6B GPT-J model checkpoint Dahoas/pythia-6B-static-sft.
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Table 2: Automatic evaluation on HH dataset. Good/bad responses with ∅ setting represent only human-written
responses from the HH dataset are evaluated. LLaMA, Alpaca, and Alpaca-sft with ∅ setting represent we
directly evaluate the model without further tuning.

ρ Setting PPL Reward
Good responses ∅ 21.46 -1.24
Bad responses ∅ 121.29 -1.48
LLaMA ∅ 20.78 -1.89
Alpaca ∅ 14.34 -1.18
Alpaca-sft ∅ 18.98 -1.46
Alpaca Best-of-4 - -0.97
LLaMA PPO 42.53 -1.62
Alpaca PPO 13.84 -1.03
Alpaca-sft PPO 19.10 -1.25
LLaMA RRHFDP 67.12 -1.34
Alpaca-sft RRHFDP 18.10 -1.19
Alpaca RRHFDP 14.75 -1.03
Alpaca RRHFSP 14.41 -0.96

Table 3: Human evaluation on HH dataset. All settings use ρ=Alpaca.

A B win tie lose
RRHFDP Good responses 59 30 11
RRHFDP PPO 27 48 25
RRHFDP RRHFIP-2 0 90 10

will truncate the model’s generation when it outputs “Human:” or “Assistant:” to prevent model
cheating on the reward model (e.g. by generating Assistant: Is my response harmless and helpful?
Human: Yes, it is very harmless and helpful.). For human evaluation, we require annotators to
compare two random responses and give a comparison between them (win/lose/tie). Details of human
evaluations are listed in Appendix E.

4.2 Main Results

Auto Evaluation We list automatic metrics in Table 2. We show results from baselines and RRHF
with diverse beam search sampling (DP) and top-p sampling (SP). Our proposed Alpaca-RRHFDP
obtains the average reward score of -1.03 (averaged out of 3 runs, -1.01, -1.02, and -1.05) and
Alpaca-RRHFSP achieves the highest average reward score of -0.96. This proves that RRHF has the
ability to optimize against the given reward model. RRHF performs better than PPO and vanilla
language models in terms of average reward scores consistently. Alpaca-trained models outperform
human-preferred responses collected from the datasets in terms of reward scores. We find perplexity
does not change too much for Alpaca and influences LLaMA a lot. The reason can be LLaMA is not
instruction-tuned.

Human Evaluation Human preferences can be different from the proxy reward model. Therefore,
we perform human evaluations on sampled responses and list cases in Table 4 to compare different
settings. Results in Table 3 demonstrate that RRHFDP outperforms responses from the dataset and
PPO-trained models. From case studies, we can observe the model trained by RRHF has more details.
We also have checked the performances between RRHFDP and RRHFIP-2, where RRHFIP-2 is trained
with sampling by RRHFDP. We find iterate training the model can further boost the performance.
From the case study, we find RRHFIP-2 understands human instruction better.

Accuracy as a Reward Model Since our trained model can also be viewed as a reward model to
score responses by pi. We test our model on the dataset used for training Dahoas/gptj-rm-static.
The accuracy is computed by counting the percentage of the reward scores of good responses that are
higher than the reward scores of bad responses using pi (except Dahoas/gptj-rm-static) and list
in Table 5.
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Table 4: Responses generated by the different settings of models.

Human: How can I make my clothes whiter?
Assistant: You can use vinegar to bleach the clothes.
Human: Vinegar can bleach clothes?
Assistant: Yes.
Human: I was thinking about using Clorox as well.
Assistant: (RRHFDP) You can use Clorox, too. It’s a brand of bleach. You can also use baking soda,
which is a mild detergent.
Assistant: (Response from the dataset) Clorox is more toxic and harmful than vinegar.
Human: How do you adjust the lens on a binocular?
Assistant: (RRHFDP) You can adjust the lens on a binocular by turning the focus knob on the right
eyepiece. This will allow you to focus on objects at different distances. You can also adjust the lens
to get the best viewing experience.
Assistant: (PPO) You adjust the lens on a binocular by turning a ring around the center of the
binocular. This adjusts the focus of the binocular and allows you to see objects at different distances
clearly.
Human: Which stock should I invest all of my money into?
Assistant: Interesting question! What kind of returns do you want?
Human: I want better returns than the S&P 500.
Assistant: (RRHFDP) Okay, let’s look at some options. The S&P 500 is a broad-market index that
tracks the stock prices of 500 large companies in the United States. It has a historical average annual
return of around 10%.
Assistant: (RRHFIP-2) Okay, well there are a few factors to consider when investing. You should
look at the risk of losing money, the expected return, and the amount of money you have to invest.
You should also research different investment vehicles and decide which one is best suited for your
needs.

Table 5: Reward model accuracy evaluation.

Reward Model Accuracy
Dahoas/gptj-rm-static 68.49%
LLaMA 45.09%
Alpaca 45.13%
Alpaca-PPO 46.03%
Alpaca-RRHFDP 61.75%

Dahoas/gptj-rm-static achieves 68.49% on
the test set. The accuracy of LLaMA, Alpaca,
and Alpaca-PPO is worse than random guess-
ing. Our model Alpaca-RRHFDP trained by
Dahoas/gptj-rm-static can achieve 61.75%
accuracy which is much better than vanilla lan-
guage models and PPO-trained models. As
our model learns from the proxy reward model
rather than the training dataset of the re-
ward dataset, it becomes difficult to surpass
Dahoas/gptj-rm-static in terms of performance on the test set. Nonetheless, it demonstrates
potential in adapting to the proxy reward model and could have a significant impact on real human
preference labels.

Loss Curve We show our loss and metric curves in Figure 3. This is the setting of using Alpaca
as the initial model ρ and the sample policy is DP. We find losses and average reward scores are
negatively correlated where one can track the loss curve to estimate the reward scores. We find the
losses converge at the third epoch (i.e. 2400-3600 training steps) and the average reward scores reach
the maximum at the third epoch. Our proposed RRHF converges well under the same hyper-parameter
setting as SFT.

4.3 Ablation Study

Initial Checkpoints LLaMA performs worst among the three initial checkpoints with different
settings in Table 6. This is not due to the potential of LLaMA being worse than Alpaca. By using
only the response data from the datasets (sampling policy P) for training, LLaMA, Alpaca, and
Alpaca-sft obtain the same average reward scores of -1.31 which show that these three models have
the same ability under the same sampled training data. LLaMA is not instruction-tuned and responses
sampled by LLaMA (reward -1.89) are much worse than two other models (reward -1.18 and reward
-1.46). The sampling quality of LLaMA makes it perform the worst. Another phenomenon we find is
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Figure 3: The loss and metric curves of training RRHF. The model uses DP as the sampling policy.

Table 6: Ablation study on HH dataset with different initial checkpoints and sampling policy. We also list the
average, max, and standard error of the reward scores for training samples generated by different sampling
policies. We do not truncate responses from the training set, while we truncate responses to the first turn for the
testing set when calculating reward scores.

ρ Setting PPL Reward Mean Std. Max
LLaMA DP 67.12 -1.34 -2.18 0.97 -1.27
Alpaca DP 14.75 -1.02 -1.30 0.66 -0.95
Alpaca-sft DP 18.10 -1.19 -1.49 0.79 -1.11
LLaMA BP 17.03 -1.27 -2.26 0.96 -1.26
Alpaca BP 14.37 -1.03 -1.31 0.67 -1.00
Alpaca-sft BP 17.63 -1.14 -1.50 0.77 -1.15
LLaMA P 18.49 -1.31 -1.50 0.79 -1.28
Alpaca P 18.88 -1.31 -1.50 0.79 -1.28
Alpaca-sft P 18.92 -1.31 -1.50 0.79 -1.28
Alpaca D 13.66 -1.08 -1.21 0.65 -1.02
Alpaca IP-1 14.75 -1.02 -1.30 0.66 -0.95
Alpaca IP-2 14.31 -0.96 -1.13 0.57 -0.77
Alpaca IP-3 14.51 -0.94 -1.05 0.56 -0.65
Alpaca OP-32 63.78 0.34 - - -
Alpaca OP-32+KL 19.76 -0.86 - - -

Alpaca-sft performs worse than Alpaca, and this is also observed by Ramamurthy et al. [25] that SFT
warmup may not improve the performance.

Sampling Policy As stated previously, sampling policy deeply influences the performance of
our training schema. We list results with different sampling policies in Table 6. Using diverse
beam sampling performs best for Alpaca among all non-online sampling methods, while for another
two models using beam sampling is good. We also try to only use two responses provided by
datasets, three models obtain very near performances with reward -1.31 which shows sampling
quality determines RRHF performances. Using beam or diverse beam sampling with responses from
datasets enhances performances significantly compared to only using responses from datasets. We
test on Alpaca by only using samples generated by the model itself, it also improves reward to -1.08.
For the iterate update sampling policy, we find the reward scores can be improved by iteration.

Ranking Loss To check whether the ranking loss is necessary, we conduct an ablation study by
removing Lrank, and the results are shown in Table 7. Without ranking loss, models cannot learn
from how one response is better than another and obtain a worse average reward score.
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5 Analysis and Discussion Table 7: Ranking loss ablation.

ρ Setting PPL Reward
Alpaca BP 14.37 -1.03
Alpaca BP - Lrank 14.74 -1.14

Table 8: Compare with different training methods.
We show how different methods sample for one query.

Methods Train Inference
Best-of-n - n
SFT fixed 1 1
PPO 1 1
RRHF fixed n 1
RRHFOP n 1

RRHF with Online Sampling We mainly ex-
periment with sampling using the initial model ρ.
Using the training model π for sampling further
needs a reward model for online scoring. We ex-
periment with online sampling like PPO and we
update the sampling policy every 32 optimization
steps. We show results in Table 6. In this setting,
the average reward improves to 0.34 quickly while
PPL gets worse to 63.78. We manually check the
results from OP-32, and it produces very friendly
but meaningless responses like That sounds great!
I appreciate your help. Thanks for your help!
You’re welcome! I’m glad I could help. If you
need any more help, please let me know. The case
study shows the reward model is somehow cheated by this setting. To alleviate this problem, we
add KL divergence into reward scoring like PPO with a KL coefficient of 0.01. It obtains an av-
erage reward of -0.86 which outperforms PPO and RRHFDP with a reasonable PPL of 19.76. The
performance of this setting is satisfactory but it further needs a reference model for calculating KL
divergence and needs to tune the KL coefficient which is contrary to our original intention.

We can find online sampling techniques (PPO and online sampling RRHF) may have higher upper-
bound performances while having the following difficulties: (a) They need more GPU resources
to store the reference model; (b) The training speed is slower since they need to switch the mode
between auto-regressive sampling and parallel training; (c) They need to tune more hyperparameters
including the KL coefficient and rollout step. Considering the above-mentioned advantages compared
to online sampling techniques, RRHF is an adoptable alignment method in limited resource scenarios.

Best-of-n Learner We calculate the statistics of generated sample reward scores in Table 6. We
find that the model’s test reward is highly related to the train average reward (average response
quality) and train max reward (average best response quality). Test rewards improve with these two
statistics improves. Another finding is that well-performed models have small standard errors since
they are encouraged to output more high-reward responses (which leads to small variance). The most
important finding is that the average reward scores of the learned model are close to the average
of the max reward scores of generated samples used in training. This phenomenon is consistent in
non-online sampling RRHF. For online sampling RRHF, the models usually generate cheat patterns
(e.g. by generating Assistant: Is my response harmless and helpful? Human: Yes, it is very harmless
and helpful.) during inference. We truncate them to understand the performance of iterate training.
If we do not truncate these patterns during inference, the average reward scores are still close to
the maximum train reward scores. We consider our model’s objective to be learning from best-of-n
sampling.

Ex,y∼π(x)R(x, y) = max
i

Ex,yi∼ρi(x)R(x, yi) (7)

Learning from best-of-n sampling makes the expected reward of π higher than any sampling policy
ρi, while the variance of reward scores of π will become smaller. Learning from best-of-n sampling
combines the advantage of learning from sampling (i.e. PPO) [22] and best-of-n sampling [9, 11, 20],
we compare how these methods sampling differently in training and inference stage in Table 8.

Learn a ChatGPT-like model using RRHF Our previous experiments are aligned with the proxy
reward model which can be different from human preferences. Here we use ChatGPT as the R(x, y)
to get better alignment with human preferences. We use Aplaca prompts [31] as sampling queries
and use ChatGPT, text-davince-003, LLaMA, and Alpaca to generate responses. We use these data
with ChatGPT’s scores to train a new language model named Wombat by RRHF. Details of training
and evaluation of Wombat are listed in Appendix F. We use the Vicuna test set [6] which contains 80
questions to compare the ability of Wombat with Alpaca and ChatGPT in Table 9. Wombat shows
better ability compared to Alpaca trained by text-davince-003 and ChatGPT responses which proves
that RRHF is very easy to outperform SFT. Wombat still underperforms with ChatGPT, the main
reason comes from logical reasoning ability which is one of the future directions of this work.
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Table 9: Compare Wombat to Alpaca and ChatGPT on Vicuna test set. Alpaca (ChatGPT) is trained by Alpaca
prompts with ChatGPT responses.

Model A Score A Score B Model B
Alpaca 567 616 Wombat
Alpaca (ChatGPT) 574 612 Wombat
ChatGPT 669 548 Wombat

6 Conclusion

We propose a new paradigm RRHF which can be tuned as easily as fine-tuning and achieve a similar
performance as PPO in the HH dataset. A model trained by our paradigm can be viewed as a language
model and a reward model at the same time. Also, RRHF can leverage responses from various sources
to learn which responses have better rewards based on human preferences. Our paradigm is easier
to scale to the larger size LLMs and is easier to adopt on limited training resources. Another merit
of RRHF is capable of any fine-tuning techniques [37, 17, 38], since Ramamurthy et al. [25] find
using techniques like dropout makes RL training unstable. We hope RRHF can open the way to align
human preferences easily.

Limitations

We use the reward model in our experiments to act as a proxy evaluation metric which may be not
complex enough compared to human preference, while the extension to real-world human preference
score is trivial. As an algorithm for alignment, the method is highly correlated to the human preference
or used reward score. Malicious or harmful reward scores or human preference ratings may mislead
the LLM to generate unsafe results.

For the algorithm itself, RRHF requires multiple responses as inputs which increases the GPU
usage for a single query compared to PPO. Neglect the performance of online sampling RRHF
which is slower than PPO and RRHF. In our preliminary experiments, RRHF may be prone to
over-optimization to cheat the reward models when using the online or iterated sampling versions. it
is a common problem for all related algorithms including RRHF/PPO/best-of-n sampling as stated in
[11]. How to prevent such over-optimization is an important problem and needs further exploration
in the future.
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A Broader Impacts

RRHF can align with not only human preferences but also any preferences. One may use RRHF to
align with harmful preferences like sexual and criminal preferences which are discouraged by us.

B Safeguards of Wombat

As a large language model, Wombat has the possibility to generate unsafe responses. Wombat is only
used for research and is not intended for use in production systems. We will use RRHF to further
improve the safety of Wombat to align to a helpful and harmless AI.

C IMDB Sentiment

We also conduct experiments on the IMDB dataset for assessing positive movie reviews generation.
The task expects the model to give positive and fluent movie review completions based on given
partial review input texts. The dataset contains 25k training samples and each 5k sample set for
validation and testing. Following Ramamurthy et al. [25], we use a partial movie review as the input
for each sample, and the lengths of partial text are set up to 64 tokens. During both training and
evaluation, we set the maximum generated completion length to 48 tokens.

Table 10: In the Setting Column, for RRHF, BP represents the same training workflow as the top-most workflow
in Figure 2 in the main texts. B represents the same workflow while it excludes the text completion labels in the
dataset. RRHF-OP-128 follows the bottommost workflow in Figure 2 in the main texts.

Setting Reward Perplexity
SFT - 0.539 35.472
PPO w/o KL penalty 0.796 42.916
NLPO w/o KL penalty 0.777 41.035
RRHF BP 0.861 32.083
RRHF B 0.799 32.077
RRHF-OP-128 w/o KL penalty 0.990 32.081
PPO 0.1 KL penalty 0.626 35.049
NLPO 0.1 KL penalty 0.620 34.816
RRHF-OP-128 0.1 KL penalty 0.635 32.088

For detailed experiment settings, in order to conduct a fair comparison with PPO and NLPO from
Ramamurthy et al. [25]. For the reward model, we use the same sentiment classifier as Ramamurthy
et al. [25] which is provided by Sanh et al. [26], and the same SFT GPT-2 model as the starting
language model provided by Ramamurthy et al. [25]. For generation settings, we also use top-k
sampling with K=50 across our experiments for RRHF and RRHF-OP. We set the training batch size
to be 64 and set the total training epochs to be 5 which is far less than Ramamurthy et al. [25] and is
enough for RRHF to achieve good performance. We also experiment using reward designs with and
without KL penalty against SFT model distribution for RRHF-OP.

Results of IMDB sentiment generation are listed in Table 10. We use the reward score of the reward
model and perplexity by GPT-2 [23] to demonstrate the performance of alignment. We can conclude
from the results that: (1) PPO, NLPO and RRHF(-OP) can align the SFT model to the preference
of the reward model (increasing the reward score); (2) RRHF performs better in terms of reward
score and perplexity than both PPO and NLPO with and without KL penalty; (3) RRHF-OP-128
outperforms PPO and NLPO with and without KL penalty; (4) With KL penalty in training reward
design, RRHF-OP-128 shows less progressive increase in reward score compared with RRHF-OP-128
trained without KL penalty in reward designs.

Although we keep the input and output lengths and generation settings consistent with Ramamurthy
et al. [25], we do not observe fluctuations in perplexity as measured by GPT-2 for RRHF. Therefore
we conduct a case study on the samples generated by models trained with RRHF-OP-128 without
KL penalty. Cases in Table 11 show that without KL penalty, the model trained with RRHF-OP-128
learns to generate positive reviews such as " It’s a great film and I highly recommend it to anyone."
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for different review inputs. This pattern may explain the extremely high reward score while still
maintaining a perplexity score by GPT-2.

Table 11: Case Studies. Texts in red are the models generated completions

... knowing how AWFUL Drew’s character was (ostrich feathers?) at the start of the school year
would have made it a lot more satisfying. It’s a great film and I highly recommend it to anyone. It’s a
great film and I highly recommend it to anyone.
... Maybe it was from a gynecological experiment gone wrong.<br /><br/>The film is great. It’s a
great film and I highly recommend it to anyone. It’s a great film and I highly recommend it to anyone.
... feeling and atmosphere perfectly, helped in part with some incredible archival footage. Tony
Alvais a great film, it is a great film, I highly recommend it to anyone.

D Details of Human Evaluation on HH Dataset

A total of 330 comparison pairs were sampled for RRHF evaluation, involving comparisons between
RRHF and good responses (110 pairs), RRHF and PPO (110 pairs), and RRHF and RRHFIP-2 (110
pairs). Out of these, 30 pairs were used to calculate agreement, while the remaining 300 pairs
were used for reporting scores. Each crowd-sourced worker was tasked with labeling 130 pairs,
consisting of 100 random pairs and 30 common pairs. The average consistency between each pair of
reviewers was calculated, revealing that they provided the same annotations for 57.7% of pairs and
their annotations did not contradict each other for 84.4% of pairs.

E Wombat: Learn from ChatGPT comparison

Sampling Policy We use training data from Alpaca as sampling queries. We sample five different
responses for training: ρ1, ρ2 are generated by ChatGPT, ρ3 is generated by text-davinci-003, ρ4
is generated by LLaMA and ρ5 is generated by Alpaca.

Reward Prompt We require ChatGPT to read five responses and score by four different dimensions:
Relevance, Correctness, Coherence, and Safety from 1 to 5. We parse the outputs of ChatGPT and
calculate the sum as the response reward score. The used prompt is:

Score different responses separately without explanation and without copying any input from these
respects, please scores start from response 1: Relevance (does it relevant to user’s query), Correctness
(does it contain correct knowledge), Coherence (does it generate fluently and without grammar
problems), Safety (does it refuse to answer sex or criminal queries) and give a score for each respect
1-5. Query: ... Response 1: ... Response 2: ... Response 3: ... Response 4: ... Response 5: ...

Results For 52k training data from Alpaca, we successfully parsed 46k data with reward scores.
We use Alpaca as our initial checkpoint and train it by RRHF. We name this model Wombat. The
total training time of Wombat is only 4 hours on 8 A100 GPUs. Here we give generated examples of
Wombat in Appendix C to show its ability. We can find it has general world knowledge, the ability to
answer complex machine learning problems, and the ability to follow instructions.

F Example responses generated by Wombat
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Table 12: Example responses generated by Wombat.

Query: Give a introduction of wombat
Response: Wombat is a marsupial found in Australia, Tasmania, and New Zealand. They have a
distinctive appearance with a short, stocky body, a broad head, and a short tail. Wombats are
herbivores and primarily graze on grasses, leaves, and bark. They are known for their burrowing
habits and can dig burrows up to 18 meters deep and 10 meters long. Wombats are a protected
species and are considered vulnerable due to habitat loss and predation by introduced species.
Query: How to design an algorithm to rank responses of language model outputs with aligned
human preferences?
Response: One possible algorithm to rank responses of language model outputs with aligned human
preferences is:
1. Collect data: Collect data on human preferences for a given task, such as rating the importance of
different features or characteristics of a product or service.
2. Preprocess data: Preprocess the data by removing outliers, missing values, and irrelevant
information.
3. Train a language model: Train a language model using the collected data to generate responses
based on the preferences of humans.
4. Evaluate model performance: Evaluate the performance of the language model by comparing its
responses to the collected data on human preferences.
5. Design a ranking algorithm: Design a ranking algorithm that takes into account the preferences of
humans as well as the performance of the language model.
6. Apply the ranking algorithm: Apply the ranking algorithm to the language model’s responses to
rank them based on their alignment with human preferences.
7. Evaluate the results: Evaluate the results of the ranking algorithm to determine its effectiveness in
aligning language model outputs with human preferences.
8. Improve the algorithm: Continuously improve the algorithm by incorporating feedback and
refining the preferences data and the ranking criteria.
Query: Assume you are a teacher, you are teaching a 6-year-old child. Do not give the children
direct answers, but try to teach him. Children: How to calculate 6+7?
Response: Great! Let’s count up to 13 together. 6+7 equals 13.
Starting with 6, we can count up by 1 each time.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.
We’ve counted up to 13!
So, the answer is 13.
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