
Drift doesn’t Matter: Dynamic Decomposition with
Diffusion Reconstruction for Unstable Multivariate

Time Series Anomaly Detection

Chengsen Wang∗ Zirui Zhuang∗ Qi Qi† Jingyu Wang†

Xingyu Wang Haifeng Sun Jianxin Liao

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{cswang, zhuangzirui, qiqi8266, wangjingyu}@bupt.edu.cn
{wangxingyu, hfsun, liaojx}@bupt.edu.cn

Abstract

Many unsupervised methods have recently been proposed for multivariate time
series anomaly detection. However, existing works mainly focus on stable data yet
often omit the drift generated from non-stationary environments, which may lead
to numerous false alarms. We propose Dynamic Decomposition with Diffusion
Reconstruction (D3R), a novel anomaly detection network for real-world unstable
data to fill the gap. D3R tackles the drift via decomposition and reconstruction. In
the decomposition procedure, we utilize data-time mix-attention to dynamically
decompose long-period multivariate time series, overcoming the limitation of
the local sliding window. The information bottleneck is critical yet difficult to
determine in the reconstruction procedure. To avoid retraining once the bottleneck
changes, we control it externally by noise diffusion and directly reconstruct the
polluted data. The whole model can be trained end-to-end. Extensive experiments
on various real-world datasets demonstrate that D3R significantly outperforms
existing methods, with a 11% average relative improvement over the previous
SOTA models. Code is available at https://github.com/ForestsKing/D3R.

1 Introduction

Due to the rarity of anomalies, unsupervised anomaly detection of multivariate time series is an
essential area in data mining and industrial applications. Reconstruction-based models are commonly
used in unsupervised anomaly detection. The reconstruction error is small for normal series while
large for abnormal series. Based on this principle, most anomalies can be detected without the
label. In the real world, the temporal patterns typically change over time as they are generated from
non-stationary environments. For example, the growth in the popularity of a service would cause
customer metrics (e.g., request count) to drift upwards over time. Ignoring these factors would cause
a deterioration in the performance of the anomaly detector. Despite the enormous advancements of
previous research, most focus on stable data. Figure 1 illustrates how the anomaly scores provided by
existing approaches tend to increase in the red area when the data is unstable, leading to false alarms.

To handle the unstable data, we attempt to decompose it into a stable component and a trend
component, focusing more on the stable part in the reconstruction procedure. However, the trend part
cannot be ignored completely, as the drift may be anomalous. There are still two challenges in this

∗Equal contribution.
†Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ForestsKing/D3R


-2

3

8

Va
lu

e

(a) SMD
Data
Trend

-1

4

9

Va
lu

e

(b) SWaT
Data
Trend

0 5000 10000 15000 20000 25000
Time

-1

10

21

32

Sc
or

e

LstmAE
MTAD-GAT
D3R

0 500 1000 1500 2000 2500
Time

-1

4

9

14

Sc
or

e

LstmAE
MTAD-GAT
D3R

Figure 1: Anomaly scores of existing methods on SMD and SWaT datasets. All moments are normal.
Vertical drift occurs in the red area. The moment with a higher anomaly score is more likely to be
identified as an anomaly.

context: Challenge 1: Limitation of the decomposition for long-period time series. Most classical
decomposition algorithms [2, 17, 27] are static, making it hard to be applied in the real world, where
the data is updated in real time. With deep learning, some dynamic algorithms have been proposed;
however, they are mainly based on averaging [29] or Fourier Transform [28, 26] within a local sliding
window. Fundamentally, they can not apply to the data whose period is larger than the size of the
sliding window. Challenge 2: High training cost of adjusting the information bottleneck in the
reconstruction procedure. The information bottleneck is critical for reconstruction-based models,
and adjusting it is difficult. If it is too small, normal data will be poorly reconstructed; if it is too
large, abnormal data will be successfully reconstructed. Previous methods most rely on an internal
information bottleneck, such as the latent space size. As the information bottleneck is an attribute of
the model itself, any change to the bottleneck necessitates retraining the model.

After analyzing numerous data series, we systematically organize the distribution shift into two
categories. Vertical drift refers to statistical characteristics such as mean changing over time, while
horizontal drift refers to values shifting left or right at similar times in various periods. In response to
the above challenges, we propose Dynamic Decomposition with Diffusion Reconstruction (D3R)
for long-period unstable multivariate time series anomaly detection. To solve Challenge 1, we
utilize timestamps as external information to overcome the limitations of the local sliding window.
Specifically, the data-time mix-attention and offset subtraction are utilized to solve vertical and
horizontal drift, respectively. Moreover, we introduced a disturbance strategy in training to increase
the robustness of the model. To solve Challenge 2, we propose a new method named noise diffusion to
control the information bottleneck externally. The diffusion [6] provides a new view of the information
bottleneck, treating the noise as a bottleneck and the unpolluted information as a condition. Because
the bottleneck is no longer an attribute of the model itself, the different sizes can be set during revision
without retraining the model.

The contribution of our paper is summarised as follows:

• A novel dynamic decomposition method for long-period multivariate time series is proposed.
It effectively utilizes external information to overcome the limitations of the local sliding
window.

• A new approach to control information bottleneck externally by noise diffusion is also
proposed. It avoids the high training cost of adjusting the information bottleneck.

• Based on the findings for the unstable data when taking unsupervised anomaly detection, we
propose a novel anomaly detection network called D3R. The D3R achieves the new SOTA
results on various real-world datasets and significantly outperforms baselines on unstable
datasets.

2 Related work

As a significant real-world problem, unsupervised anomaly detection of multivariate time series has
received much attention. According to the criterion for anomaly detection, the paradigms roughly fall

2



𝐒"

Reconstruction

Decomposition Blocks

Preprocess & Disturb

Data Encoder

Remove Disturbance

Diffusion

Offset Subtraction

𝐗$!

𝐗

𝐗!

𝐓$!𝐗!

𝐗$

𝐗′!

Time Encoder

𝐗"#$%

𝐗"#$%

Add & Norm

Add & Norm

Sub

Feed Forward

Next block

Out

S"

𝐇!&"&'()

N×

OrdAttention

MixAttention
𝐒

𝐇"#$%𝐇!&"&

Embed EmbedEmbed

+

Out

Cat & Norm

+

+

+

−

Temporal Spatial

𝐓$! 𝐗′! 𝐗"#$%

𝐗$!

N×

Norm

Feed Forward

+
Next block
𝐇"#$%
'()

𝐇"#$%'𝐇!&"&
'

Figure 2: The architecture of D3R mainly consists of two modules: dynamic decomposition and
diffusion reconstruction. The detailed architecture of the decomposition blocks is shown on the right
panel. The detailed architecture of the reconstruction backbone network is shown on the left panel.

into the categories of probability-based, linear transformation-based, proximity-based, outlier-based,
and neural network-based approaches.

As for the probability-based approach, [12, 13] are modeled by a statistical probability function on a
multivariate cumulative distribution, providing anomaly scores based on the probability of occurrence
of the sample. In the linear transformation-based method, [20, 22] begin by mapping the multivariate
data before determining the boundary from the mapping space. Proximity-based algorithms, such
as [18, 5], seek to cluster data based on similarity and then calculate intra-cluster and inter-cluster
distances. In the outlier-based approach, [14, 16] compare the outliers degree of the testing samples
with the training samples to identify the anomaly.

Most of the approaches mentioned above do not consider the temporal continuity of series. In
recent years, neural network-based methods have become increasingly significant. Current neural
network-based approaches can be divided into prediction-based and reconstruction-based. Although
prediction-based methods [21, 8] are effective in modeling for the next timestamp, they are susceptible
to interference from historical information. Reconstruction-based approaches [32, 11] do a great
job capturing the distribution across the whole series. However, they are sensitive to the size of the
information bottleneck.

Furthermore, existing works mainly focus on stable data, and their performance may suffer signifi-
cantly in the real world, where the drift is frequent.

3 Method

An input of multivariate time series anomaly detection is denoted by X ∈ Rn×k, where n is the
length of timestamps, and k is the number of variables. The task is to produce an output vector
y ∈ Rn, where yi ∈ {0, 1} denotes whether the ith timestamp is an anomaly.

3.1 Overview

The overall architecture of D3R is shown in Figure 2. The dynamic decomposition module first
models the data and timestamp features by the data encoder and time encoder. Next, it uses stacked
decomposition blocks to extract the stable component. Finally, we get the trend component by offset
subtraction. The diffusion reconstruction module utilizes noise diffusion to construct information
bottleneck externally and then directly reconstructs the polluted data by the backbone network.
Reconstruction error is the anomaly score. In order to model both temporal dependency and dimension
dependency, the data encoder and the reconstruction backbone network both consist of stacked spatial-

3



temporal transformer blocks. To increase the robustness of the model, we also propose a disturbance
strategy during training.

3.2 Data preprocessing

We perform timestamp hard embedding, labeled stable component construction, and disturbance
strategy for the input. Timestamp hard embedding is applied to the training and testing sets, while
labeled stable component construction and disturbance strategy are applied to the training set only.

Timestamp hard embedding To make better use of timestamps in anomaly detection, we hard-
code the timestamps of Rn×1 into an embedding Xtime ∈ Rn×5 like [34, 29], with each dimension
representing minute of the hour, hour of the day, day of the week, day of the month, and month of the
year.

Labeled stable component construction We extract the trend T ∈ Rn×k by moving average, then
the labeled stable component S = X−T,S ∈ Rn×k is obtained. The construction of the labeled
stable components prevents our model from being disturbed when the training data is unstable.

Disturbance strategy To increase the robustness of the model, we add a vertical drift d ∈ Rk

sampled from a [−p, p] uniform distribution to each variable of the training data. The final input of
dynamic decomposition module is Xd = X+ d,Xd ∈ Rn×k.

3.3 Dynamic decomposition

The dynamic decomposition module consists of a data encoder, a time encoder, stacked decomposition
blocks, and an offset subtraction. The data encoder is implemented based on the spatial-temporal
transformer block, which captures the temporal and dimension dependency. The output of data
encoder is Hdata ∈ Rn×dmodel , where dmodel is hidden state dimension in the model. The time encoder
consists only of the temporal transformer block, which models the temporal correlation of timestamps
to obtain Htime ∈ Rn×dmodel . Data-time mix-attention constitutes the subject of stacked decomposition
blocks, which are used to extract the stable component Ŝ ∈ Rn×k. Finally, to solve the challenges of
horizontal drift, we obtain the trend component T̂d ∈ Rn×k through offset subtraction.

Spatial-temporal transformer block The architecture of the spatial-temporal transformer block
is shown in the solid line box on the left panel of Figure 2. Assuming the input of lth layer is
Hl ∈ Rn×dmodel with n timestamps and dmodel dimensions. In the temporal transformer, we obtain
temporal relationship Hl

temporal ∈ Rn×dmodel by directly applying multi-head self-attention (MSA) to n
vectors of size dmodel:

Ĥl
temporal = LayerNorm

(
Hl +MSA

(
Hl,Hl,Hl

))
Hl

temporal = LayerNorm
(
Ĥl

temporal + FeedForward
(
Ĥl

temporal

)) (1)

where Ĥl
temporal is intermediate variable. LayerNorm(·) denotes layer normalization as widely

adopted in [25, 34, 29], FeedForward(·) denotes a multi-layer feedforward network, MSA(Q,K,V)
denotes the multi-head self-attention [25] layer where Q,K,V serve as queries, keys and values. In
the spatial transformer, we obtain dimension relationship Hl

spatial ∈ Rn×dmodel by applying MSA to
dmodel vectors of size n:

Ĥl
spatial = LayerNorm

((
Hl

)T
+MSA

((
Hl

)T
,
(
Hl

)T
,
(
Hl

)T
))

Hl
spatial = LayerNorm

((
Ĥl

spatial

)T
+ FeedForward

((
Ĥl

spatial

)T
)) (2)

where Ĥl
spatial is intermediate variable. (·)T denotes the transposition of matrices. Finally, we obtain

the input of l + 1th layer Hl+1 ∈ Rn×dmodel by:

Ĥl+1 = LayerNorm
(
Hl

temporal ⊕Hl
spatial

)
Hl+1 = LayerNorm

(
FeedForward

(
Ĥl+1

)) (3)

4



where Ĥl+1 ∈ Rn×2dmodel is intermediate variable, and ⊕ represents concatenation.

Data-time mix-attention The original self-attention Ao(Q,K,V) [25] only models the data
information and ignores the role of timestamps. We define the data-time mix-attention as:

Am (Qd,Kd,Qt,Kt,Vt) = Softmax

(
QdK

T
d +QtK

T
t√

dk

)
Vt (4)

where Softmax(·) is conducted row by row like [25, 34, 29], Qd,Kd ∈ Rn×dk are length-n data
queries, data keys of dk dimension mapped from Hdata, respectively. Qt,Kt,Vt ∈ Rn×dk are time
queries, time keys and time values of dk dimension mapped from Htime, respectively. D3R learns to
autonomously merge data and time information by mapping them into attention space.

Decomposition block The structure of stacked decomposition blocks is shown on the right side of
Figure 2. Assuming the input of lth layer is Hl

data and Hl
time, we can obtain the sub-stable components

Ŝl ∈ Rn×k by:
H̃l = Am

(
Hl

data,H
l
data,H

l
time,H

l
time,H

l
time

)
Ĥl = LayerNorm

(
H̃l +Ao

(
H̃l, H̃l, H̃l

))
S̃l = LayerNorm

(
Ĥl + FeedForward

(
Ĥl

))
Ŝl = Out

(
S̃l
)

(5)

where H̃l, Ĥl, S̃l ∈ Rn×dmodel are intermediate variables. Out(·) is a single linear layer. Then we
can obtain the input of l + 1th layer Hl+1

data = Hl
data − S̃l and Hl+1

time = Hl
time. Finally, the sub-stable

components Ŝl of all stacked decomposition blocks are summed to obtain the stable component Ŝ of
the series.

Offset subtraction Although the same time slots in different periods usually have similar fluctua-
tions, it is not strictly one-to-one correspondence. Here, we employ a simple method to handle the
horizontal drift, considering the vector a minus the vector b, with a maximum horizontal offset d:

M (ai,b) = Min (ai − bi−d, · · · ,ai − bi+d) (6)

where ai and bi are the ith element in a and b, respectively. Min(·) means taking the minimum
value. Based on the offset subtraction, we obtain the predicted trend component as T̂d = M(Xd, Ŝ).

3.4 Diffusion reconstruction

The diffusion reconstruction module mainly consists of a noise diffusion and a reconstruction
backbone network. The noise diffusion is used to construct an information bottleneck externally by
polluting the input data with noise, and the backbone network is used to reconstruct the polluted data
directly.

Noise diffusion Given the original data x0, the polluted data x1, x2, · · · , xT are obtained by adding
T step Gaussian noise. Each moment t in the noise addition process is only relevant to the t − 1
moment. The hyperparameter β controls the ratio of added noise. We add trend retaining to the
DDPM so that the model can concentrate on the more crucial stable components. The data xt after t
steps of noise pollution is:

xt =
√
ᾱtx0 +

√
1− ᾱtz̄t +

(
1−

√
ᾱt

)
b (7)

where ᾱt =
∏t

i=1 αi, αi = 1− βi, z̄t ∼ N (0, 1) is the noise, and b is the retained information. The
proof is given in Appendix A. So we can obtain the noisy data:

X′
d =

√
ᾱtXd +

√
1− ᾱtZ̄+ (1−

√
ᾱt)T̂d (8)

whereX′
d ∈ Rn×k, Z̄ ∼ N (0, I), and Z̄ ∈ Rn×k.

5



Table 1: Statistics of the datasets. A smaller ADF test statistic indicates a more stationary dataset.

Training
Size

Testing
Size

Series
Number

Attacks
Number

Anomaly
Durations

Anomaly
Rate Frequency ADF

Test Statistic

PSM 132481 87841 25 73 1∼8861 0.2776 1 minute -9.2314
SMD 23688 23689 33 30 3∼3161 0.1565 1 minute -4.0947
SWaT 6840 7500 25 33 3∼599 0.1263 1 minute -2.9442

Backbone network As shown in the left panel of Figure 2, the backbone network consists of
stacked spatial-temporal transformer blocks. The extracted trend T̂d, the noisy data X′

d, and the
timestamp Xtime are encoded by the embedding layer first. To make the network more focused on the
stable part without completely ignoring the trend part, we make the hidden vector:

H = embed(X′
d)− embed(T̂d) + embed(Xtime) (9)

whereH ∈ Rn×dmodel , embed(·) is the embedding network. Then, we model the temporal and
dimension relationship by feeding H into the stacked spatial-temporal Transformer blocks. After that,
we sum the outputs of the stacked blocks with T̂d and send the result into the output layer. Finally,
we directly obtain the reconstructed result X̂d of Xd instead of the predicted noise.

3.5 Joint optimization

As described in the previous section, the dynamic decomposition and diffusion reconstruction are
interconnected. The dynamic decomposition module learns the inherent features of long-period
unstable multivariate time series, i.e., the stable component. We use the Mean Square Error (MSE)
between S and Ŝ as the loss of this module. The diffusion reconstruction module directly recon-
structs the data polluted by noise diffusion. It is worth noting that the output of this module is the
reconstruction of Xd. Because the drift d is added inside D3R, and the external who calculates the
loss is only aware of X, we obtain the reconstruction of X by X̂ = X̂d − d, X̂ ∈ Rn×k. Similar to
the dynamic decomposition module, the MSE of X and X̂ is used directly as the loss of this module.

During the training process, D3R needs to be trained end-to-end, so the loss function is defined as the
sum of the two optimization objectives:

Loss =
1

nk

n∑
i=1

k∑
j=1

((
Si,j − Ŝi,j

)2

+
(
Xi,j − X̂i,j

)2
)

(10)

where Si,j , Ŝi,j ,Xi,j , X̂i,j represent the labeled stable component, the predicted stable component,
the original input and the reconstructed output of the jth variable at the ith timestamp, respectively.

3.6 Model inference

The online detection (inference) does not need labeled stable component construction and disturbance
strategy in the data preprocessing stage. The anomaly score for the current timestamp consists only
of the MSE of the original input X and the reconstructed output. Then, we run the SPOT [23], a
streaming algorithm based on extreme value theory, to label each timestamp.

4 Experiments

4.1 Experimental settings

Datasets We evaluate D3R extensively on three real-world datasets: PSM (Pooled Server Metrics)
[1], SMD (Server Machine Dataset) [24], and SWaT (Secure Water Treatment) [15]. For each dataset,
we only preserve continuous variables. That is why we do not employ MSL (Mars Science Laboratory
rover) and SMAP (Soil Moisture Active Passive satellite) [8], which are discrete except for the first
dimension. The normal data is divided into training data (80%) and validation data (20%). Anomaly
is only present in the testing data. More descriptions of the datasets are shown in Table 1. Further
details about the datasets are available in Appendix B.1.

6



Table 2: Results in the three real-world datasets. The higher values for all metrics represent the better
performance, and the best F1 scores are highlighted in bold.

PSM SMD SWaT Average
Method Precision Recall F1 Precision Recall F1 Precision Recall F1 F1

Sampling 0.8439 0.5165 0.6408 0.7453 0.3144 0.4422 0.6062 0.8466 0.7065 0.5965
COPOD 0.7602 0.3175 0.4479 0.6676 0.1366 0.2268 0.9876 0.1180 0.2108 0.2951
ECOD 0.7460 0.3384 0.4656 0.7398 0.1615 0.2651 0.9761 0.1151 0.2059 0.3122

OCSVM 0.8761 0.4744 0.6155 0.0000 0.0000 0.0000 0.6196 0.7558 0.6810 0.4321
PCA 0.9220 0.3771 0.5353 0.8388 0.4019 0.5434 0.6358 0.7218 0.6761 0.5849
kNN 0.5317 1.0000 0.6943 0.6988 0.3368 0.4546 0.0000 0.0000 0.0000 0.3830

CBLOF 0.5990 0.9845 0.7449 0.8667 0.3352 0.4834 0.6308 0.7091 0.6677 0.6320
HBOS 1.0000 0.0654 0.1228 0.5628 0.8007 0.6610 0.5771 0.8049 0.6722 0.4853
IForest 1.0000 0.0335 0.0648 1.0000 0.0937 0.1713 0.6127 0.6280 0.6203 0.2855
LODA 0.9266 0.4017 0.5605 0.5902 0.6618 0.6240 0.6117 0.7014 0.6535 0.6126
VAE 0.6221 0.8772 0.7280 0.8209 0.4349 0.5686 0.6355 0.7218 0.6759 0.6575

DeepSVDD 0.7405 0.5064 0.6015 0.6498 0.6477 0.6488 0.5911 0.9353 0.7244 0.6582
LSTM-AE 0.7511 0.7586 0.7548 0.8496 0.4349 0.5753 0.6018 0.7219 0.6564 0.6622

MTAD-GAT 0.7990 0.6014 0.6863 0.8590 0.6769 0.7571 0.6590 0.7751 0.7123 0.7186
TFAD 0.7914 0.7163 0.7520 0.5632 0.9783 0.7149 0.6038 0.8196 0.6953 0.7207

Anomaly Transformer 0.5201 0.8504 0.6455 1.0000 0.0319 0.0619 0.5541 0.5994 0.5759 0.4278
Adversary 0.5351 0.8971 0.6703 0.5135 0.9663 0.6706 0.5410 0.7531 0.6297 0.6569

Our 0.6294 0.9619 0.7609 0.7715 0.9926 0.8682 0.7206 0.8529 0.7812 0.8034

Baselines We extensively compare our model with 15 baselines, including the probability-based
methods: Sampling, COPOD [12], ECOD [13]; the linear transformation-based methods: OCSVM
[20], PCA [22]; the proximity-based methods: kNN [18], CBLOF [5], HBOS [4]; the outlier-based
methods: IForest [14], LODA [16]; the neural network-based methods: VAE [11], DeepSVDD [19],
Lstm-AE [9], MTAD-GAT [33], TFAD [31], Anomaly Transformer [30]. Additionally, we set up an
adversary algorithm, which is implemented simply. A timestamp will be marked as abnormal if its
sequential id is divisible by n, else it will be marked as normal. In our experiment, n is set as 40.
This adversary algorithm works as a timed detector and offers no information about the location of
the anomaly. All baselines are based on our runs, using the identical hardware. We employ official or
open-source implementations published in GitHub and follow the configurations recommended in
their papers. Further details concerning the Baselines are available in Appendix B.2.

Metrics For performance evaluation, we use precision, recall, and F1 score. The classical metrics
are reasonable for tasks with sample granularity but are not applicable for continuous time series,

0 12 24 36 48 60
Time

-3

2

7

12

17

Va
lu

e

Value
Adjusted
Real

Figure 3: Example of point adjustment strategy.
The red area represents the ground truth of the
anomaly event. The precision/recall/f1 before ad-
justment (Real) is 0.20/0.05/0.08, while after ad-
justment (Adjusted) is 0.84/1.00/0.91.

where anomalies are frequently continuous.
Most previous work [30, 33, 3, 21] employ the
point adjustment method: If a point in a contigu-
ous anomalous segment is detected correctly,
all anomalies in the same segment are also con-
sidered to have been correctly detected. How-
ever, point adjustment is unreasonable, as [10]
pointed out, and creates the illusion of progress.
Assuming that ground truth and the predicted
event are shown in Figure 3, although the real
predicted event is just a timed detection, it still
achieves an F1 score of 0.91 after point adjust-
ment. The point adjustment may increase TP
and decrease FN dramatically [10]. We test all
baselines on all datasets with point adjustment
metrics. The detailed experiment results can be found in Appendix C. Experimental results show that
the average F1 score of the adversary algorithm surprisingly outperforms all baselines, even though it
can provide no anomaly location information. This phenomenon arises because point adjustment
unfairly assigns higher weights to long anomaly events. Furthermore, this algorithm does not consider
the adjacency of time series [7]. To address the aforementioned challenges, we employ an F1 score
based on affiliation [7]. This score takes into account the average directed distance between predicted
anomaly events and ground truth events to calculate precision, as well as the average directed distance
between ground truth events and predicted anomaly events to determine recall.

7



0 4000 8000 12000 16000 20000

-1

1

3

5

SM
D

(a)

0 400 800 1200 1600 2000
Time

-1

2

5

8
SW

aT

Data
Stable

z dmodel T
Parameter

0.75

0.80

0.85

0.90

F1
 S

co
re

(b)

Figure 4: Results of effectiveness analyses. (a) is the visualization in the dynamic decomposition. (b)
is the statistic results of sensitivity analyses in the diffusion reconstruction module.

Detailed implementation of D3R can be found in Appendix B.3. All experiments are repeated 5 times,
and we report the average for each metric.

4.2 Detection Results

On all three real-world datasets, as shown in Table 2, D3R outperforms the adversary algorithm
and achieves the best F1 performance, confirming its effectiveness and superiority. Specifically, we
achieve 0.61% (0.7548→0.7609), 11.11% (0.7571→0.8682), and 5.68% (0.7244→0.7812) absolute
improvement over the previous SOTA methods on PSM, SMD, and SWaT datasets, respectively.

The statistical and machine learning methods frequently perform poorly in generalization because
they do not account for time series continuity. They may perform well on a partial dataset while
performing poorly or even failing on another (e.g., OCSVM and CBLOF). In opposition, neural
network-based methods usually perform more balanced over various datasets. Furthermore, much of
the previous works were evaluated by point adjustment, leading to a false boom. The metrics based
on affiliation provide a more objective and reasonable evaluation of various methods, although their
scores will drop.

Noticeably, D3R significantly outperforms the other methods on the SMD and SWaT datasets, which
are typically characterized by high nonstationarity, suggesting the limitation of previous work on
unstable real-world data. In our model, the dynamic decomposition and diffusion reconstruction
modules complement each other. The former dynamically eliminates the unstable interference from
the original data. The latter models the series from more crucial components. These designs tackle
the shortcomings of previous work and maintain excellent robustness in complex real-world data.

In addition to the affiliation evaluation metric, we compare D3R with other baselines in all datasets
using the AUC score. The detailed experiment results can be found in Appendix D. For a more
intuitive comparison, we visualize the anomaly scores of the D3R and partial baselines, as shown in
Appendix E. The quantitative and qualitative experimental results all show that D3R outperforms
other baselines. Moreover, to validate the practicality of D3R in the actual production environment,
we compare run time across different neural network-based algorithms in the SMD and present a
summary in Appendix F. Both the training time and inference time of our model are acceptable.

4.3 Effectiveness verifications

Dynamic decomposition module We propose a dynamic decomposition module to tackle Chal-
lenge 1. To more intuitively verify the performance of the dynamic decomposition module, we
provide visualization of the decomposition results on highly unstable datasets (SMD and SWaT).
Figure 4(a) shows that our model robustly extracts the fundamental stable components, although
real-world multivariate data is long-period and complex.

Diffusion reconstruction module We propose a diffusion reconstruction module to tackle Chal-
lenge 2. To verify the superiority of controlling information bottleneck externally, we replace the
entire diffusion reconstruction module with the VAE module and perform sensitivity analyses for
the VAE module and diffusion reconstruction module. The hyperparameter that significantly af-

8



Table 3: Results of ablation studies. F1 scores are reported, with higher values meaning better
performance. The best scores are highlighted in bold.

dataset D3R w/o
temporal

w/o
spatial

w/o
time

w/o
data

w/o
offset

w/o
disturbance

w/o
diffusion

w/o
trend

PSM 0.7609 0.7280 0.7571 0.7074 0.7374 0.7420 0.7508 0.7347 0.7592
SMD 0.8682 0.8169 0.8173 0.7403 0.8114 0.8446 0.6947 0.8392 0.8006
SWaT 0.7812 0.7031 0.7274 0.7563 0.6720 0.7205 0.7293 0.7293 0.7109

Average 0.8034 0.7493 0.7673 0.7347 0.7403 0.7690 0.7249 0.7677 0.7569

fects the performance of the VAE module is the latent space size z. The hyperparameters that
may affect the performance of the diffusion reconstruction module are the hidden state dimension
dmodel, the noise ratio β, and the pollution step T . We scale each hyperparameter by a factor of
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, the statistic results for the SMD are shown in Figure
4(b). As well as allowing adjusting the information bottleneck without retraining, the diffusion
reconstruction module is significantly more effective (i.e., the F1 score is higher) and more robust
(i.e., the F1 score is more concentrated) than the VAE module. During the hyperparameter changing,
the F1 score span of the VAE module is 8.96% (0.7496→0.8392), while the maximum span of the
diffusion reconstruction module (β) is 3.30% (0.8381→0.8711).

4.4 Ablation studies

In order to verify the effectiveness and necessity of our designs, we perform ablation studies on both
dynamic decomposition and diffusion reconstruction modules of D3R, respectively.

Dynamic decomposition module In this module, our main designs are spatial-temporal transformer,
data-time mix-attention, offset subtraction, and disturbance strategy. Their ablation results are shown
in Table 3. The w/o temporal, w/o spatial, w/o time, w/o data, w/o offset, and w/o disturbance
represent the variants of D3R removing temporal transformer, spatial transformer, time attention, data
attention, offset subtraction, and disturbance strategy, respectively. The temporal transformer and
spatial transformer bring an average absolute improvement of 5.41% (0.7493→0.8034) and 3.61%
(0.7673→0.8034), respectively. Compared with the spatial transformer, the temporal transformer is
more critical. The spatial transformer performs much worse when the datasets have smaller series
number (PSM and SWaT). When the series number is large (SMD), the dimension dependency is more
prosperous, and the spatial transformer performs better. Moreover, time attention and data attention
in data-time mix-attention bring a great absolute promotion of 6.87% (0.7347→0.8034) and 6.31%
(0.7403→0.8034). While data attention is better suited to short-period data (SWaT), time attention is
better suited to long-period data (PSM and SMD). Offset subtraction can further improve our model
with 3.27% (0.7690→0.8034). Finally, the disturbance strategy brings a significant improvement
of 7.85% (0.7249→0.8034), especially for the SMD and SWaT datasets with high nonstationary
characteristics.

Diffusion reconstruction module This module uses noise diffusion to control the information
bottleneck externally. To verify the superiority of noise diffusion, we replace the entire diffusion
reconstruction module with the VAE module, and the ablation results are shown in Table 3 (w/o
diffusion). As well as allowing adjustment of the information bottleneck without retraining, noise
diffusion also provides a 3.57% (0.7677→0.8034) absolute improvement. The following section
will discuss more advantages of the diffusion reconstruction module. An additional innovation of
this module is trend retaining, and the ablation results are shown in Table 3 (w/o retaining). After
removing trend retaining, the performance of D3R decreases significantly, especially in the highly
nonstationary SMD dataset (0.8682→0.8006) and SWaT dataset (0.7812→0.7109). Trend retaining
enables the model to focus on the critical stable components, avoiding being distracted by irrelevant
information.

4.5 Hyperparameter analyses

The hyperparameter that significantly affects the performance of the VAE module is the latent
space size z. The hyperparameters that may affect the performance of D3R are the added drift

9



0.75

0.79

0.83

0.87

F1
 S

co
re

z

0.80

0.84

0.88

0.92
p

0.80

0.84

0.88

0.92
d

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Factor

0.80

0.84

0.88

0.92

F1
 S

co
re

dmodel

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Factor

0.80

0.84

0.88

0.92

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Factor

0.80

0.84

0.88

0.92
T

Figure 5: Results of the sensitivity analysis. The higher F1 Score represents the better performance.
The dark line represents the mean of 5 experiments, and the light area represents the range.

boundary p, the maximum horizontal offset d, the hidden state dimension dmodel, the noise ra-
tio β, and the pollution step T . To analyze their influence on anomaly detection, we perform
hyperparameter sensitivity analysis in the SMD. We scale each hyperparameter by a factor of
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, and the results are shown in Figure 5.

Anomaly detection methods based on reconstruction require constructing the information bottleneck
to reconstruct normal data and inhibit anomaly effectively. While traditional autoencoders control
the information bottleneck from inside through the latent space size, our approach controls the
information bottleneck from outside through noise diffusion. As the experimental results show, with
the bottleneck going from strict to loose (latent space size z, noise ratio β, pollution step T going from
small to large), the performance of the model goes from up to down. If the information bottleneck
is too tight, the normal data cannot be reconstructed, and the precision is low. If the information
bottleneck is too loose, the anomaly can be reconstructed well, and the recall is low. On the one
hand, our approach to control the information bottleneck externally is more robust (smaller range of
variation). On the other hand, as the information bottleneck is not an attribute of the model itself, we
can try different bottleneck sizes when inference without retraining the model again.

Since it is no longer an information bottleneck, D3R is not sensitive to the hidden state dimension
dmodel. A larger hidden space tends to bring better results but also a greater computational cost. As
for the added drift boundary p and maximum horizontal offset d, the impact on our model becomes
small once they exceed a certain threshold. Overall, D3R is robust to all hyperparameters we test.

5 Conclusion

This paper proposes Dynamic Decomposition with Diffusion Reconstruction (D3R) for long-period
unstable multivariate time series anomaly detection to cover the overlook in previous work. We first
decompose the long-period unstable multivariate time series dynamically and then directly reconstruct
the data polluted by noise diffusion. Extensive experiments prove that D3R significantly outperforms
existing works. The method we proposed to break the limitation of the local sliding window is
also meaningful for other long-period multivariate time series analysis tasks, such as prediction and
imputation. Meanwhile, the approach to controlling information bottleneck externally can also be
used for anomaly detection of other modal data, such as picture, video, and log data.

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Natural Science Foundation of China under Grants
(62101064, 62171057, 62201072, 62071067), in part by the Ministry of Education and China
Mobile Joint Fund (MCM20200202, MCM20180101), in part by the Beijing University of Posts and
Telecommunications-China Mobile Research Institute Joint Innovation Center.

10



References
[1] Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous

multivariate time series anomaly detection and localization. In ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2485–2494, 2021.

[2] Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. Stl: A
seasonal-trend decomposition. Journal of Official Statistics, 6:3–73, 1990.

[3] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate
time series. In AAAI Conference on Artificial Intelligence, pages 4027–4035, 2021.

[4] Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): A fast unsuper-
vised anomaly detection algorithm. German Conference on Artificial Intelligence, 1:59–63,
2012.

[5] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers.
Pattern Recognition Letters, 24:1641–1650, 2003.

[6] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Neural
Information Processing Systems, pages 6840–6851, 2020.

[7] Alexis Huet, José Manuel Navarro, and Dario Rossi. Local evaluation of time series anomaly
detection algorithms. In ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 635–645, 2022.

[8] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Söderström.
Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 387–395,
2018.

[9] Tung Kieu, Bin Yang, and Christian S. Jensen. Outlier detection for multidimensional time series
using deep neural networks. In IEEE International Conference on Mobile Data Management,
pages 125–134, 2018.

[10] Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards
a rigorous evaluation of time-series anomaly detection. In AAAI Conference on Artificial
Intelligence, pages 7194–7201, 2022.

[11] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

[12] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: Copula-based outlier
detection. In IEEE International Conference on Data Mining, pages 1118–1123, 2020.

[13] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George H. Chen. ECOD:
unsupervised outlier detection using empirical cumulative distribution functions. arXiv,
2201.00382, 2022.

[14] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In IEEE International
Conference on Data Mining, pages 413–422, 2008.

[15] Aditya P. Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and
training on ics security. In CySWater, pages 31–36, 2016.

[16] Tomás Pevný. Loda: Lightweight on-line detector of anomalies. Machine Learning, 102:
275–304, 2016.

[17] Jinwen Qiu, S. Rao Jammalamadaka, and Ning Ning. Multivariate bayesian structural time
series model. Journal of Machine Learning Research, 19:68:1–68:33, 2018.

[18] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining
outliers from large data sets. In ACM SIGMOD International Conference on Management of
Data, pages 427–438, 2000.

11



[19] Lukas Ruff, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert A. Vandermeulen,
Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In
International Conference on Machine Learning, pages 4393–4402, 2018.

[20] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. Neural Computation,
13:1443–1471, 2001.

[21] Lifeng Shen, Zhuocong Li, and James T. Kwok. Timeseries anomaly detection using temporal
hierarchical one-class network. In Neural Information Processing Systems, 2020.

[22] Meiling Shyu, Shuching Chen, Kanoksri Sarinnapakorn, and Liwu Chang. A novel anomaly
detection scheme based on principal component classifier. Technical report, Miami Univ Coral
Gables Fl Dept of Electrical and Computer Engineering, 2003.

[23] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouët. Anomaly
detection in streams with extreme value theory. In ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1067–1075, 2017.

[24] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection
for multivariate time series through stochastic recurrent neural network. In ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 2828–2837, 2019.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, pages 5998–6008, 2017.

[26] Zhiyuan Wang, Xovee Xu, Weifeng Zhang, Goce Trajcevski, Ting Zhong, and Fan Zhou.
Learning latent seasonal-trend representations for time series forecasting. In Neural Information
Processing Systems, 2022.

[27] Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo Zhu. Robust-
stl: A robust seasonal-trend decomposition algorithm for long time series. In AAAI Conference
on Artificial Intelligence, pages 5409–5416, 2019.

[28] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven C. H. Hoi. Cost:
Contrastive learning of disentangled seasonal-trend representations for time series forecasting.
In International Conference on Learning Representations, 2022.

[29] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting. In Neural Information
Processing Systems, pages 22419–22430, 2021.

[30] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. In International Conference on Learning
Representations, 2022.

[31] Chaoli Zhang, Tian Zhou, Qingsong Wen, and Liang Sun. TFAD: A decomposition time series
anomaly detection architecture with time-frequency analysis. In ACM International Conference
on Information & Knowledge Management, pages 2497–2507, 2022.

[32] Weiqi Zhang, Chen Zhang, and Fugee Tsung. Grelen: Multivariate time series anomaly
detection from the perspective of graph relational learning. In International Joint Conference
on Artificial Intelligence, pages 2390–2397, 2022.

[33] Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph
attention network. In IEEE International Conference on Data Mining, pages 841–850, 2020.

[34] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
AAAI Conference on Artificial Intelligence, pages 11106–11115, 2021.

12



A Noise diffusion proofs

In this section, we explain the proof of Equation 7 in our paper.

Suppose z ∼ N (0, 1) is the Gaussian noise to be added, β controls the amount of noise added each
step, α = 1− β, and b is the trend information to be retained. The xt after t steps of noise pollution
is:

xt =
√
αt (xt−1 − b) +

√
1− αtzt + b

=
√
αtxt−1 +

√
1− αtzt + (1−

√
αt) b

(11)

The Gaussian distribution, as we know, has the following properties:

• Suppose x ∼ N(µ, σ2), then ax+ b ∼ N(aµ+ b, a2σ2).
• Suppose x ∼ N(µx, σ

2
x), y ∼ N(µy, σ

2
y), x, y are independent random variables, then

x+ y ∼ N(µx + µy, σ
2
x + σ2

y).

Based on these properties, the noise diffusion process can be deduced further:

xt =
√
αt (xt−1 − b) +

√
1− αtzt + b

=
√
αt

[√
αt−1 (xt−2 − b) +

√
1− αt−1zt−1 + b− b

]
+

√
1− αtzt + b

=
√
αtαt−1xt−2 +

√
1− αtαt−1zt +

(
1−√

αtαt−1

)
b

(12)

Repeating the above process, we can directly infer xt from x0 as follows:

xt =
√
ᾱtx0 +

√
1− ᾱtz̄t +

(
1−

√
ᾱt

)
b (13)

where ᾱt =
∏t

i=1 αi and z̄t ∼ N (0, 1).

B Detailed experimental settings

B.1 Datasets

The datasets can be downloaded from the following:

• PSM: https://github.com/eBay/RANSynCoders/tree/main/data.
• SMD: https://github.com/NetManAIOps/OmniAnomaly/tree/master/ServerMachineDataset.
• SWaT: https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/.

B.2 Baselines

All baselines are based on our runs, using the identical hardware. We employ official or open-source
implementations published in GitHub and follow the configurations recommended in their papers.
The baselines can be downloaded from the following:

• Sampling: https://github.com/yzhao062/pyod.
• COPOD: https://github.com/yzhao062/pyod.
• ECOD: https://github.com/yzhao062/pyod.
• OCSVM: https://github.com/yzhao062/pyod.
• PCA: https://github.com/yzhao062/pyod.
• kNN: https://github.com/yzhao062/pyod.
• CBLOF: https://github.com/yzhao062/pyod.
• HBOS: https://github.com/yzhao062/pyod.
• IForest: https://github.com/yzhao062/pyod.
• LODA: https://github.com/yzhao062/pyod.
• VAE: https://github.com/yzhao062/pyod.

13

https://github.com/eBay/RANSynCoders/tree/main/data
https://github.com/NetManAIOps/OmniAnomaly/tree/master/ServerMachineDataset
https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod


Table 4: Quantitative results after point adjustment in the three real-world datasets. The higher values
for all metrics represent the better performance, and the best F1 scores are highlighted in bold.

Method PSM SMD SWaT Average
Precision Recall F1 Precision Recall F1 Precision Recall F1 F1

Sampling 0.9986 0.8571 0.9224 0.9958 0.9690 0.9822 0.1583 0.9271 0.2705 0.7250
COPOD 0.9795 0.8572 0.9143 0.9975 0.8538 0.9201 0.9953 0.6695 0.8005 0.8783
ECOD 0.9565 0.8632 0.9075 0.9645 0.8573 0.9078 0.9954 0.6832 0.8103 0.8752

OCSVM 0.9990 0.8115 0.8955 0.0000 0.0000 0.0000 0.1596 0.9113 0.2716 0.3890
PCA 0.9996 0.7777 0.8748 0.9964 0.9720 0.9840 0.1645 0.9029 0.2783 0.7124
kNN 0.2776 1.0000 0.4345 0.9950 0.9676 0.9811 0.0000 0.0000 0.0000 0.4719

CBLOF 0.4301 0.9996 0.6014 0.9970 0.9698 0.9832 0.1635 0.9029 0.2769 0.6205
HBOS 1.0000 0.5957 0.7466 0.3745 0.9922 0.5437 0.3932 0.8965 0.5467 0.6123
IForest 1.0000 0.2204 0.3612 1.0000 0.8560 0.9224 0.4204 0.8141 0.5545 0.6127
LODA 0.9975 0.8465 0.9158 0.8452 0.9803 0.9077 0.2502 0.8912 0.3907 0.7381
VAE 0.6020 0.9486 0.7365 0.9953 0.9720 0.9835 0.1646 0.9029 0.2784 0.6661

DeepSVDD 0.6919 0.8779 0.7739 0.9575 0.9714 0.9644 0.1465 0.9842 0.2551 0.6645
LSTM-AE 0.7280 0.9288 0.8162 0.9961 0.9720 0.9839 0.1614 0.9029 0.2739 0.6913

MTAD-GAT 0.9589 0.8987 0.9279 0.9940 0.9857 0.9898 0.1745 0.9197 0.2934 0.7370
TFAD 0.8819 0.9851 0.9306 0.9991 0.9492 0.9735 0.2559 0.9387 0.4022 0.7688

Anomaly Transformer 0.9022 0.9879 0.9431 1.0000 0.8525 0.9204 0.9076 0.7159 0.8005 0.8880

Adversary 0.9384 0.9921 0.9645 0.8774 0.9649 0.9191 0.8309 0.8300 0.8304 0.9047

• DeepSVDD: https://github.com/yzhao062/pyod.

• LSTM-AE: https://github.com/matanle51/LSTM_AutoEncoder.

• MTAD-GAT: https://github.com/ML4ITS/mtad-gat-pytorch.

• TFAD: https://github.com/DAMO-DI-ML/CIKM22-TFAD.

• Anomaly Transformer: https://github.com/thuml/Anomaly-Transformer.

B.3 Implementation

In our experiment, the sliding window has a fixed size 64 for all datasets. We set the dimension
of hidden states as 512, the dimension of attention as 64, the number of attention heads as 8, the
number of network layers as 2, and the dropout as 0.6. We use grid search to obtain the best SPOT
parameters for each dataset and record the results with the highest F1 scores. The β of the diffusion
model changes from 0.0001 to 0.02 in 1000 steps like DDPM without adjustment. We add noise
with 500 steps (selected from {100, 300, 500, 700, 900}) as an external information bottleneck when
the noise diffusion. The boundary of added drift in the disturbance strategy is 10 (selected from
{1, 2.5, 5, 10, 20}). The max offset of offset subtraction is 30 (selected from {5, 10, 20, 30, 40}). We
use the Adam optimizer with an initial learning rate of 10−4. The training process is early stopped
within 8 epochs with a batch size of 8. The implementation of D3R is carried out using Python 3.9.13
and PyTorch 1.11.0. All experiments are performed on a Ubuntu Server with a 12th Gen Intel(R)
Core(TM) i9-12900K @ 3.60GHz processor and an NVIDIA GeForce RTX 3090 Graphics Card.

C Detection results with point adjusted

We test all baselines on all datasets with point-adjusted evaluation metrics, and the detailed quantitative
results are shown in Table 4. Since the data processing and hardware are not the same as those in the
original paper, the results of the baselines in our experiments are slightly different from those in the
original paper. Nevertheless, the errors are still within a reasonable range.

The point adjustment method is unreasonable. Despite the no helpful information provided by
the adversary algorithm, its average performance still exceeds other SOTA methods by 2% of the
relative F1 score. Specifically, the adversary algorithm achieves an absolute improvement of 2.14%
(0.9431→0.9645) and 2.01% (0.8103→0.8304) on the PSM and SWaT datasets, respectively. Only on
the SMD dataset the adversary algorithm is slightly weaker than the best baseline (0.9898→0.9191).
If we further adjust the n in the adversary algorithm, it can also outperform all the baselines in the
SMD dataset.

14

https://github.com/yzhao062/pyod
https://github.com/matanle51/LSTM_AutoEncoder
https://github.com/ML4ITS/mtad-gat-pytorch
https://github.com/DAMO-DI-ML/CIKM22-TFAD
https://github.com/thuml/Anomaly-Transformer


Table 5: AUC score in the three real-world datasets. The higher AUC score represents the better
performance, and the best AUC scores are highlighted in bold.

Method PSM SMD SWaT Average

Sampling 0.8791 0.9611 0.5348 0.7917
COPOD 0.8526 0.9230 0.7396 0.8384
ECOD 0.8394 0.9220 0.7532 0.8382

OCSVM 0.8708 0.6789 0.5379 0.6959
PCA 0.8617 0.9671 0.5324 0.7871
kNN 0.8640 0.8935 0.5806 0.7793

CBLOF 0.8681 0.9694 0.5378 0.7918
HBOS 0.8150 0.7393 0.8085 0.7876
IForest 0.8892 0.9218 0.7238 0.8450
LODA 0.8619 0.9180 0.6780 0.8193
VAE 0.8583 0.9674 0.5325 0.7861

DeepSVDD 0.8100 0.9187 0.5063 0.7450
LSTM-AE 0.8894 0.9698 0.6255 0.8283

MTAD-GAT 0.9093 0.9443 0.6386 0.8307
TFAD 0.8185 0.9386 0.6966 0.8179

Anomaly Transformer 0.7074 0.7150 0.6638 0.6954
Adversary 0.7199 0.5374 0.6487 0.6353

Our 0.9223 0.9759 0.8554 0.9179

D Additional detection results

In order to avoid the influence of SPOT parameters and thresholds on the results, we compare the
methods from the perspective of the original anomaly scores. If an anomaly lasts too long, more
weight will be assigned, resulting in an inaccurate metric. Thus, we aggregate each anomaly event.
An anomaly event after aggregation is equivalent to only one timestamp, labeled as an anomaly, and
scored as the maximum of the original anomaly range.

We use Area Under Curve (AUC) to evaluate the anomaly scores of each method. The value of
AUC ranges between 0.5 and 1, while the closer to 1.0, the better the method. The results of the
experiments are shown in Table 5. D3R significantly outperforms existing methods, with a 9% average
relative improvement over other SOTA methods. Specifically, we achieve 1.30% (0.9093→0.9223),
0.61% (0.9698→0.9759), and 4.69% (0.8085→0.8554) absolute improvement over the best SOTA
performance on PSM, SMD and SWaT datasets, respectively. This experiment proves the superiority
of D3R once again.

E Anomaly score visualizations

We visualize the anomaly scores of the partial baseline and D3R for a more intuitive comparison, as
shown in Figure 6. D3R consistently provided the most distinguishable anomaly scores in all three
real-world datasets. In the PSM dataset, the vertical drift is insignificant. In this case, some of the
baselines (MTAD-GAT) can achieve correct detection results, but there are still missed detections
(Anomaly Transformer) and false detections (VAE). In the SMD and SWaT datasets, the vertical drift
of the data is significant. The anomaly scores of baselines in the normal region are already far from
the training data. The unstable normal data is likely to be mistakenly detected as an anomaly. Once
the anomaly occurs, even if the anomaly scores of the baselines improve, they are not significant
enough due to the large base.

F Run Times

We comprehensively compare training time, inference time, and model size for neural network-based
models on the SMD dataset to validate the practicality of D3R in the production environment. The
outcomes are presented in Table 6.

15



0.0

0.7

1.4

2.1

D
at

a

PSM
Train
Test

0

5

10

15

SMD
Train
Test

0

2

4

6

SWaT
Train
Test

0

2

4

6

VA
E

Train
Test

0

4

8

12 Train
Test

0

2

4

6

Train
Test

0

1

2

3

D
ee

pS
V

D
D

Train
Test

0

1

2

3 Train
Test

0

6

12

18

Train
Test

0.0

0.6

1.2

1.8

Ls
tm

A
E

Train
Test

0.0

0.2

0.4

0.6 Train
Test

0

14

28

42

Train
Test

0.0

0.5

1.0

1.5

M
TA

D
-G

AT

Train
Test

0.0

0.2

0.4

0.6 Train
Test

0

15

30

45

Train
Test

0.0

0.5

1.0

1.5

A
no

m
al

y
Tr

an
sf

or
m

er

Train
Test

0

2

4

6 Train
Test

0

8

16

24

Train
Test

0 40 80 120 160 200
Time

0.0

1.8

3.6

5.4

D
3 R

Train
Test

0 20 40 60 80 100
Time

0.0

1.4

2.8

4.2 Train
Test

0 10 20 30 40 50
Time

0

3

6

9 Train
Test

Figure 6: Visualization of the anomaly scores in the three real-world datasets. The red area represents
the ground truth of the anomaly event. In the first row, we visualize the raw data. In the remaining six
rows, we visualize the anomaly scores provided by different methods. The moment with a higher
anomaly score is more likely to be identified as an anomaly. Green boxes bound the successful cases.
We normalize the data according to the statistical characteristics of the training set. Test denotes the
actual value of the testing set after the normalization, while Train denotes the average value of the
training set after the normalization, which is always 0.

16



Table 6: Run times in the SMD. The lower values represent the better performance. The best results
are highlighted in bold, and the worst results are underlined.

Method Training Time (s) Inference Time (s) Model Size (MB)

VAE 157.91 30.90 0.02
DeepSVDD 60.70 12.61 0.01
LSTM-AE 283.61 72.82 0.04

MTAD-GAT 188.52 60.23 1.20
TFAD 315.39 38.54 1.04

Anomaly Transformer 422.43 94.36 28.15

Our 399.32 104.12 109.35

Both the training set and the test set of SMD have approximately 16 days of data. Statistically,
the training time for these models remains below 10 minutes, which is acceptable for real-world
deployment and maintenance. The utilization of attention and its variants in the backbone network of
our model leads to its larger size compared to previous algorithms. Thanks to the highly parallelized
nature of the attention mechanism, both the training time and inference time of our model remain
competitive. The inference process for 16 days of data necessitates a mere 104.12 seconds, satisfying
the online, real-time detection criteria. Compared to the substantial enhancement (11%) in detection
accuracy that we have achieved, the model size of 109.35MB remains affordable within the context of
the expanding hardware resources of the present era. Additionally, there has been substantial recent
work (such as Flowformer) on transformer linearization, which may aid in reducing the burden of our
model. We plan to explore this aspect in our future research.

G Broader Impacts

Recently, Deep Learning has been increasingly used in anomaly detection. It improves safety
and prevents potential risks and financial losses by detecting anomalies in healthcare, industrial
manufacturing, and autonomous driving. However, since real-time data is constantly changing, data
characteristics can change drastically as time accumulates. Due to the obsolescence of the training
data, our models cannot adapt to this situation and may provide incorrect judgments. In the future,
we consider designing algorithms that adopt online updates to address this shortcoming.

H Limitations

The computational cost of our model is large due to the Transformer architecture used for the
backbone network. In future work, we plan to replace it with a more lightweight and efficient
base structure, such as dilated convolutions and graph neural networks. Furthermore, due to the
shortcomings of the point-adjustment evaluation metric, in order to prove the superiority of D3R, we
have to compare various other metrics and provide rich visualizations. We plan to design a more
intuitive and effective anomaly detection evaluation metric in future work.

17


	Introduction
	Related work
	Method
	Overview
	Data preprocessing
	Dynamic decomposition
	Diffusion reconstruction
	Joint optimization
	Model inference

	Experiments
	Experimental settings
	Detection Results
	Effectiveness verifications
	Ablation studies
	Hyperparameter analyses

	Conclusion
	Noise diffusion proofs
	Detailed experimental settings
	Datasets
	Baselines
	Implementation

	Detection results with point adjusted
	Additional detection results
	Anomaly score visualizations
	Run Times
	Broader Impacts
	Limitations

