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Abstract

Diffusion-based image generation models, such as Stable Diffusion or DALL·E 2,
are able to learn from given images and generate high-quality samples following
the guidance from prompts. For instance, they can be used to create artistic images
that mimic the style of an artist based on his/her original artworks or to maliciously
edit the original images for fake content. However, such ability also brings serious
ethical issues without proper authorization from the owner of the original images. In
response, several attempts have been made to protect the original images from such
unauthorized data usage by adding imperceptible perturbations, which are designed
to mislead the diffusion model and make it unable to properly generate new samples.
In this work, we introduce a perturbation purification platform, named IMPRESS,
to evaluate the effectiveness of imperceptible perturbations as a protective measure.
IMPRESS is based on the key observation that imperceptible perturbations could
lead to a perceptible inconsistency between the original image and the diffusion-
reconstructed image, which can be used to devise a new optimization strategy for
purifying the image, which may weaken the protection of the original image from
unauthorized data usage (e.g., style mimicking, malicious editing). The proposed
IMPRESS platform offers a comprehensive evaluation of several contemporary
protection methods, and can be used as an evaluation platform for future protection
methods.

1 Introduction

Diffusion-based image generation models, e.g., Stable Diffusion (Rombach et al., 2022b) and DALL-
E 2 (Ramesh et al., 2022), have gained increasing attention due to their exceptional performance in
synthesizing high-quality samples by leveraging given images. Despite their superior performance,
existing studies (Shan et al., 2023) showed that they could be abused to generate new images without
proper authorization from the original data owner. For instance, they could be used to learn from
the original artworks of a specific artist and generate artistic images that mimic his/her style without
authorization, which may lead to violation of intellectual property or copyrights (Dixit, 2023; Joseph
Saveri Law Firm LLP, 2023; Edwards, 2022). They can also be used to maliciously edit the images
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Figure 1: Examples of imperceptible perturbations that are less effective in preventing unauthorized data usage
after being purified by IMPRESS. Left: Stable diffusion generated images mimicking the style of Claude Monet
using clean images, GLAZE (Shan et al., 2023) protected images, and IMPRESS purified images for model
fine-tuning. Right: images edited by Stable diffusion using the prompt "A person in an airplane" with clean
images, PhotoGuard (Salman et al., 2023) protected images, and IMPRESS purified images as model input.

of celebrities downloaded from the Internet to create disinformation (Pranav Dixit, 2023; Li et al.,
2022a). Those unauthorized data usage without the consent from the original data owner creates
severe ethical concerns and causes profound societal harm (Shan et al., 2023).

To prevent unauthorized data usage, some recent studies (Shan et al., 2023; Salman et al., 2023) pro-
posed to add imperceptible perturbations to images such that the latent diffusion model (LDM) (Rom-
bach et al., 2022b), a state-of-the-art diffusion-based image generation model, is not able to leverage
perturbed images to generate high-quality samples. For instance, PhotoGuard (Salman et al., 2023)
proposed to add imperceptible perturbations to the images such that LDMs cannot generate realistic
images when attempting to edit upon the perturbed image. GLAZE (Shan et al., 2023) proposed to
add imperceptible perturbations to the artworks of an artist such that the LDMs cannot learn from
perturbed images to generate samples that mimic the style of the artist. These works share a common
trait: they all aim to add imperceptible perturbations to the original images to protect them from
being “correctly” processed by the LDMs without proper authorization.

Although those protection methods (Shan et al., 2023; Salman et al., 2023) show some promising
demos on preventing unauthorized data usage, we still lack a systematic understanding of their
robustness and practical performances. For instance, since the perturbations added by those methods
are imperceptible, we could potentially purify a perturbed image to disable its perturbation.

In this work, we aim to bridge the gap by conducting a systematic examination of those protection
methods. We argue that this examination is essential from two aspects. First, the effectiveness of
those protection methods under strong, adaptive perturbation purification is unknown. As a result, the
examination could help users obtain a better understanding on the effectiveness of those protection
methods in different scenarios. Second, the examination could also shed light on the design of new
protection methods. The developed system can also be used as an evaluation platform for testing the
effectiveness of future protection methods.

Our key observation is that the current “successful” imperceptible perturbations usually lead to a
perceptible inconsistency between the original image and the diffusion-reconstructed image (i.e., the
image-to-image output of the LDM without given any prompt), which can be used to devise a new
optimization strategy for purifying the image and disabling the added perturbation. Specifically, we
derive two conditions that the purified image should satisfy: similarity condition and consistency
condition. The similarity condition suggests that the purified image should be visually close to the
perturbed image, and thus visually close to the original image (since the perturbation is imperceptible).
The consistency condition means that the reconstructed image by a LDM for the purified image should
be similar to itself. This condition stems from the observations that the clean image can reconstruct
the original image and satisfy such consistency condition while the perturbed image cannot. We
defer the detailed derivation of those two conditions to Section 4. Given those two conditions,
we respectively design two losses to quantify them, enabling us to formulate the purification of a
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perturbed image as an optimization problem. Finally, we solve the optimization problem and obtain
the purified image. In summary, our contributions are as follows:

• We have explored and analyzed existing protection methods for unauthorized data usage in diffusion
models and pointed out the potential risks. We found that existing methods heavily rely on adding
an imperceptible perturbation. Yet such an imperceptible perturbation usually leads to a perceptible
inconsistency between the original image and the diffusion-reconstructed image.

• Based on the empirical findings, we propose IMPRESS, i.e., IMperceptible Perturbation REmoval
SyStem, a new platform for evaluating the effectiveness of imperceptible perturbations as a
protective measure by purifying a perturbed image with consistency-based losses.

• We also test the effectiveness of adaptive protection designs which also feature our consistency-
based loss upon those existing protection methods. We find that it is difficult to generate effective
imperceptible perturbations through such a simple adaptive design, highlighting the need for more
advanced methods to prevent unauthorized data usage in LDMs.

2 Related Works
Diffusion-based Image Generation Systems. Recently, Diffusion Probabilistic Models (DPMs)
(Ho et al., 2020) have achieved impressive results in the field of image generation (Croitoru et al.,
2023), including applications such as unconditional image generation(Ho et al., 2020; Nichol and
Dhariwal, 2021; Song et al., 2020a), text-to-image synthes (Shi et al., 2022; Rombach et al., 2022a;
Saharia et al., 2022b), image-to-image translation (Wolleb et al., 2022; Li et al., 2022b; Wang et al.,
2022; Zhao et al., 2022; Saharia et al., 2022a), image editing (Avrahami et al., 2022; Meng et al.,
2021), and image inpainting(Lugmayr et al., 2022; Bugeau and Bertalmio, 2009). DPMs typically
employ a U-Net (Ronneberger et al., 2015) architecture as the underlying neural backbone, which
naturally adapts to image-like data (Dhariwal and Nichol, 2021; Ho et al., 2020; Song et al., 2020b;
Ronneberger et al., 2015).

Latent Diffusion Models. In image generation tasks, training and evaluating DPMs in the original
image feature space can lead to low inference speed and high training costs. Recent works have been
trying to address this issue by using advanced sampling strategies (Song et al., 2020a; Kong and
Ping, 2021; San-Roman et al., 2021), hierarchical approaches (Ho et al., 2022; Vahdat et al., 2021),
and feature compression strategy (Rombach et al., 2022b). Among them, latent diffusion model
(Rombach et al., 2022b) employs a pre-trained image encoder and decoder, enabling the DPM to
work in a compressed, low-dimensional latent space, thus reducing the computational cost of training
and accelerating inference speed while maintaining almost the same quality of synthesized images.

Unauthorized Data Usage in Diffusion Models. The powerful image generation and editing
capabilities of AI have also raised ethical concerns, including malicious image editing (Goodfellow
et al., 2014; Mirza and Osindero, 2014; Salimans et al., 2016; Isola et al., 2017; Zhu et al., 2017;
Zhang et al., 2017; Karras et al., 2018; Brock et al., 2019; Karras et al., 2019; Rombach et al., 2022b;
Ramesh et al., 2022) or training image generation models using unauthorized images from artists and
mimicking their styles (Shan et al., 2023). Some works have attempted to address this issue, such as
removing certain knowledge from models (Gandikota et al., 2023) or making images unlearnable
or uneditable (Huang et al., 2021; Fu et al., 2021; Shan et al., 2023; Salman et al., 2023). However,
other studies argue that such imperceptible perturbations are fragile (Radiya-Dixit et al., 2021b).

3 Preliminaries

We briefly introduce the preliminaries on Latent Diffusion Models (Rombach et al., 2022b) and
existing protection methods (Salman et al., 2023; Shan et al., 2023).

Latent Diffusion Models (LDMs). Latent diffusion model (Rombach et al., 2022b) aims to train the
diffusion model on a lower-dimensional latent space to generate high-quality samples while saving
computation costs. Moreover, it can utilize additional information, such as text, to guide the generation
process, enabling it to generate or edit images with guidance from a prompt (e.g., a text). Given an
image x, LDM first uses an image encoder E to embed it into a latent representation, i.e., z = E(x)
and then perform T forward diffusion steps by progressively adding Gaussian noise ϵ ∼ N (0, I),
to the latent space. For simplicity, we use z1, z2, · · · , zT to denote latent representations at each
forward diffusion step. Suppose we have a prompt y (e.g., a certain text phrase), a feature extractor τθ

3



and we denote the embedding of y as τθ(y). The goal of the LDM is to train a conditional denoising
network ϵθ, e.g., a UNet (Ronneberger et al., 2015), to model the conditional distribution p(z|y)
by gradually recovering z from zT based on τθ(y). Suppose ϵθ(zt, t, τθ(y)) is the Gaussian noise
estimated in the t-th step. We can train ϵθ based on the following loss:

LLDM := EE(x),y,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t, τθ(y))∥22

]
. (3.1)

Suppose z̃ is the latent representation obtained after T denoising steps. We can use an image decoder
D to obtain the generated image x̃ based on z̃, i.e., x̃ = D(z̃). For simplicity, we denote the end-to-
end framework to obtain x̃ based on x and y as x̃ = fLDM(x; y). Given a prompt, LDMs can be used
to generate a sample or edit an image. Note that when there is no prompt y, the LDM reconstructs its
input image x, i.e., x would be very similar to fLDM(x).

PhotoGuard. PhotoGuard (Salman et al., 2023) proposes to add carefully crafted perturbations to
an image before making it publicly available (e.g., uploading it to the Internet) to raise the cost of
malicious image editing. When using LDMs to edit the perturbed images, the output is usually less
realistic. Specifically, PhotoGuard proposes two approaches: encoder attack and diffusion attack.

The goal of the encoder attack is to add a perturbation δenc to an image x such that the image encoder
E produces similar outputs for x+ δenc and a target image xtarget (e.g., a pure gray image or random
noise). Formally, δenc can be obtained by solving the following optimization problem:

δenc = argmin
||δ||∞≤∆

∥E(x+ δ)− E(xtarget)∥22 , (3.2)

where ∆ is the L∞ norm perturbation budget. The noise added to the image could be imperceptible
to human eyes when ∆ is small. Thus when LDMs are used to edit x + δenc, the resulting output
would be similar to the target image instead. The diffusion attack, on the other hand, is more direct
and aims to craft a perturbation δdiff such that the output of the LDM is similar to xtarget:

δdiff = argmin
||δ||∞≤∆

∥fLDM(x+ δ)− xtarget∥22 . (3.3)

Compared to the encoder attack which only targets the image encoder, the diffusion attack considers
the whole LDM model with prompts, achieving better empirical performance but is less efficient.

GLAZE. GLAZE (Shan et al., 2023) aims to add perturbations to the artworks of an artist such that
LDMs cannot learn the correct style of the artist from perturbed artworks. Given an image x, GLAZE
first chooses a target style T that is sufficiently different from the style of x. Then, GLAZE transfers
x to the target style T using a pre-trained style transfer model Ω. For simplicity, we use Ω(x, T ) to
denote the style-transferred image. Given Ω(x, T ), GLAZE crafts the perturbation δGLAZE by solving
the following optimization problem:

δGLAZE = min
δ
∥E(Ω(x, T )), E(x+ δ)∥22 + λ ·max (LPIPS (x,x+ δ)−∆L, 0) , (3.4)

where LPIPS (Learned Perceptual Image Patch Similarity) (Zhang et al., 2018) measures user-
perceived image distortion, ∆L is the perturbation budget, and λ is a hyper-parameter adjusting the
strength of the LPIPS regularization term. Roughly speaking, GLAZE aims to perturb images (e.g.,
artworks of an artist) such that a LDM generates samples with the target style instead of the original
style when learning from the perturbed images.

4 Proposed Method

In this section, we formally study the potential vulnerabilities in existing protection methods and
discuss our proposed method to disable perturbations added by those methods.

4.1 Analyzing Potential Vulnerabilities of Existing Methods

We notice that existing protection methods (e.g., PhotoGuard and GLAZE) all aim to add impercepti-
ble perturbations such that LDMs cannot “correctly” learn or process the perturbed image for style
mimicking or malicious editing. While such perturbations certainly raise the cost of unauthorized data
usage, it is not flawless. Specifically, one special use case of LDM is to let it reconstruct the image,
i.e., let an image x run through the entire LDM (encoder, forward diffusion, backward diffusion,
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Figure 2: Examples of inconsistencies observed when using LDMs to reconstruct the protected
images. Left: the diffusion-reconstructed clean image looks similar to the original image; Right:
images protected by GLAZE (Shan et al., 2023) leads to noticeable inconsistency after reconstruction.

decoder) without any prompt. In such a case, the output of the LDM (denoted by fLDM(x)) should be
close to the original input x. However, since the imperceptible perturbations are able to deceive the
LDMs (to believe that the image is from another style or that the image’s latent embedding is close to
a target image), its reconstruction result fLDM(xptb) may no longer be close to the perturbed input
xptb. Rather, it could become similar to a target image or target style instead.

Figure 2 shows an example painting by Claude Monet and its protected version by GLAZE (Shan
et al., 2023). When using LDMs to reconstruct the two images respectively, we can observe that the
protected image leads to noticeable inconsistency after reconstruction while the clean image stays
roughly the same. In other words, the reconstructed version of the perturbed image is no longer close
to itself, rather, it is more close to the targeted style (e.g., Cubism by Picasso). By contrast, a clean
image and its reconstructed version do not have such inconsistency. This inspires us to leverage the
inconsistency to purify the perturbed image to disable such imperceptible perturbations.

4.2 Our Proposed Method

Based on our previous empirical findings, given a perturbed image xptb created by existing protection
methods via imperceptible perturbations, we aim to purify the perturbed image to disable its perturba-
tion. We first derive the two conditions that the purified image xpur should satisfy, then formulate
IMPRESS, i.e., IMperceptible Perturbation REmoval SyStem, as an optimization problem based on
those two conditions and provide our solution to solve it, and finally show our complete algorithm.

Two conditions for purified image. The purified image xpur should satisfy two conditions: similarity
condition and consistency condition. Next, we respectively derive them.

1. Similarity condition. Our ultimate goal is to make sure the purified image xpur stays visually
close to the original image x, i.e., xpur ≈ x. Recall that existing methods (Salman et al., 2023;
Shan et al., 2023) aim to add an imperceptible perturbation to a given image x to craft a perturbed
image xptb (see Section 3 for details). Therefore, the perturbed image xptb is already close to the
original image x. Based on this observation, since we only have access to the perturbed image
xptb, requiring the purified image xpur to stay visually close to the perturbed image xptb would
be sufficient to guarantee xpur ≈ x. This leads to similarity condition.

2. Consistency condition. As our goal is to find a purified image xpur close to the original image
x, xpur should share some similar traits as x. Our observation in Section 4.1 suggests that a
clean image can stay roughly the same after diffusion-reconstruction while the perturbed image
cannot. Therefore, to make xpur close to x, we also require the purified image xpur to be able to
reconstruct itself using LDMs, i.e., xpur ≈ fLDM(xpur). This leads to consistency condition.

Formulating IMPRESS as an optimization problem. Our key idea is to define two losses that
respectively quantify the similarity condition and consistency condition.

1. Quantifying similarity condition. Our similarity condition means that xpur would be visually
close to xptb. Following previous studies (Shan et al., 2023), we use LPIPS (Learned Perceptual
Image Patch Similarity) (Zhang et al., 2018) to quantify the visual difference between xpur and
xptb. Formally, we have the loss max(LPIPS(xpur,xptb)−∆L, 0), where ∆L is the perceptual
perturbation budget. We note that LPIPS is widely adopted in various fields (Cherepanova et al.,
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Figure 3: A sketch of our method consists of two losses: the similarity loss and the consistency loss.
The similarity loss requires the purified image xpur to stay close to xptb while the consistency loss
requires the encoder/decoder reconstructed image to stay close xpur itself.

2021; Laidlaw et al., 2020; Rony et al., 2021) as it provides a measure of human-perceived
image distortion. Compared to ℓp-norm constraint, LPIPS offers more flexible constraint ranges.
If the modified image still appears similar to the original image from a human perspective, it
allows for larger changes in certain parts of the image, which aligns with our goal of preserving
as much semantic information from xptb as possible.

2. Quantifying consistency condition. Our consistency condition implies that xpur ≈ fLDM(xpur).
Intuitively, we can define the consistency loss as ||xpur − fLDM (xpur) ||22. However, it is very
challenging to directly optimize this loss as it involves the complicated diffusion process (i.e.,
gradually adding and removing Gaussian noise). To address the challenge, we simplify the loss
by removing the diffusion process in it. In particular, we define the loss ||xpur −D(E(xpur))||22
to quantify the consistency condition, where E and D are the image encoder and decoder in the
LDM. Note that ||xpur −D(E(xpur))||22 can approximate ||xpur − fLDM (xpur) ||22 as the goal of
the diffusion process (without any prompt) is to reconstruct latent representation. Moreover,
such approximation enables us to solve the optimization problem efficiently.

Combining the above two losses together, our final optimization problem is as follows:

min
xpur
||xpur −D(E(xpur))||22︸ ︷︷ ︸

consistency loss

+α ·max(LPIPS(xpur,xptb)−∆L, 0)︸ ︷︷ ︸
similarity loss

, (4.1)

where α is a hyper-parameter to balance the two losses. Given a perturbed image xptb, the solution to
the optimization problem in Eq. (4.1) is the purified image xpur. We use projected gradient descent to
solve the optimization problem efficiently. In practice, we initialize xpur by xptb plus an extra small
Gaussian perturbation similar as in Madry et al. (2018). A summary of our proposed method is shown
in Algorithm 1 in the Appendix.

5 Experiments

In this section, we conduct comprehensive experiments to demonstrate the effectiveness of the
proposed method and verify its capability to disable imperceptible perturbations introduced by
existing protection methods. Specifically, we evaluate against two protection methods on the specific
tasks for which these methods were proposed: style mimicking and malicious editing of images.

5.1 Experimental Settings

Style Mimicking We conduct all the style mimicking experiments on the WikiArt dataset (Saleh
and Elgammal, 2015). For GLAZE1 (Shan et al., 2023), we essentially followed the settings of the

1Experiments reproduced based on the 3rd version of the GLAZE paper on Arxiv (11 Apr 2023).
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original paper and reproduced the code: given a victim artist V , we randomly select 124 of their
works. We use ViT+GPT2 model to generate a title for each artwork and attach the victim artist
V ’s name to the generated title as our prompt y. Next, we randomly draw 24 works from these 124
art pieces as the style imitation training set, and the remaining 100 as the test set. We fine-tune a
pre-trained LDM on the training set, and then generate new artworks mimicking the style of the
victim artist by the prompt y.

Malicious Editing of Images For malicious editing of images, we utilize the code and settings
made public by Photoguard (Salman et al., 2023). The purpose of malicious editing is to modify
the background of a photo following the given malicious prompt. We conduct our experiments
on the Helen (Le et al., 2012) dataset for this task. We selected the 80 images with the smallest
face-to-image ratio from the Helen dataset and their corresponding face masks. Subsequently, we use
Photoguard to generate protective noise for these images. Then, we attempt to modify the images
using a latent diffusion model. We generate noise using the most powerful Diffusion attack-L2 method
in Photoguard.

Baselines To show the effectiveness of IMPRESS is obtained through our consistency-based loss
design, we also consider three other simple post-processing baselines: JPEG compression of the
image, adding Gaussian noise to the image, and resizing the image. For JPEG compression, we set
the quality factor as 15%. For adding Gaussian noise, we set the mean as 0 and the variance as 0.15.
For the image resizing method, we first resize the 512× 512 image to 256× 256, then resize it back
to 512× 512.

5.2 Experimental Results on Style Mimicking

Table 1: Comparison of style mimicking performances when using fine-tuning data from clean
images, GLAZE-protected images and post-processed protected images by our method and baselines.
A higher accuracy suggests that the generated image style is close to the artist to be mimicked.

Metric Clean Protected Post-processed
JPG Noise Resize Ours

CLIP classifier Acc 90.8 ± 3.2 42.5 ± 8.3 64.9 ± 7.6 47.9 ± 7.0 66.6 ± 3.4 87.0 ± 6.7
Diffusion classifier Acc 95.4 ± 3.1 42.9 ± 9.5 67.6 ± 9.0 40.9 ± 9.8 68.0 ± 9.5 82.3 ± 8.3

In Table 1, we present the experimental results for the task of Style Mimicking. To conduct the
experiment, we fine-tune the pre-trained LDMs using clean data, GLAZE (Shan et al., 2023) protected
data, and the post-processed data by our method as well as other baselines. We then use those fine-
tuned models to generate new images mimicking the style of a certain artist and evaluate whether the
generated image can successfully mimic the style of the artist. We consider two metrics for evaluating
the generated image styles by constructing two image style classifier:

1. the CLIP classifier accuracy. Following the GLAZE paper (Shan et al., 2023), we use the
pre-trained CLIP model (Radford et al., 2021) to build a style classier to measure whether the
generated images belong to the genre of victim artist V . We treat the genre classification provided
in the WikiArt dataset as the ground truth label, and use the intersection of the 27 historical genres
and 13 digital genres from WikiArt, as candidate labels for the CLIP model.

2. the Diffusion classifier accuracy. We consider another classifier that builds directly upon
diffusion models. The Diffusion Classifier (Li et al., 2023) is a Zero-Shot image classification
method, which uses conditional density estimates of images in pre-trained Diffusion models to
construct Zero-Shot image classifiers. In our experiments, we used the same set of candidate
labels (39 art genres) to build a diffusion classifier for style classification.

For each generated image, we use both the CLIP classifier and Diffusion classifier to evaluate whether
the style mimicking succeeds (whether the victim artist V ’s style falls into the top-3 classification
results). Typically, all protection methods aim to lower the classifier accuracy as much as possible to
prevent style mimicking from happening if the data usage is unauthorized. As can be seen from Table
1, the images generated using clean data samples achieve an average accuracy of 90.8% on the CLIP
classifier and 95.4% on the Diffusion classifier. While the generated images using the protected data
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Protected Image Purified ImageClean Image Protected Image Purified ImageClean Image

Task: Style Mimicking 
Image Protect Method: GLAZE

Task: Image Editing
Image Protect Method: Photoguard

Figure 4: The experimental results of IMPRESS. Left: 4 groups of samples in Style Mimicking, each
group of samples is generated by Stable diffusion when using clean images, GLAZE (Shan et al.,
2023) protected images, and our IMPRESS purified images for model fine-tuning. Right: 4 groups
of samples in Malicious Editing of Images, each group of samples is obtained by editing the clean
image, PhotoGuard (Salman et al., 2023) protected image, and our IMPRESS purified image.

samples certainly lower the accuracy to ∼ 42%, after our purified process, the generated images can
again achieve an average accuracy of 87.0% and 82.3% on the CLIP classifier and Diffusion classifier
respectively, close to the case of clean data samples. By contrast, all the other post-processing
baselines only achieved limited improved accuracy, clearly outperformed by our IMPRESS method.
We also present some sample results in Figure 4. From Figure 4 (left), we can clearly observe that
although the GLAZE method can successfully mislead the LDM when directly used, after using
IMPRESS to purify the protected image, we can still exploit the remaining information.

5.3 Experimental Results on Malicious Editing

Table 2: Comparison of malicious editing performances with input data from clean images,
Photoguard-protected images and post-processed protected images by our method and baselines. The
higher score indicates better alignment with the clean images.

Metric Protected Post-processed
JPG Noise Resize Ours

SSIM 0.41 ± 0.06 0.52 ± 0.07 0.18 ± 0.05 0.49 ± 0.08 0.49 ± 0.08
PSNR 14.24 ± 1.57 15.51 ± 1.69 11.06 ± 0.94 14.94 ± 1.59 15.61 ± 2.03
VIF-p 0.11 ± 0.03 0.15 ± 0.04 0.06 ± 0.02 0.14 ± 0.05 0.16 ± 0.04

For the Malicious Editing of Images task, we use a pre-trained LDM to edit images following the
guidance of certain prompts. Again we consider input images from clean images, images protected
by Photoguard (Salman et al., 2023), and the post-processed images by our method as well as other
baselines. We followed the same settings as in the Photoguard paper (Salman et al., 2023), using
SSIM (Wang et al., 2004), PSNR, and VIF-p (Sheikh and Bovik, 2006) as image similarity algorithms
to measure the fidelity of the generated images. We calculate similarity scores between the edited
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Figure 5: Comparison of different post-processing methods on style mimicking and image editing
tasks.

clean images and the edited protected images, as well as the post-processed images. Higher scores
indicate results that are closer to the edited clean images.

According to Table 2, our proposed IMPRESS method achieved the best performance on the PSNR
and VIF-p metrics, scoring 15.61 and 0.16, respectively, suggesting the edited images are still close to
true images. We also obtained a score of 0.49 on the SSIM metric, which is the second-highest score.
Note that in malicious editing, even simple image transformation methods can achieve relatively
good results on those comparison-based metrics, which has also been pointed out in Salman et al.
(2023) and Sandoval-Segura et al. (2023). This phenomenon confirms our point of view: existing
image protection technologies are fragile. In Figure 4 (right), we show some real examples that while
directing applying PhotoGuard can certainly cause the edited images less realistic, after being purified
by our IMPRESS, the malicious editing would still go smoothly with no obvious artifact affecting
the image fidelity.

In Figure 5, we also show some comparison with other post-processing baselines on both style
mimicking and image editing. We can observe that IMPRESS largely outperforms other baselines for
style mimicking while on image editing, all baselines can achieve decent performances in removing
the perturbations. This is also consistent with our previous quantitative results, suggesting the
imperceptible perturbations on the image editing task is significantly more fragile.

5.4 Adaptive Image Protection with Consistency-based Losses

In this section, we explore whether it is possible to leverage our consistency-based losses for building
even better protection methods that could survive our IMPRESS method and successfully prevent
unauthorized data usage in diffusion models. Specifically, since we know that keeping x as consistent
as possible with D(E(x)) is important, we add this regularization term to the optimization function
of the existing protection method design. Take GLAZE as an example and we have the following
optimization problem:

min
δ
∥E(Ω(x, T )), E(x+ δ)∥22+λ·max (LPIPS (x,x+ δ)−∆L, 0)+β·||(x+δ)−D(E(x+δ))||22,

The coefficient of the added consistency regularization term is denoted as β. A meticulous tuning
of the weight of the adaptive loss term has been carried out, as demonstrated in Table 3. We have
modulated the weight of the adaptive loss term extensively, allowing it to comprise approximately
10% to 95% of the total loss. Our observations reveal that a minuscule proportion of the adaptive loss
term in the entire loss leads the experimental results to mirror those of conventional image protection
techniques, whereas an excessive proportion adversely impacts the performance of image protection.

The most pronounced effect of the adaptive protection technology is observable when β = 40, and
we show the experimental results in Table 4 and 5 based on that. However, even under this condition,
IMPRESS manages to attain around 80% accuracy by successfully mitigating the adaptive protective
noise. Our experiments indicate that the adaptive design does not genuinely offer robust protection,
since IMPRESS can still adeptly eliminate the protective noise, allowing the successful execution
of style mimicking tasks, it is conjectured that attaining an optimal equilibrium among the three
objective terms may pose a significant challenge.

To enhance the balance of competing objectives, we have incorporated the Orthogonal Projected
Gradient Descent (O-PGD) approach by Gowal et al. (2020) into our methodology, as delineated
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Table 3: CLIP classifier Acc for different weight of the adaptive loss term on style mimicking tasks

Training data β = 1 β = 10 β = 40 β = 100 β = 1000

Protected 42.5 41.0 40.8 47.1 77.1
IMPRESS 85.6 84.6 81.9 85.7 82.1

Table 4: Experimental Results of Adaptive Protection on Style Mimicking Tasks

Metric Clean Protect Without Adapt With Adapt
Protected Purified Protected Purified

CLIP classifier Acc 90.8 ± 3.2 42.5 ± 8.3 87.0 ± 6.7 40.8 ± 9.1 81.9 ± 5.5
Diffusion classifier Acc 95.4 ± 3.1 42.9 ± 9.5 82.3 ± 8.3 44.1 ± 9.3 84.0 ± 6.6

Table 5: Experimental Results of Adaptive Protection on Malicious Editing Tasks

Metric
Protect Without Adapt With Adapt

Protected Purified Protected Purified

SSIM 0.41 ± 0.06 0.49 ± 0.08 0.42 ± 0.04 0.52 ± 0.05
PSNR 14.24 ± 1.57 15.61 ± 2.03 14.54 ± 1.74 15.90 ± 1.23
VIF-p 0.11 ± 0.03 0.16 ± 0.04 0.14 ± 0.04 0.16 ± 0.03

Table 6: Experimental results of adaptive defense after using O-pgd. In parentheses are the results of
the adaptive defense experiments reported in the paper (without the use of O-pgd)

Metric Clean
Protect Without Adapt With O-pgd Adapt
Protected Purified Protected Purified

CLIP classifier Acc 90.8 42.5 87.0 48.0 (40.8) 83.9 (81.9)
Diffusion classifier Acc 95.4 42.9 82.3 47.8 (44.1) 84.(84.0)

in Table 6 in the pdf. However, it’s discernible that the utilization of O-PGD doesn’t substantially
bolster the efficacy of the adaptive method.

Based on our experimental observations, we hypothesize that the subpar performance of the adaptive
method stems primarily from two intertwined complexities:1) The introduced supplementary loss
term complicates the optimization of the loss function. For GLAZE method, the loss function of
the adaptive method has three components. Optimizing three different loss components is typically
challenging, and striking a balance among these components remains an intricate task. 2) The loss
term employed for the adaptive method might clash with the inherent loss term of image protection
techniques. The purpose of image protection technologies is to induce semantical differences between
generated images and original ones. Our image purification approach aims to make the image
maintains its semantic properties (consistency after reconstruction), potentially leading to underlying
optimization conflicts. These results suggest that designing adaptive image protection techniques
specifically for IMPRESS might inherently be challenging.

6 Conclusion

In this work, proposed IMPRESS, a unified platform to evaluate the effectiveness of imperceptible
perturbations as a protective measure. We demonstrated that it is difficult for the current imperceptible
perturbations-based protection methods to prevent certain images from being correctly learned or
processed by diffusion models as those imperceptible perturbations could be potentially removed
with consistency-based losses. The proposed IMPRESS platform offers a comprehensive evaluation
on several contemporary protection methods and can be used as an evaluation platform for future
protection methods.

10



References

Omri Avrahami, Ohad Fried, and Dani Lischinski. 2022. Blended latent diffusion. arXiv preprint
arXiv:2206.02779 (2022).

Andrew Brock, Jeff Donahue, and Karen Simonyan. 2019. Large Scale GAN Training for High Fi-
delity Natural Image Synthesis. In International Conference on Learning Representations (ICLR).

Aurélie Bugeau and Marcelo Bertalmio. 2009. Combining Texture Synthesis and Diffusion for Image
Inpainting.. In VISAPP 2009-Proceedings of the Fourth International Conference on Computer
Vision Theory and Applications. 26–33.

Valeriia Cherepanova, Micah Goldblum, Harrison Foley, Shiyuan Duan, John Dickerson, Gavin
Taylor, and Tom Goldstein. 2021. Lowkey: Leveraging adversarial attacks to protect social media
users from facial recognition. arXiv preprint arXiv:2101.07922 (2021).

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. 2023. Diffusion
models in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2023).

Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems 34 (2021), 8780–8794.

Pranav Dixit. 2023. Meet The Three Artists Behind A Landmark Lawsuit Against AI Art Generators.
BuzzFeedNews.

Benj Edwards. 2022. Artists stage mass protest against AI-generated artwork on ArtStation. Ars
Technica.

Shaopeng Fu, Fengxiang He, Yang Liu, Li Shen, and Dacheng Tao. 2021. Robust unlearnable
examples: Protecting data privacy against adversarial learning. In International Conference on
Learning Representations.

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. 2023. Erasing
Concepts from Diffusion Models. arXiv preprint arXiv:2303.07345 (2023).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In neural information
processing systems (NeurIPS).

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. 2020. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593 (2020).

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems 33 (2020), 6840–6851.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
2022. Cascaded Diffusion Models for High Fidelity Image Generation. J. Mach. Learn. Res. 23,
47 (2022), 1–33.

Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. 2021. Unlearn-
able Examples: Making Personal Data Unexploitable. In ICLR.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image translation
with conditional adversarial networks. In conference on computer vision and pattern recognition
(CVPR).

Joseph Saveri Law Firm LLP. 2023. Class Action Filed Against Stability AI, Mid-
journey, and DeviantArt for DMCA Violations, Right of Publicity Violations, Un-
lawful Competition, Breach of TOS. https://cybernews.com/news/
artists-unite-in-legal-battle-against-ai/.

11

https://cybernews.com/news/artists-unite-in-legal-battle-against-ai/
https://cybernews.com/news/artists-unite-in-legal-battle-against-ai/


Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive Growing of GANs
for Improved Quality, Stability, and Variation. In International Conference on Learning Represen-
tations.

Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 4401–4410.

Zhifeng Kong and Wei Ping. 2021. On fast sampling of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132 (2021).

Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. 2020. Perceptual adversarial robustness: Defense
against unseen threat models. arXiv preprint arXiv:2006.12655 (2020).

Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Bourdev, and Thomas S Huang. 2012. Interactive facial
feature localization. In Computer Vision–ECCV 2012: 12th European Conference on Computer
Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part III 12. Springer, 679–692.

Alexander C. Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. 2023. Your
Diffusion Model is Secretly a Zero-Shot Classifier. arXiv:2303.16203 [cs.LG]

Bo Li, Kaitao Xue, Bin Liu, and Yu-Kun Lai. 2022b. VQBB: Image-to-image Translation with Vector
Quantized Brownian Bridge. arXiv preprint arXiv:2205.07680 (2022).

Changjiang Li, Li Wang, Shouling Ji, Xuhong Zhang, Zhaohan Xi, Shanqing Guo, and Ting Wang.
2022a. Seeing is living? rethinking the security of facial liveness verification in the deepfake era.
In 31st USENIX Security Symposium (USENIX Security 22). 2673–2690.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
2022. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11461–11471.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations (ICLR).

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
2021. Sdedit: Guided image synthesis and editing with stochastic differential equations. In
International Conference on Learning Representations.

Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014).

Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning. PMLR, 8162–8171.

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar. 2022.
Diffusion models for adversarial purification. arXiv preprint arXiv:2205.07460 (2022).

Pranav Dixit. 2023. Don’t Be Fooled By AI-Generated Donald Trump
Fakes. https://www.buzzfeednews.com/article/pranavdixit/
beware-ai-generated-donald-trump-fakes-today.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable
visual models from natural language supervision. In International conference on machine learning.
PMLR, 8748–8763.

Evani Radiya-Dixit, Sanghyun Hong, Nicholas Carlini, and Florian Tramèr. 2021a. Data poisoning
won’t save you from facial recognition. arXiv preprint arXiv:2106.14851 (2021).

Evani Radiya-Dixit, Sanghyun Hong, Nicholas Carlini, and Florian Tramèr. 2021b. Data Poisoning
Won’t Save You From Facial Recognition. arXiv.

12

https://www.buzzfeednews.com/article/pranavdixit/beware-ai-generated-donald-trump-fakes-today
https://www.buzzfeednews.com/article/pranavdixit/beware-ai-generated-donald-trump-fakes-today


Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022).

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022b.
High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 10684–10695.

Robin Rombach, Andreas Blattmann, and Björn Ommer. 2022a. Text-guided synthesis of artistic
images with retrieval-augmented diffusion models. arXiv preprint arXiv:2207.13038 (2022).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18. Springer, 234–241.

Jérôme Rony, Eric Granger, Marco Pedersoli, and Ismail Ben Ayed. 2021. Augmented Lagrangian
adversarial attacks. In Proc. of ICCV. 7738–7747.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. 2022a. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 Conference Proceedings. 1–10.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. 2022b. Photo-
realistic text-to-image diffusion models with deep language understanding. Advances in Neural
Information Processing Systems 35 (2022), 36479–36494.

Babak Saleh and Ahmed Elgammal. 2015. Large-scale classification of fine-art paintings: Learning
the right metric on the right feature. arXiv preprint arXiv:1505.00855 (2015).

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. In neural information processing systems (NeurIPS).

Hadi Salman, Alaa Khaddaj, Guillaume Leclerc, Andrew Ilyas, and Aleksander Madry. 2023. Raising
the Cost of Malicious AI-Powered Image Editing. arXiv preprint arXiv:2302.06588 (2023).

Robin San-Roman, Eliya Nachmani, and Lior Wolf. 2021. Noise estimation for generative diffusion
models. arXiv preprint arXiv:2104.02600 (2021).

Pedro Sandoval-Segura, Jonas Geiping, and Tom Goldstein. 2023. JPEG Compressed Images Can
Bypass Protections Against AI Editing. arXiv preprint arXiv:2304.02234 (2023).

Shawn Shan, Jenna Cryan, Emily Wenger, Haitao Zheng, Rana Hanocka, and Ben Y Zhao. 2023.
GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models. arXiv preprint
arXiv:2302.04222 (2023).

Hamid R Sheikh and Alan C Bovik. 2006. Image information and visual quality. IEEE Transactions
on image processing 15, 2 (2006), 430–444.

Jie Shi, Chenfei Wu, Jian Liang, Xiang Liu, and Nan Duan. 2022. Divae: Photorealistic images
synthesis with denoising diffusion decoder. arXiv preprint arXiv:2206.00386 (2022).

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020a. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502 (2020).

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. 2020b. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456 (2020).

Arash Vahdat, Karsten Kreis, and Jan Kautz. 2021. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems 34 (2021), 11287–11302.

Tengfei Wang, Ting Zhang, Bo Zhang, Hao Ouyang, Dong Chen, Qifeng Chen, and Fang Wen.
2022. Pretraining is all you need for image-to-image translation. arXiv preprint arXiv:2205.12952
(2022).

13



Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing 13, 4 (2004),
600–612.

Julia Wolleb, Robin Sandkühler, Florentin Bieder, and Philippe C Cattin. 2022. The swiss army knife
for image-to-image translation: Multi-task diffusion models. arXiv preprint arXiv:2204.02641
(2022).

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dim-
itris N Metaxas. 2017. Stackgan: Text to photo-realistic image synthesis with stacked generative
adversarial networks. In Proceedings of the IEEE international conference on computer vision.
5907–5915.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Computer Vision and Pattern
Recognition (CVPR).

Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. 2022. Egsde: Unpaired image-to-image translation
via energy-guided stochastic differential equations. arXiv preprint arXiv:2207.06635 (2022).

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In international conference on computer
vision(ICCV).

14



A Algorithm of IMPRESS

The following outlines the algorithmic process of our proposed IMPRESS method for the removal of
protective noise.

Algorithm 1 IMPRESS

Input: Image encoder E , image decoder D; hyperparameters α,η, ∆L.

1: Initialize xpur = xptb +N (µ, σ2I)
2: for iter = 1, 2, · · · , N do
3: Lsim = ||xpur −D(E(xpur))||22
4: Llpips = max(LPIPS(xpur,xptb)−∆L, 0)
5: L = Lsim + αLlpips
6: xpur ← xpur − η∇xL
7: xpur = Clip(xpur,min = −1,max = 1)
8: end for
9: Return xpur

B Detail of Experiment

In this section, we have provided a detailed introduction to our experimental setup. The random
seed for all experiments is set to 0, and our experiment code is publicly available in https:
//github.com/AAAAAAsuka/Impress.

Style Mimicking Since we do not have access to unreleased artworks, we conduct all the style
mimicking experiments on the WikiArt dataset (Saleh and Elgammal, 2015). The WikiArt dataset
contains paintings from 195 famous artists throughout history. The dataset consists of 42,129 training
images and 10,628 testing images. WikiArt categorizes all artists into 27 different genres (e.g.,
Impressionism, Cubism). we remove artists from the WikiArt dataset that the CLIP model cannot
accurately classify (classification accuracy less than 80%). Then, we select nine artists with the most
artworks among the remaining artists, eight of which are used for testing the model’s performance,
and the remaining artist serves as the validation set for adjusting hyperparameters.

For GLAZE (Shan et al., 2023), we basically follow the original paper’s setting: given a victim
artist V , we randomly select 124 of their works. Then, we use the ViT+GPT2 model to generate
a title for each work and attach the victim artist V ’s name to the generated title as the prompt y.
Next, we randomly draw 24 works from these 124 art pieces as the style imitation training set, and
the remaining 100 as the test set. Afterward, we use the stable-diffusion-2-1-base model released
on Hugging Face as the initial pre-trained model weights and fine-tune it on the training set. After
obtaining the fine-tuned LDM, we generate imitation works in the style of the victim artist using the
prompts from the training set. Finally, we selected 8 artists and randomly extracted 24 pieces for
fine-tuning the diffusion model and 100 pieces for validation, totaling 800 evaluation samples.

For fine-tuning the diffusion model, we use the fine-tuning script released with the model, training for
500 steps on the training set with a learning rate of 5× 10−6. For GLAZE, we choose a perturbation
budget of p = 0.05, regularization coefficient α = 30, and train for 500 steps using the Adam
optimizer with a learning rate of 10−2. For our method, we set the perturbation budget to p = 0.1,
regularization coefficient α = 0.1, and train for 3,000 steps using the Adam optimizer with a learning
rate of 10−2.

Malicious Editing of Images We use the Helen (Le et al., 2012) dataset for the experiments in the
Malicious Editing of Images task. Helen is an annotated facial image dataset, consisting of 2,330
images sourced from Flickr. The annotations include facial landmarks and masks of facial features
such as eyes, nose, etc. The dataset also includes masks for the entire face.

For malicious editing of images, We utilize the code and settings made public by Photoguard(Salman
et al., 2023) for image protection. The purpose of the Malicious Editing of Images task is to modify
the background of a photo. Hence, we selected the 80 images with the smallest face-to-image ratio
from the Helen dataset and their corresponding face masks (the sample size of Photoguard experiment
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is 60). Subsequently, we use Photoguard to generate protective noise for these images. Then, we
attempt to modify the images using a diffusion model with the prompt "A person in an airplane".

We generate noise using the most powerful Diffusion attack-L2 method in Photoguard, and all
hyperparameters adhere to the settings in the open-source code. We use the runwayml/stable-
diffusion-inpainting model released on Hugging Face to modify images, with a guidance strength of
7.5 and 100 diffusion steps.For our method, we set the perturbation budget to p = 0.1, regularization
coefficient α = 10−2, and train for 1,000 steps using the Adam optimizer with a learning rate of
5× 10−3.

C More Experimental Results
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D Ablation Study
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Figure 7: Ablation Study of Style Mimicking
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Figure 8: Ablation Study of Malicious Editing of Images

In this section, we analyze the effects of two hyperparameters in our method: α and ∆L. Among
them, α is the balance weight in the entire optimization objective of Impress, and ∆L is the threshold
of the LPIPS regularization term. Here, we use the CLIP evaluation indicator in the Style Mimicking
task and the PSNR indicator in the Malicious Editing of Images task to evaluate the impact of
hyperparameters. The evaluation results are shown in Figure 7 and Figure 8. For the threshold ∆L

of the LPIPS regularization term, by observing Figure 7(a) and Figure 8(a), we can see that when
∆L is too large, the LPIPS term loses its constraining effect. This may cause the purification process
to make excessive modifications to the original image, thereby destroying the semantic information
such as style/content in the original image, resulting in poor performance. When ∆L is too small, the
LPIPS regularization term dominates the optimization process. This causes the purified image to be
too similar to the protected image, retaining some protective noise, thereby affecting performance.
Similarly, by observing Figure 7(b) and Figure 8(b), we can find: 1) When the balance weight α is
too large, it will cause the weight of the LPIPS term to be too large, causing similar results to when
∆L is too small, that is, retaining too much protective noise, thus leading to a decrease in purification
effect. When α is too small, the LPIPS term loses its constraining effect.

At the same time, by comparing Figure 7 and Figure 8, we found that the Photoguard method is
more sensitive to hyperparameters. We believe this may be because the disturbance is constrained by
L2 in Photoguard, which leads to some obvious point-like artifacts on the image. These point-like
artifacts may play a "trigger" role. When they cannot be effectively removed, the purification effect
will decrease.
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E A Metric-based validity study

To validate the effectiveness of our method, we calculated the distance of the embedding zpur of the
purified image in the diffusion model relative to the embedding z of the clean image in the Style
Mimicking task during the purification process. Please note that in the entire purification process of
IMPRESS, we cannot get the clean image, that is, we do not know z.

We plotted the results in Figure 9. For a protected image, we recorded the embedding zpur after each
step in the purification process using IMPRESS, totaling 3000 steps (consistent with our experimental
setup). Then we normalize z and all zpur, and then calculate the L2 distance between zpur after each
step and z, thereby obtaining the L2 distance between zpur after each step and z during the purification
process of this image. Finally, we average the results obtained from all pictures selected from each
artist. We plotted the average value of each artist in Figure 9 as a separate curve.

As can be seen, for all artists, the L2 distance between zpur after each step in the purification process
and z gradually decreases. This means that the feature vector of the purified image in the model is
more similar to the clean image, which also means that our method effectively removes the protective
noise and is effective for all kinds of different types of artworks.

F Real-World Style Mimicking Service

We tested our method on a real-world image generation service website. scenario.com is a image
generation service provider that allows users to upload a set of images and mimic the style of these
images, and then generate images with similar styles based on the prompts provided by the user. We
randomly selected the works of 4 artists in our experiment as the targets for imitation, then used
scenario.com to mimic clean images, images protected by GLAZE, and images purified by IMPRESS
respectively, and generated two sets of new images for each. The training data used in the imitation
process is consistent with the data used in the default parameter settings in our experiment, and
the test results are shown in Figure 10. As can be seen, GLAZE effectively protects the images on
real-world services. The style of the image protected by GLAZE is completely different from the
original image, and the content of the picture is severely damaged, sometimes it is difficult to identify
the content of the image. On the other hand, new images generated by imitating IMPRESS purified
images are highly consistent in style and content with those generated by imitating clean images,
which implies that our method can effectively remove protective noise.
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Figure 10: The images generated using the image style imitation service provided by scenario.com to
mimic clean images, images protected by GLAZE, and images purified by IMPRESS. The prompt
used to generate each group of images is shown on the left side of each group. All images are
generated using the default parameters provided by scenario.com.

G Impact of IMPRESS on Clean Images

After testing, our method does not affect clean data. We conducted an experiment where IMPRESS
was directly applied to clean images. For the Style Mimicking task, the ACC of the CLIP Classifier
was 91.2%, and the ACC of the Diffusion Classifier was 92.5%, both of which were close to the
results obtained from fine-tuning the model directly using clean data. For the Malicious Editing of
Images task, SSIM, PSNR, and VIF-p were respectively 0.59, 16.70, and 0.23, significantly higher
than other experiments. Figure 11 shows the images obtained by using IMPRESS to purify clean
images and the results of using clean images directly in the two tasks, showing that our method hardly
impacts clean images.

H Explanation of Differences in GLAZE Experimental Results

In the original GLAZE paper, the selection method of the target style T is to randomly choose a
style that is significantly different from the victim artist V , but the paper does not provide specific
style selection data and hyperparameter settings. We attempted to reproduce the target style selection
method proposed in the original GLAZE paper as much as possible and conducted multiple random
experiments. Using the same data and default hyperparameters, the average accuracy of the image
generated by the Protected image as training data in the CLIP classifier is 59.8% when using the
target style selection method of GLAZE, while the average result after purification by IMPRESS is
87.9%. We found that the GLAZE method is very sensitive to the target style T . For a particular
artist, a reasonable target style can make the average accuracy of the GLAZE method in the CLIP
classifier less than 10%.

To ensure the consistency and reproducibility of the experiment, we choose to use "Cubism by
Picasso" as the target style in our tests, because "Cubism by Picasso" is one of the target style prompts
used by GLAZE in the example results shown in the paper, and a clear protective effect can be seen.
With the target style unified, "Cubism by Picasso" is also the best performing target style. The specific
results for each artist are shown in Table 7.
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Style Mimicking Image Editing

Clean ImagePurified Clean ImageClean ImageSource:

Sample1:

Sample2:

Task:

Purified Clean Image

Figure 11: The experimental results of IMPRESS on clean image. For the Style Mimicking task, the
"Clean Image" column presents results generated by a model using clean images as fine-tuning data,
and the "Purified Clean Image" column shows results from models using clean images purified by
IMPRESS as fine-tuning data. For the Malicious Editing of Images task, the "Clean Image" column
represents the results of image editing using clean images as the target, while the "Purified Clean
Image" column presents the results of image editing using clean images that have been purified by
IMPRESS as the target.

Table 7: All Artists Results

Artist Metric (%) Clean Protected Post-processed by IMPRESS

Raphael Kirchner CLIP classifier Acc 88.0 77.0 91.0
Diffusion classifier Acc 93.0 87.0 93.0

Camille Pissarro CLIP classifier Acc 80.0 2.0 88.0
Diffusion classifier Acc 100.0 5.0 61.0

Pyotr Konchalovsky CLIP classifier Acc 76.0 34.0 68.0
Diffusion classifier Acc 90.0 41.0 90.0

Childe Hassam CLIP classifier Acc 99.0 53.0 95.0
Diffusion classifier Acc 98.0 47.0 65.0

Paul Cezanne CLIP classifier Acc 93.0 6.0 73.0
Diffusion classifier Acc 100.0 31.0 98.0

Claude Monet CLIP classifier Acc 93.0 20.0 95.0
Diffusion classifier Acc 100.0 16.0 91.0

Albrecht Durer CLIP classifier Acc 99.0 78.0 91.0
Diffusion classifier Acc 89.0 82.0 81

Eugene Boudin CLIP classifier Acc 98.0 70.0 95.0
Diffusion classifier Acc 93.0 34.0 80.0

Average CLIP classifier Acc 90.8 42.5 87.0
Diffusion classifier Acc 95.4 42.9 82.3

I Comparison with More Baseline Methods

In this section, we compare our proposed IMPRESS with four additional baseline methods: 1)
traditional denoising method (e.g., low-pass filtering); 2) enhanced preprocessing approaches (re-
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size+flipping+JPEG compression); 3) robust training methods (e.g., Radiya-Dixit et al. (2021a)); 4)
advanced denoising approaches (e.g., Diffpure (Nie et al., 2022))

Table 8: Comparison of IMPRESS with other baselines on Style Mimicking tasks

Metric Clean Protected
Post-processed

Low-pass Filtering Resize + Flip + JPG Robust Training Ours

CLIP classifier Acc 90.8 42.5 51.3 52.9 46.5 87.0
Diffusion classifier Acc 95.4 42.9 52.1 52.3 47.0 82.3

Table 9: Comparison of IMPRESS with other baselines on Malicious Editing tasks

Metric Protected
Post-processed

Low-pass Filtering Resize + Flip + JPG Diffpure Ours

SSIM 0.41 0.43 0.45 0.48 0.49
PSNR 14.24 14.52 14.68 14.62 15.61
VIF-p 0.11 0.12 0.14 0.14 0.16

Table 8 and 9 show the experimental results for those additional baselines. For the Style Mimicking
task, we have incorporated additional baselines, namely low-pass filtering, resize + flipping + JPEG
compression, and the robust training method by Radiya-Dixit et al. (2021a). For the Malicious Editing
task, we have added low-pass filtering, resize + flipping + JPEG compression, and Diffpure (Nie et al.,
2022) as baselines. It can be observed that our approach still achieved the best results comparing
with those additional baselines. Note that robust training method (Radiya-Dixit et al., 2021a) is not
tested on malicious editing task since it does not involve model fine-tuning. And Diffpure (Nie et al.,
2022) is not tested on style mimicking task since it requires a pre-trained non-latent diffusion model
on the target distribution (which is one of the major limitation of this method) but it is hard to find
one on artist data currently.

J Computational Complexities

The extra computations needed for our method is also not very significant. Under our experimental
setup, the purification of a single image took an average of 141 seconds. In comparison, GLAZE
took an average of 90 seconds to compute adversarial noise for an image, while Photoguard required
more than 600 seconds on average to perform the computations. In fact, due to the large size of the
stable diffusion model, fine-tuning the model actually takes much longer time than optimizing those
images, thus we believe the computational cost will Acceptable.
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