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Abstract

Previous studies have shown that optimizing the information bottleneck can signifi-
cantly improve the robustness of deep neural networks. Our study closely examines
the information bottleneck principle and proposes an Information Bottleneck Dis-
tillation approach. This specially designed, robust distillation technique utilizes
prior knowledge obtained from a robust pre-trained model to boost information
bottlenecks. Specifically, we propose two distillation strategies that align with the
two optimization processes of the information bottleneck. Firstly, we use a robust
soft-label distillation method to increase the mutual information between latent fea-
tures and output prediction. Secondly, we introduce an adaptive feature distillation
method that automatically transfers relevant knowledge from the teacher model
to the student model, thereby reducing the mutual information between the input
and latent features. We conduct extensive experiments to evaluate our approach’s
robustness against state-of-the-art adversarial attackers such as PGD-attack and
AutoAttack. Our experimental results demonstrate the effectiveness of our ap-
proach in significantly improving adversarial robustness. Our code is available at
https://github.com/SkyKuang/IBD.

1 Introduction

Numerous works have shown that deep neural networks (DNNs) are easily attacked by adversarial
examples [56, 41, 4, 14], which involve adding imperceptible noise to inputs and causing incorrect
outputs. This vulnerability of DNNs raises significant security concerns when deploying DNNs in
safety-critical applications. To address this potential threat, various adversarial defense strategies
have been proposed [44, 41, 72, 43, 72]. Among these defenses, adversarial training (AT) [41, 71] is
a general solution for defending against adversarial attacks by incorporating adversarial examples
generated by an adversarial attack into the training process. While many AT techniques can defend
against sophisticated attacks, such as AutoAttack [14], a big robust generalization gap still exists
between the training data and testing data [12].

Recent years have witnessed the growing popularity of the studies of the use of Information Bottleneck
(IB) [57] in training robust DNNs [54, 2, 64, 68]. IB involves finding a trade-off in intermediate
features Z between relevant information for the prediction Y and nuisance information about input
X . The overall objective of IB is formulated as follows:

max I(Z;Y ) − βI(X;Z), (1)
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Figure 1: Schematic of successive extraction of relevant information in IBD. The inputs are passed
through a robust teacher and a student to get intermediate features (Z). These features are then
passed through an adaptive feature distillation module, where an attention-based model determines
similarities between the teacher and student features. Robust information from each teacher feature is
transferred to the student with the attention values. The student model also minimizes cross-entropy
(CE) loss using the teacher’s soft output label. Consult the section 3.2 for more details.

where I denotes mutual information and β controls the trade-off between the two terms. Studies
in [54, 64] show that IB can produce concise representations leading to better generalization, and
can make intermediate features of DNNs less sensitive to input perturbations. On the other hand,
variational information bottleneck (VIB) has also been found to significantly improve the robustness of
models [2, 19]. In addition, [40] replaces mutual information with the Hilbert Schmidt Independence
Criterion (HSIC) and calls this the HSIC Bottleneck, and [64] further investigates the HSIC bottleneck
as a regularization to enhance the robustness of DNNs.

The crucial step to optimizing the IB is to calculate mutual information in an efficient and effective
manner. An approach in [19] proposes a conditional entropy bottleneck (CEB) (see Eq.(6)), which
enhances IB by introducing label priors in variational inference. This approach employs a backward
encoder to approximate the true distribution p(z∣y). However, DNN processing can form a Markov
chain (X → Z → Y ) and obey the data processing inequality: H(X) ≥ H(Z) ≥ H(Y ), and the
label Y often cannot satisfy the intrinsic dimension requirement [37]. As a result, directly using label
information to approximate p(z∣y) is imprecise. Furthermore, the backward encoder usually provides
uniform priors for inputs with the same label and cannot provide customized priors based on different
inputs, particularly for high-dimensional image data.

Fortunately, prior research has shown that robust pre-trained models can provide robust prior infor-
mation to enhance model robustness and certainty [27, 53, 21]. Motivated by this, we revisit VIB
through the lens of robustness distillation and further introduce a new IB objective: Information
Bottleneck Distillation (IBD) (see Eq.(7)). To make IBD practical, we put forward two distillation
strategies meant to target the two optimization processes of the information bottleneck respectively.
Firstly, we utilize soft-label distillation to maximize the mutual information between intermediate
features and output prediction. Secondly, we use adaptive feature distillation to restrict the mutual
information between the input and intermediate features, which facilitates the transfer of appropriate
knowledge from the teacher model to the student model, ultimately resulting in a more accurate
estimation of the distribution of student features. A schematic diagram illustrating the IBD is shown
in Figure 1.

Overall, we make the following contributions:

• Theoretically, we utilize conditional variational inference to construct a lower bound to estimate
the mutual information and reformat the IB principle by using the adversarial robustness as the
prior for learning features, which is termed Information Bottleneck Distillation (IBD).

• Algorithmically, to realize IBD, we propose two distillation strategies: robust soft-label and
adaptive feature distillation, to match the two optimization processes of the information bottleneck,
respectively.
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• Experimentally, we conducted extensive experiments on various benchmark datasets such as
CIFAR and ImageNet. The results show the effectiveness of our IBD in improving the robustness
of DNNs against most attacks (e.g., PGD-attack and AutoAttack), and our IBD behaves more
robustly than state-of-the-art methods.

2 Background & Related Work

Adversarial Attacks. Adversarial examples are observed when an attacker adds human-imperceptible
perturbation to the inputs, which misleads DNN’s output [56]. And a series of attacking algorithms
are proposed [22, 4, 41, 18, 14, 38]. One of the most popular attacks is the Project Gradient Descent
(PGD) attack [41], which uses multi-step projected gradient descent to generate adversarial examples:

xk = Π(xk−1 + α ⋅ sign(∇xLCE(hθ(xk−1), y))), (2)

where α is the step size, Π is the project function, and xk is the adversarial example at the k-th
step, hθ is a DNN model with weight θ, and LCE is cross-entropy function. Another widely-used
adversarial attack method is the C&W attack [4], which applies a rectifier function regularizer
to generate adversarial examples near the original input. AutoAttack (AA) [14], an ensemble of
different parameter-free attacks, is currently regarded as the most reliable evaluation of the adversarial
robustness of the model. Black-box attacks, which do not require full knowledge of DNNs, are more
practical, and previous works [67, 18] have shown that adversarial examples generated by one model
can attack other models with a high probability. Query-based black-box attacks [3, 9] update the
perturbation iteratively according to the attack objective. In this work, we test the robust performance
under both white- and black-box attacks to verify the robustness of our proposed method.

Adversarial Robustness. To counter the threat of adversarial attacks, researchers have proposed vari-
ous defense methods, including defensive distillation [44], manifold-projection [51], pre-processing
[24, 69], provable defenses [45, 50], and adversarial training [11, 22, 41]. Among these, adversarial
training (AT) [41] is a highly effective and widely-used solution. It involves adding adversarial
examples, generated by the adversarial attack scheme, to the training data, which can be formulated
by a min-max optimization problem:

min
θ

E[max
xadv
LCE(hθ(xadv), y)]. (3)

where xadv is adversarial example generated by a special attack algorithm. Many variants of AT have
been proposed. [71] proposed the TRADES, which characterizes the trade-off between accuracy and
robustness. [66] proposed adversarial weight perturbation (AWP), which uses weight perturbation
to increase the robustness of the model. In addition, some new efforts have also been devoted from
different aspects including designing new training strategies [43, 33], adversarial regularization
[42, 48, 39], robustness architecture search [8, 25, 29, 30], and data augmentation [5, 46, 63].

Robustness Distillation. Knowledge distillation (KD) [28] is an effective method, wherein a well-
trained teacher model is used to supervise the learning of the student model. The overall objective of
KD is formulated as:

min
θS

E[Ltask(hs(x), y) + α ⋅LDist(hs(x), ht(x))], (4)

where Ltask is the task-specific loss function for the target task and LDist is the loss function that
penalizes the difference between the teacher and the student. Recent studies show that KD can also
be used to enhance the adversarial robustness of a student network [44]. Then, the adversarially
robust distillation (ARD) method, as introduced in [21], combines adversarial training with KD to
further increase the robustness of the student model under the supervision of an adversarially robust
teacher network. Introspective Adversarial Distillation (IAD) [73] propose proposes a method to
automatically realize the intuition of the previous reliable guidance during the adversarial distillation.
And, RSLAD [74] improves the performance of ARD by using robust soft labels generated by a
pre-trained teacher network to replace hard labels used in [21].
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3 Information Bottleneck Distillation

In this section, we revisit the concept of information bottleneck from the perspective of robust
distillation and establish the IBD objective. We further propose two distillation strategies to perform
the two optimization processes of the information bottleneck, respectively. Finally, we combine IBD
with AT to learn a robust model.

3.1 A Distillation View of Information Bottleneck

The information bottleneck theory has been used to explain deep models [58], compress models [16],
and learn robust models [2]. To make the IB practical, a major challenge is to accurately estimate the
mutual information. In [2], Variational Information Bottleneck (VIB)1 utilizes variational inference
to construct the lower bound to estimate the mutual information. VIB is formulated as:

I(Z;Y ) − βI(X;Z) ≥ E
p(x,y)p(z∣x)

[log q(y∣z) − β log
p(z∣x)
q(z) ] , (5)

where p(z∣x) is feature distribution, q(y∣z) is a variational approximation to the true distribution
p(y∣z), and q(z) is the variational approximation to the true distribution p(z). To optimize Eq.(5),
VIB uses neural networks to parameterize the Gaussian densities p(z∣x) and q(y∣z), and treats q(z)
as a fixed K-dimensional spherical Gaussian distribution q(z) = N (0, I) (where K is the size of the
bottleneck). Then, the reparameterization trick and Monte Carlo sampling are used to get an unbiased
estimate of the gradient. This process thus allows DNNs to handle high-dimensional data, such as
images, avoiding previous limitations on discrete or Gaussian distribution cases.

Next, how to determine the approximate q(z) is important in variational inference. VIB empirically
treats q(z) as a fixed Gaussian distribution. For a better approximation of q(z), [19] proposes the
Conditional Entropy Bottleneck (CEB), which introduces label prior information to approximate
q(z). The CEB can be formulated as:

I(Z;Y ) − βI(X;Z ∣Y ) ≥ E
p(x,y)p(z∣x)

[log q(y∣z) − β log
p(z∣x)
q(z∣y) ] . (6)

In detail, CEB utilizes a linear mapping layer to parameterize q(z∣y) that takes a one-hot label y as
input and outputs a vector µy as the mean of the Gaussian distribution q(z∣y) = N (µy, I). CEB also
uses an identity matrix I for the variance of both q(z∣y) and p(z∣x). Note that CEB and VIB differ
in terms of the presence of a class conditional or unconditional variational marginal, and whether
q(z∣y) and p(z∣x) have a fixed variance. Thus, by introducing such a class prior, CBE can learn
an approximate distribution better. However, using the one-hot label alone to approximate high-
dimensional distribution q(z) is inaccurate enough due to data processing inequality and intrinsic
dimension [37], particularly for high-dimensional image data.

To address this challenge, we propose leveraging adversarial robustness distillation [21] to build
the information bottleneck objective. This approach involves providing robust prior information
obtained from a robust pre-trained model, which aims to improve model robustness and reduce model
uncertainty [27, 53]. Specifically, we replace conventional one-hot label prior information with robust
prior information derived from such a robust pre-trained model. We call this method Information
Bottleneck Distillation (IBD). To implement IBD, we approximate q(z) by utilizing the intermediate
features extracted by an adversarially pre-trained model, and our final objective is formulated as:

I(Z;Y ) − βI(X;Z ∣T ) ≥ E
p(x,y)p(z∣x)

[log q(y∣z) − β log
p(z∣x)
q(z∣t) ] , (7)

where T is the random variable of intermediate features extracted by the adversarially pre-trained
teacher model. We employ a Gaussian distribution N (µy, δ) with mean µ(.) and variance δ as the
variational distribution q(z∣t). Here, the mean µ(.) is a function of the intermediate feature from the
robust pre-trained model, and the variance δ is set to an identity matrix as the same CEB. Eq. (7)
provides a variational lower bound on IBD, and a more detailed derivation is available in Appendix
B.

1For more details of the bound, we refer the reader to [2], or see Appendix A.
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3.2 Optimization for IBD

In a standard classification task, we denote hθ = (g ○ f) as a deep neural network with parameter θ.
Here, f ∶ RdX → RdZ maps the inputs X to the intermediate features Z, and g ∶ RdZ → RdY further
maps the intermediate features Z to the final outputs Y , so that Z = f(X) and g(Z) = hθ(X). Then,
we denote the target student network as hs = (gs ○ fs), and the adversarially pre-trained teacher
network as ht = (gt ○ ft). Furthermore, a set of intermediate features from different layers of the
student model is denoted as Zs = fs(X) = {z1s , z2s , . . . , zms }, and a set of intermediate features from
different layers of the teacher model is denoted as Zt = ft(X) = {z1t , z2t , . . . , znt }. Here, n and m
represent the number of layers of the student and teacher models, respectively. Each feature has its
own feature map size and channel dimension, denoted as z ∈ RC×H×W , where C,H and W represent
the channel numbers, feature height, and width, respectively.

1) Maximizing I(Z,Y ) via Soft Label Distillation. To optimize Eq.(7) using the gradient descent
algorithm, we simplify the first term on the right-hand side of Eq.(7) to the expected log-likelihood in
the form of cross-entropy, which can be formulated as follows:

E
p(x,y)p(z∣x)

[ log q(y∣z)] = ∫ p(y, z) log q(y∣z)dydz

= ∫ p(z)p(y∣z) log q(y∣z)dydz

= ∫ p(z, x)p(y∣z) log q(y∣z)dydzdx

= ∫ p(x)p(z∣x)p(y∣z) log q(y∣z)dydzdx

= E
p(x)p(z∣x)

[∫ p(y∣z) log q(y∣z)dy] ,

(8)

where p(y∣z) indicates the true likelihood considered as a target label y corresponding to z. The
q(y∣z) is modeled by the classifier of the student model hs. During the training phase, we can use
the output probability of the robust teacher model ht as the soft label yt = ht(xnat) to approximate
the distribution of p(y∣z), despite knowing the label y. According to [74], using robust soft-labels is
crucial in enhancing robustness. Thus, we rewrite the first term as:

E
p(x,y)p(z∣x)

[ log q(y∣z)] = E
p(x)p(z∣x)

[∫ p(y∣z) log q(y∣z)dy] = E
p(x)
[−LCE(hs(x), yt)] . (9)

2) Maximizing −I(Z,X ∣T ) via Adaptive Feature Distillation. To optimize the second term on the
right-hand side of Eq.(7), the formulation can be written as:

E
p(x)p(z∣x)

[log p(z∣x)
q(z∣t) ] = ∫ p(z, x) log p(z∣x)

q(z∣t) dzdx

= ∫ p(x)p(z∣x) log p(z∣x)
q(z∣t) dzdx

= E
p(x)
[∫ p(z∣x) log p(z∣x)

q(z∣t) dz] .

(10)

Thus, we optimize the KL divergence between the feature likelihood p(z∣x) and the appropriate
feature probability q(z∣t). Here, we parameterize Gaussian densities p(z∣x) and q(z∣t) using neural
networks, where the mean of p(z∣x) and q(z∣t) are the intermediate features of fs and ft, respectively.
Both variances are set to an identity matrix. As a result, the second term can be calculated by:

E
p(x,y)p(z∣x)

[log p(z∣x)
q(z∣t) ] = E

p(x)p(z∣x)
[KL(p(z∣x)∣∣q(z∣t))] = E

p(x)
[(ft(x) − fs(x))

2 + c] , (11)

where c is a constant. When optimizing DNNs using Eq.(11) as the objective, a challenge arises in
selecting suitable intermediate features from models to calculate the loss. This is due to the fact that
different intermediate features tend to have different information, especially when the student and
teacher models have different architectures. Motivated by [6, 32], we leverage an attention-based
feature distillation strategy to achieve cross-layer information transfer.
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Given two sets of the intermediate features, Zt = ft(x) = {z1t , z2t , . . . , znt } and Zs = fs(x) =
{z1s , z2s , . . . , zms }, our aim is to identify similarities for all possible combinations and transfer relevant
information from the teacher to the student. We compare the features of both teacher and student
models by using two different pooling methods – global average pooling and channel-wise pooling.
The similarity determined by two globally pooled features is used as the weight for transferring
information over the distance defined by the channel-wisely averaged features. In order to identify
the similarity between Zt and Zs, we adopt a query-key concept of the attention mechanism [61].
In detail, each teacher features generate a query set Qt = {q1t , q2t , . . . , qnt }, and each student feature
generate a key set Ks = {k1s , k2s , . . . , kms }, where the qnt and kms are calculated as:

qn
t =Re(Wn

t ⋅GAP (znt ) ),
km
s =Re(Wm

s ⋅GAP (zms ) ),
(12)

where GAP denotes the global average pooling, Re is Relu activation function, Wn
t and Wm

s are
linear transition parameters. It should be noted that these features possess varying transition weights,
as they convey different levels of information.

By utilizing the queries and keys, attention values that represent the relation between teacher and
student features are calculated with a softmax function:

Attn = softmax(
QTW

Q−kK⊺S√
d

) , (13)

where WQ−k ∈ Rd×d is a bilinear weight. The bilinear weighting is utilized to generalize the attention
values derived from different source ranks, as queries and keys are identified within features of
distinct dimensions [34]. Attni,j indicates the attention weight that captures the relation between the
i-th teacher feature and the j-th student feature. Therefore, Attn can make the teacher feature znt
transmit its corresponding information selectively and adaptively to different student features. Finally,
the second term on the right-hand side of Eq. (7) can be written as:

E
p(x,y)p(z∣x)

[log p(z∣x)
q(z∣t) ] = E

p(x)

⎡⎢⎢⎢⎣

n

∑
i

m

∑
j

Attni,j(Ti
t(zit) −Tj

s(zjs))
2
⎤⎥⎥⎥⎦
, (14)

where T is a transform function with a feature map size alignment (up-sampled or down-sampled),
and then apply a channel-wise average pooling to get an average feature map for loss computation.

Combing Eq.9 and Eq.14, the final objective of IBD can be defined as follows:

LIBD =min E
p(x)
[LCE(hs(x), yt) + β

n

∑
i

m

∑
j

Attni,j(Ti
t(zit) −Tj

s(zjs))
2]. (15)

3.3 Applying IBD to Robust Learning

IBD can be naturally applied in combination with adversarial training. The final objective function is
formulated as follows:

Lobj =min E
p(x)
[(1 − α)LCE(hs(xnat), yt) + αLCE(hs(xadv), yt)

+ β
n

∑
i

m

∑
j

Attni,j(Ti
t(zit) −Tj

s(zjs))
2],

(16)

where α and β are two trade-off hyper-parameters. We generate adversarial examples using the same
method introduced by [71], where given a natural input xnat, generated the adversarial example xadv
by maximizing KL-divergence term. Note that the intermediate features Zt and Zs are extracted from
xadv. Finally, we utilize this new loss function to train a robust model.

3.4 Discussion

The objective of IBD is comparable to certain conventional KD techniques [6, 10, 32]. However, the
major difference is, that in our IBD, the teacher model must be an adversarially pre-trained model
that can provide robust information. Additionally, we design the objective function following the
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Table 1: Robustness comparison of the proposed approach and baseline models under different
attack methods under the ℓ∞ norm with ϵ = 8/255 on different datasets. All the models are based on
pre-activation ResNet-18 architecture. We choose the best checkpoint according to the highest robust
accuracy on the test set under PGD-10. The best results are blodfaced.

Method
Best Checkpoint Last Checkpoint

Clean FGSM PGD CW AA Clean FGSM PGD CW AA

CIFAR-10 - linf − ϵ = 8/255
SAT [41] 82.97 57.77 50.85 50.09 47.73 85.16 53.97 43.03 43.71 41.58
TRADES [71] 83.74 59.54 52.73 50.94 49.58 84.11 58.72 49.97 49.05 47.02
CEB [19] 82.87 58.61 52.94 50.22 48.87 83.39 57.74 48.79 47.67 45.85
HBaR [64] 84.13 58.95 53.35 51.47 49.77 85.04 58.33 53.19 51.21 48.64
InfoAT [68] 83.17 60.52 54.29 51.62 49.92 83.23 60.40 53.94 51.17 49.67
ARD [21] 83.94 59.32 52.16 51.21 49.17 84.32 59.35 51.41 51.22 48.89
IAD [73] 83.24 59.34 54.24 51.92 50.63 83.76 59.17 53.84 51.60 50.17
RSLAD [74] 83.38 60.08 54.27 53.19 51.52 83.88 59.98 54.01 53.08 51.36

IBD (Ours) 83.17 60.75 55.13 53.62 52.11 82.95 60.94 55.04 53.49 52.05
CIFAR-100 - linf − ϵ = 8/255
SAT [41] 57.75 32.78 29.27 27.52 24.01 58.17 27.02 21.02 21.54 19.86
TRADES [71] 58.57 32.84 29.88 26.29 25.27 57.11 32.05 28.12 25.47 24.52
CEB [19] 55.17 32.36 30.12 26.35 25.36 55.74 30.84 26.59 24.51 23.16
HBaR [64] 59.53 34.46 31.82 27.42 26.62 58.26 32.41 28.23 25.78 25.43
InfoAT [68] 58.23 34.46 31.39 28.68 26.76 58.42 33.13 30.53 27.52 26.21
ARD [21] 60.58 33.43 29.07 27.54 25.62 60.79 32.67 28.11 26.76 24.62
IAD [73] 57.08 34.65 30.60 27.24 25.84 57.52 33.71 29.23 27.35 25.36
RSLAD [74] 57.72 34.23 31.01 28.27 26.73 57.83 34.09 30.55 28.07 26.41

IBD (Ours) 58.10 36.37 33.59 31.16 29.21 58.32 36.17 33.40 30.87 28.74

information bottleneck principle, which is theoretically proven to be a lower bound of the information
bottleneck. Notably, previous adversarial distillation methods [21, 44, 74] only consider utilizing
information from the final prediction output, while ignoring the information from intermediate
features. From another perspective, motivated by [31], IBD can explore intermediate features to
capture the robust information and leverage an adaptive feature distillation strategy to automatically
transfer appropriate features from the teacher model to the target student model. Our experiments
indicate that making full use of the intermediate features of the DNNs can improve the model’s
robustness effectively.

4 Experiments

In this section, we first describe the experimental setting and implementation details. We evaluate the
robustness and accuracy of various widely used benchmark datasets. Finally, we conduct a wealth of
ablation experiments to provide a comprehensive understanding of the proposed IBD.

4.1 Experiments Settings

Baselines Setup. We conduct our experiments on three benchmark datasets including CIFAR-
10, CIFAR-100 [36] and ImageNet [17]. We consider three types of baseline model: 1) classical
adversarial training method, including standard Standard AT[41] and TRADES [71]; 2) adversarial
robustness distillation, including ARD [21], IAD [73] and RSLAD [74]; 3) the models trained using
variants IB, include CEB [19], HBaR [64] and InfoAT [68].

Evaluation Attack. We evaluate the defense under different white- and black-box attacks including
FGSM [22], PGD [41], CW [4], and AutoAttack [14]. The black-box attacks include query-based
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Table 2: The performance of the pre-trained teacher models under different attacks.

Dataset Architecture Natural Acc FGSM PGD-100 CW-100 AutoAttack

CIFAR-10 WideResNet-34-10 84.92 60.87 55.33 53.98 53.08
CIFAR-100 WideResNet-34-10 57.16 33.58 30.61 27.74 26.78
ImageNet-1K ResNet-50 64.02 - 38.46 - 34.96

Table 3: Black-box robustness results in CIFAR-10
under the ℓ∞ norm with ϵ = 8/255 . We evaluate
against transfer-based and query-based attacks.

Method Trans-based Query-based
FGSM PGD-100 SPSA Square

SAT[41] 61.34 59.83 66.35 54.16
TRADES[71] 63.14 60.31 67.56 54.74
CEB[19] 62.75 61.93 66.71 55.28
HBaR[64] 63.61 60.93 68.07 56.62
InfoAT [68] 64.23 62.42 68.73 57.35
ARD [21] 63.27 61.44 67.89 55.85
IAD [73] 63.53 62.13 68.42 56.21
RSLAD[74] 64.78 62.13 68.78 56.97
IBD 65.54 63.98 69.63 58.34

Table 4: Robustness comparison of the pro-
posed IBD and several state-of-the-art models
under standard AutoAttack.

Method WRN Clean AA

SAT [41] 34-10 84.92 53.08
LBGAT [15] 34-20 88.70 53.57
TRADES [43] 34-20 86.18 54.39
LTD [7] 34-10 85.02 54.45
IBD 34-10 83.33 55.65

TRADES + AWP [66] 34-10 85.26 56.17
LASAT + AWP [33] 34-10 84.98 56.26
LTD + AWP [7] 34-10 86.28 56.94
IBD + AWP 34-10 85.21 57.18

attacks [1] and transfer-based attacks [59]. The maximum pertubation is set to ϵ = 8/255 for
CIFAR-10 and CIFAR-100.

Implementation Details. For the robust pre-trained teacher models on the CIFAR dataset, we use the
ResNet-18 [26] and WideResNet-34x10 [70] models trained with a way of TRADES [71] and AWP
[66]. For the ImageNet dataset, the pre-trained teacher model (a ResNet-50) is provided by [49]. The
results of the pre-trained teacher models under different attacks are shown in Table 8. The initial
learning rate is 0.1 with a piece-wise schedule which is divided by 10 at epochs 100 and 150 for a
total number of 200 training epochs, similar to [47]. We train all models with the SGD optimizer
with a momentum of 0.9, weight decay of 0.0005, and a batch size of 128. We use ResNet-18 as the
student model for most experiments by default, unless otherwise stated. We adopt the common setting
that the ℓ∞ threat model with radius 8/255, with the PGD attack taking 10 steps of size 2/255. In
addition, we performed standard data augmentation, including random crops and random horizontal
flips during training. For the hyper-parameter, we set α = 0.9 and β = 0.8 based on our ablation
studies. For more details please refer to our open source code. Our implementation is based on
PyTorch and the code to reproduce our results is available at https://github.com/SkyKuang/IBD.

4.2 Adversarial Robustness Evaluation

White-box Robustness. To verify the impact of the IBD on model robustness, we first train a
natural model (without adversarial training), We evaluate the performance of IBD on CIFAR-10
under ResNet-18, and IBD achieves 25.49% robust accuracy against standard AA. However, other
IB-based methods (CEB and HBaR) without adversarial training can not defend AA (that means the
robust accuracy is 0). We further combine IBD with adversarial training and evaluate the robustness
of all baseline models and our IBD against various types of attacks. Following in [47], we report the
results at both the best checkpoint and the last checkpoint. The best checkpoint is selected based on
the performance under the PGD-10 attack. The results are shown in Table 1. Our IBD method shows
better robustness of both CIFAR-10 and CIFAR-100 against all attacks at either the best or the last
checkpoints. In particular, our IBD improves the robustness by 0.59% and 2.48% on CIFAR-10 and
CIFAR-100 respectively, compared to previous state-of-the-art methods under AutoAttack.

Black-box Robustness. To further verify the robustness of our method under black-box attacks, we
evaluate our IBD and baseline methods against transfer-based attacks and query-based attacks. For
transfer-based attacks, we choose a robust surrogate model, which is trained by standard adversarial
training, to generate the adversarial examples. All the models are trained using the same setting
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(referring to Section 4.1). We generate adversarial examples using both FGSM and PGD-100 attacks
with attack budget ϵ = 8/255 on CIFAR-10. For query-based attacks, we evaluate the robustness
under SPSA attack [60] and Square attack [13]. SPSA attack can make a full gradient evaluation by
drawing random samples and obtaining the corresponding loss values. We set the number of random
samples q as 128 for every iteration and δ = 0.01 and set iteration as 10. The square attack uses
random search and does not exploit any gradient approximation to produce adversarial noise, and
we set the maximum number of queries as 5000. We evaluate both transfer-based and query-based
attacks on the best checkpoints. The results are shown in Table 3. We observe that the IBD-trained
model is robust to different types of black-box attacks and surpasses all baseline methods. The results
under the black-box attack demonstrate the robustness improvement of IBD is not caused by the
obfuscated gradients.

Robustness Evaluation on WideResNet. Many works have demonstrated larger model capacity can
usually lead to better adversarial robustness [23, 41, 43]. Therefore, we employ the large-capacity
network, e.g., WideResNet (WRN) [70], as the student model. Table 4 reports the robustness results
against AA on the CIFAR-10. We compare several state-of-the-art adversarial trained models on
robust benchmark [12]. We can observe that the proposed IBD indeed improves the adversarial
robustness by ∼ 1.2%. Furthermore, when combined with AWP [66], our IBD also surpasses
the previously state-of-the-art models reported by the benchmark. where every small margin of
improvement is significant. Note that, our method does not use any additional datasets.

Evaluation on Large-scale ImageNet. To further verify the generalization of our method, we
consider a high-resolution, large-scale ImageNet dataset[17], which includes 1,000 classes and more
than 1M training samples. Maintaining robustness for this dataset is particularly challenging. We
use the fast adversarial training framework [65] to train all robust models. Here, the robust budgets
are set as ϵ = 2/255 and ϵ = 4/255. The results of our method for the ResNet-50 (student model) are
shown in Table 5. Our IBD outperforms both Fast-AT [62] and RSLAD [74], significantly.

Table 5: Robustness comparison of the proposed approach and different fast adversarial training
under different attack methods at ϵ = 2/255 and ϵ = 4/255 on ImageNet-1k. All the models are based
on ResNet-50 architecture.

Method Epsilon Clean PGD-100 AutoAttack

FAST-AT [65] ϵ = 2 65.95 37.52 35.22
RSLAD [74] ϵ = 2 63.64 40.49 38.35
FAST-IBD ϵ = 2 62.03 44.31 40.94

FAST-AT [65] ϵ = 4 60.16 27.46 24.82
RSLAD [74] ϵ = 4 60.64 30.19 26.53
FAST-IBD ϵ = 4 59.10 31.52 27.74

4.3 Ablation Studies

The importance of robust soft label. [52] proposes leveraging label smoothing during adversarial
training, and [74] also determines the robust soft label is an important factor in robustness enhance-
ment. We empirically verify the importance of robust soft labels in our IBD, by comparing the
performance of models trained using different label modification schemes: a) true label (hard label);
b) smoothing label crafted by label smoothing on the true label [55]; c) natural soft label that output
by non-robust pre-trained model; 4) robust soft label that output by robust pre-trained model. The
results are summarized in Table 6, which demonstrates that the robust soft label is beneficial to
improving the model’s robustness.

The role of features matching. We further investigate the role of features distillation strategy in
section 3.2, we consider two features matching strategies: a) a hand-crafted feature distillation method,
which uses the same level of features to guide the student model learning; b) an adaptive feature
distillation method, which is based on attention mechanism to guide the student model learning.
We conduct experiments with these two strategies on different network architectures ResNet-18
(Res) and WideResNet-34x10 (WRN). The results are reported in Table 7. Our adaptive feature
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Table 6: Robustness of our IBD model trained using
different types of labels on CIFAR-10 under differ-
ent attacks.

Method Clean PGD CW AA

Hard label 85.25 51.64 50.49 48.35
Label smooth 85.43 51.92 50.56 48.71
Natural soft label 86.38 48.08 45.70 43.79
Robust soft label 83.17 55.13 53.62 52.11

RSLAD [74] 83.38 54.27 53.19 51.52

Table 7: Robustness of our IBD model trained
using different features matching schedule on
CIFAR-10 under the AutoAttack.

Architecture Schedule Clean AA

Res → Res No matching 83.25 50.63
WRN → Res No matching 83.37 51.48

Res → Res Hand-crafted 82.99 51.12
WRN → Res Hand-crafted 83.10 51.61

Res → Res Adaptive 83.24 51.46
WRN → Res Adaptive 83.17 52.11

distillation performs better than hand-crafted feature distillation in both the same and different
network architectures.

The impact of the teacher. We conducted an ablation experiment by using different teacher models
to verify the impact of the teacher’s robustness on the performance of the student model. We conduct
this experiment on CIFAR-10 with two student models: ResNet-18 and WideResNet-34-10, and five
different teacher models which have different robustness. The results are shown in Table 8 in the
Appendix. We can observe that different robust teacher models have a significant positive benefit
on the student model. For the ResNet-18 student model, we find that the robustness of the student
does not increase monotonically with that of the teacher. As the teacher model (WideResNet-34-20)
becomes more complex, the robustness of the student model decreases, compared to WideResNet-34-
10. This may be due to the large gap in the architecture of the teacher model and the student model.
This phenomenon is called robust saturation [74]. For the WideResNet-34-10 student model, we
found that in most cases, the student’s robustness can surpass that of the teacher model. We think
there are two reasons for this, one is that the performance of the teacher model is not very strong.
The other is that the teacher model provides robust soft labels to alleviate overfitting and improve
performance. Therefore, in most cases, it is expected that the student model exceeds the teacher
model, but when the teacher model is strong enough, it is not easy for the student model to surpass
the teacher model (e.g., WideResNet-76-10).

The impact of α and β. The α is a trade-off the adversarial robustness and natural accuracy. We
conduct ablation experiments to verify the trade-off. The results are shown in Figure 2(a) in the
Appendix. When we set α = 0.9, our method can achieve the best adversarial robustness. In the
IB principle, the hyperparameters β are important to control the trade-off. Therefore, we finally
choose different values of β to train the IBD, from which we choose the optimal value of β. The
experimental results are shown in Figure 2(b) in the Appendix, where the best results are achieved
when setting β = 0.8.

5 Conclusions

In this paper, we revisited the information bottleneck principle from the perspective of robustness
distillation and then presented a new IB objective, called Information Bottleneck Distillation (IBD).
IBD can be thought of as a tighter variational approximation to the IB objective than VIB. To optimize
IBD effectively, we proposed two adaptive distillation strategies. Experimentally, we empirically
demonstrated the advantage of IBD over existing methods, IB-based methods, and adversarial
distillation methods on benchmark datasets.
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A Variational Information Bottleneck

We show the derivation process of Variational Information Bottleneck (VIB), which is provided by
[2, 35]. The information bottleneck (IB) [57] expresses a trade-off in intermediate features Z between
information useful for output prediction Y and information retained about the input X . The objective
of IB can be formulated as follows:

IB(θ) =max I(Z;Y ) − βI(Z;X), (17)
where I denotes mutual information and β controls the trade-off between the two terms.

The first term can be expressed as follows:

I(Z;Y ) = ∫ p(y, z) log p(y, z)
p(y)p(z)dydz

= ∫ p(y, z) log p(y∣z)
p(y) dydz

(18)

To apply it to a deep neural network hθ = (g ∗ f), The q(y∣z) is modelled by the classifier g. Based
on variational inference, it is a closed form for a true likelihood p(y∣z). This approximation is
formulated by KL divergence and then the following inequality is constructed as follows:

KL(p(Y ∣Z)∥q(Y ∣Z)) ≥ 0 ⇒ ∫ p(y∣z) log p(y∣z)dy ≥ ∫ p(y∣z) log q(y∣z)dy (19)

which helps to get the objective of IB to be tractable. With this equality, the first term in Eq. (17) can
be represented to a lower bound as:

I(Z;Y ) ≥ ∫ p(y, z) log q(y∣z)
p(y) dydz

= ∫ p(y, z) log q(y∣z)dydz − ∫ p(y, z) log p(y)dydz

= ∫ p(y, z) log q(y∣z)dydz − ∫ p(y) log p(y)dy

= ∫ p(y, z) log q(y∣z)dydz +H(Y )

≥ ∫ p(y, z) log q(y∣z)dydz = Ep(x,y)p(z∣x) [log q(y∣z)]

(20)

where a positive constant H(Y ) denotes the Shannon entropy of target labels.

The second term in Eq. (17) is described as :

I(Z;X) = ∫ p(z, x) log p(z, x)
p(x)p(z)dzdx

= ∫ p(z, x) log p(z ∣ x)
p(z) dzdx

(21)

where a dataset probability p(x) is erased on the fraction. Here, an approximate feature probability
q(Z) is introduced to appropriate the true feature probability p(Z). As similar to Eq.(19), the
relationship between q(Z) and p(Z) can be written and then it builds the following equality:

KL(p(Z)∥q(Z)) ≥ 0 ⇒ ∫ p(z) log p(z)dz ≥ ∫ p(z) log q(z)dz (22)

By using it, the second term is constructed with an upper bound as follows:

I(Z;X) ≤ ∫ p(z, x) log p(z ∣ x)
q(z) dzdx

= ∫ p(x)p(z ∣ x) log p(z ∣ x)
q(z) dzdx

= Ep(x,y)p(z∣x) [log
p(z∣x)
q(z) ]

(23)

where a feature likelihood is denoted by p(z∣x). To sum it up, the objective of IB can be re-formulated
with a lower bound as follows:

I(Z;Y ) − βI(Z;X) ≥ Ep(x,y)p(z∣x) [log q(y∣z) − β log
p(z∣x)
q(z) ] , (24)
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B Variational Bound on IBD

In the IBD setting, there is a target model and a pre-trained teacher model. We would like to learn
features Z of X that will be useful for predicting Y for the target model. T is the intermediate features
extracted by the adversarially pre-trained teacher model. We can represent this problem setting with
the Markov chain: Z ←X → T . Given the conditional independence Z á T ∣X in our Markov chain
and the conditional mutual information is always non-negative [20], so learning intermediate features
Z of X is equivalent to minimizing I(X;Z ∣T ). Using the chain rule of mutual information, we have:

I(X;Z ∣T ) = I(X,T ;Z) − I(T ;Z) = I(X;Z) − I(T ;Z) (25)

The objective of IBD can be formulated as:

IBD = I(Z;Y ) − βI(Z;X ∣T ) (26)

=H(Y ) +H(Y ∣Z) − β(H(Z) −H(Z ∣X) −H(Z) +H(Z ∣T )) (27)

=H(Y ∣Z) − β(H(Z ∣T ) −H(Z ∣X)) (28)

We will variationally lower bound the first term of Eq. (26) and upper bound the second term using
three distributions: p(z∣x) is the feature distribution; q(z∣t) is an approximation of p(z∣y); and
q(y∣z) is an approximation of p(y∣z).
The first term of Eq. (26):

I(Z;Y ) =H(Y ) −H(Y ∣Z)

= E
p(x,y)p(z∣x)

[ log q(y∣z) +KL(p(y∣z)∣∣q(y∣z))]

≥ E
p(x,y)p(z∣x)

[ log q(y∣z)].

(29)

The second term of Eq. (26) (for convenience, we set β to 1):

I(X;Z ∣T ) =H(Z ∣T ) −H(Z ∣X)
= E

p(x)p(z∣x)
[log p(z∣x) − log q(z∣t) −KL(p(z∣y)∣∣q(z∣t))]

≤ E
p(x)p(z∣x)

[log p(z∣x)
q(z∣t) ] .

(30)

So far, we get the variational bound for IBD:

IBD = I(Z;Y ) − βI(X;Z ∣T ) ≥ E
p(x,y)p(z∣x)

[log q(y∣z) − β log
p(z∣x)
q(z∣t) ] , (31)

C More Experimental Details and Results

C.1 The impact of the teacher.

Table 8: How would the performance of teachers affect that of student models?

Teacher Natural AA Student Natural AA Student Natural AA

Resnet-18 84.09 48.71 Resnet-18 83.74 50.52 WRN-34-10 84.41 53.94
Resnet-34 85.94 50.57 Resnet-18 84.92 49.84 WRN-34-10 85.79 54.17
WRN-34-10 84.92 53.08 Resnet-18 83.17 52.11 WRN-34-10 84.21 55.65
WRN-34-20 85.65 56.82 Resnet-18 82.82 51.64 WRN-34-10 84.73 55.71
WRN-76-10 88.54 64.25 Resnet-18 85.28 51.96 WRN-34-10 86.61 57.12
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(a) (b)

Figure 2: The impact of α and β.

C.2 The impact of α and β.

C.3 Different attack budgets and steps

We plot the results of testing robust accuracy over epochs and evaluate adversarial accuracy against
PGD attacks under different attack budgets with a fixed attack step of 10, and we also conduct
experiments using PGD attacks with different attack iterations with a fixed attack budget of 8/255.
The results are shown in Figure 3. Our IBD is better than standard AT, TRADES and RSLAD at
larger budgets, besides, our IBD is stable against large iterations attacks, e.g., PGD attack with 500
step iterations. Therefore, the results demonstrate the effectiveness of our proposed IBD.

Figure 3: The test robust accuracy under PGD attack with different attack budgets and attack
iterations, respectively. All these experiments were conducted on CIFAR-10 using ResNet-18
architecture. (Best view in color)

C.4 Visualization of attention matrix

We visualize the attention matrices when distilling between different network architectures, as shown
in Figure 4. We can see that models of the same architecture can achieve mutual correspondence
between feature layers, but for models of different architectures, the shallow layers of the student
model will receive a lot of attention, and the high-level features will correspond to each other.

D Limitations.

One limitation of our method is that the accuracy of our method on natural samples does not improve
significantly, This may be because there exists a trade-off between robustness and natural accuracy
[71]. Despite this, our natural accuracy is still over 83+% on CIFAR10, we think this is acceptable.
Another limitation is that our method requires a robust pre-trained teacher model, which may increase
training costs and training time. At present, our IBD has only verified its effect on the adversarial
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Figure 4: The visualization of attention matrix.

robustness of DNNs. It is not yet known whether it can achieve the same effect in other applications
of IB. We are further studying its generalization ability.

E Broader Impacts.

We propose an adversarial defense method to enhance the robustness of the model, but we still need
to be aware of the potential negative societal impacts it might result in. For example, the attacker
can get our model and design a special attack algorithm for it. At present, we can not guarantee that
our model can defend against stronger attack algorithms that may appear in the future. Thus, we
encourage our machine learning community to further establish more reliable adversarial robustness
checking routines for machine learning models deployed in safety-critical applications.
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