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Abstract

Coordinate descent methods are popular in machine learning and optimization for1

their simple sparse updates and excellent practical performance. In the context2

of large-scale sequential game solving, these same properties would be attractive,3

but until now no such methods were known, because the strategy spaces do not4

satisfy the typical separable block structure exploited by such methods. We present5

the first cyclic coordinate-descent-like method for the polytope of sequence-form6

strategies, which form the strategy spaces for the players in an extensive-form7

game (EFG). Our method exploits the recursive structure of the proximal update8

induced by what are known as dilated regularizers, in order to allow for a pseudo9

block-wise update. We show that our method enjoys a O(1/T ) convergence rate to10

a two-player zero-sum Nash equilibrium, while avoiding the worst-case polynomial11

scaling with the number of blocks common to cyclic methods. We empirically show12

that our algorithm usually performs better than other state-of-the-art first-order13

methods (i.e., mirror prox), and occasionally can even beat CFR+, a state-of-14

the-art algorithm for numerical equilibrium computation in zero-sum EFGs. We15

then introduce a restarting heuristic for EFG solving. We show empirically that16

restarting can lead to speedups, sometimes huge, both for our cyclic method, as17

well as for existing methods such as mirror prox and predictive CFR+.18

1 Introduction19

Extensive-form games (EFGs) are a broad class of game-theoretic models which are played on a20

tree. They can compactly model both simultaneous and sequential moves, private and/or imperfect21

information, and stochasticity. Equilibrium computation for a two-player zero-sum EFG can be22

formulated as the following bilinear saddle-point problem (BSPP)23

min
x∈X

max
y∈Y

⟨Mx,y⟩ . (PD)

Here, the set of strategies X ,Y for the x and y players are convex polytopes known as sequence-form24

polytopes [43]. The (PD) formulation lends itself to first-order methods (FOMs) [13, 24], linear25

programming [43], and online learning-based approaches [6, 8, 14, 16, 41, 48], since the feasible sets26

are convex and compact polytopes, and the objective is bilinear.27

A common approach for solving BSPPs is by using first-order methods, where local gradient informa-28

tion is used to iteratively improve the solution in order to converge to an equilibrium asymptotically.29

In the game-solving context, such methods rely on two oracles: a first-order oracle that returns a30

(sub)gradient at the current pair of strategies, and a pair of prox oracles for the strategy spaces X ,Y ,31

which allow one to perform a generalized form of projected gradient descent steps on X ,Y . These32

prox oracles are usually constructed through the choice of an appropriate regularizer. For EFGs, it33

is standard to focus on regularizers for which the prox oracle can be computed in linear time with34
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respect to the size of the polytope, which is only known to be achievable through what is known35

as dilated regularizers [22]. Most first-order methods for EFGs require full-tree traversals for the36

first-order oracle, and full traversals of the decision sets for the prox computation, before making37

a strategy update for each player. For large EFGs these full traversals, especially for the first-order38

oracle, can be very expensive, and it may be desirable to make strategy updates before a full traversal39

has been performed, in order to more rapidly incorporate partial first-order information.40

In other settings, one commonly used approach for solving large-scale problems is through coordinate41

methods (CMs) [33, 45]. These methods involve computing the gradient for a restricted set of42

coordinates at each iteration of the algorithm, and using these partial gradients to construct descent43

directions. The convergence rate of these methods typically is able to match the rate of full gradient44

methods. However, in some cases they may exhibit worse runtime due to constants introduced by the45

method. In spite of this, they often serve practical benefits of being more time and space efficient,46

and enabling distributed computation [2, 3, 10, 18, 21, 27, 29, 31, 33, 46, 47].47

Generally, coordinate descent methods assume that the problem is separable, i.e., there exists a48

partition of the coordinates into blocks so that the feasible set can be decomposed as a Cartesian49

product of feasible sets, one for each block. This assumption is crucial, as it allows the methods to50

perform block-wise updates without worrying about feasibility, and it simplifies the convergence51

analysis. Extending CDMs to EFGs is non-trivial because the constraints of the sequence-form52

polytope do not possess this separable structure; instead the strategy space is such that the decision53

at a given decision point affects all variables that occur after that decision. We are only aware of a54

couple examples in the literature where separability is not assumed [1, 9], but those methods require55

strong assumptions which are not applicable in EFG settings.56

Contributions We propose the Extrapolated Cyclic Primal-Dual Algorithm (ECyclicPDA). Our57

algorithm is the first cyclic coordinate method for the polytope of sequence-form strategies. It58

achieves a O(1/T ) convergence rate to a two-player zero-sum Nash equilibrium, with no dependence59

on the number of blocks; this, is in contrast with the worst-case polynomial dependence on the60

number of blocks that commonly appears in convergence rate guarantees for cyclic methods. Our61

method crucially leverages the recursive structure of the prox updates induced by dilated regularizers.62

In contrast to true cyclic (block) coordinate descent methods, the intermediate iterates generated63

during one iteration of ECyclicPDA are not feasible because of the non-separable nature of the64

constraints of sequence-form polytopes. Due to this infeasibility we refer to our updates as being65

pseudo-block updates. The only information that is fully determined after one pseudo-block update, is66

the behavioral strategy for all sequences at decision points in the block that was just considered. The67

behavioral strategy is converted back to sequence-form at the end of a full iteration of our algorithm.68

At a very high level, our algorithm is inspired by the CODER algorithm due to Song and Diakonikolas69

[38]. However, there are several important differences due to the specific structure of the bilinear70

problem (PD) that we solve. First of all, the CODER algorithm is not directly applicable to our setting,71

as the feasible set (treeplex) that appears in our problem formulation is not separable. Additionally,72

CODER only considers Euclidean setups with quadratic regularizers, whereas our work considers73

more general normed settings; in particular, the ℓ1 setup is of primary interest for our problem setup,74

since it yields a much better dependence on the game size.75

These two issues regarding the non-separability of the feasible set and the more general normed76

spaces and regularizers are handled in our work by (i) considering dilated regularizers, which allow77

for blockwise (up to scaling) updates in a bottom-up fashion, respecting the treeplex ordering;78

and (ii) introducing different extrapolation steps (see Lines 10 and 13 in Algorithm 1) that are79

unique to our work and specific to the bilinear EFG problem formulation. Additionally, our special80

problem structure and the choice of the extrapolation sequences x̃k and ỹk allows us to remove81

any nonstandard Lipschitz assumptions used in Song and Diakonikolas [38]. Notably, unlike Song82

and Diakonikolas [38] and essentially all the work on cyclic methods we are aware of, which pay83

polynomially for the number of blocks in the convergence bound, our convergence bound in the ℓ184

setting is never worse than the optimal bound of full vector-update methods such as Mirror-Prox [32]85

and the Dual Extrapolation Method [34], which we consider a major contribution of our work.86

Numerically, we demonstrate that our algorithm performs better than mirror prox (MP), and can be87

competitive with CFR+ and its variants on certain domains. We also propose the use of adaptive88

restarting as a general heuristic tool for EFG solving: whenever an EFG solver constructs a solution89

with duality gap at most a constant fraction of its initial value since the last restart, we restart it and90
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initialize the new run with the output solution at restart. Restarting is theoretically supported by the91

fact that BSPPs possess the sharpness property [5, 17, 20, 42], and restarting combined with certain92

Euclidean-based FOMs leads to a linear convergence rate under sharpness [5, 20]. We show that with93

restarting, it is possible for our ECyclicPDA methods to outperform CFR+ on some games; this is94

the first time that a FOM has been observed to outperform CFR+ on non-trivial EFGs. Somewhat95

surprisingly, we then show that for some games, restarting can drastically speed up CFR+ as well. In96

particular, we find that on one game, CFR+ with restarting exhibits a linear convergence rate, and so97

does a recent predictive variant of CFR+ [14], on the same game and on an additional one.98

Related Work CMs have been widely studied in the past decade and a half [1–3, 7, 9, 10, 18, 21,99

27, 29, 31, 33, 36–38, 45, 47]. CMs can be grouped into three broad classes [37]: greedy methods,100

which greedily select coordinates that will lead to the largest progress; randomized methods, which101

select (blocks of) coordinates according to a probability distribution over the blocks; and cyclic102

methods, which make updates in cyclic orders. Because greedy methods typically require full gradient103

evaluation (to make the greedy selection), the focus in the literature has primarily been on randomized104

(RCMs) and cyclic (CCMs) variants. As discussed before, RCMs are not applicable to our setting so105

we focus on CCMs. However, establishing convergence arguments for CCMs through connections106

with convergence arguments to full gradient methods is difficult. Some guarantees have been provided107

in the literature, either making restrictive assumptions [36] or by treating the cyclical coordinate108

gradient as an approximation of a full gradient [7], and thus incurring a linear dependence on the109

number of blocks in the convergence guarantee. Song and Diakonikolas [38] were the first make an110

improvement on reducing the dependence on the number of blocks by using a novel extrapolation111

strategy and introducing new block Lipschitz assumptions. That paper was the main inspiration for112

our work, but inapplicable to our setting, thus necessitating new technical ideas, as already discussed.113

There has also been significant work on FOMs for two-player zero-sum EFG solving. Because this114

is a BSPP, off-the-shelf FOMs for BSPPs can be applied, with the caveat that proximal oracles are115

required. The most popular proximal oracles have been based on dilated regularizers [22], which116

lead to a proximal update that can be performed with a single pass over the decision space, and117

strong theoretical dependence on game constants [12, 13, 22, 24]. A second popular approach is118

the counterfactual regret minimization (CFR) framework, which decomposes regret minimization119

on the EFG decision sets into local simplex-based regret minimization [48]. In theory, CFR-based120

results have mostly led to an inferior T−1/2 rate of convergence, but in practice the CFR framework121

instantiated with regret matching+ (RM+) [40] or predictive RM+ (PRM+) [14] is the fastest122

approach for essentially every EFG setting. The most competitive FOM-based approaches for123

practical performance are based on dilated regularizers [13, 23], but these have not been able to124

beat CFR+ on EFG settings; we show for the first time that it is possible to beat CFR+ through125

a combination of block-coordinate updates and restarting, at least on some games. An extended126

discussion of FOM and CFR approaches to EFG solving is given in Appendix A.127

2 Notation and Preliminaries128

In this section, we provide the necessary background and notation subsequently used to describe and129

analyze our algorithm presented in the following section. As discussed in the introduction, our focus130

is on bilinear problems that can be expressed as (PD).131

2.1 Notation and Optimization Background132

We use bold lowercase letters to denote vectors and bold uppercase letters to denote matrices. We133

use ∥ · ∥ to denote an arbitrary ℓp norm for p ≥ 1 applied to a vector in either Rm or Rn, depending134

on the context. The norm dual to ∥ · ∥ is denoted by ∥ · ∥∗ and defined in the standard way as135

∥z∥∗ = supx ̸=0
⟨z,x⟩
∥x∥ , where ⟨z,x⟩ denotes the standard inner product. In particular, for ∥ · ∥ = ∥ · ∥p,136

where p ≥ 1, we have ∥ · ∥∗ = ∥ · ∥p∗ , where 1
p + 1

p∗ = 1. We further use ∥ · ∥∗ to denote the137

induced matrix norm defined by ∥M∥∗ = supx ̸=0
∥Mx∥∗
∥x∥ . In particular, for the Euclidean norm138

∥ · ∥ = ∥ · ∥2, the dual norm ∥ · ∥∗ = ∥ · ∥2 is also the Euclidean norm, and ∥M∥∗ = ∥M∥2139

is the matrix operator norm. For the ℓ1 norm ∥ · ∥ = ∥ · ∥1, the dual norm is the ℓ∞-norm,140

∥ · ∥∗ = ∥ · ∥∞, while the matrix norm is ∥M∥∗ = ∥M∥∞→1 = supx̸=0
∥Mx∥∞
∥x∥1

= maxi,j |Mij |.141

We use ∆n = {x ∈ Rn : x ≥ 0, ⟨1,x⟩ = 1} to denote the probability simplex in n dimensions.142
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Primal-dual Gap. Given x ∈ Rd, the primal value of the problem (PD) is maxv∈X ⟨Mx,v⟩ .143

Similarly, the dual value of (PD) is defined by minu∈Y ⟨Mu,y⟩ . Given a primal-dual pair (x,y) ∈144

X × Y, the primal-dual gap (or saddle-point gap) is defined by145

Gap(x,y) = max
v∈X

⟨Mx,v⟩ −min
u∈Y

⟨Mu,y⟩ = max
(u,v)∈X×Y

Gapu,v(x,y),

where we define Gapu,v(x,y) = ⟨Mx,v⟩ − ⟨Mu,y⟩ . For our analysis, it is useful to work with146

the relaxed gap Gapu,v(x,y) for some arbitrary but fixed u ∈ X ,v ∈ Y, and then draw conclusions147

about a candidate solution by making concrete choices of u,v.148

Definitions and Facts from Convex Analysis. In this paper, we primarily work with convex149

functions f : Rn → R ∪ {±∞} that are differentiable on the interior of their domain. We say that f150

is cf -strongly convex w.r.t. a norm ∥ · ∥ if ∀y ∈ Rn, ∀x ∈ int domf ,151

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ cf
2
∥y − x∥2.

We will also need convex conjugates and Bregman divergences. Given an extended real valued152

function f : Rn → R∪{±∞}, its convex conjugate is defined by f∗(z) = supz∈Rn{⟨z,x⟩−f(x)}.153

Let f : Rn → R ∪ {±∞} be a function that is differentiable on the interior of its domain. Given154

y ∈ Rn and x ∈ int domf , the Bregman divergence Df (y,x) is defined by Df (y,x) = f(y) −155

f(x)− ⟨∇f(x),y − x⟩. If the function f is cf -strongly convex, then Df (y,x) ≥ cf
2 ∥y − x∥2.156

2.2 Extensive-Form Games: Background and Additional Notation157

Extensive form games are represented by game trees. Each node v in the game tree belongs to exactly158

one player i ∈ {1, . . . , n} ∪ {c} whose turn it is to move. Player c is a special player called the159

chance player; it is used to denote random events that happen in the game, such as drawing a card160

from a deck or tossing a coin. At terminal nodes of the game, players are assigned payoffs. We161

focus on two-player zero-sum games, where n = 2 and payoffs sum to zero. Private information is162

modeled using information sets (infosets): a player cannot distinguish between nodes in the same163

infoset, so the set of actions available to them must be the same at each node in the infoset.164

Treeplexes. The decision problem for a player in a perfect recall EFG can be described as follows.165

There exists a set of decision points J , and at each decision point j the player has a set of actions Aj166

with |Aj | = nj actions in total. These decision points coincide with infosets in the EFG. Without loss167

of generality, we let there be a single root decision point, representing the first decision the player168

makes in the game. The choice to play an action a ∈ Aj for a decision point j ∈ J is represented169

using a sequence (j, a), and after playing this sequence, the set of possible next decision points is170

denoted by Cj,a (which may be empty in case the game terminates). The set of decisions form a tree,171

meaning that Cj,a ∩ Cj′,a′ = ∅ unless j = j′ and a = a′, this is known as perfect recall. The last172

sequence (necessarily unique) encountered on the path from the root to decision point j is denoted by173

pj . We define ↓ j as the set consisting of all decision points that can be reached from j. An example174

of the use of this notation for a player in Kuhn poker [25] can be found in Appendix B.175

The set of strategies for a player can be characterized using the sequence-form, where the value of176

the decision variable assigned to playing the sequence (j, a) is the product of the decision variable177

assigned to playing the parent sequence pj and the probability of playing action a when at j [43].178

The set of all sequence-form strategies of a player form a polytope known as the sequence-form179

polytope. Sequence-form polytopes fall into a class of polytopes known as treeplexes [22], which can180

be characterized inductively using convex hull and Cartesian product operations:181

Definition 2.1 (Treeplex). A treeplex X for a player can be characterized recursively as follows,182

where r is the the root decision point for a player.183

Xj,a =
∏

j′∈Cj,a

X↓j′ ,

X↓j = {(λ1, . . . , λ|Aj |, λ1x1, . . . , λ|Aj |x|Aj | : (λ1, . . . , λ|Aj |) ∈ ∆|Aj |,xa ∈ Xj,a},
X = {1} × X↓r.

This formulation allows the expected loss of a player to be formulated as a bilinear function ⟨Mx,y⟩184

of players’ strategies x,y. This gives rise to the BSPP in Equation (PD), and the set of saddle points185

of that BSPP are exactly the set of Nash equilibria of the EFG. The payoff matrix M is a sparse186

matrix, whose nonzeroes correspond to the set of leaf nodes of the game tree.187
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Indexing Notation. A sequence-form strategy of a player can be written as a vector v, with an entry188

for each sequence (j, a). We use vj to denote the subset of size |Aj | of entries of v that correspond189

to sequences (j, a) formed by taking actions a ∈ Aj and let v↓j denote the subset of entries of v that190

are indexed by sequences that occur in the subtreeplex rooted at j. Additionally, we use vpj to denote191

the (scalar) value of the parent sequence of decision point j. By convention, for the root decision192

point j, we let vpj = 1. Observe that for any j ∈ J , vj/vpj is in the probability simplex.193

Given a treeplex Z we denote by JZ the set of insoets for this treeplex. We say that a partition of194

JZ into k ≤ |JZ | sets JZ
(1), . . . ,JZ

(k) respects the treeplex ordering if for any two sets JZ
(i),195

JZ
(i′) with i < i′ and any two infosets j ∈ JZ

(i), j′ ∈ JZ
(i′), j does not intersect the path from196

j′ to the root decision point. The set of infosets for the player x is denoted by JX , while the set of197

infosets for player y is denoted by JY . We assume that JX and JY are partitioned into s nonempty198

sets JX
(1),JX

(2), . . . ,JX
(s) and JY

(1),JY
(2), . . . ,JY

(s), where s ≤ min{|JX |, |JY |} and the199

ordering of the sets in the two partitions respect the treeplex ordering of X ,Y , respectively.200

Given a pair (t, t′), we use Mt,t′ to denote the full-dimensional (m× n) matrix obtained from the201

matrix M by keeping all entries indexed by JX
(t) and JY

(t′), and zeroing out the rest. When in202

place of t or t′ we use “:”, it corresponds to keeping as non-zeros all rows (for the first index) or all203

columns (for the second index). In particular, Mt,: is the matrix that keeps all rows of M indexed204

by JX
(t) intact and zeros out the rest. Further, notation Mt′,t:s is used to indicate that we select205

rows indexed by JX
(t′) and all columns of M indexed by JY

(t),JY
(t+1), . . . ,JY

(s), while we zero206

out the rest; similarly for Mt:s,t′ . Notation Mt′,1:t is used to indicate that we select rows indexed207

by JX
(t′) and all columns of M indexed by JY

(1),JY
(2), . . . ,JY

(t), while we zero out the rest;208

similarly for M1:t,t′ . Given a vector x ∈ X , x(t) denotes the entries of x indexed by the elements of209

JX
(t); similarly, for y ∈ Y, y(t) denotes the entries of y indexed by the elements of JY

(t).210

Additionally, we use M(t,t′) to denote the submatrix of M obtained by selecting rows indexed by211

JX
(t) and columns indexed by JY

(t′). M(t,t′) is (p× q)-dimensional, for p =
∑
j∈JX (t) |Aj | and212

q =
∑
j∈JY (t′) |Aj |. Notation “:” has the same meaning as in the previous paragraph.213

Dilated Regularizers. We assume access to strongly convex functions ϕ : X → R and ψ : Y → R214

with known strong convexity parameters cϕ > 0 and cψ > 0, and that are continuously differentiable215

on the interiors of their respective domains. We further assume that these functions are nice as defined216

by Farina et al. [13]: their gradients and the gradients of their convex conjugates can be computed in217

time linear (or nearly linear) in the dimension of the treeplex.218

A dilated regularizer is a framework for constructing nice regularizing functions for treeplexes. It219

makes use of the inductive characterization of a treeplex via Cartesian product and convex hull220

operations to generalize from the local simplex structure of the sequence-form polytope at a decision221

point to the entire sequence-form polytope. In particular, given a local “nice” regularizer ϕj for each222

decision point j, a dilated regularizer for the treeplex can be defined as ϕ(x) =
∑
j∈JX

xpjϕj( xj

xpj
).223

The key property of these dilated regularizing functions is that the prox computations of the form224

xk = argminx∈X {⟨h,x⟩ + Dϕ(xk,xk−1)} decompose into bottom-up updates, where, up to a225

scaling factor, each set of coordinates from set JX
(t) can be computed solely based on the coordinates226

of xk from sets JX
(1), . . . ,JX

(t−1) and coordinates of g from sets JX
(1), . . . ,JX

(t). Concretely,227

the recursive structure of the prox update is as follows (this was originally shown by [22], here we228

show a variation from Farina et al. [12]):229

Proposition 2.2 (Farina et al. [12]). A prox update to compute xk, with gradient h and center xk−1230

on a treeplex X using a Bregman divergence constructed from a dilated DGF ϕ can be decomposed231

into local prox updates at each decision point j ∈ JX as follows:232

xjk = x
pj
k · argmin

bj∈∆nj

{〈
hj + ĥj ,bj

〉
+Dϕj

(
bj ,

xjk−1

x
pj
k−1

)}
,

ĥ(j,a) =
∑

j′∈Cj,a

[
ϕ↓j

′∗(
− h↓j +∇ϕ↓j

′(
x↓j

′

k−1

))
− ϕj

′
(
xj

′

k−1

x
(j,a)
k−1

)
+

〈
∇ϕj

′
(
xj

′

k−1

x
(j,a)
k−1

)
,
xj

′

k−1

x
(j,a)
k−1

〉]
.
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3 Extrapolated Cyclic Algorithm233

Our extrapolated cyclic primal-dual algorithm is summarized in Algorithm 1. As discussed in234

Section 2, under the block partition and ordering that respects the treeplex ordering, the updates for235

x
(t)
k in Line 9 (respectively, y(t)

k in Line 12), up to scaling by the value of their respective parent236

sequences, can be carried out using only the information about xjk
x
pj
k

and hjk (respectively, yjk
y
pj
k

and gjk)237

for infosets j that are “lower” on the treeplex. The specific choices of the extrapolation sequences x̃k238

and ỹk that only utilize the information from prior cycles and the scaled values of xjk
x
pj
k

and yjk
y
pj
k

for239

infosets j updated up to the block t updates for xk and yk are what crucially enables us to decompose240

the updates for xk and yk into local block updates carried out in the bottom-up manner. At the end241

of the cycle, once xjk
x
pj
k

and yjk
y
pj
k

has been updated for all infosets, we can carry out a top-to-bottom242

update to fully determine vectors xk and yk, as summarized in the last two for loops in Algorithm 1.243

We present an implementation-specific version of the algorithm in Appendix D, which explicitly244

demonstrates that our algorithm’s runtime does not have a dependence on the number of blocks used.245

Our convergence argument is built on the decomposition of the relaxed gap Gapu,v(xk,vk) for246

arbitrary but fixed (u,v) ∈ X × Y into telescoping and non-positive terms, which is common in247

first-order methods. The first idea that enables leveraging cyclic updates lies in replacing vectors248

Mxk and M⊤yk by “extrapolated” vectors gk and hk that can be partially updated in a blockwise249

fashion as a cycle of the algorithm progresses, as stated in Proposition 3.1. To our knowledge, this250

basic idea originates in Song and Diakonikolas [38]. Unique to our work are the specific choices251

of gk and hk, which leverage all the partial information known to the algorithm up to the current252

iteration and block update. Crucially, we leverage the treeplex structure to show that our chosen253

updates are sufficient to bound the error sequence Ek and obtain the claimed convergence bound in254

Theorem 3.2. Due to space constraints, the proof is deferred to Appendix C.255

To simplify the exposition, we introduce the following notation:256

Mx :=

s−1∑
t=1

Mt,t+1:s, My := M−Mx =

s∑
t=1

Mt:s,t;

µx := ∥Mx∥∗ + ∥My∥∗, µy := ∥M⊤
x ∥∗ + ∥M⊤

y ∥∗.

(3.1)

When the norm of the space is ∥ · ∥ = ∥ · ∥1, both µx and µy are bounded above by 2maxi,j |Mij |.257

The next proposition decomposes the relaxed gap into an error term and telescoping terms. The258

proposition is independent of the specific choices of extrapolated vectors gk,hk.259

Proposition 3.1. Let xk,yk be the iterates of Algorithm 1 for k ≥ 1. Then, for all k ≥ 1, xk ∈ X ,260

yk ∈ Y, we have261

ηkGapu,v(xk,yk) ≤ Ek −Dϕ(u,xk) +Dϕ(u,xk−1)−Dψ(v,yk) +Dψ(v,yk−1),

where the error sequence Ek is defined by262

Ek := ηk ⟨Mxk − gk,v − yk⟩ − ηk
〈
u− xk,M

⊤yk − hk
〉
−Dψ(yk,yk−1)−Dϕ(xk,xk−1).

To obtain our main result, we leverage the blockwise structure of the problem, the bilinear structure263

of the objective, and the treeplex structure of the feasible sets to control the error sequence Ek. A264

key property that enables this result is that normalized entries xjk/x
pj
k−1 from the same information265

set belong to a probability simplex. This property is crucially used in controlling the error of the266

extrapolation vectors. The main result is summarized in the following theorem.267

Theorem 3.2. Consider the iterates xk,yk for k ≥ 1 in Algorithm 1 and the output primal-dual pair268

x̄K , ȳK . Then, ∀k ≥ 1,269

µxDϕ(x
∗,xK) + µyDψ(y

∗,yK)

µx + µy
≤ Dϕ(x

∗,x0) +Dψ(y
∗,y0), and, further,

Gap(x̄K , ȳK) = sup
u∈X ,v∈Y

{⟨Mx̄K ,v⟩ − ⟨Mu, ȳK⟩} ≤
supu∈X ,v∈Y{Dϕ(u,x0) +Dψ(v,y0)}

HK
.

In the above bound, if ∀k ≥ 1, ηk = η =
√
cϕcψ

µx+µy
, then HK = Kη. As a consequence, for any ϵ > 0,270

Gap(x̄K , ȳK) ≤ ϵ after at most
⌈ (µx+µy)(supu∈X ,v∈Y{Dϕ(u,x0)+Dψ(v,y0)})√

cϕcψϵ

⌉
iterations.271
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Algorithm 1 Extrapolated Cyclic Primal-Dual EFG Solver (ECyclicPDA)

1: Initialization: x0 ∈ X , y0 ∈ Y, η0 = H0 = 0, η =
√
cϕcψ

µx+µy
, x̄0 = x0, ȳ0 = y0, g0 = 0, h0 = 0

2: for k = 1 : K do
3: Choose ηk ≤ η, Hk = Hk−1 + ηk
4: gk = gk−1, hk = hk−1

5: x̃k = xk−1 +
ηk−1

ηk
(xk−1 − xk−2), ỹk = yk−1 +

ηk−1

ηk
(yk−1 − yk−2)

6: for t = 1 : s do
7: h

(t)
k = (M(:,t))⊤ỹk

8: x
(t)
k =

[
argminx∈X

{
ηk ⟨x,hk⟩+Dϕ(x,xk−1)

}](t)
9: x̃

(t)
k =

[
xjk
x
pj
k

x
pj
k−1 +

ηk−1

ηk

(
xjk−1 −

xjk−1

x
pj
k−1

x
pj
k−2

)]
j∈JX (t)

10: g
(t)
k = M(t,:)x̃k

11: y
(t)
k =

[
argmaxv∈Y

{
ηk ⟨gk,v⟩ −Dψ(v,yk−1)

}](t)
12: ỹ

(t)
k =

[
yjk
y
pj
k

y
pj
k−1 +

ηk−1

ηk

(
yjk−1 −

yjk−1

y
pj
k−1

y
pj
k−2

)]
j∈JY (t)

13: for j = 1 : n do
14: xjk = x

pj
k ·

( xjk
x
pj
k

)
15: for j = 1 : m do
16: yjk = y

pj
k ·

( yjk
y
pj
k

)
17: x̄k = Hk−ηk

Hk
x̄k−1 +

ηk
Hk

xk, ȳk = Hk−ηk
Hk

ȳk−1 +
ηk
Hk

yk

18: Return: x̄K , ȳK

4 Experimental Evaluation and Discussion272

We evaluate the performance of ECyclicPDA instantiated with three different dilated regularizers:273

dilated entropy [24], dilatable global entropy [13], and dilated ℓ2 [12]. In the case of the dilated ℓ2274

regularizer, we use dual averaging of the “extrapolated” vectors gk and hk in our algorithm, since275

otherwise we have no guarantee that the iterates would remain in the relative interior of the domain276

of the dilated DGF, and the Bregman divergence may become undefined. We compare our method277

to MP, which is state-of-the-art among first-order methods for EFG solving. We test ECyclicPDA278

and MP with three different averaging schemes: uniform, linear, and quadratic averaging since279

Gao et al. [19] suggest that these different averaging schemes can lead to faster convergence in280

practice. We also compare against empirical state-of-the-art CFR+ variants: CFR+ [40], and the281

predictive CFR+ variant (PCFR+) [14]. We emphasize that our method achieves the same O( 1
T )282

average-iterate convergence rate as MP, and that all the CFR+ variants have the same suboptimal283

O( 1√
T
) average-iterate convergence rate. We experiment on four standard benchmark games for284

EFG solving: Goofspiel (4 ranks), Liar’s Dice, Leduc (13 ranks), and Battleship. In all experiments,285

we run for 10, 000 full (or equivalent) gradient computations. This corresponds to 5,000 iterations286

of ECyclicPDA, CFR+, and PCFR+, and 2,500 iterations of MP.1 A description of all games is287

provided in Appendix E. Additional experimental details are provided in Appendix G.288

For each instantiation of ECyclicPDA considered on a given game (choice of regularizer, averaging,289

and block construction strategy) the stepsize is tuned by taking power of 2 multiples of η (2l · η for290

l ∈ N), where η is the theoretical stepsize stated in Theorem 3.2, and then choosing the stepsize η∗291

among these multiples of η that has the best performance. Within the algorithm, we use a constant292

stepsize, letting ηk = η0 for all k. We apply the same tuning scheme for MP stepsizes (for a given293

choice of regularizer and averaging). Note that this stepsize tuning is coarse, and so it is possible that294

better results can be achieved for ECyclicPDA and MP using finer stepsize tuning.295

1Here we count one gradient evaluation for x and one for y as two gradient evaluations total.
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Figure 1: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies.

Figure 2: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA, MP, CFR+, PCFR+.

We test our algorithm with four different block construction strategies. The single block construction296

strategy puts every decision point in a single block, and thus it corresponds to the non-block-based297

version of ECyclicPDA. The children construction strategy iterates through the decision points of the298

treeplex bottom-up (by definition, this will respect the treeplex ordering), and placing each set of299

decision points that have parent sequences starting from the same decision point in its own block. The300

postorder construction strategy iterates through the decision points bottom-up (again, by definition,301

this will respect the treeplex ordering). The order is given by a postorder traversal of the treeplex,302

treating all decision points that have the same parent sequence as a single node (and when the node is303

processed, all decision points are sequentially added to the block). It greedily makes blocks as large304

as possible, while only creating a new block if it causes a parent decision point and child decision305

point to end up in the same block. The infosets construction strategy places each decision point in its306

own block. We provide further description of the block construction strategies in Appendix F.307

We show the results of different block construction strategies in Figure 1. For each block construction308

strategy, ECyclicPDA is instantiated with the choice of regularizer and averaging that yields the309

fastest convergence among all choices of parameters. We can see that the different block construction310

strategies do not make a significant difference in Goofspiel (4 ranks) or in Leduc (13 ranks). However,311

we see benefits of using blocks in Liar’s Dice and Battleship. In Liar’s Dice, children and postorder312

have a clear advantage, and children outperforms the other block construction strategies in Battleship.313

We show the results of comparing our algorithm against MP, CFR+, and PCFR+ in Figure 2.314

ECyclicPDA is instantiated with the choice of regularizer, averaging, and block construction strategy315

that yields the fastest convergence among all choices for ECyclicPDA, and MP is instantiated with316

the choice of regularizer and averaging that yields the fastest convergence among all choices for MP.317

We see that ECyclicPDA performs better than MP in all games besides Goofspiel (4 ranks), where318

they perform about the same. In Liar’s Dice and Battleship, the games where ECyclicPDA benefits319

from having multiple blocks, we see competitiveness with CFR+ and PCFR+. In particular, in Liar’s320

Dice, ECyclicPDA is overtaking CFR+ at 10, 000 gradient computations. On Battleship, we see that321

both ECyclicPDA and MP outperform CFR+, and that ECyclicPDA is competitive with PCFR+.322

Restarting We now introduce restarting as a heuristic tool for speeding up EFG solving. While323

restarting is only known to lead to a linear convergence rate in the case of using the ℓ2 regularizer324

in certain FOMs [5, 20], we apply restarting as a heuristic across our methods based on dilated325

regularizers and to CFR-based methods. To the best of our knowledge, restarting schemes have not326

been empirically evaluated on EFG algorithms such as MP, CFR+, or (obviously), our new method.327

We show the results of different block construction strategies when restarting is used on ECyclicPDA328

in Figure 3. As before, we take the combination of regularizer and averaging scheme that works329

best. Again, we can see that the different block construction strategies do not make a significant330

difference in Goofspiel (4 ranks) or in Leduc (13 ranks), while making a difference for Liar’s Dice331

and Battleship. However, with restarting, the benefit of the children and postorder for Liar’s Dice332
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Figure 3: Duality gap as a function of the number of full (or equivalent) gradient computations for
when restarting is applied to ECyclicPDA with different block construction strategies. We take the
best duality gap seen so far so that the plot is monotonic.

Figure 4: Duality gap as a function of the number of full (or equivalent) gradient computations for
when restarting is applied to ECyclicPDA, MP, CFR+, PCFR+. We take the best duality gap seen so
far so that the plot is monotonic.

and Battleship is even more pronounced relative to the other block construction strategies; the gap is333

several orders of magnitude after 104 gradient computations. Note that while children performed334

worse than single block for Battleship previously, with restarting, children performs much better.335

Finally, we compare the performance of the restarted version of our algorithm, with restarted versions336

of MP, CFR+, and PCFR+ in Figure 4. As before, we take the combination of regularizer, averaging337

scheme, and block construction strategy that works best for ECyclicPDA, and the combination of338

regularizer and averaging scheme that works best for MP. Firstly, we note that the scale of the y-axis339

is different from Figure 2 for all games besides Leduc (13 ranks), because restarting tends to hit340

much higher levels of precision. We see that restarting provides significant benefits for PCFR+341

in Goofspiel (4 ranks) allowing it to converge to numerical precision, while the other algorithms342

do not benefit much. In Liar’s Dice, restarted CFR+ and PCFR+ converge to numerical precision343

within 200 gradient computations, and restarted ECyclicPDA converges to numerical precision at 104344

gradient computations. Additionally, restarted MP achieves a much lower duality gap. For Battleship,345

ECyclicPDA, MP, and PCFR+ all benefit from restarting, and restarted ECyclicPDA is competitive346

with restarted PCFR+. Similar to the magnification in benefit of using blocks versus not using blocks347

when restarting in Liar’s Dice and Battleship, we see that restarted ECyclicPDA achieves significantly348

better duality gap than MP in these games.349

Discussion We develop the first cyclic block-coordinate-like method for two-player zero-sum EFGs.350

Our algorithm relies on the recursive nature of the prox updates for dilated regularizers, cycling351

through blocks that respect the partial order induced on decision points by the treeplex, and ex-352

trapolation to conduct pseudo-block updates, produce feasible iterates, and achieve O( 1
T ) ergodic353

convergence. Furthermore, the runtime of our algorithm has no dependence on the number of blocks.354

We present empirical evidence that our algorithm generally outperforms MP, and is the first FOM to355

compete with CFR+ and PCFR+ on non-trivial EFGs. Finally, we introduce a restarting heuristic for356

EFG solving, and demonstrate often huge gains in convergence rate. An open question raised by our357

work is understanding what makes restarting work for methods used with regularizers besides the358

ℓ2 regularizer (the only setting for which there exist linear convergence guarantees). This may be359

challenging because existing proofs require upper bounding the corresponding Bregman divergence360

(for a given non-ℓ2 regularizer) between iterates by the distance to optimality. This is difficult for361

entropy or any dilated regularizer because the initial iterate used by the algorithm after restarting362

may have entries arbitrarily close to zero even if they are guaranteed to not exactly be zero (as is the363

case for entropy). Relatedly, both our block-coordinate method and restarting have a much bigger364

advantage in some numerical instances (Battleship, Liar’s Dice) than others (Leduc and Goofspiel); a365

crucial question is to understand what type of game structure drives this behavior.366
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A Additional Related Work492

There has been significant work on FOMs for two-player zero-sum EFG solving. Because this493

is a BSPP, off-the-shelf FOMs for BSPPs can be applied, with the caveat that proximal oracles494

are required. The standard Euclidean distance has been used in some cases [20], but it requires495

solving a projection problem that takes O(n log2 n) time, where n is the dimension of a player’s496

decision space [15, 20]. While this is “nearly” linear time, such projections have not been used497

much in practice. Proximal oracles have instead been based on dilated regularizers [22], which498

lead to a proximal update that can be performed with a single pass over the decision space. With499

the dilated entropy regularizer, this can be performed in linear time, and this regularizer leads to500

the strongest bounds on game constants that impact the convergence rate of proximal-oracle-based501

FOMs [13, 24]. More recently, it has been shown that a specialized kernelization can be used to502

achieve linear-time proximal updates and stronger convergence rates specifically for the dilated503

entropy with optimistic online mirror descent through a correspondence with optimistic multiplicative504

weights on the exponentially-many vertices of the decision polytope [6, 16]. Yet this approach was505

shown to have somewhat disappointing numerical performance in Farina et al. [16], and thus is less506

important practically despite its theoretical significance.507

A completely different approach for first-order-based updates is the CFR framework, which decom-508

poses regret minimization on the EFG decision sets into local simplex-based regret minimization [48].509

In theory, CFR-based results have mostly led to an inferior T−1/2 rate of convergence, but in practice510

the CFR framework instantiated with regret matching+ (RM+) [40] or predictive RM+ (PRM+) [14]511

is the fastest approach for essentially every EFG setting. RM+ is often fastest for “poker-like”512

EFGs, while PRM+ is often fastest for other classes of games [14]. Improved rates on the order of513

T−3/4 [11] and log T/T [4] have been achieved within the CFR framework, but only while using514

regret minimizers that lead to significantly worse practical performance (in particular, numerically515

these perform worse than the best 1/T FOMs such as mirror prox with appropriate stepsize tuning).516

In the last few years there has been a growing literature on last-iterate convergence in EFGs. There,517

the goal is to show that one can converge to an equilibrium without averaging the iterates generated518

by a FOM or CFR-based method. It has long been known that with the Euclidean regularizer,519

it is possible to converge at a linear rate in last iterate with e.g., the extragradient method (a.k.a.520

mirror prox with the Euclidean regularizer) on BSPPs with polyhedral decision sets, as they are in521

EFGs [20, 42, 44]. More recently, it has been shown that a linear rate can be achieved with certain522

dilated regularizers [26], with the kernelization approach of Farina et al. [16], and in a regularized523

CFR setup [30]. At this stage, however, these last-iterate results are of greater theoretical significance524

than practical significance, because the linear rate often does not occur until after quite many iterations,525

and typically the methods do not match the performance of ergodic methods at reasonable time scales.526

For this reason, we do not compare to last-iterate algorithms in our experiments.527

B Treeplex Example528

As an example, consider the treeplex of Kuhn poker [25] adapted from [12] shown in Figure 5. Kuhn529

poker is a game played with a three card deck: jack, queen, and king. In this case, for example, we530

have JX = {0, 1, 2, 3, 4, 5, 6}, p0 = ϕ, p1 = p2 = p3 = (0, start), p4 = (1, check), p5 = (2, check),531

p6 = (3, check), A0 = {start}, A1 = A2 = A3 = {check, raise}, A4 = A5 = A6 = {fold, call},532

C(0,start) = {1, 2, 3}, C(1,raise) = C(1,raise) = C(2,raise) = C(3,raise) = C(4,fold) = C(5,fold) = C(6,fold) =533

C(4,call) = C(5,call) = C(6,call) = ∅, ↓ 0 = JX , ↓ 1 = {1, 4}, ↓ 2 = {2, 5}, ↓ 3 = {3, 6}, ↓ 4 = {4},534

↓ 5 = {5}, ↓ 6 = {6}. In this case, ϕ represents the empty sequence.535

C Proofs536

C.1 Proof of Proposition 3.1537

Proof. The claim that xk ∈ X , yk ∈ Y is immediate from the algorithm description, as both are538

solutions to constrained optimization problems with these same constraints.539
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Figure 5: The sequential decision problem for the first player in Kuhn poker. ⬣ represents the end of
the decision process and ⊗ represents an observation (which may lead to multiple decision points).
Adapted from [12].

For the remaining claim, observe first that540

ηk ⟨Mxk,v⟩ = ηk ⟨gk,v⟩ −Dψ(v,yk−1) +Dψ(v,yk−1) + ηk ⟨Mxk − gk,v⟩ .

Recall from Algorithm 1 that541

yk = argmax
v∈Y

{
ηk ⟨gk,v⟩ −Dψ(v,yk−1)

}
.

Define the function under the max defining yk by Ψk. Then as Ψk(·) is the sum of −ψ(·) and linear542

terms, we have DΨk(·,y) = −Dψ(·,y), for any y. Further, as Ψk is maximized by yk, we have543

Ψk(v) ≤ Ψk(yk)−Dψ(v,yk). Thus, it follows that544

ηk ⟨Mxk,v⟩ ≤ ηk ⟨gk,yk⟩ −Dψ(yk,yk−1) + ⟨Mxk − gk,v⟩
−Dψ(v,yk) +Dψ(v,yk−1).

(C.1)

Using the same ideas for the primal side, we have545

ηk ⟨Mu,yk⟩ ≥ ηk ⟨xk,hk⟩+Dϕ(xk,xk−1) + ηk
〈
u,M⊤yk − hk

〉
+Dϕ(u,xk)−Dϕ(u,xk−1)

(C.2)

Combining (C.1) and (C.2),546

ηkGapu,v(xk,yk) ≤ ηk ⟨Mxk − gk,v − yk⟩ − ηk
〈
u− xk,M

⊤yk − hk
〉

−Dψ(yk,yk−1)−Dϕ(xk,xk−1)

−Dϕ(u,xk) +Dϕ(u,xk−1)−Dψ(v,yk) +Dψ(v,yk−1).

To complete the proof, it remains to combine the definition of Ek from the proposition statement with547

the last inequality.548

C.2 Proof of Theorem 3.2549

For notational convenience, in this proof we define vectors x̂k and ŷk by x̂jk =
xjk
x
pj
k

x
pj
k−1 for550

j ∈ JX and ŷjk =
yjk
y
pj
k

y
pj
k−1 for j ∈ JY , so that x̃k = xk − x̂k − ηk−1

ηk
(xk−1 − x̂k−1) and551

ỹk = yk − ŷk − ηk−1

ηk
(yk−1 − ŷk−1).552

To prove the theorem, we first prove the following auxiliary lemma which bounds the inner product553

terms appearing in the error terms Ek.554

Lemma C.1. In all iterations k of Algorithm 1, for any (u,v) ∈ X × Y and any α, β > 0,555

ηk ⟨Mxk − gk,v − yk⟩ ≤ ηk ⟨My(xk − x̂k),v − yk⟩ − ηk−1 ⟨My(xk−1 − x̂k−1),v − yk−1⟩
+ ηk ⟨Mx(xk − xk−1),v − yk⟩ − ηk−1 ⟨Mx(xk−1 − xk−2),v − yk−1⟩

+ ηk−1
∥Mx∥∗ + ∥My∥∗

2

(
α∥xk−1 − xk−2∥2 +

1

α
∥yk − yk−1∥2

)
.
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and556

−ηk
〈
u− xk,M

⊤yk − hk
〉
≤ − ηk

〈
M⊤

x (yk − ŷk),u− xk
〉
+ ηk−1

〈
M⊤

x (yk−1 − ŷk−1),u− xk−1

〉
− ηk

〈
M⊤

y (yk − yk−1),u− xk
〉
+ ηk−1

〈
M⊤

y (yk−1 − yk−2),u− xk−1

〉
+ ηk−1

∥M⊤
x +M⊤

y ∥∗
2

(
β∥xk−1 − xk∥2 +

1

β
∥yk−1 − yk−2∥2

)
.

Proof. Observe first that, by Algorithm 1,557

M(t,:)xk − g
(t)
k = M(t,1:t)

(
xk − x̂k −

ηk−1

ηk
(xk−1 − x̂k−1)

)(1:t)

+M(t,t+1:s)
(
xk − xk−1 −

ηk−1

ηk
(xk−1 − xk−2)

)(t+1:s)

.

(C.3)

Additionally, by definition (see Eq. (3.1)),
∑s
t=1 Mt,1:t = M−Mx = My. Hence,558

ηk

s∑
t=1

〈
M(t,1:t)

(
xk − x̂k −

ηk−1

ηk
(xk−1 − x̂k−1)

)(1:t)

,v(t) − y
(t)
k

〉

= ηk

s∑
t=1

〈
Mt,1:t

(
xk − x̂k −

ηk−1

ηk
(xk−1 − x̂k−1)

)
,v − yk

〉
= ηk

〈
My

(
xk − x̂k −

ηk−1

ηk
(xk−1 − x̂k−1)

)
,v − yk

〉
= ηk ⟨My(xk − x̂k),v − yk⟩ − ηk−1 ⟨My(xk−1 − x̂k−1),v − yk−1⟩

− ηk−1 ⟨My(xk−1 − x̂k−1),yk−1 − yk⟩ . (C.4)

The first two terms in (C.4) telescope, so we focus on bounding559

−ηk−1 ⟨My(xk−1 − x̂k−1),yk−1 − yk⟩ . By definition of x̂k, for all j ∈ JX ,560

xjk−1 − x̂jk−1 =
xjk−1

x
pj
k−1

(
x
pj
k−1 − x

pj
k−2

)
.

By the definition of a treeplex, each vector
xjk−1

x
pj
k−1

belongs to a probability simplex of the appropriate561

size. This further implies that562

∥xk−1 − x̂k−1∥ =

∥∥∥∥[xjk−1

x
pj
k−1

(
x
pj
k−1 − x

pj
k−2

)]
j∈JX

∥∥∥∥
≤ ∥[xpjk−1 − x

pj
k−2]j∈JX ∥

≤ ∥xk−1 − xk−2∥, (C.5)

where the notation [aj ]j∈JX is used to denote the vector with entries aj , for j ∈ JX . The first563

inequality in (C.5) holds for any ℓp norm (p ≥ 1), by its definition and
〈
1,xjk−1

〉
= 1, ∀j. Thus,564

applying the definitions of the norms from the preliminaries,565

−⟨My(xk−1 − x̂k−1),yk−1 − yk⟩ ≤ ∥My(xk−1 − x̂k−1)∥∗∥yk−1 − yk∥
≤ ∥My∥∗∥xk−1 − xk−2∥∥yk−1 − yk∥

≤ ∥My∥∗
2

(
α∥xk−1 − xk−2∥2 +

1

α
∥yk − yk−1∥2

)
, (C.6)

where the last line is by Young’s inequality and holds for any α > 0.566
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On the other hand, recalling that Mx =
∑s−1
t=1 Mt,t+1:s, we also have567

ηk

s∑
t=1

〈
M(t,t+1:s)

(
xk − xk−1 −

ηk−1

ηk
(xk−1 − xk−2)

)(t+1:s)

,v(t) − y
(t)
k

〉

= ηk

s∑
t=1

〈
Mt,t+1:s

(
xk − xk−1 −

ηk−1

ηk
(xk−1 − xk−2)

)
,v − yk

〉
= ηk

〈
Mx

(
xk − xk−1 −

ηk−1

ηk
(xk−1 − xk−2)

)
,v − yk

〉
= ηk ⟨Mx(xk − xk−1),v − yk⟩ − ηk−1 ⟨Mx(xk−1 − xk−2),v − yk⟩
= ηk ⟨Mx(xk − xk−1),v − yk⟩ − ηk−1 ⟨Mx(xk−1 − xk−2),v − yk−1⟩

+ ηk−1 ⟨Mx(xk−1 − xk−2),yk − yk−1⟩ . (C.7)
Observe that in (C.7) the first two terms telescope and thus we only need to focus on bounding the last568

term. Applying the definitions of dual and matrix norms from Section 2 and using Young’s inequality,569

we have that for any α > 0,570

⟨Mx(xk−1 − xk−2),yk − yk−1⟩ ≤ ∥Mx(xk−1 − xk−2)∥∗∥yk − yk−1∥
≤ ∥Mx∥∗∥xk−1 − xk−2∥∥yk − yk−1

≤ ∥Mx∥∗
2

(
α∥xk−1 − xk−2∥2 +

1

α
∥yk − yk−1∥2

)
. (C.8)

Hence, combining (C.3)–(C.8), we can conclude that571

ηk ⟨Mxk − gk,v − yk⟩ ≤ ηk ⟨My(xk − x̂k),v − yk⟩ − ηk−1 ⟨My(xk−1 − x̂k−1),v − yk−1⟩
+ ηk ⟨Mx(xk − xk−1),v − yk⟩ − ηk−1 ⟨Mx(xk−1 − xk−2),v − yk−1⟩

+ ηk−1
∥Mx∥∗ + ∥My∥∗

2

(
α∥xk−1 − xk−2∥2 +

1

α
∥yk − yk−1∥2

)
,

completing the proof of the first claim.572

Similarly, we observe from Algorithm 1 that573 (
M(:,t)

)⊤
yk − h

(t)
k =

(
M(1:t−1,t)

)⊤(
yk − ŷk +

ηk−1

ηk
(yk−1 − ŷk−1)

)(1:t−1)

+
(
M(t:s,t)

)⊤(
yk − yk−1 +

ηk−1

ηk
(yk−1 − yk−2)

)(t:s)

.

Observing that
∑s
t=1 M1:t−1,t = Mx and

∑s
t=1 Mt:s,t = My, using the same sequence of argu-574

ments as for bounding (C.3), we can conclude that for any β > 0,575

− ηk
〈
u− xk,M

⊤yk − hk
〉

≤ − ηk
〈
M⊤

x (yk − ŷk),u− xk
〉
+ ηk−1

〈
M⊤

x (yk−1 − ŷk−1),u− xk−1

〉
− ηk

〈
M⊤

y (yk − yk−1),u− xk
〉
+ ηk−1

〈
M⊤

y (yk−1 − yk−2),u− xk−1

〉
+ ηk−1

∥M⊤
x +M⊤

y ∥∗
2

(
β∥xk−1 − xk∥2 +

1

β
∥yk−1 − yk−2∥2

)
,

completing the proof.576

Proof Theorem 3.2. Recalling the definition of Ek, by Lemma C.1,577

Ek ≤ ηk ⟨My(xk − x̂k),v − yk⟩ − ηk−1 ⟨My(xk−1 − x̂k−),v − yk−1⟩
+ ηk ⟨Mx(xk − xk−1),v − yk⟩ − ηk−1 ⟨Mx(xk−1 − xk−2),v − yk−1⟩

+ ηk−1
∥Mx∥∗ + ∥My∥∗

2

(
α∥xk−1 − xk−2∥2 +

1

α
∥yk − yk−1∥2

)
− ηk

〈
M⊤

x (yk − ŷk),u− xk
〉
+ ηk−1

〈
M⊤

x (yk−1 − ŷk−1),u− xk−1

〉
− ηk

〈
M⊤

y (yk − yk−1),u− xk
〉
+ ηk−1

〈
M⊤

y (yk−1 − yk−2),u− xk−1

〉
+ ηk−1

∥M⊤
x ∥∗ + ∥M⊤

y ∥∗
2

(
β∥xk−1 − xk∥2 +

1

β
∥yk−1 − yk−2∥2

)
−Dψ(yk,yk−1)−Dϕ(xk,xk−1).

(C.9)
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Recalling that ψ is cψ-strongly convex, ϕ is cϕ-strongly convex, setting α = β =
√

cϕ
cψ
, and using578

that ηk−1 ≤
√
cϕcψ

∥Mx∥∗+∥My∥∗+∥M⊤
x ∥∗+∥M⊤

y ∥∗
=

√
cϕcψ

µx+µy
, (C.9) simplifies to579

Ek ≤ ηk ⟨My(xk − x̂k),v − yk⟩ − ηk−1 ⟨My(xk−1 − x̂k−),v − yk−1⟩
+ ηk ⟨Mx(xk − xk−1),v − yk⟩ − ηk−1 ⟨Mx(xk−1 − xk−2),v − yk−1⟩
− ηk

〈
M⊤

x (yk − ŷk),u− xk
〉
+ ηk−1

〈
M⊤

x (yk−1 − ŷk−1),u− xk−1

〉
− ηk

〈
M⊤

y (yk − yk−1),u− xk
〉
+ ηk−1

〈
M⊤

y (yk−1 − yk−2),u− xk−1

〉
+

cψµy
2(µx + µy)

(
∥yk−1 − yk−2∥2 − ∥yk − yk−1∥2

)
+

cϕµx
2(µx + µy)

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
.

(C.10)

Telescoping (C.10) and recalling that η0 = 0, we now have580

K∑
k=1

Ek ≤ ηK ⟨Mx(xK − xK−1),v − yK⟩ − ηK
〈
M⊤

y (yK − yK−1),u− xK
〉

+ ηK ⟨My(xK − x̂K),v − yK⟩ − ηK
〈
M⊤

x (yK − ŷK),u− xK
〉

− cψµy
2(µx + µy)

∥yK − yK−1∥2

− cϕµx
2(µx + µy)

∥xK − xK−1∥2.

(C.11)

Observe that Gapu,v(·, ·) is linear in both its arguments. Hence, Gapu,v(x̄K , ȳK) =581

1
HK

∑K
k=1 ηkGapu,v(xk,yk). Applying Proposition 3.1 and combining with (C.11), we now have582

HKGapu,v(x̄k, ȳk) ≤ Dϕ(u,x0) +Dψ(v,y0)

+ ηK ⟨Mx(xK − xK−1),v − yK⟩ − ηK
〈
M⊤

y (yK − yK−1),u− xK
〉

+ ηK ⟨My(xK − x̂K),v − yK⟩ − ηK
〈
M⊤

x (yK − ŷK),u− xK
〉

− cψµy
2(µx + µy)

∥yK − yK−1∥2 −
cϕµx

2(µx + µy)
∥xK − xK−1∥2

−Dϕ(u,xK)−Dψ(v,yK). (C.12)
To complete bounding the gap, it remains to argue that the right-hand side of (C.12) is bounded583

by Dϕ(u,x0) +Dψ(v,y0)− µx
µx+µy

Dϕ(u,xK)− µy
µx+µy

Dψ(v,yK). This is done using the same584

sequence of arguments as in bounding Ek and is omitted.585

Let (x∗,y∗) ∈ X × Y be any primal-dual solution to (PD). Then Gap(x
∗,y∗)(x̄K , ȳK) ≥ 0 and we586

can conclude that587

µx
µx + µy

Dϕ(x
∗,xK) +

µy
µx + µy

Dψ(y
∗,yK) ≤ Dϕ(x

∗,x0) +Dψ(y
∗,y0).

Further, using that Dϕ(·, ·) ≥ 0, Dψ(·, ·) ≥ 0, we can also conclude that588

sup
u∈X ,v∈Y

Gapu,v(x̄K , ȳK) = sup
u∈X ,v∈Y

{⟨Mx̄K ,v⟩ − ⟨Mu, ȳK⟩}

≤
supu∈X ,v∈Y{Dϕ(u,x0) +Dψ(v,y0)}

HK
.

Finally, setting ηk =
√
cϕcψ

µx+µy
for all k ≥ 1 immediately leads to the conclusion that HK = K

√
cϕcψ

µx+µy
,589

as HK =
∑K
k=1 ηk, by definition. The last bound is by setting supu∈X ,v∈Y{Dϕ(u,x0)+Dψ(v,y0)}

HK
≤ ϵ,590

and solving for K.591

D Algorithm Implementation Details592

In Algorithm 2, we present an implementation-specific version of ECyclicPDA, in order to make593

it clear that our algorithm can be implemented without any extra computation compared to the594
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computation needed for gradient and prox updates in MP. Note that MP performs two gradient595

computations and two prox computations per player, due to how it achieves “extrapolation”; we want596

to argue that we perform an equivalent number operations as needed for a single gradient computation597

and prox computation per player. Note that the overall complexity of first-order methods when598

applied to EFGs is dominated by the gradient and prox update computations; this is why we compare599

our algorithm to MP on this basis. The key differences from Algorithm 1 are that we explicitly use600

x̂k and ŷk to represent the behavioral strategy that is computed via the partial prox updates (which601

are then scaled at the end of a full iteration of our method to xk and yk), and that we use ĥjk and v̂gjk602

to accumulate gradient contributions from decision points that occur underneath j, to make the partial603

prox update explicit.604

In Lines 8 and 13, we are only dealing with the columns and rows, respectively, of the payoff matrix605

that correspond to the current block number t, which means that as t ranges from 1 to s, for the606

computation of the gradient, we will only consider each column and row, respectively, once, as would607

have to be done in a full gradient computation for MP.608

The more difficult aspect of the implementation is ensuring that we do the same number of operations609

for the prox computation in ECyclicPDA as an analogous single prox computation in MP. We achieve610

this by applying the updates in Proposition 2.2 only for the decision points in the current block, in611

Lines 9 to 12 for x and 14 to 17 for y.612

We focus on the updates for x; the argument is analogous for y. When applying this local prox613

update for decision point j ∈ JX
(t), we have already correctly computed ĥj , the contributions to614

the gradient for the local prox update that originate from the children of j, again because the blocks615

represent the treeplex ordering; in particular, whenever we have encountered a child decision point616

of j in the past, we accumulate its contribution to the gradient for its parent at ĥpj . Since the prox617

update decomposition from Proposition 2.2 has to be applied for every single decision point in JX in618

a full prox update (as done in MP), we again do not incur any dependence on the number of blocks.619

E Description of EFG Benchmarks620

We provide game descriptions of the games we run our experiments on below. Our game descriptions621

are adapted from Farina et al. [14]. In Table 1, we provide the number of sequences for player x (n),622

the number of sequences for player y (m), and the number of leaves in the game (NNZ(M)).623

Game Num. of x sequences Num. of y sequences Num. of leaves

Goofspiel (4 ranks) 21329 21329 13824
Liar’s Dice 24571 24571 147420

Leduc (13 ranks) 6007 6007 98956
Battleship 73130 253940 552132

Table 1: Number of sequences for both players and number of leaves for each game. These correspond
to the dimensions n and m of M, and the number of nonzero entries of M, respectively.

E.1 Goofspiel (4 ranks)624

Goofspiel is a card-based game that is a standard benchmark in the EFG-solving community [35].625

In the version that we test on, there are 4 unique cards (ranks), and there are 3 copies of each rank,626

divided into 3 separate decks. Each player gets a deck, and the third deck is known as the prize deck.627

Cards are randomly drawn from the prize deck, and each player submits a bid for the drawn card by628

submitting a card from one of their respective decks, the value of which represents their bid. Whoever629

submits the higher bid wins the card from the prize deck. Once all the cards from the prize deck have630

been drawn, bid on, and won by one of the players, the game terminates, and the payoffs for players631

are given by the sum of the prize cards they won.632
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Algorithm 2 Extrapolated Cyclic Primal-Dual EFG Solver (Implementation Version)

1: Input: M,m, n

2: Initialization: x0 ∈ X , y0 ∈ Y, η0 = H0 = 0, η =
√
cϕcψ

µx+µy
, x̄0 = x0, ȳ0 = y0, g0 = 0, h0 = 0

3: for k = 1 : K do
4: Choose ηk ≤ η, Hk = Hk−1 + ηk
5: gk = 0, hk = 0, ĝk = 0, ĥk = 0
6: x̃k = xk−1 +

ηk−1

ηk
(xk−1 − xk−2), ỹk = yk−1 +

ηk−1

ηk
(yk−1 − yk−2)

7: for t = 1 : s do
8: h

(t)
k = (M(:,t))⊤ỹk

9: for j ∈ JX
(t) do

10: x̂jk = argminbj∈∆nj

{〈
ĥjk + hjk,b

j
〉
+Dϕj

(
bj , x̂jk−1

)}
11: (j′, a) = pj

12: ĥ
pj
k +=

[
ϕ↓j

∗
(
−h↓j

k +∇ϕ↓j
(
x↓jk−1

))
− ϕj

(
x̂jk−1

)
+
〈
∇ϕj

(
x̂jk−1

)
, x̂jk−1

〉]
13: g

(t)
k = M(t,:)x̃k

14: for j ∈ JY
(t) do

15: ŷjk = argminbj∈∆nj

{〈
ĝjk + gjk,b

j
〉
+Dψj

(
bj , ŷjk−1

)}
16: (j′, a) = pj

17: ĥ
pj
k +=

[
ψ↓j∗

(
−g↓j

k +∇ψ↓j
(
y↓jk−1

))
− ψj

(
ŷjk−1

)
+
〈
∇ψj

(
ŷjk−1

)
, ŷjk−1

〉]
18: for j ∈ JX

(t) do
19: x̃jk =

[
x̂jkx

pj
k−1 +

ηk−1

ηk

(
xjk−1 − x̂jk−1x

pj
k−2

)]
20: for j ∈ JY

(t) do
21: ỹjk =

[
ŷjky

pj
k−1 +

ηk−1

ηk

(
yjk−1 − ŷjk−1y

pj
k−2

)]
22: for j ∈ JX do
23: xjk = x

pj
k · x̂jk

24: for j ∈ JY do
25: yjk = y

pj
k ·

( yjk
y
pj
k

)
26: x̄k = Hk−ηk

Hk
x̄k−1 +

ηk
Hk

xk, ȳk = Hk−ηk
Hk

ȳk−1 +
ηk
Hk

yk

27: Return: x̄K , ȳK

E.2 Liar’s Dice633

Liar’s Dice is another standard benchmark in the EFG-solving community [28]. In the version that634

we test on, each player rolls an unbiased six-sided die, and they take turns either calling higher bids635

or challenging the other player. A bid consists of a combination of a value v between one and six,636

and a number of dice between one and two, n, representing the number of dice between the two637

players that has v pips showing. A higher bid involves either increasing n holding v fixed, increasing638

v holding n fixed, or both. When a player is challenged (or the highest possible bid of “two dice639

each showing six pips” is called), the dice are revealed, and whoever is correct wins 1 (either the640

challenger if the bid is not true, or the player who last called a bid, if the bid is true), and the other641

player receives a utility of -1.642

E.3 Leduc (13 ranks)643

Leduc is yet another standard benchmark in the EFG-solving community [39] and is a simplified644

version of Texas Hold’Em. In the version we test on, there are 13 unique cards (ranks), and there are645

2 copies of each rank (half the size of a standard 52 card deck). There are two rounds of betting that646

take place, and before the first round each player places an ante of 1 into the pot, and is dealt a single647

pocket (private) card. In addition, two cards are placed face down, and these are community cards648
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that will be used to form hands. The two hands that can be formed with the community cards are pair,649

and highest card.650

During the first round of betting, player 1 acts first. There is a max of two raises allowed in each round651

of betting. Each player can either check, raise, or fold. If a player folds, the other player immediately652

wins the pots and the game terminates. If a player checks, the other player has an opportunity to653

raise if they have not already previously checked or raised, and if they previously checked, the game654

moves on to the next round. If a player raises, the other player has an opportunity to raise if they655

have not already previously raised. The game then moves on the second round, during which one656

of the community cards is placed face up, and then similar betting dynamics as the first round take657

place. After the second round terminates, there is a showdown, and whoever can form the better hand658

(higher ranked pair, or highest card) with the community cards takes the pot.659

E.4 Battleship660

This is an instantiation of the classic board game, Battleship, in which players take turns shooting661

at the opposing player’s ships. Before the game begins, the players place two ships of length 2 and662

value 4, on a grid of size 2 by 3. The ships need to be placed in a way so that the ships take up exactly663

four spaces within the grid (they do not overlap with each other, and are contained entirely in the664

grid). Each player gets three shots, and players take turns firing at cells of their opponent’s grid. A665

ship is sunk when the two cells it has been placed on have been shot at. At the end of the game, the666

utility for a player is the difference between the cumulative value of the opponent’s sunk ships and667

the cumulative value of the player’s sunk ships.668

F Block Construction Strategies669

As discussed in the main paper, the postorder block construction strategy can be viewed as traversing670

the decision points of the treeplex in postorder, treating decision points with the same parent sequence671

as the same node, and then greedily putting decision points in the same block until we reach a decision672

point that has a child decision point in the current block (at which point we start a new block). We673

make this postorder traversal and greedy block construction explicit in Algorithm 3.674

In Algorithm 4 we provide pseudocode for constructing blocks using the children block construction675

strategy. As discussed in the main paper, the children block construction strategy corresponds to676

placing decision points with the same parent decision point (same decision point at which their parent677

sequences start at) in the same block. In our implementation, instead of doing a bottom-up traversal,678

we do a top down implementation, and at the end, reverse the order of the blocks (this allows us to679

respect the treeplex ordering).680

In both Algorithm 3 and Algorithm 4, ϕ represents the empty sequence.681

We can now illustrate each of the block construction strategies on the treeplex for player 1 in Kuhn that682

was presented in Appendix B. If we use single block, then we have JX
(1) = JX = {0, 1, 2, 3, 4, 5, 6}.683

If we use infosets, then we have JX
(i) = {7− i} for i ∈ {1, 2, 3, 4, 5, 6, 7} (we have to subtract in684

order to label the infosets in a manner that respects the treeplex ordering). If we use children, then685

we have JX
(1) = {4},JX

(2) = {5},JX
(3) = {6},JX

(4) = {1, 2, 3}, and JX
(5) = {0}. If we use686

postorder, then we have JX
(1) = {4, 5, 6}, JX

(2) = {1, 2, 3}, and JX
(3) = {0}.687

Note that in the implementation of our algorithm, it is not actually important that the number of688

blocks for both players are the same; if one player has more blocks than the other, for iterations of689

our algorithm that correspond to block numbers that do not exist for the other player, we just do not690

do anything for the other player. Nevertheless, the output of the algorithm does not change if we691

combine all the blocks for the player with more blocks after the minimum number of blocks between692

the two players is exceeded, into one block. For example, if player 1 has s1 blocks, and player 2693

has s2 blocks, with s1 < s2, we can actually combine blocks s1 + 1, . . . , s2 all into the same block694

for player 2, and this would not change the execution of the algorithm. This is what we do in our695

implementation.696

Additionally, given a choice of a partition of decision points into blocks, there may exist many697

permutations of decision points within the blocks which satisfy the treeplex ordering of the decision698

points. Unless the game that is being tested upon possesses some structure which leads to a single699
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Algorithm 3 Postorder Block Construction

1: procedure POSTORDERHELPER(j, a)
2: accumulator = []
3: for j′ ∈ Cj,a do
4: for a′ ∈ Aj′ do
5: accumulator.insert(postorder(j′, a′))
6: for j′ ∈ Cj,a do
7: accumulator.insert(j′)
8: Return: accumulator
9: procedure POSTORDERBLOCKS(J )

10: ordered = POSTORDERHELPER(∅)
11: blocks = []
12: current_block = []
13: for j ∈ ordered do
14: if ∃j′ ∈ current_block s.t. j′ is a child decision point of j then
15: blocks.insert(current_block)
16: current_block = [j]
17: else
18: current_block.insert(j)
19: return: blocks

Algorithm 4 Children Block Construction

1: procedure CHILDRENBLOCKS(J )
2: blocks = []
3: explore = Cϕ
4: for j ∈ explore do
5: current_block = []
6: for a ∈ Aj do
7: for j′ ∈ Cj,a do
8: current_block.insert(j’)
9: explore.insert(j’)

blocks.insert(current_block)
10: return: blocks.reverse()

canonical ordering of the decision points (which respects the treeplex ordering), an arbitrary decision700

needs to be made regarding what order is used.701

G Experiments702

G.1 Additional Experimental Details703

Block Construction Strategy Comparison In this section, we provide additional plots (Figures 6704

to 14) comparing different block construction strategies for our algorithm, for specific choices of705

regularizer and averaging scheme. Note that for the games for which there is a benefit to using706

blocks (Liar’s Dice and Battleship), the benefit is generally apparent across different regularizers and707

averaging schemes. Furthermore, when there is not a benefit for a particular regularizer and averaging708

scheme, there is no significant cost either (using blocks does not lead to worse performance).709

Block Construction Strategy Comparison with Restarts We repeat a similar analysis as above710

(comparing the block construction strategies holding a regularizer and averaging scheme fixed) but711

this time with the adaptive restarting heuristic applied to our algorithm: the plots can be seen in712

(Figures 15 to 23).713

As discussed in the main body, the trend of the benefit of using blocks being more pronounced714

with restarting (for games for which blocks are beneficial) holds generally even when holding the715

regularizer and averaging scheme fixed. This can be seen by comparing each of the restarted block716
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Figure 6: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated entropy regularizer
and uniform averaging.

Figure 7: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilatable global entropy
regularizer and uniform averaging.

Figure 8: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated ℓ2 regularizer and
uniform averaging.

Figure 9: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated entropy regularizer
and linear averaging.

Figure 10: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilatable global entropy
regularizer and linear averaging.
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Figure 11: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated ℓ2 regularizer and
linear averaging.

Figure 12: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated entropy regularizer
and quadratic averaging.

construction strategy comparison plots with the corresponding non-restarted block construction717

strategy comparison plot.718

Regularizer Comparison In this section (Figures 24 to 26) we compare the performance of719

ECyclicPDA and MP instantiated with different regularizers for each averaging scheme, against the720

performance of CFR+ and PCFR+.721

It is apparent from these plots, that our algorithm generally outperforms MP, holding the averaging722

scheme and regularizer fixed. This can be seen by examining the corresponding figure for a choice of723

averaging scheme, and noting that for any given regularizer, the corresponding MP line is generally724

above the corresponding ECyclicPDA line.725

Regularizer Comparisons with Restarts We repeat a similar analysis in this section (Figures 27726

to 29), instead now comparing the performance of ECyclicPDA and MP instantiated with different727

regularizers for each averaging scheme, against the performance of CFR+ and PCFR+, when all728

methods are restarted. The trend noted above of our method generally beating MP, even holding the729

regularizer and averaging scheme fixed, still holds even when restarting.730

Figure 13: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilatable global entropy
regularizer and quadratic averaging.
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Figure 14: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated ℓ2 regularizer and
quadratic averaging.

Figure 15: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated entropy regularizer
and uniform averaging as well as restarting. We take the best duality gap seen so far so that the plot
is monotonic.

Figure 16: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilatable global entropy
regularizer and uniform averaging as well as restarting. We take the best duality gap seen so far so
that the plot is monotonic.

Figure 17: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated ℓ2 regularizer and
uniform averaging as well as restarting. We take the best duality gap seen so far so that the plot is
monotonic.

Figure 18: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated entropy regularizer
and linear averaging as well as restarting. We take the best duality gap seen so far so that the plot is
monotonic.
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Figure 19: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilatable global entropy
regularizer and linear averaging as well as restarting. We take the best duality gap seen so far so that
the plot is monotonic.

Figure 20: Duality gap as a function of the number of full (or equivalent) gradient computations
for ECyclicPDA with different block construction strategies when using the dilated ℓ2 regularizer
and linear averaging as well as restarting. We take the best duality gap seen so far so that the plot is
monotonic.

Figure 21: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated entropy regularizer
and quadratic averaging as well as restarting. We take the best duality gap seen so far so that the plot
is monotonic.

Figure 22: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilatable global entropy
regularizer and quadratic averaging as well as restarting. We take the best duality gap seen so far so
that the plot is monotonic.

Figure 23: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA with different block construction strategies when using the dilated ℓ2 regularizer and
quadratic averaging as well as restarting. We take the best duality gap seen so far so that the plot is
monotonic.
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Figure 24: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA, MP, CFR+, PCFR+, using a uniform averaging scheme for ECyclicPDA and MP.

Figure 25: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA, MP, CFR+, PCFR+, using a linear averaging scheme for ECyclicPDA and MP.

Figure 26: Duality gap as a function of the number of full (or equivalent) gradient computations for
ECyclicPDA, MP, CFR+, PCFR+, using a quadratic averaging scheme for ECyclicPDA and MP.

Figure 27: Duality gap as a function of the number of full (or equivalent) gradient computations for
when restarting is applied to ECyclicPDA, MP, CFR+, PCFR+, using a uniform averaging scheme
for ECyclicPDA and MP. We take the best duality gap seen so far so that the plot is monotonic.

Figure 28: Duality gap as a function of the number of full (or equivalent) gradient computations for
when restarting is applied to ECyclicPDA, MP, CFR+, PCFR+, using a uniform averaging scheme
for ECyclicPDA and MP. We take the best duality gap seen so far so that the plot is monotonic.

Figure 29: Duality gap as a function of the number of full (or equivalent) gradient computations for
when restarting is applied to ECyclicPDA, MP, CFR+, PCFR+, using a uniform averaging scheme
for ECyclicPDA and MP. We take the best duality gap seen so far so that the plot is monotonic.
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