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Abstract

Research on adversarial robustness is primarily focused on image and text data. Yet,
many scenarios in which lack of robustness can result in serious risks, such as fraud
detection, medical diagnosis, or recommender systems often do not rely on images
or text but instead on tabular data. Adversarial robustness in tabular data poses two
serious challenges. First, tabular datasets often contain categorical features, and
therefore cannot be tackled directly with existing optimization procedures. Second,
in the tabular domain, algorithms that are not based on deep networks are widely
used and offer great performance, but algorithms to enhance robustness are tailored
to neural networks (e.g. adversarial training). The code for our method is publicly
available at https://github.com/spring-epfl/Transferable-Cat-Robustness.
In this paper, we tackle both challenges. We present a method that allows us to train
adversarially robust deep networks for tabular data and to transfer this robustness to
other classifiers via universal robust embeddings tailored to categorical data. These
embeddings, created using a bilevel alternating minimization framework, can be
transferred to boosted trees or random forests making them robust without the need
for adversarial training while preserving their high accuracy on tabular data. We
show that our methods outperform existing techniques within a practical threat
model suitable for tabular data. The code for our method is publicly available 1.

1 Introduction

Works on adversarial machine learning primarily focus on deep networks and are mostly evaluated on
image data. Apruzzese et al. (2022) estimate that approximately 70%-80% of works in the literature
fall in this category. Yet, a large number of high-stake tasks across fields like medical diagnosis
(Shehab et al., 2022), fraud detection (Altman, 2021), click-through rate prediction (Yang & Zhai,
2022), or credit scoring (Shi et al., 2022) neither only rely on deep networks nor operate on images
(Grinsztajn et al., 2022). These tasks often involve many discrete categorical features (e.g., country,
email, day of the week), and the predominant models used are discrete tree-based (e.g., boosted tree
ensembles, random forests). These two characteristics raise a number of challenges when trying to
achieve robustness using previous works which focus on continuous features and continuous models
(Goodfellow et al., 2014; Madry et al., 2018).

Accurate modelling of adversarial capability. The de-facto standard in adversarial robustness
evaluation (Croce et al., 2020) is to model robustness to perturbations bounded in some ℓp ball,
mostly in the image domain. This approach, however, was shown to not accurately represent the
capabilities of a real adversary in other domains (Kireev et al., 2022; Apruzzese et al., 2022). Instead,
a realistic threat model would constrain the adversary with respect to their financial capabilities. This
can be achieved by associating a financial cost with every input feature transformation, limiting the
adversary to perform transformations within their total financial budget. Such a constraint is common

1https://github.com/spring-epfl/Transferable-Cat-Robustness
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for computer security problems as it ties security, in this case, robustness, to real-world limitations.
The inaccuracy of threat models in the literature translates on a lack of well-motivated benchmarks
for robustness research on tabular data, unlike for image-oriented vision tasks (Croce et al., 2020;
Koh et al., 2020).

Accounting for discrete categorical features. Tabular data is usually heterogeneous and often
includes categorical features which can be manipulated by an adversary in a non-uniform way,
depending on the characteristics of the real-world concept they represent. For example, buying an
email address is not the same as buying a credit card or moving to a different city. Moreover, for
a given feature, not all transformations have equal cost or are even possible: for example, one can
easily change their email address to *@gmail.com, while changing the domain name to *@rr.com
can be impossible, since this domain name is unavailable for new users. Hence, the definitions of
perturbation sets describing the capabilities of potential adversaries should support complex and
heterogeneous constraints.

Robustness for models other than neural networks. Gradient-based attacks based on projected
gradient descent provide a simple and efficient method for crafting adversarial examples. They are
effectively used for adversarial training, which became a de-facto standard defence against adversarial
perturbations (Madry et al., 2018). Albeit defences and attacks are proposed for decision tree models,
they often employ combinatorial methods and can be very inefficient time-wise (Kantchelian et al.,
2016; Calzavara et al., 2020; Kireev et al., 2022). However, in tasks involving tabular data, these
models must be prioritized as they are widely used because they can provide superior performance on
some tabular datasets than neural networks (Grinsztajn et al., 2022).

Contributions. Our contributions address the challenges outlined above as follows:

• We propose a practical adversarial training algorithm supporting complex and heterogeneous
constraints for categorical data that can accurately reflect financial costs for the adversary.
Our training algorithm is based on the continuous relaxation of a discrete optimization
problem and employs approaches from projections onto an intersection of convex sets.

• We propose a method to generate universal robust embeddings, which can be used for
transferring robustness from neural networks to other types of machine learning models
such as decision trees or random forests.

• We use existing datasets to build the first benchmark that allows us to evaluate robustness
for tabular tasks in which the adversary is constrained by financial capabilities.

• Using the proposed benchmark, we empirically show that our proposed methods provide
significantly better robustness than previous works.

2 Related works

Here we discuss the most relevant references related to the topics outlined in the introduction.

Gradient-based adversarial training. Adversarial training is the key algorithm for making neural
networks robust to standard ℓp-bounded adversarial examples. Szegedy et al. (2013) demonstrate
that modern deep networks are susceptible to adversarial examples that can be easily found via
gradient descent. Madry et al. (2018) perform successful adversarial training for deep networks
where each iteration of training uses projected gradient descent to find approximately optimal
adversarial examples. Related to our method of universal first-layer embeddings, Bakiskan et al.
(2022) perform partial adversarial training (i.e., training the whole network adversarially/normally
and then reinitializing some layer and training them in the opposite way) which is somewhat, showing
that earlier layers are more important for robustness. On a related note, Zhang et al. (2019) do
adversarial training on the whole network but do multiple forward-backward passes on the first
layer with the goal of speeding up adversarial training. Yang et al. (2022) use metric learning with
adversarial training to produce word embeddings robust to word-level adversarial attacks which can
be used for downstream tasks. Dong et al. (2021) also produce robust word embeddings via a smart
relaxation of the underlying discrete optimization problem. We take inspiration from this line of
work when we adapt adversarial training for neural networks to categorical features and transfer the
first-layer embeddings to tree-based models.
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Robustness of tree-based models. Tree-based models such as XGBoost (Chen & Guestrin, 2016)
are widely used in practice but not amenable to gradient-based adversarial training. Most of the
works on adversarial robustness for trees focus on ℓ∞ adversarial examples since they are easier
to work with due to the coordinate-aligned structure of decision trees. Kantchelian et al. (2016)
is the first algorithm for training robust tree ensembles which are trained on a pool of adversarial
examples updated on every iteration of boosting. This approach is refined by approximately solving
the associated min-max problem for ℓ∞ robustness in Chen et al. (2019) and by minimizing an upper
bound on the robust loss in Andriushchenko & Hein (2019) on each split of every decision tree in the
ensemble. Chen et al. (2021) extend the ℓ∞ approach of Chen et al. (2019) to arbitrary box constraints
and apply it to a cost-aware threat model on continuous features. Only few works tackle non-ℓ∞
robust training of trees since their coordinate-aligned structure is not conducive to other norms. Most
related work to ours is Wang et al. (2020) extend the upper bounding approach of Andriushchenko &
Hein (2019) for arbitrary ℓp-norms. However, they report that ℓ∞ robust training in most cases works
similarly to ℓ1 robust training, though in a few cases ℓ1 adversarial training yields better performance.
Moreover, they do not use categorical features which are typically present in tabular data which is the
focus of our work.

Threat modeling for tabular data. Many prior works do not consider a realistic threat model and
adversarial capabilities. First, popular benchmarks like Madry et al. (2018); Croce et al. (2020)
assume that the adversary has an equal budget for perturbing each feature which is clearly not realistic
for tabular data. To fix this, Chen et al. (2021) propose to consider different perturbation costs for
different features. Kireev et al. (2022) argue that, as imperceptibility and semantic similarity are not
necessarily meaningful considerations for tabular datasets, these costs must be based on financial
constraints – i.e., how much money it costs for the adversary to execute an attack for a particular
example. The importance of monetary costs was corroborated by studies involving practitioners
dealing with adversarial machine learning in real applications (Apruzzese et al., 2022; Grosse et al.,
2023). Second, popular benchmarks treat equally changes from the correct to any other class, but
in practice the adversary is typically interested only in a specific class change, e.g., modifying a
fraudulent transaction to be classified as non-fraudulent. To address this shortcoming, past works
(Zhang & Evans, 2019; Shen et al., 2022) propose class-sensitive robustness formulations where an
unequal cost can be assigned to every pair of classes that can be changed by the adversary. As a
result, this type of adversarial training can achieve a better robustness-accuracy tradeoff against a
cost-sensitive adversary. We take into account all these works and consider a cost-based threat model
where we realistically model the costs and classes which are allowed to be changed for the particular
datasets we use.

3 Definitions

Input domain and Model. The input domain’s feature space X is composed of m features: X ⊆
X1 × X2 × · · · × Xm. We denote as xi the value of the i-th feature of x ∈ X. Features xi can be
categorical, ordinal, or numeric, and we define tabular data as data consisting of these three types
of features in any proportion. Categorical features are features xi such that Xi is a finite set of size
|Xi| = ti, i.e., ti is the number of possible values that can take xi. We denote by t =

∑m
i=1 ti. We

also denote as xj
i , the j-th value of the feature xi. We further assume that each example x ∈ X

is associated with a binary label y ∈ {0, 1}. Finally, we consider a general learning model with
parameters θ and output η(θ, x). The model we consider in our framework can take on two forms:
differentiable, such as a neural network, or non-differentiable, like a tree-based model.

Perturbation set. Following the principles described by Apruzzese et al. (2022); Kireev et al. (2022),
we make the assumption that a realistic adversary is constrained by financial limitations. Specifically,
we denote the cost of modifying the feature xi to x′

i as ci(xi, x
′
i). For categorical features with a finite

set Xi, the cost function ci(xi, x
′
i) can be conveniently represented using a cost matrix Ci ∈ Rti×ti

≥0 .
The cost of changing the feature xi from the value j to the value k is given by

ci(x
j
i , x

k
i ) = Cjk

i .

If such transformation is impossible, Cjk
i is set to ∞. In a realistic threat model, any cost matrix

Ci is possible, and costs need not be symmetric. The only reasonable assumption is that Cjj
i = 0,

indicating no cost for staying at the same value. See realistic cost matrix examples in the Appendix A.
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We assume that the cost of modifying features is additive: the total cost of crafting an adversarial
example x′ from an example x can be expressed as:

c(x, x′) =

m∑
i=1

ci(xi, x
′
i). (1)

Encoding and Embeddings. Categorical features are typically preprocessed by encoding each value
xi using a one-hot encoding vector xi. For instance, if a categorical feature xi can take four possible
values {1, 2, 3, 4} and xi = 2, it is represented as xi = (0, 1, 0, 0)⊤. We can then represent the
feature-wise cost function as

ci(xi, x
′
i) = ∥wi ⊙ (xi − x′

i)∥1 = l1,wi(xi, x
′
i), (2)

where l1,w denotes the weighted l1 norm and wi = Cixi is the costs of transforming xi to any other
possible value in Xi. Then according to Equation (1), the per sample cost function is:

c(x, x′) = ∥wi ⊙ (x− x′)∥1 = l1,w(x, x
′), (3)

where the vectors w, x, x′ are the contenation of the vectors wi, xi, x′
i respectively for ∀i : 0 ≤ i ≤ m.

The one-hot-encoded representation may not be optimal for subsequent processing due to high
dimensionality or data sparsity. We instead use embeddings and replace the categorical features with
their corresponding embedding vector ϕ(x) ∈ Rn. The model can then be represented by a function
f of the features as

η(θ, x) = f(θ, ϕ(x)).

The embedding function ϕ is composed of embedding functions ϕi for the subvector xi as ϕ(x) =
(ϕi(xi))

m
i=1. The embedding function ϕi of the i-th feature can always be represented by a matrix Qi

since xi takes discrete values. The columns of this matrix are embedding vectors which satisfy

ϕi(xi) = Qixi.

Therefore, we parametrize the embedding function ϕ(x,Q) with a family of m matrices Q = (Qi)
m
i=1.

Numerical features. For numerical features, we use a binning procedure which is a common practice
in tabular machine learning. This technique facilitates the use of decision-tree-based classifiers as
they naturally handle binned data (Chen & Guestrin, 2016; Ke et al., 2017b). Binning transforms
numerical features into categorical ones, allowing a unique treatment of all the features. It is worth
noting that for differentiable classifiers, the approach by Kireev et al. (2022) can enable us to directly
use numerical features without binning.

4 Adversarial training

In this section, we outline our adversarial training procedure. When adapted to our specific setup, the
adversarial training problem (Madry et al., 2018) can be formulated as:

min
θ,Q

E
x,y∈D

max
c(x,x′)≤ε

ℓ((f(ϕ(x′, Q)), θ), y). (4)

Such model would be robust to adversaries that can modify the value of any feature xi, as long as the
total cost of the modification is less than ε. While this formulation perfectly formalizes our final goal,
direct optimization of this objective is infeasible in practice:

1. Optimizing directly with categorical features can be computationally demanding due to the
need for discrete optimization algorithms. In our evaluation, we employ a graph-search-
based procedure developed by Kireev et al. (2022). However, finding a single example using
this algorithm can take between 1 to 10 seconds, making it impractical for multi-epoch
training even on medium-sized datasets (approximately 100K samples).

2. There is currently no existing algorithm in the literature that enables us to operate within
this cost-based objective for decision-tree based classifiers.
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Algorithm 1 Cat-PGD. Relaxed projected gradient descent for categorical data.

Input: Data point x̃, y, Attack rate α, Cost bound ε, Cost matrices C, PGD steps, D steps
Output: Adversarial sample x̃′.
δ := 0
for i = 1 to PGD steps do
∇ := ∇δℓ(f(Q(x̃+ δ)), y))
δ := δ + α∇
p := 0
q := 0
for i = 1 to D steps do
z := Πsimplices(x̃, δ + p)
p := δ + p− z
δ := Πcost(z + q, C)
q := z + q − δ

end for
end for
x̃′ := x̃+ δ

4.1 Adversarial training for differentiable models

We begin by examining the scenario where our model f is a deep neural network. In this case, we
are constrained solely by the first restriction. To address this constraint, we employ a relaxation
technique: instead of working with the discrete set of feature vectors, we consider the convex hull of
their one-hot encoding vectors. For each feature, this relaxation allows us to replace the optimization
over x′

i ∈ Xi with an optimization over x̃′
i ∈ Rti

≥0. More precisely, we first replace the feature
space Xi by the set {x′

i ∈ {0, 1}ti ,
∑

j x
′j
i = 1} using the one-hot encoding vectors. We then relax

this discrete set into {x̃′
i ∈ Rti

≥0,
∑

j x̃
′j
i = 1}. The original constraint {x′ ∈ X, c(x, x′) ≤ ε} is

therefore relaxed as

{x̃′
i ∈ Rti

≥0,
∑
j

x̃′j
i = 1, l1,w(x, x̃

′) ≤ ε and x̃′ = (x̃i)
m
i=1}.

The set obtained corresponds to the convex hull of the one-hot encoded vectors, providing the tightest
convex relaxation of the initial discrete set of vectors x. In contrast, the relaxation proposed by Kireev
et al. (2022) relaxes Xi to Rti

≥0, leading to significantly worse performance as shown in Section 5.

The adversarial training objective for the neural networks then becomes:

min
θ,Q

E
x,y∈D

max
l1,w(x,x̃′)≤ε

∥x̃′
i∥1=1,x̃′

i∈Rti
≥0

for 1≤i≤m

ℓ(f(Qx̃′, θ), y). (5)

In order to perform the inner maximization, we generate adversarial examples using projected gradient
descent. The projection is computed using the Dykstra projection algorithm (Boyle & Dykstra, 1986)
which enables us to project onto the intersection of multiple constraints. In each iteration of the
projection algorithm, we first project onto the convex hull of each categorical feature (Πsimplices),
followed by a projection onto a weighted l1 ball (Πcost). This dual projection approach allows us
to generate perturbations that simultaneously respect the cost constraints of the adversary and stay
inside the convex hull of original categorical features. We refer to this method as Cat-PGD, and its
formal description can be found in Algorithm 1.

4.2 Bilevel alternating minimization for universal robust embeddings

While the technique described above is not directly applicable to non-differentiable models like
decision trees, we can still leverage the strengths of both neural networks and tree-based models. By
transferring the learnt robust embeddings from the first layer of the neural network to the decision
tree classifier, we can potentially combine the robustness of the neural network with the accuracy of
boosted decision trees.
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Algorithm 2 Bilevel alternating minimization for universal robust embeddings

Input: Set of training samples X, y, cost bound ε, θ steps, Q steps, PGD steps, N iters.
Output: Embeddings QN iters.
Randomly initialize Q, θ.
for i = 1 to N iters do
θ1i := θi, Q1

i := Qi

for j = 1 to θ steps do
θj+1
i := θj − α∇θℓ(f(Qix, θ

j
i ), y)

end for
θi := θθ steps

i
for j = 1 to Q steps do

x̃′ := Attack(x, y, PGD steps,Qj
i , θi)

Qj+1
i := Qj

i − β∇Qℓ(f(Q
j
i x̃

′, θi), y)
end for
θi+1 := θθ steps

i , Qi+1 := QQ steps
i

end for

Difference between input and output embeddings. Using embeddings obtained from the last layer
of a neural network is a common approach in machine learning (Zhuang et al., 2019). However, in
our study, we prefer to train and utilize embeddings from the first layer where the full information
about the original features is still preserved. This choice is motivated by the superior performance
of decision-tree-based classifiers over neural networks on tabular data in certain tasks. By using
first layer embeddings, we avoid a potential loss of information (unless the embedding matrix Q has
exactly identical rows which are unlikely in practice) that would occur if we were to use embeddings
from the final layer.

To show this effect we ran a simple experiment where we compare first and last layer embeddings as
an input for a random forest classifier. We report the results in Appendix C.1.

Step 1: bilevel alternating minimization framework. A natural approach is to use standard
adversarial training to produce robust first layer embeddings. However, we noticed that this method
is not effective in producing optimal first layer embeddings. Instead, we specifically produce robust
first layer embeddings and ignore the robustness property for the rest of the layers. This idea leads to
a new objective that we propose:

Bilevel minimization: min
Q

E
x,y∈D

max
l1,w(x,x̃′)≤ε

∥x̃′
i∥1=1,x̃′

i∈Rti
≥0

for 1≤i≤m

ℓ

(
f
(
Qx̃, argmin

θ
E

x,y∈D
ℓ
(
f(Qx̃′, θ), y

))
, y

)
.

(6)
This optimization problem can be seen as the relaxation of the original adversarial training objective.
This relaxation upper bounds the original objective because we robustly optimize only over Q and
not jointly over Q and θ. If we disregard the additional inner maximization, it is a classical bilevel
optimization problem. Such problem can be solved using alternating gradient descent (Ghadimi &
Wang, 2018). To optimize this objective for neural networks on large tabular datasets, we propose to
use stochastic gradient descent. We alternate between Q steps for the inner minimum and θ steps
for the outer minimum. At each step, we run projected gradient descent for PGD steps using the
relaxation described in Eq. 5. We detail this approach in Algorithm 2.

Step 2: embedding merging algorithm. We observed that directly transferring the embeddings
Q has little effect in terms of improving the robustness of decision trees (Appendix C.1). This is
expected since even if two embeddings are very close to each other, a decision tree can still generate
a split between them. To address this issue and provide decision trees with information about the
relationships between embeddings, we propose a merging algorithm outlined in Algorithm 3. The
main idea of the algorithm is to merge embeddings in Q that are very close to each other and therefore
pass the information about distances between them to the decision tree.

Step 3: standard training of trees using universal robust embeddings. As the final step, we use
standard tree training techniques with the merged embeddings Q′. This approach allows us to avoid
the need for custom algorithms to solve the relaxed problem described in Eq. 5. Instead, we can
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Algorithm 3 Embeddings merging algorithm

Input: Embeddings Q, percentile p
Output: Embeddings Q′.
1) D := []
2) For each qj , qk ∈ Qi compute djk = ||qj − qk||2 and put it to D.
3) Sort D
4) For a given percentile, compute threshold t, s.t. all d > t belong to the percentile
5) Cluster Q using t as a maximum distance between two points in one cluster
6) In each cluster compute average embedding vector and put it into Q′

leverage highly optimized libraries such as XGBoost or LightGBM (Chen & Guestrin, 2016; Ke et al.,
2017b). The motivation behind this multi-step approach is to combine the benefits of gradient-based
optimization for generating universal robust embeddings with the accuracy of tree-based models
specifically designed for tabular data with categorical features.

5 Evaluation

In this section we evaluate the performance of our methods.

Models. We use three ‘classic’ classifiers widely used for tabular data tasks: RandomForest (Liaw
& Wiener, 2002), LGBM (Ke et al., 2017a), and Gradient Boosted Stumps. Both for adversarial
training and for robust embeddings used in this section, we use TabNetArik & Pfister (2019) which is
a popular choice for tabular data. Additionally, we also show the same trend with FT-Transformer in
Appendix C. The model hyperparameters are listed in Appendix B.

Attack. For evaluation, we use the graph-search based attack described by Kireev et al. (2022). This
attack is model-agnostic and can generate adversarial examples for both discrete and continuous data,
and is thus ideal for our tabular data task.

Comparison to previous work. In our evaluation, we compare our method with two previous
proposals: the method of Wang et al. (2020), where the authors propose a verified decision trees
robustness algorithm for l1 bounded perturbations; and the method of Kireev et al. (2022), which
considers financial costs of the adversary, but using a different cost model than us and weaker
relaxation.

5.1 Tabular data robustness evaluation benchmark

There is no consistent way to evaluate adversarial robustness for tabular data in the literature. Different
works use different datasets, usually without providing a justification neither for the incentive of the
adversary nor for the perturbation set. For example, Wang et al. (2020) and Chen et al. (2021) use the
breast cancer dataset, where participants would not have incentives to game the classifier, as it would
reflect poorly on their health. Even if they had an incentive, it is hard to find plausible transformation
methods as all features relate to breast images taken by doctors. To solve this issue, we build our own
benchmark. We select datasets according to the following criteria:

• Data include both numerical and categorical features, with a financial interpretation so that
it is possible to model the adversarial manipulations and their cost.

• Tasks on the datasets have a financial meaning, and thus evaluating robustness requires a
cost-aware adversary.

• Size is large enough to accurately represent the underlying distribution of the data and avoid
overfitting. Besides that, it should enable the training of complex models such as neural
networks.

It is worth mentioning that the financial requirement and the degree of sensitivity of data are highly
correlated. This kind of data is usually not public and even hardly accessible due to privacy reasons.
Moreover, the datasets are often imbalanced. Some of these issues can be solved during preprocessing
stage (e.g., by balancing the dataset), but privacy requirements imply that benchmarks must mostly
rely on anonymized or synthetic versions of a dataset.
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Figure 1: Clean and robust model accuracy for cost-aware adversarial training. Each point
represents a TabNet model trained with an assumption of an adversary’s budget of ε $ attacked by the
adversary with that budget. Our method outperforms Kireev et al. (2022) in all setups.

Datasets. We select three publicly-available datasets that fit the criteria above. All three datasets are
related to real-world financial problems where robustness can be crucially important. For each dataset,
we select adversarial capabilities for which we can outline a plausible modification methodology, and
we can assign a plausible cost for this transformation.

• IEEECIS. The IEEECIS fraud detection dataset (Kaggle, 2019) contains information about
around 600K financial transactions. The task is to predict whether a transaction is fraudulent
or benign.

• BAF. The Bank Account Fraud dataset was proposed in NeurIPS 2022 by Jesus et al. (2022)
to evaluate different properties of ML algorithms for tabular data. The task is to predict if a
given credit application is a fraud. It contains 1M entries for credit approval applications
with different categorical and numerical features related to fraud detection.

• Credit. The credit card transaction dataset (Altman, 2021) contains around 20M simulated
card transactions, mainly describing purchases of goods. The authors simulate a ”virtual
world” with a ”virtual population” and claim that the resulting distribution is close to a real
banking private dataset, which they cannot distribute.

All datasets were balanced for our experiments. The features for the adversarial perturbations along
with the corresponding cost model are described in Appendix A.

5.2 Results

Cost-aware Adversarial Training. We follow a standard evaluation procedure: we first perform
adversarial training of the TabNet models using different cost bounds ε, representing different
financial constraints for the adversary. Then, we evaluate these models’ robustness using the attack
by Kireev et al. (2022) configured for the same cost adversarial constraint as used during the training.
The details about our training hyperparameters are listed in the Appendix B.

We show the resulting clean and robust performance in Figure 1. Our method outperforms the
baseline in both metrics. The better performance can be attributed to a better representation of the
threat model. For example, let us consider the email address feature in IEEECIS. The cost to change
this feature varies from 0.12$ (e.g., hotmail.com) to ∞ (for emails that are no longer available). It
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Table 1: Universal robust embedding evaluation. We report clean and robust accuracy (in per-
centage) for Light Gradient Boosting (LGBM), Random Forest (RF), Gradient Boosted Stumps
(GBS), and CatBoost (CB). We indicate the robustness technique applied as a suffix: -R for robust
embeddings, -W for the training proposed by Wang et al. (2020), and -C for method in Chen et al.
(2019). Models fed with robust embeddings have higher robustness and outperform both clean and
l1-trained models (Wang et al., 2020).

Dataset RF RF-R RF-C LGBM LGBM-R GBS GBS-R GBS-W CB CB-R
IEEECIS
Clean 83.6 81.0 69.0 81.2 79.3 66.9 66.3 52.4 76.5 76.1
Robust 48.0 81.0 69.0 53.9 78.5 44.7 66.3 11.1 51.1 72.0
BAF
Clean 72.3 65.8 61.3 74.1 68.1 74.1 68.1 64.8 74.4 67.2
Robust 42.8 65.8 61.3 49.2 67.5 46.8 67.7 33.5 48.2 67.2
Credit
Clean 78.0 73.4 - 83.1 79.6 82.1 80.6 61.7 83.3 79.7
Robust 55.2 66.7 - 69.9 72.5 70.9 71.4 61.3 71.7 71.9

is unlikely that an adversary uses an expensive email (sometimes even impossible as in the case
of unavailable domains), and therefore such domains are useful for classification as they indicate
non-fraudulent transactions. On the other hand, an adversary can easily buy a gmail.com address even
when their budget ε is a few dollars. Our method captures this difference. We see how there is a steep
decrease in accuracy when the cost of the modification is low (under 1$) and thus the training needs
to account for likely adversarial actions. Then, it enters a plateau when the cost of emails increases
and no changes are possible given the adversary’s budget. When the budget ε grows enough to buy
more expensive emails, the accuracy decreases again. We also observe that the gain in clean accuracy
is higher than for robust accuracy. This effect is due to a better representation of the underlying
categorical data distribution.

Universal Robust Embeddings. In order to evaluate our Bilevel alternating minimization framework,
we run Algorithm 2 on TabNet to produce robust embeddings, and we merge these embeddings
using Algorithm 3. After that, we attack the model using budgets ε set to 10$ for IEEECIS, 1$
for BAF, and 100$ for Credit. These budgets enable the adversary to perform most of the possible
transformations. We compare our methods on gradient-boosted stumps because training gradient
boosted decision-trees with the method of Wang et al. (2020) is computationally infeasible for an
adequate number of estimators and high dimensional data.

We show the results in Table 1. In almost all setups, our method yields a significant increase in
robustness. For example, for IEEECIS we increase the robust accuracy of LGBM by 24%, obtaining a
model that combines both high clean and robust accuracy, and that outperforms TabNet. Our method
outperforms Wang et al. (2020) both for clean and robust accuracy. These results confirm that training
based on only l1 distance is not sufficient for tabular data .

Dataset Training RE GBS-RE GBS-W
IEEECIS 9.5 0.06 233.3
BAF 3.17 0.02 4.97
Credit 3.24 0.07 174.7

Table 2: Computation time. Time is measured in
minutes. The total time of training RE and training
GBS-RE is less than Wang et al. (2020)’s training

We also compare the performance of the dif-
ferent methods with respect to the time spent
on training and merging (see Table 2). We see
that our method is considerably faster than
previous work. The improvement is tremen-
dous for IEEECIS and Credit where the
dimensionality of the input is more than 200
and the number of estimators are 80 and 100
respectively. In the Appendix C, we also dis-
cuss how robust embeddings can be applied
to a neural network of the same type.

6 Conclusion

In this work, we propose methods to improve the robustness of models trained on categorical data
both for deep networks and tree-based models. We construct a benchmark with datasets that enable
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robustness evaluation considering the financial constraints of a real-world adversary. Using this
benchmark, we empirically show that our methods outperform previous work while providing a
significant gain in efficiency.

Limitations and Future Work. In our work, we focused on development of a method to improve
the robustness of a machine learning model, having as small degradation in performance as possible.
However, there are applications where even a small accuracy drop would incur more financial losses
than potential adversarial behaviour. These setups can be still not appropriate for our framework.
Quantifying these trade-off can be a promising direction for future work, and one way of doing it
would be to follow a utility-based approach introduced in Kireev et al. (2022). Besides that, we do not
cover the extreme cases where the dataset is either too small and causes overfitting or too large and
makes adversarial training more expensive. Addressing these extreme cases can be also considered
as a research direction. Finally, we leave out of the scope potential problems in the estimation of
adversarial capability, e.g., if the cost model which we assume is wrong and how it can affect both
the robustness and utility of our system.
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A Cost modelling and data preprocessing

For all datasets used in the evaluation, we perform threat modelling based on the information about
possible perturbations. In this section, we describe how we assign cost matrices to modifications of
the features in each dataset and the common methods which we use for data preprocessing. Note
that in this section for some features we mostly provide the methods and examples, and all the exact
values are listed in the source code (exp/loaders.py). It is also worth mentioning that the exact
prices might fluctuate, and our goal is to provide an estimate to demonstrate the capabilities of our
methods.

A.1 Data Preprocessing

All the datasets were balanced for training using random undersampling. Numerical features were
binned in 10 bins since a further increase in the number of bins gave no additional improvement. In
order to avoid numerical issues, we set the minimal possible cost to 0.1$, and the maximal possible
cost to 10000$ (100 times greater than the largest ε used in the evaluation). For the attack, we assume
that the adversary is attacking only for one target class (e.g. their aim is to get a transaction marked
as ”non-fraud”).

A.2 IEEECIS

In evaluation on IEEECIS we use the following features for our perturbation set:

• P emaildomain - Email domain which can be used by an adversary. We assume that an
adversary can either buy a new email or create it themself. In the first case we take the
existing prices from dedicated online shops (e.g. adversary can buy *@yahoo.com email for
0.12$ at buyaccs.com). In the second case, we estimate minimal expenditures to register one.
For example, some emails require buying services of an internet provider (*@earthlink.net),
in this case, we estimate the minimal price of such service and count it as an adversarial
cost (50$ for *@earthlink.net).

• DeviceType - Device type represents the operating system installed on the adversary’s device.
This feature can be easily manipulated since the adversary controls the device and can
change device information sent to the system or use an emulator. We ascribe minimal cost
(0.1$) to this type of perturbation.

• Card type - Card type is a brand of a credit or debit card used by the adversary. For this
feature, we assume that the adversary needs to buy a stolen credit or debit card. We estimate
the cost of such purchase to be 20$ for Visa or MasterCard and 25$ for less common
Discovery or American Express. This estimation is based on stolen card prices in the darknet
online marketplaces.

A.3 BAF

In the evaluation on the BAF dataset we use the following features for our perturbation set:

• income - Income of a credit applicant. This feature can be perturbed by buying a fake
paystub, which costs around 10$.

• zip count 4w - Number of applicants with the same zip code. The adversary can change
their address by paying just around 1$ (In US).

• Device-related features - Here we consider features which are related to the device/OS used
by an adversary, and which can be manipulated the same way as DeviceType in IEEECIS.
foreign request, source, keep alive session, device os belongs to this feature type. The cost
model for these features is the same as for DeviceType.

• email is free - This feature represents if the adversary uses a paid email or a free one. Since
going from paid to free is cheap, we represent this transition with the smallest price of 0.1$.
For going from a free email to the paid one we use the cheapest paid email from IEEECIS,
and set this cost to 10$.
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• phone home valid, phone mobile valid - Validity of the provided phone number. The logic
is the same as with the previous feature. It costs almost nothing (0.1$) to change from valid
to non-valid, and 10$ vice versa.

• device distinct emails 8w - Number of distinct email addresses used by the adversary. This
feature can only be increased since the adversary presumably cannot delete its records from
the system. The cost for an increase is small (0.1$), decreasing is impossible.

A.4 Credit

Finally, for the Credit dataset we use:

• Merchant City - Location where the purchase was made. Without any prior knowledge, we
assume that this feature can only be manipulated physically by moving to a different location.
Therefore, in this case, the cost of change is the cost of a transport ticket to this location.
As the lower bound, we use a transport price of 0.1$ per km of distance between two cities.
Therefore, the total cost of changing this feature from city A to city B, we estimate as the
distance from A to B, multiplied by 0.1$.

• card type, card brand - For these 2 features we use the same cost model as for the Card type
feature in IEEECIS dataset.

B Additional details on experiments

B.1 Experimental setup

All the final experiments were done on AMD Ryzen 4750G CPU, Nvidia RTX 3070 GPU, and
Ubuntu 22.04 OS.

B.2 Hyperparameters

We list our evaluation parameters in Table 1. The TabNet parameters are denoted according to the
original paper Arik & Pfister (2019). We set the virtual batch size to 512. Most of the hyperparameters
were selected via a grid search.

During adversarial training with a large ε, we encountered catastrophic overfitting on IEEECIS
and Credit. For example during adversarial training with ε = 100 on IEEECIS we observe the
overfitting pattern in test robust accuracy (Table 2). In these situations, we reduced the number of
epochs.

C Additional experiments

In this section, we show some additional experiments clarifying our design decisions and describing
some properties of universal robust embeddings.

C.1 Comparison of first and last layer embeddings

Model Normal Training FL Embeddings LL Embeddings
LGBM 81.2 81.0 78.9
RF 83.6 83.0 78.8

Table 3: Standard accuracy for the first vs. last layer embeddings.
The first layer embeddings (FL) consistently outperform the last layer
embeddings (LL).

As we mentioned in
our paper, we only con-
sider the first-layer em-
beddings of the neural
network. The main
justification for this de-
sign choice is that for
many tabular datasets,
“classical” methods like
LGBM or Random Forest can outperform neural networks. A good example of this case is the
IEEECIS dataset. Both in the original Kaggle competition and in our experiments, decision trees
show better performance than neural networks. To demonstrate this effect we run a simple experiment
where we pass the last-layer embeddings to the LGBM and RF and compare the performance with
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Table 1: Hyperparameters used in the evaluation
Parameter Value range
All Datasets

τ 0.9
Dykstra iterations 20

IEEECIS

Batch size 2048
Number of epochs 400
PGD iteration number 20
TabNet hyperparameters ND = 32, NA = 32, Nsteps = 4
ε, $ [0.1, 0.2, 0.3, 0.5, 1.0, 3.0, 5.0, 10.0, 30.0, 50.0, 100.0]

BAF

Batch size 1024
Number of epochs 30
PGD iteration number 20
TabNet hyperparameters ND = 16, NA = 16, Nsteps = 3
ε, $ [0.1, 0.2, 0.3, 0.5, 1.0, 3.0, 10.0, 30.0]

Credit

Batch size 2048
Number of epochs 100
PGD iteration number 20
TabNet hyperparameters ND = 64, NA = 64, Nsteps = 2
ε, x10$ [1.0, 10.0, 30.0, 100.0, 300.0]

Table 2: Overfitting behaviour
Epoch 1 5 10 15 20 30

Test Robust Accuracy 51.5 52.4 55.0 61.2 53.4 52.1

normal LGBM/RF training. We report the results in Table 3. The results are rather expected: due to
the data processing inequality, we can expect information loss if the data is processed by an inferior
classifier for this task (i.e., a neural network). Therefore, we can conclude that first-layer embeddings
are a better choice if we want to preserve the standard accuracy of the decision-tree based classifier.

C.2 Influence of the embedding merging algorithm

Another topic which we want to cover in this section is the effect of the embedding merging algorithm.
In this subsection, we would like to answer two questions:

1. Do we need the merging algorithm?

2. If yes, does it work without properly trained embeddings?

We can answer both questions using Table 4. We evaluate robust embeddings both with normal
adversarial training and bilevel optimization for different values of the parameter τ . For comparison,
we also apply the merging algorithm to randomly generated embedding, in order to perform the
ablation study for the effect of merging. We see that even merging with small τ , significantly improves
the robustness, keeping the clean accuracy on a high level for robust embeddings, while for random
embeddings it has no effect. Also, we see that, although normal adversarial training has some effect
on robust accuracy after embedding transfer, the bilevel optimization algorithm provides the models
with a much better robustness accuracy trade-off.
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Table 4: Evaluation of the embedding merging algorithm. We report clean and robust accuracy
of boosted decision stump classifier on BAF dataset (in percentage) with both random and robust
embeddings. For the robust embeddings we evaluate both normal adversarial training, and the bilevel
minimization algorithm. τ = 0.0 means that no merging is performed.

τ
Method 0.0 0.02 0.05 0.1 0.15 0.2

Robust Emb. (Bilevel), Clean 74.9 74.5 74.1 71.9 71.6 68.1
Robust Emb. (Bilevel), Robust 48.3 48.3 51.9 61.4 70.9 67.7
Robust Emb. (Normal AT), Clean 74.3 73.5 72.4 71.8 70.8 70.8
Robust Emb. (Normal AT), Robust 48.3 51.5 51.0 55.1 53.3 53.4
Random Embeddings, Clean 74.5 71.9 71.7 71.7 71.7 68.8
Random Embeddings, Robust 49.1 44.8 44.7 44.7 44.7 47.3

C.3 Experiments on FT transformer

In order to show that our approach is not tied to one particular neural network architecture, we
performed the same experiments with the more recent FT-Transformer model (Gorishniy et al., 2021).
We applied robust embeddings generated for FT-Transformer to the models used in Section 5. The
results are shown in Table 5. Overall, we see that FT-Transformer embeddings give better clean and
robust performance, and therefore we conclude that our method is also suitable for this type of neural
networks.

Table 5: Robust embeddings for FT-Transformer. We evaluate robust embeddings generated with
FT-Transformer (RE-FT) (Gorishniy et al., 2021), in the same scenario as for the Table 1.

Model No Emb. RE RE-FT
RF, Clean 72.3 65.8 67.5
RF, Robust 42.8 65.8 67.1
GBS, Clean 74.1 68.1 71.5
GBS, Robust 46.8 67.7 71.5
LGBM, Clean 74.1 68.1 71.4
LGBM, Robust 49.2 67.5 71.4
CB, Clean 74.4 67.2 70.8
CB, Robust 48.2 67.2 70.8

C.4 Effect of embedding transfer for neural networks

In this section, we cover the effect of robust embeddings on the original neural network trained over
the clean data. To measure this effect we apply robust embeddings to a TabNet model trained on clean
data. The results are reported in Table 6. It shows that the target neural network definitely benefits
from this procedure, though the resulting models still have less robustness than models trained with
CatPGD 1. We do not propose this technique as an optimal defence since Cat-PGD is available for
neural networks, however, it can provide some robustness if adversarial training is not available for
some reason (for example due to computational recourses limitation).
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Table 6: Embedding Transfer. We evaluate TabNet models trained on clean data with robust
embeddings applied to them, in the same setting as we do for the Table 1. We compare its performance
with clean models (NN) and models trained with CatPGD (NN-CatPGD).

Model NN NN-RE NN-CatPGD
IEEECIS, Clean 79.0 69.0 74.9
IEEECIS, Robust 40.1 61.9 72.6
BAF, Clean 75.5 69.9 70.9
BAF, Robust 48.3 67.9 70.4
Credit, Clean 83.1 82.1 72.8
Credit, Robust 70.6 71.5 72.6
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