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Abstract

Graph Neural Networks (GNNs) have been shown to achieve remarkable per-
formance on node classification tasks by exploiting both graph structures and
node features. The majority of existing GNNs rely on the implicit homophily
assumption. Recent studies have demonstrated that GNNs may struggle to model
heterophilous graphs where nodes with different labels are more likely connected.
To address this issue, we propose a generic GNN applicable to both homophilous
and heterophilous graphs, namely Low-Rank Graph Neural Network (LRGNN).
Our analysis demonstrates that a signed graph’s global label relationship matrix
has a low rank. This insight inspires us to predict the label relationship matrix
by solving a robust low-rank matrix approximation problem, as prior research
has proven that low-rank approximation could achieve perfect recovery under
certain conditions. The experimental results reveal that the solution bears a strong
resemblance to the label relationship matrix, presenting two advantages for graph
modeling: a block diagonal structure and varying distributions of within-class and
between-class entries.

1 Introduction

Graphs (or networks) are ubiquitous in various fields, such as social networks [Tang et al., 2013, Xu
et al., 2015, 2019b], biology [Guzzi and Zitnik, 2022], and chemistry [Gilmer et al., 2017]. Many
real-world networks follow the Homophily assumption, i.e., linked nodes tend to share the same label
or have similar features; while for graphs with heterophily, nodes with different labels are more likely
to form a link. For example, many people tend to connect with people of the opposite sex in dating
networks. Graph Neural Networks (GNNs) [Kipf and Welling, 2017, Velickovic et al., 2018] have
shown significant success in tackling a diverse set of graph mining tasks, such as NLP [Song and
King, 2022, Chen et al., 2023] and clustering [Huang et al., 2023, Kang et al., 2020]. There are also
studies dedicated to enhancing the representational power of GNNs [Liang et al., 2023, Xu et al.,
2019a]. Recently, researchers have observed that GNNs may face difficulties in learning on graphs
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Figure 1: Undirected signed triads. Structural balance theory states that T1 and T2 are balanced,
whereas T3 and T4 are unbalanced. Weak balance states that only T3 is unbalanced. Clearly, triads of
signed graphs obey weak balance. Consequently, the label relationship matrix Ẑ exhibits a low-rank
structure. Then Ẑ can be recovered by low-rank approximation.

with heterophily due to the smoothing operation, which tends to generate similar node representations
for adjacent nodes, even though their labels differ [Abu-El-Haija et al., 2019, Zhu et al., 2020].

Various designs [Zhu et al., 2020, Chien et al., 2021, Lim et al., 2021] have been proposed to enhance
the performance of GNNs under heterophilous scenarios (see Zheng et al. [2022] for a survey).
Among them, high-pass filters are the most frequently used components as they can push away a
node from its neighbors in the embedding space, aligning with the characteristic of heterophily.
Spectral-based methods [Chien et al., 2021, Luan et al., 2021] combine high-pass filters with low-pass
ones by fusing the outputs from intermediate layers. However, these methods cannot capture the
node-level homophily ratio, as they use only one convolutional filter type in each layer. Alternatively,
some methods [Bo et al., 2021, Yang et al., 2021] enable neural networks to learn the aggregation
coefficients. Specifically, these methods update node representation by computing a learned signed
weighted combination of neighbors’ representations by adopting graph attention function [Velickovic
et al., 2018]. However, the graph attention function has been proven to compute a form of static
attention: the ranking of attention scores remains unconditioned on the query [Brody et al., 2022].

According to Zhu et al. [2020], under specific conditions, a node’s 2-hop neighborhood is expected
to be predominantly homophilic. To capitalize on this result, they suggest amplifying a node’s
influence using its 2-hop neighbors. Building on this, GloGNN [Li et al., 2022] introduces a subspace
clustering approach to derive a global coefficient matrix. Nonetheless, Liu et al. [2010] proves that
this matrix’s between-class entries are almost zero. This indicates that while GloGNN taps into global
homophily, it rarely employs remote heterophilous nodes for feature propagation. Moreover, the
subspace clustering approach ensures dense within-class matrix entries but does not account for the
sign of these entries.

In this paper, we aim at recovering a global label relationship matrix Ẑ such that Ẑi,j = 1 if node vi
and vj have the same label (homophilous) and −1 otherwise (heterophilous). In this case, we exploit
global homophily and heterophily by assigning proper signs. Determining Ẑi,j , which requires
knowledge of node labels, seems impractical due to the unavailability of many labels during training.
Here a question arises: can we infer the unknown Ẑi,j from a small set of observations?

Unlike previous neural network-based methods, we employ sign inference to solve the problem.
Signed social networks (SSNs) utilize positive links to denote friendship between two users and
negative links to represent enmity. Sign inference is the task of predicting the signs of unknown
links using the knowledge of available ones. The structural balance theory [Cartwright and Harary,
1956], a fundamental principle of SSN, postulates that individuals in signed networks are disposed to
following specific patterns of “an enemy of my friend is my enemy” (e-f-e), “a friend of my friend is
my friend” (f-f-f), “a friend of my enemy is my enemy” (f-e-e), and “an enemy of my enemy is my
friend” (e-e-f). However, the last assumption could contradict actual scenarios. Therefore, a more
general notion, called weak balance, was introduced to address this issue [Davis, 1967].

We study signed graphs, wherein a negative edge signifies that the two nodes possess distinct labels.
Figure 1 illustrates that triads in signed graphs follow the weak balance theory, which suggests that
the signed graph has a global low-rank structure [Hsieh et al., 2012]. An intriguing finding [Candès
and Tao, 2010] demonstrates that if a matrix has a low rank, it can be accurately recovered from a
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limited number of observations. Motivated by this, we approximate Ẑ with the solution to a low-rank
matrix approximation problem, which is then used for feature propagation.

Since the solution is a low-rank matrix, our new model is termed Low-Rank Graph Neural Network
(LRGNN). We summarize the contributions of this paper as:

• We show that triads in signed graphs obey weak balance, based on which the unknown label
relationship between two nodes can be inferred by looking up the known ones.

• We prove that a variant of signed GNNs shows a tendency to follow the structural balance
theory, which can be enhanced by eliminating the faulty assumption from the model design.

• We propose an effective model LRGNN. Using both real-world and synthetic datasets, we
provide comprehensive experimental results, thereby highlighting the superior performance
of LRGNN over other state-of-the-art methods.

2 Preliminaries

We first introduce the notations used in this paper.

Notations. Denote by G = (V, E) an undirected graph, where V and E denote the node set and edge
set, respectively. The nodes are described by a node feature matrix X ∈ Rn×f , where n and f are
the number of nodes and number of features per node, respectively. Y ∈ Rn×c is the node label
matrix. The neighbor set of node vi is denoted by Ni. Let A ∈ Rn×n denote the adjacency matrix
where Ai,j = 1 if (i, j) ∈ E and 0 otherwise. We define a label relationship matrix Ẑ ∈ Rn×n for
a signed graph, where Ẑi,j = 1 if (i, j) share the same label and −1 otherwise. Let Ã be a signed
adjacency matrix indicated by an observation set Ω, with Ãi,j = Ẑi,j if (i, j) ∈ Ω and 0 otherwise.
The Frobenius norm of a matrix is given by ∥ · ∥2F . Ai,: represents the i-th row of matrix A.

2.1 Link Sign Prediction via Low-Rank Matrix Completion

Next, we discuss the problem of link sign prediction and the theoretical support for using low-rank
matrix completion.

Link Sign Prediction. The link sign prediction task involves determining the signs of unobserved
links in a network, where some links are already labeled as positive or negative. This work specifically
considers scenarios where only one link exists between each node pair (i, j) ∈ V × V . To be precise,
given Ã partly observed from Ẑ, the objective is to predict the signs of the unknown entries of Ẑ.
Note that the observed entries can be constructed using available labels from the training set. This
task is difficult in general because of the low supervised ratio. For instance, if the supervised ratio is
30%, we need to guess 91% of entries of Ẑ using the knowledge of the rest 9% of entries.

Here is a fact that significantly changes the task’s premise, rendering it practical. The rank of Ẑ
is equivalent to the number of classes if c ≥ 2. This low-rank structure is described by the weak
balance theory: for homophilous node pair (i, j) and any vk ∈ V , if Ẑi,k = 1 then Ẑj,k = 1 (f-f-f),
if Ẑi,k = −1 then Ẑj,k = −1 (f-e-e); for heterophilous (i, j), if Ẑi,k = 1 then Ẑj,k = −1 (e-f-e).
Therefore, Ẑ has c linearly independent distinct rows if c ≥ 2 (rank(Ẑ) = c). Inspired by this finding,
we employ Matrix Completion to address this challenge.

Matrix Completion. The task of matrix completion involves predicting the missing values in an
unknown matrix based on a limited number of observed entries in the observation set Ω. Exact
recovery of a matrix from a small Ω is impossible without making any assumption about the matrix.
But the search for solutions becomes meaningful as soon as the unknown matrix has a low rank;
numerous algorithms can accomplish a near-perfect recovery with high probability under mild
assumptions. This is known as the Low-Rank Matrix Completion (LRMC) problem.

Low-Rank Matrix Completion. Given a signed adjacency matrix Ã and the observation set Ω,
the task of LRMC is to find the lowest-rank solution among all the feasible solutions as follows,

min rank(Z), s.t. PΩ(Z) = PΩ(Ã), (1)
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where Z is the decision variable and PΩ(·) is the projection onto the observation set. Unfortunately,
(1) is an NP-hard problem without known algorithms capable of solving problems in practical
time [Candès and Tao, 2010]. A matrix of rank r has exactly r nonzero singular values. Hence, the
rank function is simply the number of nonvanishing singular values. As the l1-minimization is the
tightest convex relaxation of the combinatorial l0-minimization problem [Candès and Plan, 2010].
An alternative is the nuclear minimization problem,

min ∥Z∥*, s.t. PΩ(Z) = PΩ(Ã), (2)

where ∥Z∥* denotes the nuclear norm of Z, which is the sum of the singular values. Equivalently we
can reformulate Eq.(2) in Lagrange form

min
1

2
∥PΩ(Z− Ã)∥2F + λ∥Z∥*, (3)

where λ ≥ 0 is a regularization parameter. A surprising result involving LRMC is that under certain
assumptions, the missing entries of Ã can be accurately predicted.
Theorem 1. [Candès and Tao, 2010] Let Ẑ ∈ Rn×n be a fixed matrix of rank r = O(1) obeying the
strong incoherence property with parameter ε. Suppose we observe m entries of Ẑ with locations
sampled uniformly at random. Then there is a positive numerical constant C such that if

m ≥ Cε4n(log n)2 (4)

then Ẑ is the unique solution to Eq.(2) with probability at least 1− n−3. In other words: with high
probability, nuclear-norm minimization recovers all the entries of Ẑ with no error.

Solving Eq.(2) requires the computation of a SVD of a potentially large matrix, which can be
computationally expensive. To reduce this cost, we can use an SVD-free low-rank matrix factorization
(LRMF) problem formulated as follows:

min
U,V∈Rn×q

∥PΩ(UVT − Ã)∥2F + λ(∥U∥2F + ∥V∥2F ), (5)

where c ≤ q ≪ n is the operating rank. There is a remarkable fact that ties the LRMF problem
and the nuclear-norm regularized problem (3) [Mazumder et al., 2010]: by selecting a q ≥ c, the
solution to Eq.(5) also provides a solution to Eq.(3). The equivalence between the solutions allows us
to approximate Ẑ by the solution to Eq.(5).

We present some fundamental facts that support the recovery of Ẑ. The first fact is that the rank of
Ẑ is deterministic. Ideally, q = rank(Ẑ) should be the optimal choice [Hastie et al., 2015]. The
second fact is that Ẑi,; = Ẑj,: holds for any homophilous (i, j). This implies that class imbalance is
the upper bound of the coherence parameter ε. In most cases, ε = O(1). Furthermore, if Ãi,j = 1 is
observed, vi and vj can combine their observations. For example, if Ãi,k is observed, then Ãj,k is
also ascertainable, regardless of whether it is directly observed or not (Ãi,k = Ãj,k). As a result,
there is a significant increase in the observation rate.

In real-life data, we typically witness a deviation from the assumption that observations exhibit uni-
form distribution. Nonetheless, this deviation only moderately influences the performance. Suppose
a node lacks any observed samples. In that case, an exact recovery is theoretically impossible, but it
would not hinder the recovery of other rows. Low-rank approximation methods have been applied to
practical applications with a fair amount of success, such as the Netflix problem [Koren et al., 2009].

3 Structural Balance Theory and Signed GNNs

We consider a variant of signed GNNs [Bo et al., 2021] that updates node representations as

h
(l+1)
i =

∑
j∈N (i)

α
(l)
i,jh

(l)
j , αi,j = fθ(h

(l)
i , h

(l)
j ), (6)

where fθ(·, ·) refers to a neural network that measures the similarity between the inputs and returns
a scalar ranging in [−1, 1]. Let yi,j = 1 if two neighboring nodes vi and vj belong to the same
class and yi,j = −1 otherwise. Let < i, j, k > be a triad such that vj is a neighbor of vi and vk is a
neighbor of vj , while vi and vk are not directly linked. We have the following result.
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Theorem 2. Consider that we apply a L-layer signed GNN (L ≥ 2) on a triad. The output of the
signed GNN is equivalent to H(L) = ZH(0), where Z is a matrix. Assume that each coefficient αi,j

is independent of other coefficients and the probability that the model can precisely predict the sign
of each coefficient is p, namely Pr(sign(α(l)

i,j) = yi,j) = p. Also, assume that all the self-coefficients
are positive. The probability that at least one of Zi,j and Zj,k are correct in sign and the product
Zi,jZj,kZi,k > 0 is given by pb. Then pb is monotonically increasing concerning p. Especially, if
p = 1, Zi,jZj,kZi,k > 0 always holds.
Remark 1. A triad is said to be balanced iff its product is positive as the four types of triads given by
balance theory have two or zero negative signs.
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Figure 2: Over-smoothing analysis.

The above result suggests that multi-layer signed GNNs
may implicitly implement the structural balance theory
as they frequently create balanced triads. When p equals
1, all triads are balanced, indicating that the model is fol-
lowing the idea that “a heterophilous neighbor of my het-
erophilous neighbor is a homophilous node.” Nonetheless,
this notion does not necessarily hold under multi-class
classification tasks. Hence, even if the model can predict
the label relationship between direct neighbors accurately,
it will still likely predict the relationship between 2-hop
neighbors inaccurately. This suggests that multiple-layer
signed GNNs are sub-optimal. Signed Graph Convolu-
tional Networks (SignedGNNs) [Derr et al., 2018] utilizes
the balance theory to model signed graphs. By eliminating
the assumption “e-e-f” (see Supplement for implementa-
tion details), we obtain a weakly balanced version of SignedGNNs termed WB-SignedGNNs. To
evaluate their vulnerability to over-smoothing, we compared the performance of WB-SignedGCN
and SignedGCN at different depths, ranging from 4 to 24. As Figure 2 illustrates, SignedGCN suffer
from over-smoothing, and this problem can be largely resolved by dropping the incorrect assumption
in the model’s design. Such a minute adjustment in the design can result in substantial performance
enhancement for 24-layer SignedGCN (80% vs. 53% on Wisconsin dataset).

4 Approach

In this section, we present the overall framework of the Low-Rank Graph Neural Networks.

4.1 Predicting the label relationship matrix via robust low-rank approximation

Note that in Ẑ, the information on the original graph topology is lost: we cannot tell whether two
given nodes are linked or not since all entries are nonzero. To preserve the graph topology information,
following Lim et al. [2021], we first apply MLPs to fuse feature matrix and adjacency matrix into a
lower-dimensional matrix H(0) ∈ Rn×c,

H(0) = (1− µ)MLPX(X) + µMLPA(A), (7)
where 0 < µ < 1 is the balance term. Next, we utilize LRMF to recover Ẑ with the edge set being
the observation set (Ω = E), matching the time complexity of vanilla GCNs [Kipf and Welling, 2017].
Furthermore, an attention term [Bahdanau et al., 2015] is incorporated into Eq.(5) as a supplement to
the matrix completion. We approximate Ẑ with Z = U*V

T
* by solving the following robust low-rank

matrix factorization problem,

Fc(U,V) =
∑

(i,j)∈E

min(((UVT )i,j − Ãi,j)
2, τi,j) + λ∥U∥2F + λ∥V∥2F+

γ
∑
i,j

(h
(0)T

i Wh
(0)
j − (UVT )i,j)

2, (8)

where λ > 0 and γ > 0 are hyper-parameters, W a parameter matrix, h(0)T

i Wh
(0)
j an attention

coefficient, τi,j a parameter of the capped norm. Low-rank matrix approximation models are prone
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to outliers due to the square loss function [Keshavan et al., 2010]. To mitigate this issue, this work
applies capped norm to limit the contribution of the approximation error ((UVT )i,j − Ãi,j)

2. This
strategy has been extensively utilized by researchers [Nie et al., 2014, 2017, Jiang et al., 2015]. Note
that here each sample (i, j) has an independent parameter τi,j which will be explained in detail later.
The min operator render the function non-differentiable, and the projection function prevents us from
obtaining a closed-form solution. It seems that solving Eq.(8) is infeasible. Using the surrogate
function and Majorization-Minimization algorithm [Hastie et al., 2015], we can ensure that the
objective function does not increase after each iteration. The optimization algorithm, initialization
method, and proof of convergence can be found in the Supplement.

Once we have derived U*V
T
* by minimizing Eq.(8), the output of the model is formulated as

Hout = ((1− β)Z+ βIn)H
(0), (9)

where the identity matrix In is used to augment the ego-information and 0 < β < 1 is a hyper-
parameter. A 1-layer network is sufficient to aggregate all nodes’ representations for a node, it also
averts the implicit usage of the balance theory.
Remark 2. The time complexity of LRGNN is proportional to the number of edges. A detailed
discussion can be found in the Supplement.

4.2 Parameterized outlier detection

This section outlines a practical algorithm for detecting outliers based on the reliability of the
estimated Ãi,j . To generate the signed adjacency matrix Ã, we can use any off-the-shelf neural
network classifier to generate pseudo labels. Additionally, the known node labels in training set TV
and label matrix Y can also be utilized. Similar to Zhu et al. [2021], the pseudo labels are generated
as follows,

Ȳ = O⊙Y + (1−O)⊙ Ŷ, Ŷ = softmax(P), P = fNN (X), (10)

where fNN (·) denotes a trained neural network named estimator, ⊙ the Hadamard product, and
Oi,: = 1 if i ∈ TV and 0 otherwise. The signed adjacency matrix is defined as

Ãi,j =

{
⟨Ȳi,:, Ȳj,:⟩ − δ (i, j) ∈ E

0 otherwise
(11)

Here 0 < δ < 1 is a parameter that controls the ratio of negative edge weights. ⟨·, ·⟩ denotes
the inner product of two vectors. Although this strategy appears simple, it is highly effective.
The critical point here is that we do not need to know the exact classes of the two nodes and we
just care about whether they belong to the same class. Let p be the accuracy of the estimator
and assume that there is a uniform distribution chance of being any incorrect class, namely 1−p

c−1 .

Edge Hom. #Nodes #Edges #Features #Classes
Texas 0.21 183 295 1,703 5

Wisconsin 0.11 251 466 1,703 5
Cornell 0.30 183 280 1,703 5
Actor 0.22 7,600 26,752 931 5

Squirrel 0.22 5,201 198,493 2,089 5
Chameleon 0.23 2,277 31,421 2,325 5

Cora 0.81 2,708 5,278 1,433 6
Citeseer 0.74 3,327 4,676 3,703 7
Pubmed 0.80 19,717 44,327 500 3
Penn94 0.47 41,554 1,362,229 5 2

arXiv-year 0.22 169,343 1,166,243 128 5
genius 0.61 421,961 984,979 12 2

Table 1: Dataset statistics.

The estimator has a probability of
(1−p)(pc+c−2)

(c−1)2 to identify any two
heterophilous nodes as homophilous
nodes. This probability is less than
1− p, provided that c ≥ 3 and p < 1.
For instance, when the accuracy of
the estimator is 50% and c = 5, for
heterophilous (i, j), the probability
of assigning them different labels is
about 82.8%, which is significantly
higher than 50%. In our experiments,
we use simple estimators including
GCN and MLP for fairness.

The succeeding section discusses the
design of τi,j , which can be ex-
pressed as τi,j = ci,j · τ , where
0 < ci,j < 1 is a parameter. We adopt a widely accepted definition of outliers [Yeh, 2007],

τ = q3 + 1.5× (q3 − q1), (12)
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Texas Wiscon. Cornell Actor Squir. Chamel. Cora Citeseer Pubmed
MLP 80.81±4.75 85.29±3.31 81.89±6.40 36.53±0.70 28.77±1.56 46.21±2.99 75.69±2.00 74.02±1.90 87.16±0.37
GCN 55.14±5.16 51.76±3.06 60.54±5.30 27.32±1.10 53.43±2.01 64.82±2.24 86.98±1.27 76.50±1.36 88.42±0.50
GAT 52.16±6.63 49.41±4.09 61.89±5.05 27.44±0.89 40.72±1.55 60.26±2.50 87.30±1.10 76.55±1.23 86.33±0.48

H2GCN 84.86±7.23 87.65±4.98 82.70±5.28 35.70±1.00 36.48±1.86 60.11±2.15 87.87±1.20 77.11±1.57 89.49±0.38
GPR-GNN 78.38±4.36 82.94±4.21 80.27±8.11 34.63±1.22 31.61±1.24 46.58±1.71 87.95±1.18 77.13±1.67 87.54±0.38
WRGAT 83.62±5.50 86.98±3.78 81.62±3.90 36.53±0.77 48.85±0.78 65.24±0.87 88.20±2.26 76.81±1.89 88.52±0.92

GloGNN++ 84.05±4.90 88.04±3.22 85.95±5.10 37.70±1.40 57.88±1.76 71.21±1.84 88.33±1.09 77.22±1.78 89.24±0.39
GGCN 84.86±4.55 86.86±3.29 85.68±6.63 37.54±1.56 55.17±1.58 71.14±1.84 87.95±1.05 77.14±1.45 89.15±0.37

ACM-GCN 87.84±4.40 88.43±3.22 85.14±6.07 36.28±1.09 54.40±1.88 66.93±1.85 87.91±0.95 77.32±1.70 90.00±0.52
LINKX 74.60±8.37 75.49±5.72 77.84±5.81 36.10±1.55 61.81±1.80 68.42±1.38 84.64±1.13 73.19±0.99 87.86±0.77
OGNN 86.22±4.12 88.04±3.63 87.03±4.73 37.99±1.00 62.44±1.96 72.28±2.29 88.37±0.75 77.31±1.73 90.15±0.38

LRGNN 90.27±4.49 88.23±3.54 86.48±5.65 37.34±1.78 74.38±1.96 79.16±2.05 88.33±0.89 77.53±1.31 90.24±0.64

Table 2: Node classification accuracy (%) on small real-world benchmark datasets. The best results
are highlighted in bold, whereas runner-up results are underlined. Each experiment is executed 10
times.

GCN GAT GPR-GNN GloGNN++ ACM-GCN LINKX OGNN LRGNN
Penn94 82.47±0.27 81.53 ±0.55 81.38±0.16 85.74±0.42 82.52±0.96 84.71±0.52 83.31±0.54 86.48 ± 0.52

arXiv-year 46.02±0.26 46.05±0.51 45.07±0.21 54.79±0.25 47.37±0.59 56.00±1.34 54.49±0.29 55.68 ± 0.35
genius 87.42±0.37 55.80±0.87 90.05±0.31 90.91±0.13 80.33±3.91 90.77±0.27 88.52±0.45 91.13 ± 0.12

Table 3: Node classification accuracy (%) on large-scale datasets.

where q1 and q3 are the first and third quartiles, respectively. Mathematically, ci,j is defined as

ci,j = a1(∥Ŷi,:∥22−
1

c
)(∥Ŷj,:∥22−

1

c
)+a2 log(e−1+ |Ãi,j |)+a3Sigmoid(aT ReLU([h

(0)
i ||h(0)

j ])),

(13)
where [a1, a2, a3] = Softmax(Wa),Wa ∈ R1×3, || denotes vector concatenation, and e is the
natural logarithm.

The Euclidean norm term measures the quality of the pseudo label since a uniformly distributed
∥Ŷi,:∥22 suggests that the estimator has no confidence in the class of vi. The absolute value term takes
into account that extreme values are typically more reliable. For example, a zero Ãi,j indicates that
the relationship between vi and vj is ambiguous. The third term employs graph attention [Velickovic
et al., 2018, Brody et al., 2022] to adapt ci,j accordingly.

5 Experiment

This section evaluates the performance of LRGNN. We put the experimental results w.r.t. ablation
study and robustness in the Supplement due to space limitation.

Datasets. We use three homophilous datasets including Cora, Citeseer and Pubmed [Yang et al.,
2016], along with 6 heterophilous datasets released in Pei et al. [2020] and Rozemberczki et al.
[2021], and three large-scale heterophilous graphs [Lim et al., 2021]. The training/validation/testing
splits used in this paper are the same as [Li et al., 2022].

Baselines. We compare LRGNN with 11 baselines, including (1) classic GNN models: vanilla
GCN [Kipf and Welling, 2017],and GAT [Velickovic et al., 2018]. (2) models specifically designed
to handle heterophily: H2GCN [Zhu et al., 2020], GPR-GNN [Chien et al., 2021], WRGAT [Suresh
et al., 2021], LINKX [Lim et al., 2021], GGCN [Yan et al., 2021], ACM-GCN [Luan et al., 2021],
GloGNN++ [Li et al., 2022], and Ordered GNN (OGNN) [Song et al., 2023]. (3) 2-layer MLP. We
specifically choose GloGNN++ and ACM-GCN as they generally outperforme the other variants
proposed in their respective papers.

Node classification results. Table 2 and Table 3 provide a summary of the test accuracy of the tested
methods on 12 datasets with diverse homophily ratios and scales. Some baselines experience out-of-
memory errors on large datasets, thus the corresponding results are excluded. From the tables, we can
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Figure 3: Recovery error. The lowest point is associated with a vertical line. The shaded region
corresponds to a 95% confidence interval.

Figure 4: Visualization result of Z. The entries have been grouped into two categories based on the
label relationship between the two nodes.

draw several observations. Firstly, MLP is a strong baseline for heterophilous datasets, outperforming
GCN and GAT on Texas, Wisconsin, and Cornell datasets. Secondly, methods designed specifically
for heterophilous graphs generally perform better than MLP and traditional GNNs. Thirdly, H2GCN,
WRGAT, GGCN, ACM-GCN, GloGNN++, and LRGNN are the top performers on small datasets.
However, H2GCN, WRGAT, and GGCN lack scalability, thereby limiting their widespread adoption
for large datasets. Fourthly, LRGNN performs the best in terms of the average rank, emerging as the
winner or runner-up on all datasets except for Actor.

The results suggest that LRGNN consistently offers superior performance on both homophilous and
heterophilous graphs. Notably, LRGNN achieved the highest score on Squirrel, with approximately
19% improvement over the runner-up score achieved by OGNN. The excellent performance on
Squirrel and Chameleon could be attributed to the relatively large average node degrees of these
two datasets, providing more observations to recover the label relationship matrix. Moreover, the
performance of LRGNN on these three large datasets demonstrates the scalability of our model.

Sign inference accuracy w.r.t. operating rank q. We investigate the effect of the operating
rank q on the recovery loss: err = 1

2n2

∑
i,j |sign((U*V

T

* )i,j) − sign(Ẑi,j)|. 3 shows that the
error decreases initially when q increases, then it increases gradually after reaching the minimum
point. The best result is consistently achieved when q is approximately 5, the number of classes.
Empirically, this supports the use of low-rank approximation to predict the label relationship matrix:
the appropriate dimensionality for the factors can be determined based on the number of classes. In a
standard LRMF problem, the rank of the matrix of interest is inaccessible. Therefore, we have to
select a sufficiently large q to ensure that q surpasses the rank, which guarantees that the solution to
LRMF problem provides a solution to the LRMC problem. Nevertheless, selecting excessively large
q can substantially increase the number of iterations required to converge.

Visualizing the predicted label relationship matrix Z. There are two main desirable traits of Ẑ
we want Z to possess. The first is that within-class entries are positive while between-class entries are
negative. This ensures that nodes are embedded close to their homophilous nodes and distant from
the heterophilous nodes in the embedding space. The second is that Ẑi,: and Ẑj,: are identical if they
share the same label, so that Ẑi,:X = Ẑj,:X. Consequently, we visualize Z in two different styles.

First, as shown in Figure 4, dividing the entries into two groups reveals that the distribution is similar
to a Gaussian distribution. Although most entries converge around zero, within-class entries and
between-class entries are positioned on opposite sides of the zero.

To illustrate the second trait, we visualize Z with reordered rows and columns based on ground truth
labels. As shown in Figure 5, the matrices exhibit the structure of a block diagonal matrix. But here
the entries of sub-matrices along the diagonal are positive, whereas off-diagonal sub-matrices contain
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Figure 5: Visualization result of Z. Both row and column indices have been reordered based on the
ground truth labels.

negative entries. On closer inspection of the figure, we notice that nodes in the same class share
a high degree of similarity, with the rows’ pixels showing comparable patterns. In conclusion, Z
exhibits both desirable traits of Ẑ. This helps explain the effectiveness of LRGNN.

Figure 6: The first three subfigures are results on synthetic graphs and the last one is the result on
corrupted Texas. Error bars indicate 95% confidence interval.

Results on synthetic graphs. To comprehensively evaluate the performance of LRGNN, we
leverage random partition graphs [Kim and Oh, 2021] generated by the stochastic block model. The
node features are sampled from Gaussian distributions where the centers of clusters are vertices of a
hypercube. Notably, the distance between Gaussian distribution means is small, thus, it is challenging
to differentiate between node features of distinct classes. This is evident by MLP’s unsatisfactory
performance on the synthetic graphs. We use 15 synthetic random graphs with varying node-level
homophily ratios and average degrees. More information about the synthetic graphs can be found in
the Supplement.

It can be observed from Figure 6 that, when the homophily ratio or node degree is low, LRGNN is
the only model that outperforms MLP. Also, LRGNN performs significantly better than other models
when the homophily ratio is below 0.5. These results suggest that LRGNN performs particularly
well on random graphs, which we attribute to two reasons. Firstly, the observed entries of these
graphs are uniformly distributed, meeting one of the conditions for exact recovery. Secondly, to
derive aggregation coefficients, low-rank approximation methods utilize only the observed entries of
Ẑ, while neural network based methods rely on the raw features. However, in this case, node features
are not that informative since the means of Gaussian distributions are close. To validate the second
reason, we use the Texas dataset and degrad the quality of its features by adding Gaussian variables.
We obtain a degraded feature matrix by X′

i,j = Xi,j + ϵj , with ϵj i.i.d. sampled from a Gaussian
distribution N (0, σ2). Note that the original features will be overwhelmed by the Gaussian random
variables if a large σ is applied. We compare the performance of representative models that included
GloGNN++, H2GCN, and MLP with that of LRGNN. It can be observed that, as the features get
less informative, the performance of GloGNN++, H2GCN, and MLP decreases significantly, while
LRGNN’s accuracy remains above 80%. In addition to that, a large σ also makes their training
process erratic, which is accompanied by significant error bars. These empirical results confirm our
previous analysis.

9



6 Conclusion

This paper presents a method for extending GNNs to heterophilous graphs through the use of a
label relationship matrix. In order to utilize the low-rank properties of weakly-balanced graphs, we
propose a robust low-rank matrix approximation technique for the prediction of the label relationship
matrix. The proposed LRGNN has been thoroughly evaluated through extensive experiments. We
conduct extensive experiments to evaluate our proposed LRGNN. Our results indicate that LRGNN
outperforms other baseline methods on both synthetic and real-world graphs. Notably, when the node
degree distribution of the graph conforms to a uniform distribution, LRGNN exhibits significantly
superior performance over other baseline methods.

7 Limitations

The main theoretical support for our approach assumes a uniform distribution of node degrees.
However, in practice, node degree distributions frequently follow a power-law distribution that is
non-uniform. Although the main results of this paper are obtained using real-world graphs with non-
uniform node degree distributions, it is unclear how this affects the theoretical results. Additionally,
it is acknowledged that LRGNN’s performance is affected by the accuracy of the generated pseudo
labels. The supplementary material provides the corresponding experiment that indicates LRGNN
demonstrates a non-sensitive response to this impact. However, further exploration and discussion
are helpful to investigate the theoretical implications fully.
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