
Appendices

A Low-Rank Matrix Factorization with Non-Uniform Sampling

In this section, we demonstrate the effectiveness of low-rank matrix factorization in recovering the
label relationship matrix.

We first present four important facts:

f1: the rank of the matrix is equivalent to the number of classes.

f2 (homophilous node pair): if Ãi,j = 1, then Ẑi,: = Ẑj,:.

f3 (heterophilous node pair): if Ãi,j = −1, then Ẑi,: ̸= Ẑj,:. Specifically, this also means that if
Ẑi,k = 1, then Ẑj,k = −1.

f4 (symmetry): Ẑi,j = Ẑj,i.

We consider a toy example (without self-loops),

Ẑ =

 1 −1 −1 1
−1 1 −1 −1
−1 −1 1 −1
1 −1 −1 1

 Ã =

0 −1 −1 1
0 0 −1 0
0 0 0 0
0 0 0 0

 (14)

In a standard LRMF problem, it is not possible to recover Ẑ from Ã since no entries are observed
for the third and fourth rows. However, we can demonstrate how LRMF effectively performs in this
situation. Assuming we know that the number of classes is 3, we can obtain a solution UVT , where
each Ui,: ∈ {1,−1}3 is a 3D vector (f1), with Ui,k = 1 if vi belongs to class k, and Vi,: ∈ {0, 1}3

is an indicator vector with Vi,k = 1 indicating vi belonging to class k. This provides Ẑ = UVT .

Recovery: We begin by assuming v1 is in class 1, resulting in U1,: = [1,−1,−1] and V1,: =

[1, 0, 0]. By observing Ã1,4, we know that v4 is also in class 1, resulting in U4,: = [1,−1,−1] and
V4,: = [1, 0, 0] (f2). By analyzing Ã1,2 and Ã1,3, we determine that v2 and v3 do not belong to class
1. We also know that since Ã2,3 = −1, v2 and v3 must belong to different classes (f3). Therefore,
we can assign

U2,: = [−1, 1,−1] V1,: = [0, 1, 0]

and
U3,: = [−1,−1, 1] V1,: = [0, 0, 1]

Put all together, we guess

U =

 1 −1 −1
−1 1 −1
−1 −1 1
1 −1 −1

 V =

1 0 0
0 1 0
0 0 1
1 0 0

 . (15)

The correctness of this solution can be easily checked:

Ẑ = UVT (16)

In this example, we successfully recover a 4 × 4 matrix despite having only 4 observed samples.
Notably, the observations are not uniformly distributed, with 3 out of 4 located in the first row. Our
approach involves using f1 to select q = 3 for U and V, f2 to infer U4,: and V4,:, and f3 to infer the
second and third rows of U and V. This simple illustration demonstrates that LRMF is particularly
well-suited for label relationship matrix prediction tasks.

In the specific LRMF problems, we can teach the LRMF model these facts by adding these missing
values to the observation set. Figure 7 shows that when the node degree distribution is non-uniform,
the LRMF model only attains 69% accuracy. However, we achieve nearly perfect recovery from only

14

(a) LRMF (b) LRMF using f4 (c) LRMF using f2 and f4 (d) Node degree distribu-
tion

Figure 7: LRMF results with an expected observation rate of 0.05.

(a) LRMF (b) LRMF using f4 (c) LRMF using f2, f3, and
f4

(d) Node degree distribu-
tion

Figure 8: LRMF results with an expected observation rate of 0.05. The node degree distribution is
highly skewed, making it similar to a power-law distribution.

5% observed entries by incorporating f4 into the LRMF model. Surprisingly, by further introducing
f2, the label relationship matrix is predicted with 100% accuracy. Figure 8 demonstrates that even
with a more skewed node degree distribution and a lower observation rate, the model remains highly
effective when using these facts. Exact recovery theoretically necessitates uniform sampling and a
significant number of observations. In practice, it is possible to achieve perfect recovery of the label
relationship matrix even with a limited number of observations and non-uniform sampling, thanks to
the four previously mentioned facts.

Consequently, we conclude that LRMF serves as an excellent method for recovering the label
relationship matrix, and the theoretical perfect recovery conditions are not always necessary. Our
approach for integrating the four significant facts into the LRMF model allows perfect recovery from
non-uniform samples.

B Impact of the Accuracy of the Estimated Signed Adjacency Matrix

This section analyzes the LRMF’s sensitivity to the accuracy of the generated signed adjacency matrix.
As previously demonstrated, we have established the effectiveness of the procedure for estimating the
signed adjacency matrix. A precise estimation only requires moderately accurate pseudo-labels. This
is because the focus lies on the label relationship between two nodes and not their precise classes.
However, the objective of this section is to explore the model itself. LRGNN employs a specifically
designed element-wise capped norm to identify incorrect estimations and assign smaller upper bounds
to their contribution to the loss function.

In this section, an experiment is conducted to verify the effectiveness of the capped norm and to
demonstrate the rationale for the design of ci,j . The estimation error can be measured by |yi,j − Ãi,j |,
where yi,j = 1 for matching labels and −1 otherwise. Ideally, a large |yi,j − Ãi,j | indicates that Ãi,j

is deviated from the ground truth label relationship yi,j , thus it should be assigned a small ci,j value,
improving the chance of detecting it as an outlier. In order to enable comparisons, we normalize
ci,j using the formula ci,j =

ci,j∑
(i,j)∈E ci,j

. The capped norm is capable of identifying incorrect

15

Texas Wisconsin Cornell Actor
0.00

0.01

0.02

0.03

0.04

S
co

re

Sc
ScEuc

ScAbs

ScAbs

Figure 9: Gains achieved by the element-wise capped norm under different definitions of τi,j .

estimations if and only if Sc = 1
|E|

∑
(i,j)∈E(1− ci,j)|yi,j − Ãi,j | > 0, provided that the average of

ci,j is 1. To justify the design of the parameter ci,j , we also execute an ablation study on the three
components of ci,j . We denote the removal of the Euclidean term from ci,j as ScEuc. Likewise,
ScAbs and ScAtt represent the removal of the absolute value term and attention term, respectively.
Figure 9 demonstrates the results. We observe a consistent gain (Sc > 0) for all datasets resulting
from the use of the capped norm. The findings suggest that our outlier detection algorithm can identify
untrustworthy estimations and assign more restrictive thresholds to them. Consequently, LRGNN can
effectively mitigate the impact of inaccurate estimations and limit their effect on empirical loss. The
ablation study also provides evidence for the three components used in ci,j .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ec

lin
e

of
 M

ea
n

Te
st

 A
cc

ur
ac

y
(%

) Actor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Chameleon

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Citeseer

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ec

lin
e

of
 M

ea
n

Te
st

 A
cc

ur
ac

y
(%

) Cora

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cornell

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pubmed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ec

lin
e

of
 M

ea
n

Te
st

 A
cc

ur
ac

y
(%

) Squirrel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Texas

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Wisconsin

Figure 10: The mean test accuracy decreases as the standard deviation of the Gaussian noise increases.

To empirically validate the robustness, we conduct further analysis of LRGNN’s response to a low-
quality signed adjacency matrix by introducing random noise. This reproduces a scenario in which
the signed adjacency matrix is randomly distorted by Gaussian noise. To be precise, we create a noisy

16

signed adjacency matrix, Anoise, from the original matrix Ã by appending a Gaussian noise matrix
N. In N, we set the value of Ni,j to ϵi,j , if (i, j) ∈ E and zero otherwise, where ϵi,j is independently
and identically sampled from a N (0, σ2) distribution. We select σ from the set {0.1, 0.2, ..., 1.0}.
We present findings on the mean test accuracy reduction of LRGNN between using a corrupted signed
adjacency matrix and using a normal one in Figure 10. We observe that for all datasets, the declines
are less than 3%, regardless of the value of σ. It is important to note that entries of Ã fall within the
range of -1 to 1, and the noise may cause significant changes when |ϵi,j |

|Ãi,j |
> 1. The results suggest

that the quality of the generated signed adjacency matrix has a not critical impact on LRGNN’s
performance, and the outstanding performance of LRGNN is not conditioned on a very accurate
signed adjacency matrix. This can be credited to the element-wise capped norm.

C Additional Experimental Results

C.1 Spectral Clustering with Z

(a) Texas (b) Squirrel

(c) Cora (d) Citeseer

Figure 11: Visualization results of the first three eigenvectors by rows.

17

This section demonstrates how to take advantage of Z to identify clusters. We show that the true
clusters can be identified from the eigenvectors of Z. This is because the eigenvectors of Ẑ have a
nice property. Let u ∈ Rn×1 be an arbitrary eigenvector of Ẑ with an associated eigenvalue λ being
nonzero. u can reveal the membership of each node as ui = uj iff vi and vj are in the same cluster.
Suppose vi and vj are in the same cluster, we have Ẑi,:u = λui and Ẑj,:u = λuj . Since Ẑi,: = Ẑj,:,
this leads to ui = uj . On the other hand, if vi and vj belong to different clusters, i.e., Ẑi,: ̸= Ẑj,:,
then ui ̸= uj . To illustrate this property, we visualize the eigenvectors associated with the largest
three eigenvalues of Z obtained from different datasets. specifically, we construct a matrix ∈ Rn×3

with these three eigenvectors as columns and utilize each node’s corresponding 3D row vector as its
coordinate. Figure 11 shows the visualization results. The nodes in the same cluster are agglomerated
together, while the nodes of different clusters are split apart, demonstrating a compelling clustering
effect. This empirically confirms LRMF’s effectiveness in spectral clustering, thus enabling us to
employ the derived Z for graph spectral clustering.

C.2 Impact of Parameter λ on the Rank of the Solution

In this part, we investigate the impact of the regularization parameter λ. First, we will demonstrate the
connection between LRMF and the nuclear-norm regularized problem. Mathematically, the LRMF
problem

min
Um×r,Vn×r

1

2
∥PΩ(X−UVT)∥2F +

λ

2
(∥U∥2F + ∥V∥2F), (17)

and the nuclear-norm regularized problem

min
Zm×n

1

2
∥PΩ(X− Z)∥2F + λ∥Z∥∗, (18)

can be connected by the following theorem.
Theorem 3. [Mazumder et al., 2010] Let X be a m× n matrix with observed entries indexed by Ω.
Let r = min(m,n), then the solutions to (17) and (18) coincide for all λ ≥ 0.

This is the direct result of the following lemma (see, e.g., Srebro et al. [2004] for proof).

∥X∥∗ = min
X=UVT

1

2
(∥U∥2F + ∥V∥2F). (19)

The above lemma implies that one can bound the trace norm of UVT using Frobeniums norm regu-
larization 1

2 (∥U∥2F + ∥V∥2F). Thus, the λ parameter of the LRMF problem serves as a regularization
parameter responsible for controlling the nuclear norm of the solution. Raising λ will eventually
decrease the rank of the solution. To substantiate this, we have illustrated the ranks of the matrices U,
V, Z, and Ẑ in Figure 12, concerning differing values of λ. It is clear from the figure that the ranks
of these matrices diminish considerably as λ increases. Furthermore, it is worthwhile to note that
when λ is small, the ranks of U and V differ significantly from the true rank of 3. However, the rank
of Z is much smaller than that of U and V. Notably, when λ is set to 5, 10, and 20, Z and Ẑ exhibit
equal ranks, which means that LRMF provides a good solution. Figure 13 illustrates that the change
in training and test MSE loss follows a similar pattern as the changes in ranks. The optimal result is
achieved when the rank of Z is the same as that of Ẑ.

C.3 Ablation Study.

In this section, we perform an ablation analysis to evaluate the effectiveness of each component in
the LRGNN model. Specifically, we examine five variants: (1) LRGNN-MF, which excludes the
attention term from the objective function, (2) LRGNN-Uni, which replaces the signed adjacency
matrix with the uniform sparse adjacency matrix used in GCN, (3) LRGNN-Reg, which replaces
the matrix factorization term with a regularization term and removes the projection function, (4)
LRGNN-DA, which exclusively relies on node features to generate the initial node representations
H(0), and (5) LRGNN-NC, which drops the capped norm from the objective function. We compare
the performance of these variants with that of LRGNN and report the node classification results in
Table 4. Our analysis reveals that LRGNN-Reg and LRGNN-Uni are the least effective of the five
variants. This observation aligns with our intuition, as LRGNN-Reg and LRGNN-Uni impair the
LRMF model, while other components are the complements to LRMF model. Therefore, removing
them has no direct impact on the LRMF model.

18

0.5 1 5 10 20 50 75 1000

5

10

15

20

25

30

Ra
nk

q = 30
U
V
Z
Z

Figure 12: The rank of the matrices obtained when different λ are applied.

0.5 1 5 10 20 50 75 100
0.4
0.6
0.8
1.0
1.2
1.4
1.6

M
SE

 L
os

s

q = 30
trainining
test

Figure 13: Training and test mean square error losses with respect to different λ values.

C.4 More Visualization Results

In this section, we decompose the derived matrix Z into two parts: Z = MF + Att, where

MF = (ÂV(k))[(1 + γ)V(k)TV(k) + λIq]
−1V(k+1)T , (20)

Att = (γH(0)WH(0)TV(k))[(1 + γ)V(k)TV(k) + λIq]
−1V(k+1)T , (21)

such that Z = MF + Att, where MF denotes the matrix factorization term while Att denotes the
attention term. We analyze the contributions of two matrices to enhance our understanding of
their respective roles. Figure 14 reveals that the MF matrix exhibits a prominent block-diagonal

Texas Wisconsin Cornell Actor Squirrel Chamel. Cora Citeseer Pubmed
LRGNN 90.27±4.49 88.23±3.54 86.22±6.50 37.34±1.78 74.38±1.96 79.16±2.05 88.33±0.89 77.53±1.31 90.16±0.64

LRGNN-MF 89.19±4.90 84.71±4.75 83.51±6.32 35.69±0.95 68.23±4.38 71.48±4.06 87.88±1.03 77.30±1.39 89.05±0.43
LRGNN-Reg 88.38±2.43 82.94±4.11 83.51±5.85 36.61±1.17 65.83±2.19 69.12±0.84 86.92±0.96 75.57±1.60 87.36±0.25
LRGNN-Uni 87.84±3.67 82.94±4.72 81.89±5.13 34.53±1.08 69.45±1.78 68.46±1.38 87.67±1.38 77.29±1.29 88.62±0.18
LRGNN-DA 89.19±4.15 86.86±3.58 85.95±7.66 36.86±1.08 72.52±1.78 75.65±1.38 88.23±1.38 77.32±1.29 89.45±0.18
LRGNN-NC 88.34±2.89 86.86±3.89 85.14±6.53 36.10±1.48 73.12±2.06 77.38±1.68 87.87±1.68 76.32±1.02 89.06±0.25

Table 4: Ablation study.

19

(a) Texas

(b) Squirrel

(c) Cora

(d) Citeseer

Figure 14: Decomposing Z into matrix factorization (MF) part and attention part (Att) as Z =
MF + Att.

20

roman-empire amazon-ratings minesweeper tolokers questions
GCN 73.69 48.70 89.75 83.64 76.09
GAT 80.87 49.09 92.01 83.70 77.43

SAGE 85.74 53.63 93.51 82.43 76.44
H2GCN 60.11 36.47 89.71 73.35 63.59

GPR-GNN 64.85 44.88 86.24 72.94 55.48
FSGNN 79.92 52.74 90.08 82.76 78.86
GloGNN 59.63 36.89 51.08 73.39 65.74
FAGCN 65.22 44.12 88.17 77.75 77.24
LRGNN 81.27 49.43 91.62 75.72 79.53

Table 5: Node classification accuracy (%).

structure, while the structure of the Att matrix appears ambiguous. This indicates that the efficiency of
LRGNN primarily originates from the MF term of the objective function. Nevertheless, an improved
performance due to the Att matrix is also evident. In the case of the Squirrel dataset, the bright entries
of the MF matrix predominantly express homophilous information. Conversely, the dark entries of
the Att matrix convey the heterophilous information. This combination of the MF and Att matrices
allows the model to leverage both homophilous and heterophilous information, leading to an overall
improvement in expressiveness. Additionally, for all datasets, Z demonstrates superior structural
coherence compared to the MF and Att matrices, judged by both its block-diagonal appearance and
the distribution patterns of within- and between- class entries therein. In summary, while the MF
term plays a crucial part in powering LRGNN, the attention term also strengthens the model.

C.5 Results from Additional Datasets

A recent study [Platonov et al., 2023] highlights the limitations of commonly used datasets in
evaluating GNNs under heterophily, such as small scale and the potential leakage of testing data.
They also propose new datasets to address these issues and advance evaluation practices. Here
we present node classification results obtained from these newly introduced datasets. As indicated
in Platonov et al. [2023], traditional GNNs including GCN, GAT, and SAGE generally perform better
than heterophily-specific models on these datasets. Our results in Table 5 show that the performance
of LRGNN is comparable to FSGNN and surpasses other heterophily-specific models.

D Optimization Algorithm

D.1 An Iterative Method

Practical solutions to LRMF fall into two main camps, i.e., Alternating Least Squares algorithm
(ALS) [Wiberg, 1976, Shum et al., 1995, Huynh et al., 2003] and Newton methods [Buchanan and
Fitzgibbon, 2005, Okatani and Deguchi, 2007, Chen, 2008]. The basic idea of ALS is that once one
of U and V is fixed, (5) is convex in the other one. ALS decouples this problem into n separate ridge
regressions. Since the positions of the missing values of each column are different, ALS needs to
separately solve these n ridge regressions. Albeit Newton methods can obtain global optimum within
each dimension subset at each descent step, they take a long time per iteration. We refer the interested
reader to Davenport and Romberg [2016] for a survey. Although these methods can provide accurate
recovery in general, they need to compute SVD on a n× n coefficient matrix. We adopt a SVD-free
algorithm called SoftImpute-ALS [Hastie et al., 2015].

Most traditional approaches randomly initialize U and V. In this paper, we employ a more neural-
style initialization manner.

U(0) = argmin
U

∥Ã−UV(0)∥22, V(0) = finit(H
(0)) (22)

Here finit(·) denotes a fully-connected layer or graph convolution layer, depending on the homophily
ratio. We empirically found that this initialization can provide better results within a few iterations
for updates.

21

Inspired by the reweighted methods Nie et al. [2014, 2017], we first construct a simple surrogate
function for optimizing Eq.(8)

Fs(U,V) =
∑

(i,j)∈E

si,j((UVT)i,j − Ãi,j)
2 + λ∥U∥2F + λ∥V∥2F + γ

∑
i,j

(h
(0)T

i W(l)h
(0)
j − (UVT)i,j)

2,

(23)

where si,j = 1 if ei,j = ((UVT)i,j − Ãi,j)
2 < τi,j and si,j = 0 otherwise. Consider that we have

current estimates U(k) and V(k), and wish to derive a new U(k+1) that minimizes the objective
function. Specifically, we introduce the following surrogate function for deriving U(k+1).

SU (ZU |U(k),V(k)) = ∥M⊙ (ZUV
(k)T − Ã)∥2F+

∥(1−M)⊙ (ZUV
(k)T −U(k)V(k)T)∥2F + λ∥ZU∥2F + λ∥V(k)∥2F + γ∥H(0)WH(0)T − ZUV

(k)T ∥2F ,
(24)

where M is defined as Mi,j = si,j if (i, j) ∈ E and Mi,j = 0 otherwise, and ⊙ refers to Hadamard
product. Then U(k+1) can be obtained by minimizing this surrogate function over ZU , i.e., U(k+1) =

argmin
ZU∈Rn×q

SU (ZU |U(k),V(k)). Note that ∥M⊙ (ZUV
(k)T − Ã)∥2F + ∥(1−M)⊙ (ZUV

(k)T −

U(k)V(k)T])∥2F = ∥ZUV
(k)T − (M⊙ Ã+ (1−M)⊙ (U(k)V(k)T))∥2F , wherein ZU gets rid of

the Hadamard product, thus we can directly obtain the closed-form solution

U(k+1) = [ÂV(k) + γH(0)WH(0)TV(k)] · [(1 + γ)V(k)TV(k) + λIq]
−1, (25)

where Â = M⊙ Ã+ (1−M)⊙ (U(k)V(k)T). Given U(k+1), we define the following surrogate
function for deriving V(k+1),

SV (ZV |U(k+1),V(k)) = ∥M⊙ (U(k+1)ZT
V − Ã)∥2F + ∥(1−M)⊙ (U(k+1)ZT

V −U(k+1)V(k)T)∥2F+

λ∥ZV ∥2F + λ∥U(k+1)∥2F + γ∥H(0)WH(0)T −U(k+1)ZT
V ∥2F , (26)

Similarly, V(k+1) can be obtained by minimizing the above surrogate function over ZV . The
closed-form solution is

V(k+1) = [ÂTU(k+1) + γH(0)WTH(0)TU(k+1)] · [(1 + γ)U(k+1)TU(k+1) + λIq]
−1. (27)

Here Â = M⊙ Ã+ (1−M)⊙ (U(k+1)V(k)T). A main advantage of this optimization algorithm
is that Â can be decomposed as sparse plus low rank structure, which greatly accelerates the
computation. Figure 15 depicts the empirical convergence rate. We define the change in Frobenius
norm as ∥Uk−Uk−1∥2

F

∥Uk∥2
F

, where k is the k-th iteration. The results reveal that matrices U and V both
almost converge after eight iterations.

D.2 Time Complexity

Since all the involved matrices are low-rank or sparse, we can reduce the computation time using some
tricks. Although Â is not sparse, ÂV(k) can be decomposed into sparse-dense matrix multiplications,
resulting in time complexity of O(mq + nq2), where m denotes the number of edges.

We first consider the cost of updating U(k+1).

U(k+1) = [ÂV(k) + γH(0)WH(0)TV(k)] · [(1 + γ)V(k)TV(k) + λIq]
−1 (30)

V(k) and H(0) are matrices of size n × q and size n × c, respectively. For low-rank matrices, we
can reorder the matrix multiplication. For example, the time complexity of the following computing
order is O(mq + q3 + ncq + nq2)

U(k+1) = [ÂV(k) + γ(H(0)W)(H(0)TV(k))] · [(1 + γ)V(k)TV(k) + λIq]
−1 (31)

22

0.0

0.2

0.4

0.6

0.8

1.0
Cora

U
V

Citeseer

U
V

Pubmed

U
V

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

ng
e

in
 F

ro
be

ni
us

 N
or

m

Texas

U
V

Wisconsin

U
V

Cornell

U
V

1 2 3 4 5 6 7 8
Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0
Squirrel

U
V

1 2 3 4 5 6 7 8
Iteration Number

Chameleon

U
V

1 2 3 4 5 6 7 8
Iteration Number

Actor

U
V

Figure 15: Convergence rate of the optimization algorithm.

Algorithm 1 Algorithm to minimize Eq. (8)

1: Initialize V(0) and U(0) using Eq. (22)
2: for k = 0 to K − 1 do
3: For (i, j) ∈ E , reweight by calculating

si,j =

{
1, (U(k)V(k)T − Ãi,j)

2 < τi,j
0, otherwise.

(28)

4: Compute U(k+1) using Eq. (25)
5: For (i, j) ∈ E , reweight by calculating

si,j =

{
1, (U(k+1)V(k)T − Ãi,j)

2 < τi,j
0, otherwise.

(29)

6: Compute V(k+1) using Eq. (27)
7: end for
8: return U(K) and V(K).

where ÂV(k) can be realized by sparse-dense matrix multiplications.

ÂV(k) = (M⊙ Ã+ (1−M)⊙ (U(k)V(k)T))V(k) = (M⊙ Ã+U(k)V(k)T −M⊙ (U(k)V(k)T))V(k)

(32)

where (M ⊙ Ã)V(k) and (M ⊙ (U(k)V(k)T))V(k) are sparse-dense matrix multiplications. the
time complexity of U(k)(V(k)TV(k)) is O(nq2).

Now we consider the calculating of V(k+1)

V(k+1) = [ÂTU(k+1) + γH(0)WTH(0)TU(k+1)] · [(1 + γ)U(k+1)TU(k+1) + λIq]
−1. (33)

The time complexity of the above equation is also O(mq + q3 + ncq + nq2). Since the size of
V(k+1)TH(l) is q × c, U(k+1)(V(k+1)TH(l)) can be performed in O(ncq).

In general, given that q and c are very small numbers and m ≫ n, the time complexity is bounded by
O(dmq), where d is a constant and d ≪ n.

23

Algorithm 2 LRGNN
Input: Graph G = (V, E), node features X, adjacency matrix A, Pseudo labels Ȳ
Output: The final node representation matrix
1: Calculate signed adjacency matrix from pseudo labels using Eq. (10) and Eq. (11).
2: Calculate H(0) using Eq. (7)
3: Initialize V(0) and U(0) using Eq. (22)
4: for k = 0 to K − 1 do
5: Update U(k+1) using Eq. (25)
6: Update V(k+1) using Eq. (27)
7: end for
8: Calculate Hout using Eq. (9)
9: return Hout

D.3 Convergence Analysis

We establish the following result to justify the design of the surrogate functions.
Theorem 4. The objective function Eq.(8) is non-increasing after each update iteration based on
algorithm 1 , i.e.,

Fc(U
(k+1),V(k+1)) ≤ Fc(U

(k+1),V(k)) ≤ Fc(U
(k),V(k)) (34)

Proof. This proof is based on the techniques used in [Hastie et al., 2015]. We first prove
Fs(U

(k+1),V(k)) ≤ Fs(U
(k),V(k)). The design of the surrogate function follows the defini-

tion of the Majorization-Minimization (MM) algorithm. An MM algorithm operates by defining a
surrogate function that minorizes the objective function. We begin by presenting the following two
observations:

SU (U|U,V) = F (U,V) (35)

and
SU (ZU |U,V) ≥ F (ZU ,V) (36)

The first equation is easy to derive

SU (U|U,V) = λ∥U∥2F + λ∥V∥2F + γ∥H(0)WH(0)T −UVT ∥2F+
∥M⊙ (UVT − Ã) + (1−M)⊙ (UVT −UVT)∥2F

= λ∥U∥2F + λ∥V∥2F + γ∥H(0)WH(0)T −UVT ∥2F + ∥M⊙ (UVT − Ã)∥2F = F (U,V) (37)

By definition, we have

SU (ZU |U,V)− F (ZU ,V) = ∥(1−M)⊙ (ZUV
T −UVT)∥2F ≥ 0. (38)

Now we consider the update of U,

SU (U
(k+1)|U(k),V(k)) = min

ZU

SU (ZU |U(k),V(k)) ≤ SU (U
(k)|U(k),V(k)) (39)

Using Eq.(35) and Eq.(36), we have

Fs(U
(k+1),V(k)) ≤ SU (U

(k+1)|U(k),V(k)) (40)

SU (U
(k)|U(k),V(k)) = Fs(U

(k),V(k)) (41)

Combining these and Eq.(39), we arrive at

Fs(U
(k+1),V(k)) ≤ SU (U

(k+1)|U(k),V(k)) ≤ SU (U
(k)|U(k),V(k)) = Fs(U

(k),V(k)) (42)

For simplicity, we rewrite

Fs(U,V) =
∑

(i,j)∈E

si,j((UVT)i,j − Ãi,j)
2 +R, (43)

24

where R represents the remaining terms. Since Fs(U
(k+1),V(k)) ≤ Fs(U

(k),V(k)), we have∑
(i,j)∈E

si,j((U
(k+1)V(k)T)i,j − Ãi,j)

2 +R′ ≤
∑

(i,j)∈E

si,j((U
(k)V(kT))i,j − Ãi,j)

2 +R. (44)

Recall that

si,j =

{
1, ei,j = ((U(k)V(k)T)i,j − Ãi,j)

2 < τi,j
0, otherwise

(45)

Similarly, we denote ((U(k+1)V(k)T)i,j − Ãi,j)
2 as ēi,j . We proceed with proving the following

inequality
min(ēi,j , τ)− si,j ēi,j ≤ min(ei,j , τ)− si,jei,j (46)

If ei,j < τi,j , we have min(ei,j , τ)− si,jei,j = ei,j − ei,j = 0, then

min(ēi,j , τi,j)− si,j ēi,j ≤ ēi,j − ēi,j = 0 = min(ei,j , τi,j)− si,jei,j . (47)

If ei,j ≥ τi,j , we have min(ei,j , τi,j)− si,jei,j = τi,j , then

min(ēi,j , τi,j)− si,j ēi,j = min(ēi,j , τi,j) ≤ τi,j = min(ei,j , τi,j)− si,jei,j . (48)

Therefore, we can say that Eq.(46) holds. By summing over Eq.(44) and Eq.(46) in two sides, we
reach the following inequality∑
(i,j)∈E

min(((U(k+1)V(k)T)i,j−Ãi,j)
2, τi,j)+R′ ≤

∑
(i,j)∈E

min(((U(k)V(k)T)i,j−Ãi,j)
2, τi,j)+R,

(49)
which is equivalent to

Fc(U
(k+1),V(k)) ≤ Fc(U

(k),V(k)). (50)

The proof of Fc(U
(k+1),V(k+1)) ≤ Fc(U

(k+1),V(k)) can be accomplished the same way, and we
will omit it.

E Related Work

In this section, we discuss relevant work that addresses the heterophily challenge. Abu-El-Haija et al.
[2019] acknowledges the limitations of current GNNs in learning on graphs with heterophily and
proposes to exploit higher-order information by aggregating multi-hop neighborhoods. The authors
of Zhu et al. [2020] further identified several effective designs and provided theoretical justifications.
Chien et al. [2021] generalizes the PageRank and proposes GPR-GNN that performs well under
heterophily. FAGCN [Bo et al., 2021] utilizes a self-gating attention mechanism to adaptively learn
the proportion of low-frequency and high-frequency signals. Later, WRGAT [Suresh et al., 2021]
transforms the original graph into a new multi-relational one with a higher homophily ratio. The
authors of Yan et al. [2021] regard oversmoothing and heterophily as two sides of the same coin.
They suggest addressing these two issues via degree correction and signed message. LINKX [Lim
et al., 2021] first embeds node features and graph topology separately and then combines them with
MLPs. Recently, GloGNN [Li et al., 2022] proposes to leverage global homophily and derives a
coefficient matrix that optimizes a well-designed objective function. Zheng et al. [2022] provides a
comprehensive survey on GNNs for heterophilous graphs.

GloGNN. A closely related work is the GloGNN [Li et al., 2022], which defines a coefficient matrix
as

Z
(l)
* = argmin

Z(l)∈Rn×n

∥H(l) − (1− β)Z(l)H(l) − βH(0)∥2F + γ∥Z(l) −Ak
GCN∥2F + λ∥Z(l)∥2F (51)

Here we point out several major differences between our LRGNN and GloGNN. The coefficient
matrix in LRGNN is a low-rank matrix that aligns with the weak balance theory, reflecting the
low-rank structures of complete graphs. LRGNN recovers the label relationship matrix using
matrix approximation, whereas GloGNN regularizes the missing edges to be zero by including a
∥Z(l) −Ak

GCN∥2F term. In GloGNN, the adjacency matrix is the symmetric normalized adjacency
matrix (or its powers) utilized in vanilla GCN. It has uniform and positive edge weights. In contrast,

25

for LRGNN, the similarity matrix is generated using pseudo labels with the allowance for negative
weights. Furthermore, LRGNN uses an element-wise capped norm to identify the outliers and restrict
their contribution to the total loss. Lastly, the first term of GloGNN involves subspace clustering,
whereas LRGNN comprises the attention term.

To conclude, LRGNN is a low-rank matrix approximation model that utilizes an attention term
to further improve performance. On the other hand, GloGNN is a subspace clustering model that
incorporates an adjacency matrix regularized term to enhance its performance.

F Datasets

Here we briefly introduce the datasets used in our experiments. In particular, these datasets span
various domains and edge homophily.

Cora, Citeseer and Pubmed are citation networks where nodes represent scientific papers and edges
are citation relationships. Node features are bag-of-words representations and each label represents
the field that the paper belongs to.

Actor is a co-occurrence network generated from the film-director-actor-writer network, where node
features are bag-of-words representations of the Wikipedia pages of actors. Edges symbolize the two
actors’ co-occurrence on the same web page.

Cornell, Texas and Wisconsin are collected as part of CMU WebKB project. In these datasets,
nodes are university web pages and edges are hyperlinks between these pages.

Chameleon and Squirrel are two networks of web pages on Wikipedia regarding animals. Node
features are bag-of-words representations of nouns in the respective pages. The task is to classify
pages into five categories based on the average traffic they received.

Synthetic graphs are controlled by the node-level homophily ratio and the average degree. Specifi-
cally, a random graph contains n nodes per class and c classes, with two probabilities pin and pout,
where pin corresponds to the probability of forming a intra-class edge, and pout corresponds to the
probability of forming a inter-class edge. We choose pin and pout by pin + (c− 1) · pout = δ, and
the average degree of the random graph is davg = nδ. We set n to 500, c to 5, and select davg from
{0.5, 5, 20}, pin from {0.1δ, 0.3δ, 0.5δ, 0.7δ, 0.9δ}. The node features are sampled from Gaussian
distributions where the centers of clusters are vertices of a hypercube. Nodes are randomly split into
(10%/45%/45%) for training/validation/testing. Note that pin = 0.9δ indicates strong homophily
and pin = 0.1δ corresponds to strong heterophily.

arXiv-year is a directed subgraph of ogbn-arXiv, where nodes are arXiv papers and edges represent
the citation relations. Node features is constructed by taking the averaged word2vec embedding
vectors of tokens contained in both the title and abstract of papers.

Penn94 is a subgraph extracted from Facebook whose nodes are students. Node features include
major, second major/minor, dorm/house, year and high school. Students’ genders is used for nodes’
labels.

genius is a subnetwork extracted from genius.com, which is a website for crowdsourced annotations
of song lyrics. In the graph, nodes represent users and edges connect users that follow each other.
Node features include expertise scores, counts of contributions, roles held by users, etc. Users who
are more likely to be spam users are marked with a “gone” label on the site. The task is to predict
whether a user is marked with “gone”.

G SignedGNNs

SignedGCNs. Since the over-smoothing problem is partly caused by the coupling of neighborhood
aggregation and feature transformation as pointed out in Liu et al. [2020], we remove the feature
transformation of the middle layer. Further, to avoid dimension explosion, the vector concatenation ||
is actually implemented with the average sum. In each layer, SignedGCNs maintain a “friend” and an
“enemy” representation for each node. At the first layer, it constructs the “friend” and the “enemy”

26

representation as,

h
(1)
i,f = [

1

|N+
i |

∑
j∈N+

i

h
(0)
j ||h(0)

i], h
(1)
i,e = [

1

|N−
i |

∑
k∈N−

i

h
(0)
k ||h(0)

i], (52)

where N+
i and N−

i are the homophilous and heterophilous neighbors, respectively. The subscript “f”
and “e” denote “friend” and “enemy” representations, respectively. Here the “friend” representation
is actually the average of homophilous raw features and ego features, so it only contains homophilous
information. Given l ≥ 2, it updates the “friend” representation using “f-f-f” and “e-e-f”,

h
(l)
i,f = [

1

|N+
i |

∑
j∈N+

i

h
(l−1)
j,f || 1

|N−
i |

∑
k∈N−

i

h
(l−1)
k,e ||h(l−1)

i,f], (53)

and the “enemy” representation using “e-f-e” and “f-e-e”,

h
(l)
i,e = [

1

|N+
i |

∑
j∈N+

i

h
(l−1)
j,e || 1

|N−
i |

∑
k∈N−

i

h
(l−1)
k,f ||h(l−1)

i,e], (54)

Here the problem arises. h
(l−1)
k,e , k ∈ N−

i , could be a heterophilous node representation under a
multi-class classification scenario. So at the later layer, heterophilous information might also be
encoded in the “friend” representation. As a result, heterophilous and homophilous information is
mixed in the “friend” representation.

WB-SignedGCN. We retain the “enemy” representation and modify the “friend” representation as

h
(l)
i,f = [

1

|N+
i |

∑
j∈N+

i

h
(l−1)
j,f ||h(l−1)

i,f], (55)

where the assumption “e-e-f” has been eliminated, which gives a weak balance version of SignedGCN
termed WB-SignedGCN.

H Proof of Theorem 2

Theorem 2. Consider that we apply a multiple-layer signed GNN on a triad. Assume that each
coefficient is independent of other coefficients and the probability that the model can precisely predict
the sign of each coefficient is p, namely Pr(sign(α(l)

i,j) = yi,j) = p. Also, assume that all the

self-coefficients are positive. The probability that at least one of ᾱ(L)
i,j and ᾱ

(L)
j,k are correct in sign

and < i, j, k > being balanced is given by pb. Then, pb is monotonically increasing concerning p.
Especially, if p = 1, the triad is always balanced.

Proof. A multiple-layer model can be formulated as

H(L) = A(L) · · · A(1)H(0), (56)

where A(l) are matrices with A(l)
i,j = α

(l)
i,j denoting the coefficient vi gives to vj in the l-th layer. Let

Ā(l) = A(l) · · · A(1), then the output of a l-layer model can be rewritten as H(l) = Ā(l)H(0). Also,
denote Ā(l)

i,j by ᾱ
(l)
i,j , such that H(l)

i,: =
∑

j ᾱ
(l)
i,jH

(0)
j,: . Hence, ᾱ(l)

i,j can be regarded as the final learned
signed weight vi gives to vj for a l-layer model. Consider L = 2

ᾱ
(2)
i,j = α

(2)
i,i α

(1)
i,j + α

(2)
i,j α

(1)
j,j . (57)

ᾱ
(2)
j,k = α

(2)
j,jα

(1)
j,k + α

(2)
j,kα

(1)
k,k. (58)

ᾱ
(2)
i,k = α

(2)
i,j α

(1)
j,k . (59)

case 1: yi,j = 1 and yj,k = 1.

pb = Pr(ᾱ
(2)
i,j > 0, ᾱ

(2)
j,k > 0, ᾱ

(2)
i,k > 0) + Pr(ᾱ

(2)
i,j > 0, ᾱ

(2)
j,k < 0, ᾱ

(2)
i,k < 0)

+Pr(ᾱ
(2)
i,j < 0, ᾱ

(2)
j,k > 0, ᾱ

(2)
i,k < 0) (60)

27

By independence,

Pr(ᾱ
(2)
i,j > 0, ᾱ

(2)
j,k > 0, ᾱ

(2)
i,k > 0) = Pr(ᾱ

(2)
i,j > 0) · Pr(ᾱ

(2)
j,k > 0) · Pr(ᾱ

(2)
i,k > 0) (61)

We have

Pr(ᾱ
(2)
i,j > 0) = Pr(α

(1)
i,j > 0) · Pr(α

(2)
i,j > 0) + Pr(α

(1)
i,j > 0) · Pr(α

(2)
i,j < 0)·

Pr(|α(2)
i,i α

(1)
i,j | > |α(2)

i,j α
(1)
j,j |) + Pr(α

(1)
i,j < 0) · Pr(α

(2)
i,j > 0) · Pr(|α(2)

i,i α
(1)
i,j | < |α(2)

i,j α
(1)
j,j |)

= p2 + p(1− p) · Pr(|α(2)
i,i α

(1)
i,j | > |α(2)

i,j α
(1)
j,j |) + (1− p)p · Pr(|α(2)

i,i α
(1)
i,j | < |α(2)

i,j α
(1)
j,j |)

= p2 + p(1− p) · (Pr(|α(2)
i,i α

(1)
i,j | < |α(2)

i,j α
(1)
j,j |) + Pr(|α(2)

i,i α
(1)
i,j | > |α(2)

i,j α
(1)
j,j |)) = p2 + p(1− p) = p

(62)

In the same way, we can obtain Pr(ᾱ
(2)
j,k > 0).

Pr(ᾱ
(2)
j,k > 0) = Pr(α

(1)
j,k > 0) · Pr(α

(2)
j,k > 0) + Pr(α

(1)
j,k > 0) · Pr(α

(2)
j,k < 0)·

Pr(|α(2)
j,jα

(1)
j,k | > |α(2)

j,kα
(1)
k,k|) + Pr(α

(1)
j,k < 0) · Pr(α

(2)
j,k > 0) · Pr(|α(2)

j,jα
(1)
j,k | < |α(2)

j,kα
(1)
k,k|)

= p2 + p(1− p) · Pr(|α(2)
j,jα

(1)
j,k | > |α(2)

j,kα
(1)
k,k|) + (1− p)p · Pr(|α(2)

j,jα
(1)
j,k | < |α(2)

j,kα
(1)
k,k|)

= p+ p(1− p) = p (63)

Next, we derive Pr(ᾱ
(2)
i,k > 0)

Pr(ᾱ
(2)
i,k > 0) = Pr(α

(2)
i,j > 0) · Pr(α

(1)
j,k > 0) + Pr(α

(2)
i,j < 0) · Pr(α

(1)
j,k < 0) = p2 + (1− p)2

(64)

Therefore,
Pr(ᾱ

(2)
i,j > 0) · Pr(ᾱ

(2)
j,k > 0) · Pr(ᾱ

(2)
i,k > 0) = p2(p2 + (1− p)2) (65)

Pr(ᾱ
(2)
i,j > 0, ᾱ

(2)
j,k < 0, ᾱ

(2)
i,k < 0) = Pr(ᾱ

(2)
i,j > 0)·(1−Pr(ᾱ

(2)
j,k > 0))·(1−Pr(ᾱ

(2)
i,k > 0)) = 2p2(1−p)2

(66)
Pr(ᾱ

(2)
i,j < 0, ᾱ

(2)
j,k > 0, ᾱ

(2)
i,k < 0) = (1−Pr(ᾱ

(2)
i,j > 0))·Pr(ᾱ

(2)
j,k > 0)·(1−Pr(ᾱ

(2)
i,k > 0)) = 2p2(1−p)2

(67)
pb = 2p2(1− p)2 + 2p2(1− p)2 + p2(p2 + (1− p)2) = p4 + 5p2(1− p)2 (68)

Let f(p) = p4 + 5p2(1− p)2

f(p)′ = 24p3 − 30p2 + 10p,
f(p)′

p
= 24p2 − 30p+ 10 > 0 (302 − 4 ∗ 24 ∗ 10 < 0) (69)

Since p > 0, we arrive at f(p)′ > 0, then pb is monotonically increasing. It is easy to verify that
f(0) = 0 and f(1) = 1.

case 2: yi,j = 1 and yj,k = −1.

Pr(ᾱ
(2)
i,j > 0) = p and Pr(ᾱ

(2)
j,k < 0) = p can be easily derived in the same way

pb = Pr(ᾱ
(2)
i,j > 0, ᾱ

(2)
j,k < 0, ᾱ

(2)
i,k < 0)+Pr(ᾱ

(2)
i,j < 0, ᾱ

(2)
j,k < 0, ᾱ

(2)
i,k > 0)+Pr(ᾱ

(2)
i,j > 0, ᾱ

(2)
j,k > 0, ᾱ

(2)
i,k > 0).

We first derive

Pr(ᾱ
(2)
i,k < 0) = Pr(ᾱ

(2)
i,j > 0)Pr(ᾱ

(1)
j,k < 0)+Pr(ᾱ

(2)
i,j < 0)Pr(ᾱ

(2)
j,k > 0) = p2+(1−p)2. (70)

Then, we have

Pr(ᾱ
(2)
i,j > 0, ᾱ

(2)
j,k < 0, ᾱ

(2)
i,k < 0) = Pr(ᾱ

(2)
i,j > 0)·Pr(ᾱ

(2)
j,k < 0)·Pr(ᾱ

(2)
i,k < 0) = p2(p2+(1−p)2).

(71)
Since

Pr(ᾱ
(2)
i,j < 0, ᾱ

(2)
j,k < 0, ᾱ

(2)
i,k > 0) = Pr(ᾱ

(2)
i,j < 0) · Pr(ᾱ

(2)
j,k < 0) · Pr(ᾱ

(2)
i,k > 0) = 2p2(1− p)2.

(72)

28

Hyper-parameter Range
learning rate {0.01, 0.005, 0.02}
weight decay {5e− 3, 5e− 4, 5e− 5}

dropout [0, 0.7]
early stopping {40, 100, 200}

β [0.6, 0.9]
µ [0.1, 0.9]
δ [0, 0.9]
γ {0.0001, 0.001, 0.002, 0}
λ [0.01, 0.02, 0.05, 0.001]
K {1, 2}

Estimator {GCN,MLP}

Table 6: Search space for hyper-parameters.

and

Pr(ᾱ
(2)
i,j > 0, ᾱ

(2)
j,k > 0, ᾱ

(2)
i,k > 0) = Pr(ᾱ

(2)
i,j > 0) · Pr(ᾱ

(2)
j,k > 0) · Pr(ᾱ

(2)
i,k > 0) = 2p2(1− p)2.

(73)
We obtain

pb = 2p2(1− p)2 + 2p2(1− p)2 + p2(p2 + (1− p)2) = p4 + 5p2(1− p)2 (74)

Therefore, case 2 gives the same probability as case 1. Given that the case yi,j = −1, yj,k = −1 is
symmetric to case 1, and yi,j = −1, yj,k = 1 is symmetric to case 2, we can prove that pb is always
monotonically increasing.

We next consider the situation of L = 3. Note that Ā(3) = A(3)Ā(2) Hence, we have

ᾱ
(3)
i,j = α

(3)
i,i ᾱ

(2)
i,j + α

(3)
i,j ᾱ

(2)
j,j . (75)

ᾱ
(3)
j,k = α

(3)
j,j ᾱ

(2)
j,k + α

(3)
j,kᾱ

(2)
k,k. (76)

ᾱ
(3)
i,k = α

(3)
i,j ᾱ

(2)
j,k . (77)

We have proved that Pr(ᾱ
(2)
i,j > 0) = Pr(α

(1)
i,j > 0) and Pr(ᾱ

(2)
j,k > 0) = Pr(α

(1)
j,k > 0). By

assumption, ᾱ(2)
j,j > 0 and ᾱ

(2)
k,k > 0. Therefore, the case L = 3 degenerates to the case L = 2. We

can prove in the same way that the probability pb is monotonically increasing with respect to p. By
further proving for the case L = 4, 5 · · · , we complete the proof.

I Experimental Setup

We implement LRGNN with Pytorch. We ran our experiments on an Nvidia A100 GPU with
40GB of memory. For real-world graphs, we use 10 random splits (48%, 32%20% for train-
ing/validation/testing) provided by Pei et al. [2020] and available from Pytorch Geometry [Fey
and Lenssen, 2019]. For real-world datasets, since the results of these baseline methods on these
benchmark datasets are public, we directly report these results. For the results on synthetic graphs, we
run the baseline methods using the codes released by their authors and fine-tune the hyper-parameters
based on the validation set. We perform a grid search to tune hyper-parameters based on the validation
set, as shown in Table 6.

29

