
Lockdown: Backdoor Defense for Federated Learning
with Isolated Subspace Training

Tiansheng Huang, Sihao Hu, Ka-Ho Chow, Fatih Ilhan, Selim Furkan Tekin, Ling Liu
School of Computer Science

Georgia Institute of Technology, Atlanta, USA
{thuang374, shu335, kchow35, filhan3, stekin6}@gatech.edu, ling.liu@cc.gatech.edu

Abstract

Federated learning (FL) is vulnerable to backdoor attacks due to its distributed
computing nature. Existing defense solution usually requires larger amount of
computation in either the training or testing phase, which limits their practicality
in the resource-constrain scenarios. A more practical defense, i.e., neural network
(NN) pruning based defense has been proposed in centralized backdoor setting.
However, our empirical study shows that traditional pruning-based solution suffers
poison-coupling effect in FL, which significantly degrades the defense performance.
This paper presents Lockdown, an isolated subspace training method to mitigate
the poison-coupling effect. Lockdown follows three key procedures. First, it
modifies the training protocol by isolating the training subspaces for different
clients. Second, it utilizes randomness in initializing isolated subspacess, and
performs subspace pruning and subspace recovery to segregate the subspaces
between malicious and benign clients. Third, it introduces quorum consensus
to cure the global model by purging malicious/dummy parameters. Empirical
results show that Lockdown achieves superior and consistent defense performance
compared to existing representative approaches against backdoor attacks. Another
value-added property of Lockdown is the communication-efficiency and model
complexity reduction, which are both critical for resource-constrain FL scenario.
Our code is available at https://github.com/git-disl/Lockdown.

1 Introduction
Model distribution Subspace distribution

Malicious client Benign client

Figure 1: Illustration of isolated subspace training.
The blue circles and the shaded area respectively
represent the parameters of the model and the train-
ing subspace. Left: vanilla FL where malicious
clients can poison all the parameters. Right: iso-
lated subspace training where malicious clients can
only poison a subspace of them.

Federated Learning (FL) (McMahan et al.,
2016) is a privacy-preserving machine learn-
ing paradigm that allows the training surrogates
(clients) to collectively train a global model with
data in local devices. However, because the
training data and potentially the training process
on the clients lacks supervision, it is possible
that attackers can launch data poisoning attack
on the global model (Tolpegin et al., 2020), so
as to manipulate the prediction of the model.

Backdoor attack is one of the data poisoning
attacks, which is stealthy and disruptive to the
normal behavior of the model. Specifically, the
prediction of the model can be manipulated such
that it consistently predicts one (or some) chosen
label whenever it is given samples with a backdoor trigger. Backdoor attack poses serious threats to

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/git-disl/Lockdown

many security-critical applications, e.g., biometric authentication and autonomous driving (Chow &
Liu, 2021), which vitiates the large-scale deployment of FL. Therefore, an effective defense that can
mitigate such a risk is in an urgent need.

The main stream of existing research to defend backdoor attack in FL can be mainly classified into
three genres, i) certified robustness (Xie et al., 2021), (Alfarra et al., 2022), ii) adversarial training
(Zizzo et al., 2020; Shah et al., 2021), and iii) robust aggregation (Chow et al., 2023; Zhang et al.,
2022a). Though existing defenses can mitigate attack, they are still far from their maturity. In
particular, we highlight the in-efficiency of state-of-the-art defense solutions.

Existing defenses usually require extra computation in either the training or inference phases. For
example, randomized smoothing, the key component for certified robustness defense, requires multi-
ple forward pass of data in the inference phase for producing one effective prediction. Analogously,
adversarial training requires to generate adversarial samples in the inner loop of training, and therefore
demands extra data pass. This issue is particularly pronounced in the FL scenario, considering that
training and the inference are conducted on edge devices with limited capacity (Wang et al., 2019b).

In this paper, we try to answer the following question:

Is there a solution that not only provides SOTA defense performance, but also
requires equal or even less computation in both training and deployment phases?

To this end, we first apply the pruning-based defense solution in FL backdoor setting, but we observe
a poison-coupling effect, which significantly degrades the defense performance. Driven by this
observation, we propose Lockdown, a solution that utilizes isolated subspace training to de-couple
the poison parameters, which are then pruned using the consensus from clients. Our experiments
demonstrate that: i) Lockdown reduces the Attack Success Ratio (ASR) by up-to 90% compared to
FedAvg without defense. ii) Lockdown consistently performs better than SOTA defense solutions
in various attack settings. Specifically, Lockdown acquires 83% of ASR reduction with only 2.7%
drop of benign accuracy when the data distribution is Non-IID (the other two defense baselines RLR
and Krum respectively acquire 14.2% and 86.1% ASR reduction while sacrificing 16.2% and 43.6%
benign accuracy in the same setting). iii) Lockdown reduces both downlink and uplink communication
by at least 0.75x, and the number of parameters used in the model training and inference phases are
also accordingly reduced by at least 0.75x thanks to the removal of malicious/dummy parameters.

To the end, we summarize our contribution as follows:

• We study the data-free pruning defense in FL setting, and find that the poison parameters tend to be
statistically coupled with benign parameters, which we refer to as "poison-coupling" effect in FL
backdoor. To the best of our knowledge, this finding is not available in the literature.

• We propose Lockdown, a backdoor defense that utilizes the idea of isolated subspace training to
decouple the poison parameters. Notably, Lockdown i) enjoys communication reduction between
server and clients, and ii) lowers the model’s training/inference complexity.

• We conduct evaluations to show the efficacy of Lockdown. Results show that Lockdown consistently
outperforms existing defense baselines under different attack settings (attack method, attacker
number and poison ratio) and different data distributions (IID and Non-IID).

• Ablation study and hyper-parameter sensitivity analysis are conducted to verify the individual
functionality of each component of Lockdown.

2 Related Work

Federated Learning. Federated learning (McMahan et al., 2016) is a privacy-preserving distributed
training paradigm that allows clients to collectively train a global model from distributed training
data. Recent works on FL mostly lie in optimization (Karimireddy et al., 2020; Li et al., 2018; Sun
et al., 2023a,c; Li et al., 2023b; Sun et al., 2023b), which study how to mitigate the Non-IID issue
(Zhao et al., 2018) and system efficiency (Huang et al., 2020, 2022a; Li et al., 2021b,a).

Federated backdoor attack and defense. Classical backdoor attack in FL is empirically proven
to be effective in (Bagdasaryan et al., 2020), and subsequently, new types of attack are developed,
e.g., edge-case backdoor (Wang et al., 2020), stealthy model poisoning (Bhagoji et al., 2019), subnet
replacement attack (Qi et al., 2022), and Distributed Backdoor Attack (Xie et al., 2019).

2

Backdoor defense are developed to counter the potential threat posed by the backdoor attacks
(representative methods are neural cleanse (Wang et al., 2019a), meta analysis (Xu et al., 2021), etc).
Under the FL setting, backdoor defenses can be classified into three main genres. The first genre is
certified robustness. Certified robustness relies on randomized smoothing(Cohen et al., 2019), an
approach with theoretical certification of the model robustness. Subsequent techniques, e.g., weight
smoothing (Xie et al., 2021) and group ensemble (Cao et al., 2022) are studied for the defense of
federated backdoor. The second genre is adversarial training (Zizzo et al., 2020; Shah et al., 2021),
which generates adversarial samples to improve the model’s robustness. However, both certified
robustness and adversarial training require more computation in either the training or deployment
stage. The third genre is robust aggregation, which studies how to identify and preclude the malicious
update in the aggregation stage (Chow et al., 2023; Zhang et al., 2022a; Guo et al., 2021; Panda et al.,
2022). However, the classification benign accuracy of this category of defense often perform worse
when Non-IID extent increases.

Sparse training. Sparse training is originally designed to reduce the model complexity for both the
training and deployment stage. SET (Mocanu et al., 2018) first proposes the idea of dynamic subspace
searching with alternative pruning and recovery process, and are empirically studied with the concept
of in-time over-parameterization (Liu et al., 2021b,a, 2022). (Evci et al., 2020) further introduces
gradient information to guide the mask searching process. This model compression technique has
recently been extended to FL (Bibikar et al., 2022; Huang et al., 2022b; Dai et al., 2022).

We utilize sparse training technique to develop a new genre of backdoor defense solution. To the best
of our knowledge, this is the first attempt that connects sparse training with backdoor defense in FL.

3 Threat Models

We consider three threat models, named weak, medium and strong. All the models allow multiple
attackers to co-exist in the system. We use N to denote the number of attackers out of M total clients.

Table 1: Permission of threat models.
Permission\Threat model weak medium strong

Data manipulation ✓ ✓ ✓
Algorithm manipulation ✗ ✓ ✓
Global information Access ✗ ✗ ✓
Aggregation manipulation ✗ ✗ ✗

Permission. Different threats models are given different control permissions. Specifically, Weak
model allows the attackers to arbitrarily manipulate its local data, but cannot control its local training
process, while attackers in medium and strong model are allowed to do so. Only strong model
allows the attackers to obtain other benign client’s information, e.g., update from them. For control
permission in the weak threat model, technique like trusted execution environment (Mo et al., 2021)
can be applied to control each client to run the designated program, and thereby disabling algorithm
manipulation. Existing literature usually adopt medium threat model, in which attackers can do
whatever they like in their local devices, but has not extra information from server or from other
benign clients. The permission of the threat models are summarized in Table 1.

Malicious objective. Denote the set of benign clients as M and the set of malicious clients as N .
Formally, we characterize the objective of malicious clients as follows:

min
w

1

M

∑
i∈N

f̃i(w) +
∑

i∈M/N

fi(w)

 (1)

where f̃i(w) ≜ 1
|D̃i|

∑
(xj ,yj)∈D̃i

CE(w;xj , yj)) is the malicious objective of an attacker (to mini-

mize the average cross-entropy of the backdoor dataset), fi(w) ≜ 1
|Di|

∑
(xj ,yj)∈Di

CE(w;xj , yj))

is the benign objective (to minimize the average CE loss for the dataset from benign clients) , and D̃i

and Di are respectively the backdoor dataset and pristine dataset.

Attack methods. Different attack methods are eligible in different threat models. For weak threat
model, only data-level backdoor, e.g., BadNet (Gu et al., 2017), DBA (Xie et al., 2019), and Sinusoidal

3

(Barni et al., 2019) can be applied, since the attacker has no control to the local training, but only
has access to the dataset. For medium threat model, the attacker can perform a wider range of attack
methods, e.g., Scaling (Bagdasaryan et al., 2020), FixMask, etc, which requires the modification of
the local training process. For the strong threat model, we test Neurontoxin (Zhang et al., 2022b),
and Omniscient, which requires extra server-side information to aid the attack.

Defense goal. While solving the benign objective (see FL general objective in (McMahan et al.,
2016)), we expect the global model w to be able to resist backdoor attack. In other words, the global
model should minimize the benign objective while maximizing the malicious objective.

4 Case Study on Pruning-based Defense

Motivated by our goal to propose a computation-friendly defense, we extend the pruning-based
defense originally proposed for centralized ML to federated learning setting. We study CLP defense
proposed in (Zheng et al., 2022) towards two poisoned models trained with centralized SGD (central-
ized backdoor) and the global model produced by FedAvg (federated backdoor) 1. Surprisingly, we
observe that the pruning defense exhibits substantially different performance on the two models.

Figure 2: Properties of two models trained with centralized backdoor and federated backdoor. Left:
ASR and benign accuracy with CLP defense in (Zheng et al., 2022). Middle: Channel lipschitzness
of last convolutional layer of two models. Right: L2 norm of last convolutional layer of two models.
The experiment is done on a ResNet-9 model on CIFAR10 dataset and under BadNet attack.

Observations. In the left of Figure 2, we observe that the pruning algorithm cannot efficiently
eliminate the backdoor parameters for federated backdoor. The ASR can only drop to an acceptable
range (say 30%) when leveraging large pruning ratio, and accordingly, this also leads to a large drop
of benign accuracy (say 35% drop). In the middle, we plot the channel lipschitzness (CL) of the two
models, and find that the CL values for a federated backdoor couple in a more compact range, which
makes it hard for the pruning method to find out the malicious channels to prune. This explains why
CLP fails to work for federated backdoor. In the right, we plot the L2 norm of weights of the last
convolutional layer, the same coupling effect for federated backdoor can be observed – the L2 norm
of different channels are all within a small range.

Poison-coupling effect. In summary, our main takeaway is that the federated backdoor model is
hard to be cured by classical pruning method, because the backdoor parameters does not exhibit
substantial statistical difference with the benign ones, i.e., it tends to be coupled with the benign
parameters. We refer to this phenomenon for federated backdoor as poison-coupling effect. Due
to the existence of poison-coupling effect, it is hard, if not impossible, to accurately identify the
poisoned parameters after the model has been fully trained by federated learning process, and thereby
reducing the efficiency of the pure parameters pruning defense.

5 Methodology

To mitigate the poison-coupling effect, we propose lockdown with isolated subspace training. Intu-
itively, we don’t allow the malicious clients to get access to all the parameters, but only a subspace of
them (See Figure 1), in order to prevent them from statistically coupling the poisoned parameters
with the benign ones that are supposed to do normal function.

1Checkpoints of the centralized/federated backdoor models are available in https://www.dropbox.com/
scl/fo/lhi0objyklgnyh299j5wz/h?rlkey=wrsa5msbl2m3kzuk2f8rcc8uw&dl=0

4

https://www.dropbox.com/scl/fo/lhi0objyklgnyh299j5wz/h?rlkey=wrsa5msbl2m3kzuk2f8rcc8uw&dl=0
https://www.dropbox.com/scl/fo/lhi0objyklgnyh299j5wz/h?rlkey=wrsa5msbl2m3kzuk2f8rcc8uw&dl=0

 Serving/Inference

0

3

3

Backdoor Dataset

0

3

3

x y

Malicious clientBenign clients

...

 Upload to server

Benign Dataset

 Subspace
training

 Aggregation
 Clean

after T rounds

Uploaded subspace’s update

 Next roundServer

 Subspace
training

Figure 3: Overview of Lockdown. First, clients
receive subspace model from server, and apply iso-
lated subspace training. Second, clients upload
their subspace update. Third, server aggregates the
updates into global model. After training, consen-
sus fusion is applied to remove poison params.

The high-level idea of Lockdown is as follows. i)
we employ isolated subspace training to restrain
the training of each client into its own subspace,
such that the backdoor data cannot access and
couple the poisoning function in all the parame-
ters. ii) we employ dynamic subspace searching
for the clients to search for local subspaces us-
ing their local datasets, which involve only the
parameters that they deem important. iii) After
the above local procedures, the server will aggre-
gate the gradient updates into the corresponding
subspaces of global model, and continues the
next round of training. iv) Repeating T rounds
of training, the server can identify the malicious
parameters by consensus fusion. Under the in-
tuition that the malicious/dummy parameters (at
specific coordinates) should have less chance to
be involved in benign clients’ subspaces (because they are not important parameters for the benign
datasets). Considering the benign clients constitute the majority in the system, consensus fusion iden-
tify those parameters that have the least appearance among all the clients subspace as the malicious
or dummy parameters, which are then pruned to mitigate backdoor behavior. As follows, we detail
each step of Lockdown.

Subspace initialization. We enforce an overall sparsity s to the initial subspace of each client
(denoted by a binary variable mi,0). For maintaining practical performance of sparsity, we fol-
low (Evci et al., 2020) to use ERK for random subspace initialization, in which different layers
in the corresponding subspace are designated different sparsity (See Appendix A.1 for details).

Algorithm 1 Lockdown defense
input Training iteration T ; Local steps K; Learning

rate η; Pruning/recovery rate αt decayed by cosine
annealing (Specially, α−1 = 0, i.e., no recovery for
first round); Random seed seed; Initial model w0.

output Clean model for deployment w̃T

1: main Server’s Main Loop
2: mi,0 = SubspaceInit(seed) for i ∈ M
3: for t = 0, 1, . . . , T − 1 do
4: for i ∈ M do
5: Send wi,t,0 = mi,t ⊙wt to client i
6: Call Client i’s main loop for training
7: Received wi,t,K and mi,t+1

8: end for
9: wt+1 = wt− 1

M

∑M
i=1 mi,t⊙(wt−wi,t,K)

10: end for
11: w̃T = wT ⊙ Tθ(m1,T , . . . ,mM,T)
12: Deploy w̃T for serving/inference.
13: end main
14: main Client’s Main Loop
15: Obtain local gradient ∇fi(wi,t,0)
16: mi,t+ 1

2
= mi,t+ArgTopKαt−1

(|∇fi(wi,t,0)|)
17: for k = 0, 1, . . . ,K − 1 do
18: wi,t,k+1 = wi,t,k−ηmi,t+ 1

2
⊙∇fi(wi,t,k; ξ)

19: end for
20: mi,t+1 = mi,t+ 1

2
− ArgBottomKαt

(|wi,t,K |)
21: Send wi,t,K and mi,t+1 to server
22: end main

For each client, we enforce them to have the
same initial subspace, which can be achieved
via enforcing the same random seed to them for
subspace generation. However, we do find that
heterogeneous mask initialization can increase
protection in some cases (See Section 6.2).

Isolated subspace training. In this stage, each
client performs multiple local steps to train pa-
rameters within its isolated subspace (as en-
forced by its mask). Specifically, for local step
k = 0, . . . ,K − 1, clients do this update:

wi,t,k+1 = wi,t,k − ηmi,t ⊙∇fi(wi,t,k; ξ)
(2)

where ξ is a piece of random sample within the
local dataset, η is the learning rate, and ⊙ de-
notes Hadamard product. As shown, the binary
mask mi,t is applied to the gradient in every
local step, which isolates the training into i-th
client’s own subspace. This process prevents
the backdoor data from contaminating all the
parameters within the parameter space.

Subspace searching. We conduct subspace
searching for clients to search for their sub-
spaces, i.e., the parameters that are important
per the data they have. The searching process
is decomposed to two phases, as follows:

1. Subspace pruning. In this phase, we prune the unimportant parameters within the client’s current
subspace that do not function at all. After K steps of local training, we can identify the unimportant
parameters as those with the smallest magnitude within the subspace. To preclude them from
future training, we prune those smallest αt parameters within each layer, and accordingly update

5

the mask to mi,t+1. Formally, this process can be formulated as follows:

mi,t+1 = mi,t+ 1
2
− ArgBottomKαt

(|wi,t,K |) (3)

where ArgBottomKαt
(|w|) return the αt percentage of smallest coordinates of each layer abso-

luted weights and mask them to 1, indicating that they will be pruned. We use cosine annealing to
decay αt from the initial pruning rate α0. The decay process is postponed to the Appendix A.1.

2. Subspace recovery. After pruning, and before the start of next round local training, the client
recovers the same amount of parameters (as indicated by αt−1) to its subspace for exploration. To
identify which parameters should be recovered, we use each client’s data to extract the gradient
w.r.t the weights after pruned, i.e., to extract ∇fi(wi,t,0). Then we recover αt−1 percentage of
parameters by identifying those with top-αt−1 percentage of gradient magnitude within each layer,
and accordingly update the mask to mi,t+ 1

2
. The intuition is that for an important parameter over

the local data, its gradient magnitude should be larger than the unimportant ones, which should be
included into the new subspace. Formally, the recovery process is formalized as follows:

mi,t+ 1
2
= mi,t+ArgTopKαt−1

(|∇fi(wi,t,0)|) (4)

where ArgTopKαt−1
(w) returns the αt−1 percentage of largest coordinates of absoluted gradient

and mask them to 1, indicating that they will be recovered. But we note here that we don’t perform
subspace recovery in the first round, since pruning is not done yet.

Aggregation. Once subspace training is done, the clients upload the gradient updates of the local
subspace to the server for aggregation. To aggregate the knowledge into the global model, we average
the gradient updates based on their coordinate-wise contributions, as follows:

wt+1 = wt −
1

M

M∑
i=1

mi,t+1 ⊙ (wt −wi,t,K) (5)

where wi,t,K is the weight from the client’s local subspace, and mi,t+1 is the subspace after pruned.

Consensus fusion (CF). Given that those malicious parameters served to recognize backdoor triggers
will be deemed unimportant for benign clients, they should not be contained in the subspace of benign
clients, which accounts for the majority. This observation inspires us to eliminate the malicious
parameters using consensus fusion after T rounds of global model training. Formally, the consensus
fusion operator returns a vector that satisfies:

[Tθ(m1,T , . . . ,mM,T]j =

{
1

∑M
i=1[mi,T]j ≥ θ

0 Otherwise
(6)

where θ is the threshold for CF, and [·]j indexes the j-th coordinate of a vector. By applying the global
mask produced by CF into the global model, i.e., wT ⊙ Tθ(m1,T , . . . ,mM,T), those parameters
that have appearances smaller than θ among all the subspaces are sparsified to 0. In this way, those
poisoned parameters will mostly be eliminated, thereby reaching the goal of perturbing backdoor.

6 Experiment

6.1 Experiment Setup

Datasets and models. We experiment on FashionMnist, CIFAR10/CIFAR100 and TinyImagenet
datasets. For CIFAR10/CIFAR100, we use a ResNet9(He et al., 2016) as backbone. For TinyImagenet,
we use a modified ResNet9 via adding a pooling layer after the first convolutional layer to keep the
same hidden size before output. For FashionMnist, we use LeNet (LeCun et al., 1998).

Attack methods. We classify the backdoor attack methods in FL into three genres, i.e., data-level
backdoor, algorithm-level backdoor and advanced backdoor. Data-level backdoor only allows the
malicious clients to modify the raw data, but they have no control of the algorithm. On contrary,
algorithm-level backdoor allows clients to modify the training algorithm, in addition to the raw data.
The advanced attack can access extra server-side information (see Appendix A.2). Indeed, the three
genres of backdoor attack methods correspond to the weak, medium, strong threat models in Table 1

6

respectively. Among the data-level backdoor, we simulate three types of attacks methods, i.e., BadNet
(Gu et al., 2017), DBA (Xie et al., 2019), and Sinusoidal (Barni et al., 2019). For algorithm-level
backdoor, we simulate two types of attack, i.e., Scaling (Bagdasaryan et al., 2020), and FixMask. For
advanced backdoor, we test Neurotoxin (Zhang et al., 2022b) and an adaptive attack Omniscience.

Defense Baselines. We use vanilla FedAvg (McMahan et al., 2016) (without defense) as a baseline,
and compare Lockdown with four SOTA defenses RLR (Ozdayi et al., 2021), Krum (Blanchard et al.,
2017), RFA (Pillutla et al., 2022) and Trimmed mean (Yin et al., 2018).

Evaluation metrics. Three metrics are used to evaluate the defense performance:

• Benign Acc. Benign accuracy measures the Top-1 accuracy performance of a model given the
benign data inputs (without the presence of a trigger).

• ASR. Attack Success Ratio (ASR) measures the ratio of backdoor samples (with trigger) to be
classified to the target label. The smaller this metric, the more resilient the model is.

• Backdoor Acc. Backdoor accuracy measures the Top-1 accuracy of the model given the backdoor
inputs (their labels during testing are the original one before adding backdoor trigger). We add this
metric to evaluate the overall performance, since high backdoor acc means: i) the classification of
benign features is well-performing. ii) the perturbation of backdoor trigger is limited.

Simulation setting. We simulate M = 40 clients, and data is either evenly distributed to each client
(IID setting) or is distributed with Dirichlet distribution (Non-IID setting) following (Hsu et al.,
2019). The parameter for Dirichlet distribution is set to 0.5 for the Non-IID partition. To simulate
the backdoor attack launched by the malicious clients, we follow (Ozdayi et al., 2021) to randomly
choose N clients as attackers whose p (percentage) of data in their local datasets are poisoned. The
default backdoor settings for our main experiment are p = 50% and N = 4. We summarize the
default simulation setting in Table 2. All the experiments are done with a Nvidia A100 GPU.

Hyper-parameters. For Lockdown, we fix the overall sparsity to s = 0.25, the mask agreement
threshold to θ = 20, and the initial pruning rate to α0 = 1e− 4. The robust learning rate threshold
for RLR is set to 8. The number of local epochs and batch size are fixed to 2 and 64, respectively.
The learning rate and weight decay used in the local optimizer are fixed to 0.1 and 10−4. The number
of comm rounds is fixed to 200. We summarize the default hyper-parameters in Table 3.

Table 2: Default Simulation Setting.

Notation Meaning Default Value

M Total number of clients 40
p Poison ratio 0.5
N Attacker number 4

Table 3: Default hyper-parameter for Lockdown.

Notation Meaning Default Value

α0 Initial pruning rate 1e-4
θ Agreement threshold 20
s Overall sparsity 0.25

6.2 Main Evaluation

In our main evaluation, we use CIFAR10 as the default dataset and BadNet as the default attack.

Convergence. The convergence result w.r.t communication rounds is plotted in Figure 4. Lockdown
offers the strongest robustness under attack with Non-IID settings. Compared with IID, when the
data distribution is Non-IID, Lockdown suffers a slight drop in benign accuracy (by approximately
3%) while Krum and RLR suffer more. The larger heterogeneity causes more benign parameters to
be dropped in the consensus fusion process, resulting in a drop in benign accuracy.

Figure 4: Convergence and defense performance under different defenses.

7

Table 4: Defense efficacy with varying poison ratio p under CIFAR10.
Methods Benign Acc (%) ↑ ASR (%) ↓ Backdoor Acc (%) ↑

(IID) clean p=.05 p=.2 p=.5 p=.8 clean p=.05 p=.2 p=.5 p=.8 clean p=.05 p=.2 p=.5 p=.8

FedAvg 91.0 91.4 91.1 91.0 90.8 1.6 12.4 19.9 66.1 94.8 88.5 79.6 73.4 32.9 5.1
RLR 86.8 86.7 86.6 86.3 85.5 2.3 2.4 2.4 4.3 25.1 84.6 84.3 83.4 81.7 65.2
Krum 76.3 78.0 75.6 76.4 75.8 4.7 3.9 4.3 4.3 4.9 73.8 74.9 72.9 73.9 73.2
RFA 90.9 91.2 91.1 90.8 90.7 1.6 15.8 20.7 83.7 99.3 88.8 76.8 72.4 15.9 0.7

Trimmed mean 91.0 90.6 91.1 90.9 90.8 1.7 5.0 20.7 61.7 96.2 88.5 84.7 72.0 36.6 3.6
Lockdown 90.0 90.0 89.9 90.1 90.0 1.8 3.6 2.5 7.1 4.0 87.9 85.8 86.6 83.7 85.6

Methods Benign Acc (%) ↑ ASR (%) ↓ Backdoor Acc (%) ↑
(Non-IID) clean p=.05 p=.2 p=.5 p=.8 clean p=.05 p=.2 p=.5 p=.8 clean p=.05 p=.2 p=.5 p=.8

FedAvg 89.0 89.2 89.3 88.8 88.7 1.7 17.3 54.4 86.4 96.7 85.9 74.0 42.5 13.0 3.2
RLR 74.4 74.4 73.6 72.9 72.5 5.8 15.0 40.2 29.5 82.5 69.0 63.1 46.2 51.4 15.3
Krum 42.7 37.4 45.2 43.4 45.1 10.0 5.2 10.4 11.1 10.6 38.6 33.8 40.7 39.3 40.5
RFA 88.8 88.8 88.8 88.3 88.3 2.0 21.4 52.8 90.8 98.7 85.7 70.6 44.3 8.9 1.2

Trimmed mean 88.5 88.4 88.2 88.3 88.3 1.9 25.2 48.4 84.6 96.0 85.4 67.5 47.7 14.7 3.9
Lockdown 85.6 86.2 86.7 86.1 86.6 0.9 7.6 3.6 3.4 3.3 84.1 79.5 82.3 82.2 82.8

Defense efficacy on varying poison ratio. As shown in Table 4, the Attack Success Ratio (ASR)
of Lockdown under different data poison ratios are significant lower compared with vanilla FedAvg
without defense (up to 96% reduction), and is also significantly lower than the SOTA backdoor
defense solutions. Though ASR of Lockdown is slightly larger than RLR and Krum in IID settings,
its benign accuracy is much higher than them (with up-to 5.4% and 15% enhancement comparing
RLR and Krum respectively). Another observation is that Lockdown performs better in reducing ASR
when the data poison ratio is high (in Non-IID setting, ASR is 7.6% when p = 0.05 while ASR is
only 3.3 % when p = 0.8). This phenomenon is because the subspaces found by the malicious clients
will deviate more from benign clients when a larger amount of backdoor samples are injected in their
datasets. Therefore, the malicious subspace will overlap less with benign subspaces, resulting in a
better isolation, and also benefit the consensus fusion process. In addition, Lockdown significantly
advances backdoor accuracy by up-to 79.6% compared to FedAvg without defense, which implies
that the Lockdown’s model can still recognize the true label of backdoor samples even under attack.

Defense efficacy on varying attacker ratio. We fix the poison ratio to 0.5 and vary the attackers
ratio to {0, 0.1, 0.2, 0.3, 0.4}. The results are shown in Figure 5. As shown, Lockdown consistently
achieves low ASR (at minimum 30% ASR reduction compared to FedAvg when attackers ratio is
0.4), and high benign accuracy in all groups of experiments (at maximum 5% drop of benign accuracy
compared to FedAvg). In contrast, RLR and Krum are sensitive to attacker ratio and fail in defense
when attacker ratio is 0.4 (no ASR reduction for Krum, and at maximum 10% reduction for RLR).

Figure 5: Benign acc/ASR under different attackers ratio.

Defense against Non-IID extent. Next we show in Table 5 that Lockdown is robust to different
Non-IID extent. Our experiment is done in the default setting, but vary different setting of Dirichlet
Parameters α, and it shows that Lockdown can defend against backdoor even in extreme Non-IID
cases (e.g., α = 0.2, which leads to benign accruacy drop of FedAvg from 90.8% to 84.3%). Our
another observation is that Lockdown would suffers more benign accuracy loss (respectively 3.7%,
2.7%, 1.2% and 0.7% benign accuracy loss for the four Non-IID levels).

Table 5: Defense efficiency with different Non-IID extent.
/ α = 0.2 α = 0.5 α = 0.8 IID

Methods Benign Acc ↑ ASR ↓ Benign Acc ↑ ASR ↓ Benign Acc ↑ ASR Benign Acc ↑ ASR ↓
FedAvg 84.3 74.8 88.8 86.4 89.2 74.7 90.8 66.1

RLR 64.5 82.5 72.9 29.5 82.9 24.5 85.5 4.3
Krum 26.5 2.8 43.4 11.1 43.6 6.6 75.8 4.3

Lockdown 80.6 7.7 86.1 3.4 88 3.9 90.1 7.1

Defense against data-level backdoor. We simulate attacks with the BadNet, DBA, and sinusoidal
method. Our results in Table 6 show that Lockdown has good generalization ability to data-level

8

backdoor attack. Overall. Lockdown maintains superior defense efficacy (< 10% ASR) towards all
the three data-level backdoor attacks.

Table 6: Lockdown on data-level attack.

Methods (IID) Benign Acc(%) ↑ ASR(%) ↓ Backdoor Acc(%) ↑
BadNet 90.1 7.1 83.7
DBA 90.0 2.5 86.4

Sinusoidal 89.5 4.6 83.6

Methods (Non-IID) Benign Acc(%) ↑ ASR (%) ↓ Backdoor Acc(%) ↑
BadNet 86.1 3.4 82.2
DBA 86.5 2.0 82.9

Sinusoidal 87.0 2.0 81.8

Table 7: Lockdown on algorithm/advanced attack.

Methods (IID) Benign Acc(%) ↑ ASR(%) ↓ Backdoor Acc(%) ↑
Scaling (Lockdown + NC) 89.9 3.2 86.2

Neurotoxin 89.0 2.6 86.1

Methods (Non-IID) Benign Acc(%) ↑ ASR (%) ↓ Backdoor Acc(%) ↑
Scaling (Lockdown + NC) 89.9 3.2 86.2

Neurotoxin 86.0 1.8 83.5

Defense against algorithm-level/advanced backdoor. Table 7 shows Lockdown’s performance
on Scaling and Neurotoxin attack. For Scaling attack, the scaling factor is set to 5. We integrate
Lockdown with the norm-clipping (NC) in aggregation as proposed in (Sun et al., 2019), and as
shown, Lockdown defense is still effective by controlling ASR to <5%. Lockdown is also robust to
Neurotoxin, an attack developed from a similar idea as Lockdown (See Appendix A.2 for analysis).

Defense against adaptive attack. We design two adaptive attacks that assume the knowledge of
Lockdown and try to break it. Both the attacks try to disobey the mask searching process. Specifically,
FixMask allows attackers to fix the initial subspace, and Omniscience is able to infer the global
subspace that is produced by CF. As shown Table 8, vanilla Lockdown procedure is vulnerable to
them. However, we find that there are two methods can be used to rectify Lockdown to accommodate
FixMask attack. i) Enlarge the initial pruning/recovery ratio α0, or ii) adopt heterogeneous mask
initialization (HM). Both the approaches enhance the dynamics of subspaces, and therefore enhance
protection. For Omnisicence attack, the attackers always know consensus subspace and therefore
can poison the parameters within it. Lockdown cannot cope with this attack. However, the condition
of conducting Omniscience attack is stringent, as it has to acquire either global subspace, or other
benign clients’ local subspace, meaning that it falls into the Strong threat model in Table 1.

Table 8: Lockdown on adaptive attack.

Methods (IID) Benign Acc(%) ↑ ASR(%) ↓ Backdoor Acc(%) ↑
FixMask 89.9 63.5 35.5

FixMask (α0 = 0.1) 88.5 3.5 84.3
FixMask (HM,α0 = 0.1) 88.5 5.8 82.8

Omniscience 89.3 44.7 52.1

Methods (Non-IID) Benign Acc(%) ↑ ASR (%) ↓ Backdoor Acc(%) ↑
FixMask 86.8 86.3 13.1

FixMask (α0 = 0.1) 85.7 4.6 79.5
FixMask (HM,α0 = 0.1) 86.9 3.7 81.8

Omniscience 86.8 86.3 13.1

Table 9: Communication and # of parameters for Lock-
down under IID CIFAR10 (ResNet9) setting. The com-
munication overhead is the sum of that of M = 40
clients in each round.

Methods Comm Overhead ↓ # of params ↓ Benign Acc(%) ↑
FedAvg 2.10GB (1x) 6.57M (1x) 91.0 (1x)

Lockdown 0.525GB (0.25x) 1.643M (0.25x) 90.0 (0.990x)

Communication and model complexity. As shown in Table 9, we show that Lockdown achieves
smaller communication overhead (0.25x compared to FedAvg), since only a small subspace of
the entire model gradient needs to be sent between server and clients. In addition, the number of
parameters of the inference model is also lowered to 0.25x because the consensus fusion operation
prune out the malicious/dummy parameters. Finally, we observe that benign accuracy only drops by
0.01x compared to FedAvg, indicating that pruning will not severely perturb the normal function.

Generalization to varying datasets. We show our evaluation results on FashionMnist, CIFAR10/100
and TinyImagenet in Table 10. As shown, Lockdown achieves SOTA defense efficacy (compared with
FedAvg without defense, with up-to 80.7%, 83.0%, 73.8%, and 93.4% reduction of ASR respectively
on the four datasets), and maintains a reasonable loss of benign accuracy compared to FedAvg without
defense (with up-to 2.2%, 2.7%, 3.9% and 3.3% drop).

Table 10: Performance on varying datasets.
/ FashionMnist CIFAR10 CIFAR100 TinyImagenet

Methods (IID) Benign Acc ↑ ASR ↓ Benign Acc ↑ ASR ↓ Benign Acc ↑ ASR ↓ Benign Acc ↑ ASR ↓
FedAvg 90.0 85.1 91.0 66.1 70.0 75.7 12.7 96.7

RLR 89.2 6.0 86.3 4.3 61.0 1.9 10.5 98.0
Krum 83.9 1.0 76.4 4.3 26.9 98.8 3.5 99.9

Lockdown 88.7 4.4 90.1 7.1 66.9 1.9 9.4 3.3

Methods (Non-IID) Benign Acc ↑ ASR ↓ Benign Acc ↑ ASR ↓ Benign Acc ↑ ASR ↓ Benign Acc ↑ ASR ↓
FedAvg 89.2 87.9 88.8 86.4 67.7 74.8 12.1 96.5

RLR 83.7 39.1 72.9 29.5 53.9 36.0 9.2 98.6
Krum 75.8 1.7 43.4 11.1 20.6 1.3 2.6 99.9

Lockdown 87.1 15.6 86.1 3.4 63.8 2.5 9.6 3.1

9

Visualization. In Figure 6, We plot each filter’s weight of the last convolutional layer of a ResNet-9
model trained with Lockdown. The brighter the color is, the larger the absolute value is, meaning
that the filter can be activated by some particular inputs. We find that via our Lockdown procedure,
the 86-th filter becomes "suspicious". We plot the weights in the classifier that connects this filter,
and accidentally find that this filter contribute most to activate the "horse" neuron, which is our
target backdoor label. This illustrates that lockdown can break the "poison-couple effect"– poison
parameters (i.e., those in the 86-th filter) only appear in subspace that is not shared by benign clients,
which can be effectively filtered out by contrasting the benign and poisoned client’s subspace.

Attacker (id=0) Benign client (id=5) Consensus (after CF)

Figure 6: Visualization of Lockdown. Each squre represent weights of a filter. Left/Middle/Right:
projecting the weights into an attacker/a benign client/consensus subspace. Bar chart in the middle:
weights in the classifier connected 86-th filter with different neurons. "Horse" is our backdoor target.

6.3 Ablation and Hyper-parameter Sensitivity Analysis

Ablation study demonstrates the necessity of i) ERK initialization ii) gradient-based recovery, is
moved to Appendix A.6. We tune three key hyper-parameters of Lockdown to demonstrate their
impacts in our sensitivity analysis. Our findings are: i) setting a proper sparsity s can increase the
model’s robustness. ii) Setting a proper initial pruning/recovery rate α0 is necessary for effective
subspace searching, but too large of it will hurt the model’s normal function. iii) Consensus threshold
θ should be set sufficiently large to filter out the malicious parameters. See Appendix A.7 for details.

7 Conclusion

In this paper, we study the pruning-based defense for FL and observe a "poison-coupling" phe-
nomenon, which degrades the defense performance. To mitigate such an effect, we propose Lock-
down, a backdoor defense based on the idea of isolated subspace training. Empirical evidence shows
that Lockdown can significantly reduce the risk of malicious backdoor attacks without sacrificing
much on benign accuracy. Future works include studying how to generalize Lockdown to other FL
settings, e.g., decentralized FL (Hu et al., 2019; Li et al., 2023a; Shi et al., 2023), personalized FL
(Fallah et al., 2020; T Dinh et al., 2020; Huang et al., 2022b, 2023; Dai et al., 2022), etc.

Acknowledgements

This research is partially sponsored by the NSF CISE grants 2038029, 2302720, 2312758, an IBM
faculty award, and a grant from CISCO Edge AI program.

10

References
Alfarra, M., Pérez, J. C., Shulgin, E., Richtárik, P., and Ghanem, B. Certified robustness in federated

learning. arXiv preprint arXiv:2206.02535, 2022.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and Shmatikov, V. How to backdoor federated learning.
In International Conference on Artificial Intelligence and Statistics, pp. 2938–2948. PMLR, 2020.

Barni, M., Kallas, K., and Tondi, B. A new backdoor attack in cnns by training set corruption without
label poisoning. In 2019 IEEE International Conference on Image Processing (ICIP), pp. 101–105.
IEEE, 2019.

Bhagoji, A. N., Chakraborty, S., Mittal, P., and Calo, S. Analyzing federated learning through an
adversarial lens. In International Conference on Machine Learning, pp. 634–643. PMLR, 2019.

Bibikar, S., Vikalo, H., Wang, Z., and Chen, X. Federated dynamic sparse training: Computing
less, communicating less, yet learning better. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 6080–6088, 2022.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer, J. Machine learning with adversaries:
Byzantine tolerant gradient descent. Advances in Neural Information Processing Systems, 30,
2017.

Cao, X., Fang, M., Liu, J., and Gong, N. Z. Fltrust: Byzantine-robust federated learning via trust
bootstrapping. arXiv preprint arXiv:2012.13995, 2020.

Cao, X., Zhang, Z., Jia, J., and Gong, N. Z. Flcert: Provably secure federated learning against
poisoning attacks. IEEE Transactions on Information Forensics and Security, 17:3691–3705, 2022.

Chow, K.-H. and Liu, L. Perception poisoning attacks in federated learning. In 2021 Third IEEE
International Conference on Trust, Privacy and Security in Intelligent Systems and Applications
(TPS-ISA), pp. 146–155. IEEE, 2021.

Chow, K.-H., Liu, L., Wei, W., Ilhan, F., and Wu, Y. Stdlens: Model hijacking-resilient federated
learning for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16343–16351, 2023.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial robustness via randomized smoothing.
In International Conference on Machine Learning, pp. 1310–1320. PMLR, 2019.

Dai, R., Shen, L., He, F., Tian, X., and Tao, D. Dispfl: Towards communication-efficient personalized
federated learning via decentralized sparse training. arXiv preprint arXiv:2206.00187, 2022.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen, E. Rigging the lottery: Making all tickets
winners. In International Conference on Machine Learning, pp. 2943–2952. PMLR, 2020.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Personalized federated learning: A meta-learning approach,
2020.

Ghosh, A., Hong, J., Yin, D., and Ramchandran, K. Robust federated learning in a heterogeneous
environment. arXiv preprint arXiv:1906.06629, 2019.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Guo, H., Wang, H., Song, T., Hua, Y., Lv, Z., Jin, X., Xue, Z., Ma, R., and Guan, H. Siren: Byzantine-
robust federated learning via proactive alarming. In Proceedings of the ACM Symposium on Cloud
Computing, pp. 47–60, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects of non-identical data distribution for
federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

11

Hu, C., Jiang, J., and Wang, Z. Decentralized federated learning: A segmented gossip approach.
arXiv preprint arXiv:1908.07782, 2019.

Huang, T., Lin, W., Wu, W., He, L., Li, K., and Zomaya, A. Y. An efficiency-boosting client
selection scheme for federated learning with fairness guarantee. IEEE Transactions on Parallel
and Distributed Systems, 32(7):1552–1564, 2020.

Huang, T., Lin, W., Shen, L., Li, K., and Zomaya, A. Y. Stochastic client selection for federated
learning with volatile clients. IEEE Internet of Things Journal, 9(20):20055–20070, 2022a.

Huang, T., Liu, S., Shen, L., He, F., Lin, W., and Tao, D. Achieving personalized federated learning
with sparse local models. arXiv preprint arXiv:2201.11380, 2022b.

Huang, T., Shen, L., Sun, Y., Lin, W., and Tao, D. Fusion of global and local knowledge for
personalized federated learning. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=QtrjqVIZna.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T. Scaffold: Stochastic
controlled averaging for federated learning. In International Conference on Machine Learning, pp.
5132–5143. PMLR, 2020.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Li, A., Sun, J., Li, P., Pu, Y., Li, H., and Chen, Y. Hermes: an efficient federated learning framework
for heterogeneous mobile clients. In Proceedings of the 27th Annual International Conference on
Mobile Computing and Networking, pp. 420–437, 2021a.

Li, A., Sun, J., Zeng, X., Zhang, M., Li, H., and Chen, Y. Fedmask: Joint computation and
communication-efficient personalized federated learning via heterogeneous masking. In Proceed-
ings of the 19th ACM Conference on Embedded Networked Sensor Systems, pp. 42–55, 2021b.

Li, Q., Shen, L., Li, G., Yin, Q., and Tao, D. Dfedadmm: Dual constraints controlled model
inconsistency for decentralized federated learning. arXiv preprint arXiv:2308.08290, 2023a.

Li, Q., Zhang, M., Yin, N., Yin, Q., and Shen, L. Asymmetrically decentralized federated learning.
arXiv preprint arXiv:2310.05093, 2023b.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. Federated optimization in
heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Liu, S., Chen, T., Chen, X., Atashgahi, Z., Yin, L., Kou, H., Shen, L., Pechenizkiy, M., Wang, Z., and
Mocanu, D. C. Sparse training via boosting pruning plasticity with neuroregeneration. Advances
in Neural Information Processing Systems, 34:9908–9922, 2021a.

Liu, S., Yin, L., Mocanu, D. C., and Pechenizkiy, M. Do we actually need dense over-
parameterization? in-time over-parameterization in sparse training. In Proceedings of the 39th
International Conference on Machine Learning, pp. 6989–7000. PMLR, 2021b.

Liu, S., Chen, T., Chen, X., Shen, L., Mocanu, D. C., Wang, Z., and Pechenizkiy, M. The unreasonable
effectiveness of random pruning: Return of the most naive baseline for sparse training. arXiv
preprint arXiv:2202.02643, 2022.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., et al. Communication-efficient learning of
deep networks from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

Mo, F., Haddadi, H., Katevas, K., Marin, E., Perino, D., and Kourtellis, N. Ppfl: privacy-preserving
federated learning with trusted execution environments. In Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services, pp. 94–108, 2021.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., and Liotta, A. Scalable training
of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature
Communications, 9(1):2383, 2018.

12

https://openreview.net/forum?id=QtrjqVIZna

Ozdayi, M. S., Kantarcioglu, M., and Gel, Y. R. Defending against backdoors in federated learning
with robust learning rate. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 9268–9276, 2021.

Panda, A., Mahloujifar, S., Bhagoji, A. N., Chakraborty, S., and Mittal, P. Sparsefed: Mitigating
model poisoning attacks in federated learning with sparsification. In International Conference on
Artificial Intelligence and Statistics, pp. 7587–7624. PMLR, 2022.

Pillutla, K., Kakade, S. M., and Harchaoui, Z. Robust aggregation for federated learning. IEEE
Transactions on Signal Processing, 70:1142–1154, 2022.

Qi, X., Xie, T., Pan, R., Zhu, J., Yang, Y., and Bu, K. Towards practical deployment-stage backdoor
attack on deep neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13347–13357, 2022.

Shah, D., Dube, P., Chakraborty, S., and Verma, A. Adversarial training in communication constrained
federated learning. arXiv preprint arXiv:2103.01319, 2021.

Shi, Y., Shen, L., Wei, K., Sun, Y., Yuan, B., Wang, X., and Tao, D. Improving the model consistency
of decentralized federated learning. arXiv preprint arXiv:2302.04083, 2023.

Sifaou, H. and Li, G. Y. Robust federated learning via over-the-air computation. In 2022 IEEE 32nd
International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE, 2022.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M. Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825, 2017.

Sun, Y., Shen, L., Huang, T., Ding, L., and Tao, D. Fedspeed: Larger local interval, less communica-
tion round, and higher generalization accuracy. arXiv preprint arXiv:2302.10429, 2023a.

Sun, Y., Shen, L., Sun, H., Ding, L., and Tao, D. Efficient federated learning via local adaptive
amended optimizer with linear speedup. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023b.

Sun, Y., Shen, L., and Tao, D. Understanding how consistency works in federated learning via
stage-wise relaxed initialization. arXiv preprint arXiv:2306.05706, 2023c.

Sun, Z., Kairouz, P., Suresh, A. T., and McMahan, H. B. Can you really backdoor federated learning?
arXiv preprint arXiv:1911.07963, 2019.

T Dinh, C., Tran, N., and Nguyen, J. Personalized federated learning with moreau envelopes.
Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

Tolpegin, V., Truex, S., Gursoy, M. E., and Liu, L. Data poisoning attacks against federated learning
systems. In European Symposium on Research in Computer Security, pp. 480–501. Springer, 2020.

Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., and Zhao, B. Y. Neural cleanse:
Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE Symposium on
Security and Privacy (SP), pp. 707–723. IEEE, 2019a.

Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H., Agarwal, S., Sohn, J.-y., Lee, K., and
Papailiopoulos, D. Attack of the tails: Yes, you really can backdoor federated learning. arXiv
preprint arXiv:2007.05084, 2020.

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., and Chan, K. Adaptive federated
learning in resource constrained edge computing systems. IEEE journal on selected areas in
communications, 37(6):1205–1221, 2019b.

Xie, C., Huang, K., Chen, P.-Y., and Li, B. Dba: Distributed backdoor attacks against federated
learning. In International Conference on Learning Representations, 2019.

Xie, C., Chen, M., Chen, P.-Y., and Li, B. Crfl: Certifiably robust federated learning against backdoor
attacks. In International Conference on Machine Learning, pp. 11372–11382. PMLR, 2021.

13

Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C. A., and Li, B. Detecting ai trojans using meta neural
analysis. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 103–120. IEEE, 2021.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. Byzantine-robust distributed learning: Towards optimal
statistical rates. In International Conference on Machine Learning, pp. 5650–5659. PMLR, 2018.

Zhang, Z., Cao, X., Jia, J., and Gong, N. Z. Fldetector: Defending federated learning against model
poisoning attacks via detecting malicious clients. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2545–2555, 2022a.

Zhang, Z., Panda, A., Song, L., Yang, Y., Mahoney, M., Mittal, P., Kannan, R., and Gonzalez, J.
Neurotoxin: Durable backdoors in federated learning. In International Conference on Machine
Learning, pp. 26429–26446. PMLR, 2022b.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. Federated learning with non-iid data.
arXiv preprint arXiv:1806.00582, 2018.

Zheng, R., Tang, R., Li, J., and Liu, L. Data-free backdoor removal based on channel lipschitzness.
In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part V, pp. 175–191. Springer, 2022.

Zizzo, G., Rawat, A., Sinn, M., and Buesser, B. Fat: Federated adversarial training. arXiv preprint
arXiv:2012.01791, 2020.

14

A Supplementary Material

A.1 Implementation Details

Decay pruning rate with cosine annealing. In our subspace pruning/recovery process, we let the
clients prune out αt percentage of parameters and recover the same amount of parameters to search
for the subspace that fits their data. The parameter αt is decayed with the initial rate α0 with cosine
annealing, which can be formalized as follows:

αt = 0.5× α0 ×
(
1 + cos

(
t

Tend
π

))
(7)

where t is the number of communication round, and Tend is the round that the mask searching is
ended (notice that αTend

= 0). In our implementation, we set Tend = T .

ERK sparsity initialization. We use Erdős–Rényi Kernel (ERK) (Evci et al., 2020), an empirical
sparsity distribution technique, to distribute sparsity to different layers of a model. Specifically, the
active parameters of the convolutional layer initialized by ERK are proportional to 1n1−1+nl+wl+hl

nl−1∗nl∗wl∗hl ,
where nl−1, nl w

l and hl respectively specify the number of input channels, output channels and
kernel’s width and height in the l-th layer. For the linear layer, the number of active parameters scale
with 1nl−1+nl

nl−1∗nl where nl−1 and nl are the number of neurons in the (l − 1)-th and l-th layer. ERK
initialization, in essence, gives more sparsity to those layers with a larger number of parameters while
pruning less on those small layers.

Subspace pruning. In the mask searching process, we use parameter’s magnitude to guide the
pruning of model parameters. We present the PyTorch style code in Algorithm 2 to illustrate the
pruning process and, correspondingly, the update of mask. Note that we only prune out parameters
that are within the current subspace. Therefore, in line 6, we set the parameters that are out of
the subspace to a very large value to prevent from selecting them. After that, we filter out those
parameters with the smallest αt percentage of magnitude and prune them out of the subspace.

Algorithm 2 PyTorch style code for pruning and recovery
1: function Prune_subspace(αt, wi,t,K , mi,t+ 1

2
)

2: Init layer sparsity {sl} given overall sparsity s with ERK
3: mi,t+1 = mi,t+ 1

2

4: for l = 0, 1, . . . , L− 1 do
5: numprune = αt × # of params in the l-th layer
6: sort = torch.where(m(l)

i,t == 1, torch.abs(w(l)
i,t,K), 1000×torch.ones_like(w(l)

i,t,K))
7: _, idx = torch.sort((sort).view(−1))

8: m
(l)
i,t+1.view(−1)[idx[: numprune]] = 0

9: end for
10: Return mi,t+1

11: end function
12:
13: function Recover_subspace(αt, wi,t,0, mi,t)
14: Derive gradient ∇fi(wi,t,0 ⊙mi,t) with one pass of local data
15: mi,t+ 1

2
= mi,t

16: for l = 0, 1, . . . , L− 1 do
17: numprune = αt × # of params in the l-th layer
18: sort = torch.where(m(l)

i,t+ 1
2

=0, torch.abs(∇f
(l)
i (wi,t,0⊙mi,t)), −1000×torch.ones_like(w(l)

i,t,K))

19: _, idx = torch.sort((sort).view(−1), descending=True)
20: m

(l)

i,t+ 1
2

.view(−1)[idx[: numprune]] = 1

21: end for
22: Return mi,t+ 1

2

23: end function

Subspace recovery. After pruning and before the next round training, we recover the same amount
of parameters to explore other parameters outside the subspace. Following (Evci et al., 2020), we use
gradient information of the pruned model to guide the recovery process. Here we only recover the

15

BadNet

DBA

Client #2Client #1 Client #3 Client #4 Testing

Sinusoidal

Figure 7: Examples of BadNet, DBA, and Sinusoidal attack. Labels of poison samples are manipu-
lated to the target label (e.g., a horse).

parameters out of the current subspace, and therefore we set the sort_value of the parameters within
the current subspace to a sufficiently small value, as shown in Algorithm 2. Subsequently, we sort in
descending to obtain the parameters with the largest-αt percentage gradient magnitude, and recover
them by updating masks.

A.2 Attack Methods

Table 11: Application of attack methods in threat models. "✓" corresponds to be applicable while "
✗" corresponds to be not applicable.

Attack methods Threat models

/ weak medium strong

BadNet ✓ ✓ ✓
DBA ✓ ✓ ✓

Sinusoidal ✓ ✓ ✓

Scaling ✗ ✓ ✓
FixMask (adaptive) ✗ ✓ ✓

Neurotoxin ✗ ✗ ✓
Omniscience (adaptive) ✗ ✗ ✓

As we mention in the main body, we classify the attack model into data-level attack and algorithm-
level backdoor. We in the following give brief description of each data-level backdoor that we
simulate in federated learning setting.

• BadNet. BadNet is the earliest, and also the simplest backdoor attack first proposed in (Gu et al.,
2017). To perform BadNet attack, the malicious client simply add the same backdoor trigger on
some of the data samples, and modify the label of these poisoned samples to the target label. In test
time, the malicious clients can place the backdoor trigger on the test samples, such that the victim
model can produce the target output no matter what the original test samples are.

• DBA. DBA (Xie et al., 2019) is a backdoor attack specifically targeted on FL. To perform DBA
attack, the authors decompose the backdoor trigger into several local pattern, and assign the local
pattern to different clients to poison their local data. For test time, the attacker will interpose the
completed trigger on top of the test samples they want to manipulate. It is suggested by the authors
that DBA is substantially more persistent and stealthy against FL. In our simulation, we decompose
the "plus“ trigger into 4 local patterns, and let each malicious client to be assigned each local
pattern.

• Sinusoidal attack. Sinusoidal attack (Barni et al., 2019) shares a similar perspective with BadNet,
which also utilize the same trigger for all the malicious clients to poison their samples. However,
the backdoor trigger they use is a horizontal sinusoidal signal defined by v(i, j) = ∆ sin(2πjf/m),
1 ≤ j ≤ m, 1 ≤ i ≤ l, for a certain frequency f . The authors claim that this design of trigger i)
ensures the stealthiness of the attack, but also ii) can be separable with the same (or similar) feature
space used by the network to classify the benign samples. In our simulation, we adopt the default
hyper-parameter δ = 20 and f = 6 for performing this attack.

16

Examples of these data-level attacks are visually shown in Figure 7.

In the following we give brief description on the algorithm-level backdoor that has been simulated in
this paper.

• Scaling. The basic idea of Scaling (Bagdasaryan et al., 2020) is to enlarge the gradient update
when a malicious client return its update to server. This mechanism allows the malicious client to
enlarge its gradient’s impact on the global model, and therefore is effective when the poison ratio
and attacker number are small.

• FixMask. FixMask is an adaptive attack method specifically targeting Lockdown. In Lockdown,
the malicious clients are assumed to faithfully search for their subspace using their local data. For
FixMask attack, the malicious clients freeze their mask to be the initial mask that is shared by all
the clients in round t = 0, and refuse to change afterwards.

Particularly, we want to emphasize that the data-level and algorithm-level backdoor can potentially
be combined together to produce better attack performance. However, since this paper focus on the
defense aspect, we leave a more thorough study of the attack model future work. We also include two
advanced attack algorithms that can only be conducted given extra server information in addition to
permission on manipulation of the attacker’s own training process and data.

• Neurotoxin. Neurotoxin proposed in (Zhang et al., 2022b) explores a durable attack method in
the scenario that the attackers can only participate limited rounds. Their main observations in the
limited participation case are that i) the benign update can recover the global model after attacker
ceases attack. ii) the majority of the l2 norm of the aggregated benign update is contained in a small
number of coordinates (Let’s call these benign coordinates). Utilizing the above observations, the
authors propose Neurotoxin, which is to let the malicious clients project their gradient update to the
subspace excluding the global coordinates. By this means, the projected updates from the malicious
clients are mostly embedded to the coordinates that have less perturbation by the benign updates
(which focus on the benign coordinates) after ceasing attack. However, Neurotoxin cannot escape
Lockdown defense in principle. There are mainly two reasons. i) Lockdown only broadcast to the
clients some coordinates weights (equivalently, some coordinates of gradient update) as per their
subspace. Therefore, Neurotoxin cannot obtain the top-k coordinate of the server gradient as benign
coordinates. ii) Lockdown requires clients to report the subspace that they want to update, and the
subspace that are substantially different from others will be pruned afterwards. In other words, if
the attackers adopt neurotoxin to choose the subspace that excludes the benign coordinates, their
subspace can be easily identified by comparing with other benign client’s subspace, and therefore
will be pruned out. In our simulation, we assume Neurotoxin can acquire the server gradient update
by some means. Therefore, it is classified as an attack method for strong threat model. In our
simulation, we set its hyper-parameter mask ratio to be 0.25.

• Omniscience. This is an adaptive attack that assumes the knowledge of Lockdown and try to break
it. The main idea is to assume the client’s has knowledge of the consensus subspace after going
through consensus fusion, and project their gradient update into this subspace. This efficiently
avoids the malicious weights to be pruned out by the consensus fusion operation. However,
the requirement of conducting this attack is very stringent. The malicious client needs to have
knowledge of the consensus subspace, which either is leaked from server, or is computed if other
clients’ subspace is known by the attacker. Neither of this condition is easy to establish for an
attacker in a federated learning system.

In summary, we show in Table 11 the attack methods we can perform with specific threat models.

A.3 Defense Methods

In this section, we give a brief description of the defense baseline we compare against.

• RLR. RLR proposed in (Ozdayi et al., 2021) utilizes coordinate-wise server learning rate to inverse
the gradient coordinates in which different clients have different sign. Their observation is that the
malicious coordinates tends to be those coordinates that have conflicting sign in gradient while
for the benign coordinates that are not poisoned, most of the clients will agree with their sign.
Therefore, by looking at the gradient update from clients, the server is able to identify the malicious
coordinates and subsequently inverse its sign in the aggregation phase. However, the malicious
clients are able to launch adaptive attack if he knows the gradient update downloaded from server.

17

• RFA. Aiming at defense against corrupted updates from clients, RFA (Pillutla et al., 2022) utilizes
the concept of geometric medium to aggregate the gradient update from clients. Geometric medium
avoids the gradient that has excessively large norm (usually is the malicious one) to impact too
much on the averaging process. Specifically, when doing aggregation, instead of directly averaging
the uploaded gradient, the server aims to obtain global model v that minimizes:

∑m
i=1 ∥v − wi∥,

and wi is the uploaded local model. This problem is solved by the Smoothed Weiszfeld Algorithm.
Similar techniques are studied in (Sifaou & Li, 2022), (Ghosh et al., 2019) and (Cao et al., 2020).

• Krum. Targeting Byzantine attack, Krum (Blanchard et al., 2017) adopts the idea of finding
the gradient update that is closest to its n − f − 2 neighbours such that it can ensure (α, f)-
Byzantine resilience where α is the angle depends on the ratio of the deviation over the gradient
,f is the number of attackers. Specifically, Krum aims to find the the i∗-th client that minimize
s(i) =

∑
i→j ∥Vi − Vj∥2 where i → j denotes the set of i’th client’s n− f − 2 closest neighbours,

and Vi denotes the gradient update from client i. After identifying i∗, Krum returns Vi∗ as the
robust gradient used for aggregation.

• Trimmed mean. Trimmend mean is proposed in (Yin et al., 2018) to counter byzantine failures in
the distributed machine learning scenario. Their high level idea is to exclude the outlier gradient
value when doing aggregation. Specifically, before aggregation, the server coordinate-wise trims
the TopK gradient and the bottomK gradient among those uploaded gradient. After trimming,
the server assume the outlier has been trimmed, and directly average the clean gradient. In our
simulation, we set the trim ratio to be 0.1.

A.4 Security Analysis

We make the following observations on Lockdown’s security performance. Lockdown can success-
fully defend all the data-level attack, i.e., the attack falls in to the scope of weak threat models. For
the algorithm-level attacks, we have incorporated an adaptive attack targeting on Lockdown and a
gradient scaling method into study. Our results show that Lockdown can also defend all the attacks we
have tested. However, since the algorithm-level attacks are more adaptive, we cannot make guarantee
that Lockdown is unbreakable by any algorithm-level attacks, especially those that are specially
designed for Lockdown. For advanced attack that allows attacker to acquire server’s information, we
create another adaptive attack Omniscience that can successfully circumvent Lockdown’s defense.
Performing Omniscience attack needs the attacker to know about the consensus subspace. However, it
is challenging, if not impossible, for the attacker to infer the consensus subspace, since only a subset
of the server gradient update is distributed to clients, further constraining the global information
access of the attackers.

A.5 More Visualization

Input-level visualization. In Figure 8, we add additional experiments to visualize the gradient w.r.t
the input of the first layer, which visually explains how different semantic information within the
input image contributes to activating the target output neuron.

Backdoor Input clean model
FedAvg

(no defense)
Lockdown
(after CF)

Lockdown
(before CF)

Figure 8: Smooth grad (Smilkov et al., 2017) visualization of models given backdoor input. The
first column is data input with backdoor trigger. The subsequent columns demonstrate the gradient
with respect to the input of i) a model without being poisoned. ii) a model trained by FedAvg with
poisoned data, iii) Lockdown’s global model under poisoning before going through consensus fusion
(CF) and iv) Lockdown’s final model. A clean model emphasize the correct semantic within the input,
e.g., wing of a plane, while a poisoned model emphasizes the yellow "plus" backdoor trigger.

18

Parameters-level visualization. In Figure 9, we visualize the projected parameters produced by
Lockdown. The experiment is conducted on MNIST with a two-layer MLP model. After reducing its
output dimension and reshaping it into the original input, we plot the projected absolute weights of the
first layer of MLP. As found, by projecting the global weights into malicious client’s subspace (left),
the corresponding connectivity that joint the backdoor trigger still present. However, by projecting
the global weights into one of the benign client’s subspace (middle), the backdoor trigger no longer
connects with large absolute weights. The same phenomenon is observed for the consensus subspace
after going through consensus fusion (right).

Client #0 (malicious) Client #12 (benign) Global after CF

Figure 9: Visualization of absolute global weights after projecting into the local or global subspace.
Left: projecting into local subspace of a malicious client. Middle: projecting into local subspace of a
benign client. Right: projecting into consensus subspace produced by consensus fusion. The brighter
the color is, the feature locates in that part is more important. The bright backdoor trigger "+" is not
visible in the middle and right image. See more details in the main text.

A.6 Ablation Study

We perform ablation study of Lockdown on CIFAR10. BadNet is the default attack method.

Gradient-based recovery vs. random recovery. In subspace recovery process, we use gradient
magnitude to guide the recovery of parameters. In Table 12, we show the empirical comparison
between the gradient-based recovery and random recovery. The results showcase that recovery with
the gradient can significantly reduce the ASR (by up-to 78.3% reduction) though the benign acc of
the model suffered a little bit (by up-to 2.3% drop). This is because gradient magnitude tends to
guide the subspace searching process to acquire heterogeneous subspaces for clients with different
training data. With more heterogeneous subspaces, the knowledge transferring between clients will
be deterred since their the subspace overlap is small, which leads to the degradation of benign acc. On
the other hand, small subspace overlap can also facilitate the process of de-poisoning by consensus
fusion, which leads to a reduction of ASR.

Table 12: Ablation study for parameters recovery implementation.
Methods (IID) Benign Acc(%) ↑ ASR(%) ↓ Backdoor Acc(%) ↑

Random recovery 91.1 13.0 79.7
Recovery w/ gradient (ours) 90.7 1.4 87.8

Methods (Non-IID) Benign Acc(%) ↑ ASR(%) ↓ Backdoor Acc(%) ↑
Random recovery 88.9 17.2 74.3

Recovery w/ gradient (ours) 84.9 2.2 78.4

ERK initialization vs. uniform initialization. In the SubspaceInit() function, we use ERK to
allocate the sparsity of each layer in a model. To justify the necessity of ERK initialization, we
replace the ERK initialization with uniform initialization, which uniformly allocates sparsity to each
layer. As shown in Table 13, uniform initialization will largely compromise the benign accuracy
and slightly increase the ASR. This justifies that the sparsity should be set larger for the layer with a
larger number of parameters (which essentially is what ERK does).

Consensus fusion (CF). In Figure 10, we demonstrate the necessity of consensus fusion under
different poison ratios. With consensus fusion, benign accuracy is significantly increased by up-to 60%
while the ASR is reduced by up-to 80%. This result shows that masking out some malicious/dummy
parameters can perturb the backdoor function and thereby curing the poisoned model.

19

Table 13: Ablation study for sparsity initialization.
Methods (IID) Benign Acc ↑ ASR ↓ Backdoor Acc ↑

Uniform 81.7 5.7 75.9
ERK (ours) 90.1 7.1 83.7

Methods (Non-IID) Benign Acc ↑ ASR ↓ Backdoor Acc ↑
Uniform 75.5 3.1 70.6

ERK (ours) 86.1 3.4 82.2

Figure 10: Impact of consensus fusion of Lockdown.

A.7 Hyper-parameter Sensitivity Analysis

In this section, we perform hyper-parameter sensitivity analysis for lockdown. The evaluation is
conducted on CIFAR10 under the default simulation setting in Table 2 unless otherwise specified.

Sparsity s. In Table 14, we set other hyper-parameters as default and tune the sparsity to different
levels. As shown, Lockdown loses its defense efficacy when sparsity is low. This phenomenon is
understandable since Lockdown reduces to FedAvg when sparsity is 0. On the other hand, with
larger sparsity, the benign accuracy of the model suffers due to the reduction of trainable parameters.
Therefore, there exists a tradeoff for the sparsity of Lockdown. Larger sparsity promises lower model
complexity, smaller comm overhead, and also lower ASR, but at the cost of losing benign accuracy.

Table 14: Performance of Lockdown under different sparsity s.
s (IID) Benign Acc ↑ ASR ↓ # of params ↓

0 91.0 68.4 6.57M
0.2 90.9 61.1 5.26M
0.5 91.0 10.9 3.29M

0.75 90.1 7.1 1.65M
0.9 88.3 3.0 0.66M

s (Non-IID) Benign Acc ↑ ASR ↓ # of params ↓
0 89.1 70.3 6.57M

0.2 88.4 52.6 5.26M
0.5 87.1 14.1 3.29M

0.75 86.1 3.4 1.65M
0.9 85.0 2.9 0.66M

Initial pruning/recovery rate. We also show the effect of initial pruning/recovery for the learning
performance. As shown, larger pruning rate would typically results in the drop of benign accuracy
but also enhance the ASR under poisoning attack. Specially, when a0 = 0, lockdown reduces to
train a sparse subnetowrk from scratch, without evolving the sparse coordinate. This setting cannot
eliminate the "poison-couple" effect, therefore the ASR is as high as FedAvg with no defense. On the
other hand, setting α0 will also result in isolation of subspace for different clients, resulting in lack of
consensus in the global space and therefore leading to drop of benign accuracy.

Consensus fusion threshold θ. In Figure 11, we tune the CF threshold θ to see its impact on
different settings of attacker number N . In all settings of N , we see that: i) θ should not be set to
be too small; otherwise, the benign accuracy would be lower, and the ASR will be higher. ii) θ also
should not be set too large; otherwise, it will severely compromise benign accuracy, but the reduction

20

Table 15: Performance of Lockdown under different initial pruning/recovery rate a0.
a0 (IID) Benign Acc ↑ ASR ↓ Backdoor Acc ↑

0 90.5 49.4 47.7
1e-5 90.5 5.2 84.3
1e-4 90.1 7.1 83.7
1e-3 88.1 3.7 84.7
1e-2 87.2 3.5 83.7
1e-1 87.0 3.1 83.4

a0 (Non-IID) Benign Acc ↑ ASR ↓ Backdoor Acc ↑
0 88.5 85.3 14.0

1e-5 87.4 8.5 78.8
1e-4 86.1 3.4 82.2
1e-3 84.9 2.1 80.4
1e-2 83.4 5.3 76.4
1e-1 83.7 5.2 77.6

of ASR will not be too significant. Per our results, the consensus threshold should be chosen carefully
according to the number of attackers, which of course, is unknown in most cases. However, given that
the attackers within the system should not take up a large portion, θ set to be 50% of the total number
of clients will be sufficient to counteract the effect of backdoor attack in a general attack scenario.

Figure 11: Impact of consensus fusion threshold of Lockdown in different # of attackers setting.

A.8 Limitations

Our method utilizes sparsity of model to counter backdoor attack. However, we are aware that sparsity
in its current stage can hardly guarantee acceleration of the training/inference speed. At present, the
current sparse acceleration technique requires 2:4 sparse operation. More specifically, the 2:4 sparse
operation requires that there are at most two non-zero values in four contiguous memory, which
may not hold for the sparse model produced by Lockdown. But we insist that our method has great
potential to achieve truly training acceleration with development of sparse technique.

There are potentially other adaptive backdoor attacks that can break the defense of lockdown,
especially under the assumption that attackers have full control over its local training process and
has knowledge of the defense. We leave the research of potential attacks against Lockdown as future
works.

A.9 Broader Impact

The poison-coupling effect we discover in this paper might be mis-used to guide the design of
backdoor attack method in centralized learning/FL scenario. We will continue this line of research
and further propose attack/defense method to better study/mitigate such an effect. We also open-
source our code to facilitate researchers/machine learning engineer in academy/industry to study and
understand the discovered phenomenon.

21

	Introduction
	Related Work
	Threat Models
	Case Study on Pruning-based Defense
	Methodology
	Experiment
	Experiment Setup
	Main Evaluation
	Ablation and Hyper-parameter Sensitivity Analysis

	Conclusion
	Supplementary Material
	Implementation Details
	Attack Methods
	Defense Methods
	Security Analysis
	More Visualization
	Ablation Study
	Hyper-parameter Sensitivity Analysis
	Limitations
	Broader Impact

