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Abstract

Recently, there has been increased interest in fair generative models. In this work,
we conduct, for the first time, an in-depth study on fairness measurement, a
critical component in gauging progress on fair generative models. We make three
contributions. First, we conduct a study that reveals that the existing fairness
measurement framework has considerable measurement errors, even when highly
accurate sensitive attribute (SA) classifiers are used. These findings cast doubts
on previously reported fairness improvements. Second, to address this issue,
we propose CLassifier Error-Aware Measurement (CLEAM), a new framework
which uses a statistical model to account for inaccuracies in SA classifiers. Our
proposed CLEAM reduces measurement errors significantly, e.g., 4.98%→0.62%
for StyleGAN2 w.r.t. Gender. Additionally, CLEAM achieves this with minimal
additional overhead. Third, we utilize CLEAM to measure fairness in important
text-to-image generator and GANs, revealing considerable biases in these models
that raise concerns about their applications. Code and more resources: https:
//sutd-visual-computing-group.github.io/CLEAM/.

1 Introduction

Fair generative models have been attracting significant attention recently [1, 2, 7–13]. In generative
models [14–18], fairness is commonly defined as equal generative quality [11] or equal representation
[1, 2, 7, 9, 12, 19, 20] w.r.t. some Sensitive Attributes (SA). In this work, we focus on the more widely
utilized definition – equal representation. In this definition, as an example, a generative model is
regarded as fair w.r.t. Gender, if it generates Male and Female samples with equal probability. This
is an important research topic as such biases in generative models could impact their application
efficacy, e.g., by introducing racial bias in face generation of suspects [21] or reducing accuracy when
supplementing data for disease diagnosis [22].

Fairness measurement for generative models. Recognizing the importance of fair generative
models, several methods have been proposed to mitigate biases in generative models [1, 2, 7, 9, 12].
However, in our work, we focus mainly on the accurate fairness measurement of deep generative
models i.e. assessing and quantifying the bias of generative models. This is a critical topic, as accurate
measurements are essential to reliably gauge the progress of bias mitigation techniques. The general
fairness measurement framework is shown in Fig. 1 (See Sec. 2 for details). This framework is
utilized in existing works to assess their proposed fair generators. Central to the fairness measurement
framework is a SA classifier, which classifies the generated samples w.r.t. a SA, in order to estimate
the bias of the generator. For example, if eight out of ten generated face images are classified as Male
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Figure 1: a⃝ General framework for measuring fairness in generative models. Generated samples
with unknown ground-truth (GT) probability p∗ w.r.t. sensitive attribute (SA) are fed into a SA
classifier to obtain p̂. Existing framework (Baseline) uses the classifier output p̂ as estimation of p∗.
In contrast, our proposed CLEAM includes an improved estimation that accounts for inaccuracies
in the SA classifier (see Alg. 1). b⃝ Our statistical model for fairness measurement. This model
accounts for inaccuracies in the SA classifier and is the base of our proposed CLEAM (see Sec.
4.1). c⃝ Improvements with CLEAM. CLEAM improves upon Baseline [1, 2] by reducing the
relative error in estimating the GT p∗0 for SOTA GANs: StyleGAN2 [3] and StyleSwin [4], and Stable
Diffusion Model [5]. First row displays the Baseline and CLEAM estimates for each GAN, using
ResNet-18 as the SA classifier for Gender and BlackHair. The Baseline incurs significant fairness
measurement errors (e.g. 4.98%), even when utilizing a highly accurate ResNet-18 (≈97% accuracy).
Meanwhile, CLEAM reduces the error significantly in all setups, e.g. in the first panel, the error
is reduced: 4.98% → 0.62%. Similarly, in the second row, CLEAM reduces measurement error
significantly in the Stable Diffusion Model [5], using CLIP [6] as the SA classifier for Gender, e.g.
first panel: 9.14% → 0.05% (Detailed evaluation in Tab. 1 and Tab. 2). Best viewed in color.

by the SA classifier, then the generator is deemed biased at 0.8 towards Male (further discussion in
Sec. 2). We follow previous works [1, 2, 12] and focus on binary SA due to dataset limitations.

Research gap. In this paper, we study a critical research gap in fairness measurement. Existing works
assume that when SA classifiers are highly accurate, measurement errors should be insignificant. As
a result, the effect of errors in SA classifiers has not been studied. However, our study reveals that
even with highly accurate SA classifiers, considerable fairness measurement errors could still occur.
This finding raises concerns about potential errors in previous works’ results, which are measured
using existing framework. Note that the SA classifier is indispensable in fairness measurement as it
enables automated measurement of generated samples.

Our contributions. We make three contributions to fairness measurement for generative models.
As our first contribution, we analyze the accuracy of fairness measurement on generated samples,
which previous works [1, 2, 7, 9, 12] have been unable to carry out due to the unavailability of proper
datasets. We overcome this challenge by proposing new datasets of generated samples with manual
labeling w.r.t. various SAs. The datasets include generated samples from Stable Diffusion Model
(SDM) [5] —a popular text-to-image generator— as well as two State-of-The-Art (SOTA) GANs
(StyleGAN2 [3] and StyleSwin [4]) w.r.t. different SAs. Our new datasets are then utilized in our
work to evaluate the accuracy of the existing fairness measurement framework. Our results reveal
that the accuracy of the existing fairness measurement framework is not adequate, due to the lack of
consideration for the SA classifier inaccuracies. More importantly, we found that even in setups where
the accuracy of the SA classifier is high, the error in fairness measurement could still be significant.
Our finding raises concerns about the accuracy of previous works’ results [1, 2, 12], especially since
some of their reported improvements are smaller than the margin of measurement errors that we
observe in our study when evaluated under the same setup; further discussion in Sec. 3.

To address this issue, as our second (major) contribution, we propose CLassifier Error-Aware
Measurement (CLEAM), a new more accurate fairness measurement framework based on our
developed statistical model for SA classification (further details on the statistical model in Sec. 4.1).
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Specifically, CLEAM utilizes this statistical model to account for the classifier’s inaccuracies during
SA classification and outputs a more accurate fairness measurement. We then evaluate the accuracy
of CLEAM and validate its improvement over existing fairness measurement framework. We further
conduct a series of different ablation studies to validate performance of CLEAM. We remark that
CLEAM is not a new fairness metric, but an improved fairness measurement framework that could
achieve better accuracy in bias estimation when used with various fairness metrics for generative
models.

As our third contribution, we apply CLEAM as an accurate framework to reliably measure biases in
popular generative models. Our study reveals that SOTA GANs have considerable biases w.r.t. several
SA. Furthermore, we observe an intriguing property in Stable Diffusion Model: slight differences in
semantically similar prompts could result in markedly different biases for SDM. These results prompt
careful consideration on the implication of biases in generative models. Our contributions are:

• We conduct a study to reveal that even highly-accurate SA classifiers could still incur significant
fairness measurement errors when using existing framework.

• To enable evaluation of fairness measurement frameworks, we propose new datasets based on
generated samples from StyleGAN, StyleSwin and SDM, with manual labeling w.r.t. SA.

• We propose a statistically driven fairness measurement framework, CLEAM, which accounts for
the SA classifier inaccuracies to output a more accurate bias estimate.

• Using CLEAM, we reveal considerable biases in several important generative models, prompting
careful consideration when applying them to different applications.

2 Fairness Measurement Framework

Fig.1(a) illustrates the fairness measurement framework for generative models as in [1, 2, 7, 9, 12].
Assume that with some input e.g. noise vector for a GAN or text prompt for SDM, a generative
model synthesizes a sample x. Generally, as the generator does not label synthesized samples, the
ground truth (GT) class probability of these samples w.r.t. a SA (denoted by p∗) is unknown. Thus,
an SA classifier Cu is utilized to estimate p∗. Specifically, for each sample x ∈ {x} , Cu(x) is
the argmax classification for the respective SA. In existing works, the expected value of the SA
classifier output over a batch of samples, p̂ = Ex[Cu(x)] (or the average of p̂ over multiple batches
of samples), is used as an estimation of p∗. This estimate may then be used in some fairness metric
f to report the fairness value for the generator, e.g. fairness discrepancy metric between p̂ and a
uniform distribution p̄ [1, 20](see Supp A.3 for details on how to calculate f ). Note that the general
assumption behind the existing framework is that with a reasonably accurate SA classifier, p̂ could
be an accurate estimation of p∗ [1, 9]. In the next section, we will present a deeper analysis on
the effects of an inaccurate SA classifier on fairness measurement. Our findings suggest that there
could be a large discrepancy between p̂ and p∗, even for highly accurate SA classifiers, indicative of
significant fairness measurement errors in the current measurement framework.

One may argue that conditional GANs (cGANs) [23, 24] may be used to generate samples conditioned
on the SA, thereby eliminating the need for an SA classifier. However, cGANs are not considered
in previous works due to several limitations. These include the limited availability of large labeled
training datasets, the unreliability of sample quality and labels [25], and the exponentially increasing
conditional terms, per SA. Similarly, for SDM, Bianchi et al. [26] found that utilizing well-crafted
prompts to mitigate biases is ineffective due to the presence of existing biases in its training dataset.
Furthermore in Sec. 6, utilizing CLEAM, we will discuss that even subtle prompt changes (while
maintaining the semantics) result in drastically different SA biases. See Supp G for further comparison
between [26] and our findings.

3 A Closer Look at Fairness Measurement

In this section, we take a closer look at the existing fairness measurement framework. In particular,
we examine its performance in estimating p∗ of the samples generated by SOTA GANs and SDM,
a task previously unstudied due to the lack of a labeled generated dataset. We do so by designing
an experiment to demonstrate these errors while evaluating biases in popular image generators.
Following previous works, our main focus is on binary SA which takes values in {0, 1}. Note that,
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we assume that the accuracy of the SA classifier Cu is known and is characterized by α = {α0, α1},
where αi is the probability of correctly classifying label i. For example, for Gender attribute, α0 and
α1 are the probability of correctly classifying Female, and Male classes, respectively. In practice,
Cu is trained on standard training procedures (more details in the Supp F) and α can be measured
during the validation stage of Cu and be considered a constant when the validation dataset is large
enough. Additionally, p∗ can be assumed to be a constant vector, given that the samples generated
can be considered to come from an infinite population, as theoretically there is no limit to the number
of samples from a generative model like GAN or SDM.

New dataset by labeling generators output. The major limitation of evaluating the existing fairness
measurement framework is the unavailability of p∗. To pave the way for an accurate evaluation,
we create a new dataset by manually labeling the samples generated by GANs and SDM. More
specifically, we utilize the official publicly released pre-trained StyleGAN2 [3] and StyleSwin [4] on
CelebA-HQ [27] for sample generation. Then, we randomly sample from these GANs and utilize
Amazon Mechanical Turks to hand-label the samples w.r.t. Gender and BlackHair, resulting in
≈9K samples for each GAN; see Supp H for more details and examples. Next, we follow a similar
labeling process w.r.t. Gender, but with a SDM [5] pre-trained on LAION-5B[28]. Here, we input
prompts using best practices [26, 29–31], beginning with a scene description ("A photo with the face
of"), followed by four indefinite (gender-neutral) pronouns or nouns [32, 33] – {"an individual", "a
human being", "one person", "a person"} to collect ≈2k high-quality samples. We refer to this new
dataset as Generated Dataset (GenData), which includes generated images from three models with
corresponding SA labels: GenData-StyleGAN2, GenData-StyleSwin, GenData-SDM. We remark
that these labeled datasets only provide a strong approximation of p∗ for each generator, however as
the datasets are reasonably large, we find this approximation sufficient and simply refer to it as the
GT p∗. Then utilizing this GT p∗, we compare it against the estimated baseline (p̂). One interesting
observation revealed by GenData is that all three generators exhibit a considerable amount of bias
(see Tab.1 and 2); more detail in Sec. 6. Note that for a fair generator we have p∗0 = p∗1 = 0.5, and
measuring the p∗0 and p∗1 is a good proxy for measuring fairness.

Experimental setup. Here, we follow Choi et al. [1] as the Baseline for measuring fairness. In
particular, to calculate each p̂ value for a generator, a corresponding batch of n = 400 samples is
randomly drawn from GenData and passed into Cu for SA classification. We repeat this for s = 30
batches and report the mean results denoted by µBase and the 95% confidence interval denoted by
ρBase. For a comprehensive analysis of the GANs, we repeat the experiment using four different
SA classifiers: Resnet-18, ResNet-34 [34], MobileNetv2 [35], and VGG-16 [36]. Then, to evaluate
the SDM, we utilize CLIP [6] to explore the utilization of pre-trained models for zero-shot SA
classification; more details on the CLIP SA classifier in Supp. E. As CLIP does not have a validation
dataset, to measure α for CLIP, we utilize CelebA-HQ, a dataset with a similar domain to our
application. We found this to be a very accurate approximation; see Supp D.7 for validation results.
Note that for SDM, a separate p̂ is measured for each text prompt as SDM’s output images are
conditioned on the input text prompt. As seen in Tab. 1 and 2, all classifiers demonstrate reasonably
high average accuracy ∈ [84%, 98.7%]. Note that as we focus on binary SA (e.g. Gender:{Male,
Female}), both p∗ and p̂ have two components i.e. p∗ = {p∗0, p∗1}, and p̂ = {p̂0, p̂1}. After
computing the µBase and ρBase, we calculate normalized L1 point error eµ, and interval max error eρ
w.r.t. the p∗0 (GT) to evaluate the measurement accuracy of the baseline method:

eµBase =
1
p∗
0
|p∗0 − µBase| ; eρBase =

1
p∗
0
max{|min(ρBase)− p∗0|, |max(ρBase)− p∗0|} (1)

Based on our results in Tab. 1, for GANs, we observe that despite the use of reasonably accurate
SA classifiers, there are significant estimation errors in the existing fairness measurement framework,
i.e. eµBase∈ [4.98%, 17.13%]. In particular, looking at the SA classifier with the highest average
accuracy of ≈ 97% (ResNet-18 on Gender), we observe significant discrepancies between GT p∗0
and µBase, with eµBase = 4.98%. These errors generally worsen as accuracy marginally degrades,
e.g. MobileNetv2 with accuracy ≈ 96% results in eµBase = 5.45%. These considerably large errors
contradict prior assumptions – that for a reasonably accurate SA classifier, we can assume eµBase to be
fairly negligible. Similarly, our results in Tab. 2 for the SDM, show large eµBase∈ [1.49%, 9.14%],
even though the classifier is very accurate. We discuss the reason for this in more detail in Sec. 5.1.

Overall, these results are concerning as they cast doubt on the accuracy of prior reported results. For
example, imp-weighting [1] which uses the same ResNet-18 source code as our experiment, reports
a 2.35% relative improvement in fairness against its baseline w.r.t. Gender, which falls within the
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range of our experiments smallest relative error, eµBase=4.98%. Similarly, Teo et al. [2] and Um et
al. [12] report a relative improvement in fairness of 0.32% and 0.75%, compared to imp-weighting
[1]. These findings suggest that some prior results may be affected due to oversight of SA classifier’s
inaccuracies; see Supp. A.4 for more details on how to calculate these measurements.

Remark: In this section, we provide the keystone for the evaluation of measurement accuracy in the
current framework by introducing a labeled dataset based on generated samples. These evaluation
results raise concerns about the accuracy of existing framework as considerable error rates were
observed even when using accurate SA classifiers, an issue previously seen to be negligible.

4 Mitigating Error in Fairness Measurements

The previous section exposes the inaccuracies in the existing fairness measurement framework.
Following that, in this section, we first develop a statistical model for the erroneous output of the SA
classifier, p̂, to help draw a more systematic relationship between the inaccuracy of the SA classifier
and error in fairness estimation. Then, with this statistical model, we propose CLEAM – a new
measurement framework that reduces error in the measured p̂ by accounting for the SA classifier
inaccuracies to output a more accurate statistical approximation of p∗.

4.1 Proposed Statistical Model for Fairness Measurements

As shown in Fig.1(a), to measure the fairness of the generator, we feed n generated samples to the SA
classifier Cu. The output of the SA classifier (p̂) is in fact a random variable that aims to approximate
the p∗. Here, we propose a statistical model to derive the distribution of p̂.

As Fig.1(b) demonstrates in our running example of a binary SA, each generated sample is from class
0 with probability p∗0, or from class 1 with probability p∗1. Then, generated sample from class i where
i ∈ {0, 1}, will be classified correctly with the probability of αi, and wrongly with the probability of
α′
i = 1− αi. Thus, for each sample, there are four mutually exclusive possible events denoted by c,

with the corresponding probability vector p:

cT =
[
c0|0 c1|0 c1|1 c0|1

]
, pT = [p∗0α0 p∗0α

′
0 p∗1α1 p∗1α

′
1] (2)

where ci|j denotes the event of assigning label i to a sample with GT label j. Given that this
process is performed independently for each of the n generated images, the probability of the counts
for each output cT in Eqn. 2 (denoted by Nc) can be modeled by a multinomial distribution, i.e.
Nc ∼ Multi(n,p) [37–39]. Note that Nc models the joint probability distribution of these outputs,
i.e. Nc ∼ P(Nc0|0 , Nc1|0 , Nc1|1 , Nc0|1) where, Nci|j is the random variable of the count for event
ci|j after classifying n generated images. Since p is not near the boundary of the parameter space,
and as we utilize a large n, based on the central limit theorem, Multi(n,p) can be approximated by
a multivariate Gaussian distribution, Nc ∼ N (µ,Σ), with µ = np and Σ = nM [40, 39], where
M is defined as:

M = diag(p)− ppT (3)

diag(p) denotes a square diagonal matrix corresponding to vector p (see Supp A.1 for expanded
form). The marginal distribution of this multivariate Gaussian distribution gives us a univariate
(one-dimensional) Gaussian distribution for the count of each output cT in Eqn. 2. For example, the
distribution of the count for event c0|0, denoted by Nc0|0 , can be modeled as Nc0|0 ∼ N (µ1,Σ11).

Lastly, we find the total percentage of data points labeled as class i when labeling n generated images
using the normalized sum of the related random variables, i.e. p̂i =

1
n

∑
j Nci|j . For our binary

example, p̂i can be calculated by summing random variables with Gaussian distribution, which results
in another Gaussian distribution [41], i.e. , p̂0 ∼ N (µ̃p̂0

, σ̃2
p̂0
), where:

µ̃p̂0
= 1

n (µ1 + µ4) = p∗0α0 + p∗1α
′
1 (4)

σ̃2
p̂0

= 1
n2 (Σ11 +Σ44 + 2Σ14) =

1
n [(p

∗
0α0 − (p∗0α0)

2) + (p∗1α
′
1 − (p∗1α

′
1)

2)] + 2
np

∗
0p

∗
1α0α

′
1 (5)

Similarly p̂1 ∼ N (µ̃p̂1 , σ̃
2
p̂1
) with µ̃p̂1 = (µ2 + µ3)/n, and σ̃2

p̂1
= (Σ22 +Σ33 + 2Σ23)/n

2 which
is aligned with the fact that p̂1 = 1− p̂0.
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Algorithm 1: Computing point and interval estimates using CLEAM.
Require: accuracy of SA classifier, α.

1 Compute SA classifier output p̂ : {p̂1, . . . , p̂s} for s batches of generated data.
2 Compute sample mean µ̈p̂ and sample variance σ̈2

p̂ using (6) and (7).
3 Use (8) to compute point estimate µCLEAM.
4 Use (10) to compute interval estimate ρCLEAM.

Remark: In this section, considering the probability tree diagram in Fig.1(b), we propose a joint
distribution for the possible events of classification (Nci|j ), and use it to compute the marginal
distribution of each event, and finally the distribution of the SA classifier outputs (p̂0, and p̂1). Note
that considering Eqn. 4, 5, only with a perfect classifier (αi = 1, i.e. acc= 100%) the µ̃p̂0

converges
to p∗0. However, training a perfect SA classifier is not practical e.g. due to the lack of an appropriate
dataset and task hardness [42, 43]. As a result, in the following, we will propose CLEAM which
instead utilizes this statistical model to mitigate the error of the SA classifier.

4.2 CLEAM for Accurate Fairness Measurement

In this section, we propose a new estimation method in fairness measurement that considers the
inaccuracy of the SA classifier. For this, we use the statistical model, introduced in Sec 4.1, to
compute a more accurate estimation of p∗. Specifically, we first propose a Point Estimate (PE) by
approximating the maximum likelihood value of p∗. Then, we use the confidence interval for the
observed data (p̂) to propose an Interval Estimate (IE) for p∗.

Point Estimate (PE) for p∗. Suppose that we have access to s samples of p̂ denoted by {p̂1, . . . , p̂s},
i.e. SA classification results on s batches of generated data. We can then use the proposed statistical
model to approximate the p∗. In the previous section, we demonstrate that we can model p̂ij using a
Gaussian distribution. Considering this, first, we use the available samples to calculate sample-based
statistics including the mean and variance of the p̂j samples:

µ̈p̂j = 1
s

∑s
i=1 p̂

i
j (6)

σ̈2
p̂j

= 1
s−1

∑s
i=1(p̂

i
j − µ̈p̂j )

2 (7)

For a Gaussian distribution, the Maximum Likelihood Estimate (MLE) of the population mean is its
sample mean µ̈p̂j [44]. Given that s is large enough (e.g. s > 30), we can assume that µ̈p̂j is a good
approximation of the population mean [45], and equate it to the statistical population mean µ̃p̂j in
Eqn. 4 (see Supp A.2 for derivation). With that, we get the maximum likelihood approximation of p∗,
which we call the CLEAM’s point estimate, µCLEAM:

µCLEAM(p∗0) = (µ̈p̂0
− α′

1)/(α0 − α′
1) , µCLEAM(p∗1) = 1− µCLEAM(p∗0) (8)

Notice that µCLEAM accounts for the inaccuracy of the SA classifier.

Interval Estimate (IE) for p∗. In the previous part, we propose a PE for p∗ using the statistical
model, and sample-based mean µ̈p̂0 . However, as we use only s samples of p̂, µ̈p̂0 may not capture
the exact value of the population mean. This adds some degree of inaccuracy into µCLEAM. In fact,
in our framework, µ̈p̂0 equals µ̃p̂0 when s → ∞. However, increasing each unit of s significantly
increases the computational complexity, as each p̂ requires n generated samples. To address this, we
recall that p̂0 follows a Gaussian distribution and instead utilize frequentist statistics [41] to propose
a 95% confidence interval (CI) for p∗. To do this, first we derive the CI for µ̃p̂0

:

µ̈p̂0
− 1.96

σ̈p̂0√
s
≤ µ̃p̂0

≤ µ̈p̂0
+ 1.96

σ̈p̂0√
s

(9)

Then, applying Eqn.4 to Eqn.9 gives the lower and upper bounds of the approximated 95% CI for p∗0:

L(p∗0),U(p∗0) = (µ̈p̂0 ∓ 1.96(σ̈p̂0/
√
s)− α′

1)/(α0 − α′
1) (10)

This gives us the interval estimate of CLEAM, ρCLEAM = [L(p∗0),U(p∗0)], a range of values that we
can be approximately 95% confident to contain p∗0. The range of possible values for p∗1 can be simply
derived considering p∗1 = 1− p∗0. The overall procedure of CLEAM is summarized in Alg. 1. Now,
with the IE, we can provide statistical significance to the reported fairness improvements.
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Table 1: Comparing the point estimates and interval estimates of Baseline [1], Diversity [46] and
our CLEAM in estimating p∗ of StyleGAN2 [3] and StyleSwin [4] with the proposed GenData
datasets. We utilize SA classifiers Resnet-18/34 (R18, R34)[34], MobileNetv2 (MN2)[35] and
VGG-16 (V16)[36], with different accuracies α, to classify samples w.r.t. attributes Gender and
BlackHair. The p∗0 value of each GAN w.r.t. SA is determined by manually hand-labeling the
generated data. We repeat this for 5 experimental runs and report the mean error rate, per Eqn. 1. See
Supp D.1 for the standard deviation of PE and IE.

Point Estimate Interval Estimate
α = {α0, α1} Avg. α Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
(A) StyleGAN2

Gender with GT class probability p∗
0=0.642

R18 {0.947, 0.983} 0.97 0.610 4.98% — — 0.638 0.62% [0.602, 0.618] 6.23% — — [0.629, 0.646] 2.02%
R34 {0.932, 0.976]} 0.95 0.596 7.17% — — 0.634 1.25% [0.589, 0.599] 8.26% — — [0.628, 0.638] 2.18%
MN2 {0.938, 0.975} 0.96 0.607 5.45% — — 0.637 0.78% [0.602, 0.612] 6.23% — — [0.632, 0.643] 1.56%
V16 {0.801, 0.919} 0.86 0.532 17.13% 0.550 14.30% 0.636 0.93% [0.526, 0.538] 18.06% [0.536 , 0.564] 16.51% [0.628, 0.644] 2.18%

Average Error: 8.68% 14.30% 0.90% 9.70% 16.51% 1.99%

BlackHair with GT class probability p∗
0=0.643

R18 {0.869, 0.885} 0.88 0.599 6.84% — — 0.641 0.31% [0.591, 0.607] 8.08% — — [0.631, 0.652] 1.40%
R34 {0.834, 0.916} 0.88 0.566 11.98% — — 0.644 0.16% [0.561, 0.572] 12.75% — — [0.637, 0.651] 1.24%
MN2 {0.839, 0.881} 0.86 0.579 9.95% — — 0.639 0.62% [0.574, 0.584] 10.73% — — [0.632, 0.647] 1.71%
V16 {0.851, 0.836} 0.84 0.603 6.22% 0.582 9.49% 0.640 0.47% [0.597, 0.608] 7.15% [0.568, 0.596] 11.66% [0.632, 0.648] 1.71%

Average Error: 8.75% 9.49% 0.39% 9.68% 11.66% 1.52%

(B) StyleSwin
Gender with GT class probability p∗

0=0.656
R18 {0.947, 0.983} 0.97 0.620 5.49% — — 0.648 1.22% [0.612,0.629] 6.70% — — [0.639,0.658] 2.59%
R34 {0.932, 0.976} 0.95 0.610 7.01% — — 0.649 1.07% [0.605,0.615] 7.77% — — [0.643,0.654] 1.98%
MN2 {0.938, 0.975} 0.96 0.623 5.03% — — 0.655 0.15% [0.618, 0.629] 5.79% — — [0.649,0.661] 1.07%
V16 {0.801, 0.919} 0.86 0.555 15.39% 0.562 14.33% 0.668 1.83% [0.549,0.560] 16.31% [0.548,0.576] 16.46% [0.660,0.675] 2.90%

Average Error: 8.23% 14.33% 1.07% 9.14% 16.46% 2.14%

BlackHair with GT class probability p∗
0=0.668

R18 {0.869, 0.885} 0.88 0.612 8.38% — — 0.659 1.35% [0.605,0.620] 9.43% — — [0.649,0.670] 2.84%
R34 {0.834, 0.916} 0.88 0.581 13.02% — — 0.662 0.90% [0.576,0.586] 13.77% — — [0.656,0.669] 1.80%
MN2 {0.839, 0.881} 0.86 0.596 10.78% — — 0.659 1.35% [0.591,0.600] 11.50% — — [0.652,0.666] 2.40%
V16 {0.851, 0.836} 0.84 0.625 6.44% 0.608 8.98% 0.677 1.35% [0.620,0.630] 7.19% [0.590,0.626] 11.68% [0.670,0.684] 2.40%

Average Error: 9.66% 8.98% 1.24% 10.47% 11.68% 2.36%

Table 2: Comparing the point estimates and interval estimates of Baseline and CLEAM in estimating
the p∗ of the Stable Diffusion Model [5] with the GenData-SDM dataset. We use prompt input
starting with "A photo with the face of" and ending with synonymous (Gender neutral) prompts. We
utilized CLIP as the classifier for Gender, to obtain p̂.

Point Estimate Interval Estimate
Prompt GT Baseline CLEAM (Ours) Baseline CLEAM (Ours)

p∗0 µBase eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρCLEAM eρ(↓)
α=[0.998,0.975], Avg. α=0.987, CLIP –Gender

"A photo with the face of an individual" 0.186 0.203 9.14% 0.187 0.05% [ 0.198 , 0.208 ] 11.83% [ 0.182 , 0.192 ] 3.23%
"A photo with the face of a human being" 0.262 0.277 5.73% 0.263 0.38% [ 0.270 , 0.285 ] 8.78% [ 0.255 , 0.271 ] 3.44%

"A photo with the face of one person" 0.226 0.241 6.63% 0.230 1.77% [ 0.232 , 0.251 ] 11.06% [ 0.220 , 0.239 ] 5.75%
"A photo with the face of a person" 0.548 0.556 1.49% 0.548 0.00% [ 0.545 , 0.566 ] 3.28% [ 0.537 , 0.558 ] 2.01%

Average Error 5.75% 0.44% 8.74% 3.61%

“an individual”
“a human being”

“one person”
“ a person”

Stable Diffusion

PE (Female) PE(Male) Fair PointIE

a) “A photo with the face of one person”

b) “A photo with the face of a person”

0.5 0.0 0.5

Figure 2: LHS: Applying CLEAM to assess Gender bias in SDM[5] with CLIP [6]. Here, we utilize
synonymous neutral prompts, prefixed with "A photo with the face of __" as the input. We found
that subtle changes to the prompts resulted in significant changes in the bias. RHS: Illustrating the
shift in Gender bias. Using the same random seeds (per column), we generate 10 samples from two
prompts. Note how in some columns, Gender changes while retaining general features e.g. pose.
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5 Experiments

In this section, we first evaluate fairness measurement accuracy of CLEAM on both GANs and
SDM (Sec.5.1) with our proposed GenData dataset. Then we evaluate CLEAM’s robustness through
some ablation studies (Sec. 5.2). To the best of our knowledge, there is no similar literature for
improving fairness measurements in generative models. Therefore, we compare CLEAM with the
two most related works: a) the Baseline used in previous works [1, 2, 7, 9, 12] b) Diversity [46]
which computes disparity within a dataset via an intra-dataset pairwise similarity algorithm. We
remark that, as discussed by Keswani et al. [46] Diversity is model-specific using VGG-16 [36];
see Supp. D.2 for more details. Finally, unless specified, we repeat the experiments with s = 30
batches of images from the generators with batch size n = 400. For a fair comparison, all three
algorithms use the exact same inputs. However, while Baseline and Diversity ignore the SA classifier
inaccuracies, CLEAM makes good use of it to rectify the measurement error. As mentioned in Sec.
4.2, for CLEAM, we utilize α measured on real samples, which we found to be a good approximation
of the α measured on generated samples (see Supp. D.7 for results). We repeat each experiment 5
times and report the mean value for each test point for both PE and IE. See Supp D.1 for the standard
deviation.

5.1 Evaluating CLEAM’s Performance

CLEAM for fairness measurement of SOTA GANs – StyleGAN2 and StyleSwin. For a fair
comparison, we first compute s samples of p̂, one for each batch of n images. For Baseline, we use
the mean p̂ value as the PE (denoted by µBase), and the 95% confidence interval as IE (ρBase). With
the same s samples of p̂, we apply Alg. 1 to obtain µCLEAM and ρCLEAM. For Diversity, following
the original source code [46], a controlled dataset with fair representation is randomly selected from
a held-out dataset of CelebA-HQ [27]. Then, we use a VGG-16 [36] feature extractor and compute
Diversity, δ. With δ we find p̂0 = (δ + 1)/2 and subsequently µDiv and ρDiv from the mean and 95%
CI (see Supp D.2 for more details on diversity). We then compute eµCLEAM , eµDiv , eρCLEAM and eρDiv

with Eqn 1, by replacing the Baseline estimates with CLEAM and Diversity.

As discussed, our results in Tab.1 show that the baseline experiences significantly large errors of
4.98% ≤ eµBase ≤ 17.13%, due to a lack of consideration for the inaccuracies of the SA classifier.
We note that this problem is prevalent throughout the different SA classifier architectures, even with
higher capacity classifiers e.g. ResNet-34. Diversity, a method similarly unaware of the inaccuracies
of the SA classifier, presents a similar issue with 8.98% ≤ eµDiV ≤ 14.33% In contrast, CLEAM
dramatically reduces the error for all classifier architectures. Specifically, CLEAM reduces the
average point estimate error from eµBase ≥ 8.23% to eµCLEAM ≤ 1.24%, in both StyleGAN2 and
StyleSwin. The IE presents similar results, where in most cases ρCLEAM bounds the GT value of p∗.

CLEAM for fairness measurement of SDM. We evaluate CLEAM in estimating the bias of the
SDM w.r.t. Gender, based on the synonymous (gender-neutral) prompts introduced in Sec. 3. Recall
that here we utilize CLIP as the zero-shot SA classifier. Our results in Tab 2, as discussed, show that
utilizing the baseline results in considerable error (1.49% ≤ eµBase ≤ 9.14%) for all prompts, even
though the SA classifier’s average accuracy was high, ≈ 98.7% (visual results in Fig.2). A closer
look at the theoretical model’s Eqn. 4 reveals that this is due to the larger inaccuracies observed in
the biased class (α′

1) coupled with the large bias seen in p∗1, which results in µBase deviating from
p∗0. In contrast, CLEAM accounts for these inaccuracies and significantly minimizes the error to
eµCLEAM ≤ 1.77%. Moreover, CLEAM’s IE is able to consistently bound the GT value of p∗0.

5.2 Ablation Studies and Analysis

Here, we perform the ablation studies and compare CLEAM with classifier correction methods. We
remark that detailed results of these experiments are provided in the Supp due to space limitations.

CLEAM for measuring varying degrees of bias. As we cannot control the bias in trained generative
models, to simulate different degrees of bias, we evaluate CLEAM with a pseudo-generator. Our
results show that CLEAM is effective at different biases (p∗0 ∈ [0.5,0.9]) reducing the average error
from 2.80% ≤ eµBase ≤ 6.93% to eµCLEAM ≤ 0.75% on CelebA [47] w.r.t. {Gender,BlackHair}, and
AFHQ [48] w.r.t. Cat/Dog. See Supp D.3 and D.4 for full experimental results.
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CLEAM vs Classifier Correction Methods [49]. CLEAM generally accounts for the classifier’s
inaccuracies, without targeting any particular cause of inaccuracies, for the purpose of rectifying the
fairness measurements. This objective is unlike traditional classifier correction methods as it does
not aim to improve the actual classifier’s accuracy. However, considering that classifier correction
methods may improve the fairness measurements by directly rectifying the classifier inaccuracies, we
compare its performance against CLEAM. As an example, we utilize the Black Box Shift Estimation
/ Correction (BBSE / BBSC) [49] which considers the label shift problem and aims to correct the
classifier output by detecting the distribution shift. Our results, based on Sec. 5.1 setup, show that
while BBSE does improve on the fairness measurements of the baseline i.e. 4.20% ≤ eµBBSE ≤ 3.38%,
these results are far inferior to CLEAM’s results seen in Tab. 1. In contrast, BBSC demonstrates no
improvements in fairness measurements. See Supp D.8 for full experimental results. We postulate
that this is likely due to the strong assumption of label shift made by both methods.

Effect of batch-size. Utilizing experimental setup in Sec. 5.1 for batch size n ∈[100,600], our results
in Fig. 3 show that n=400 is an ideal batch size, balancing computational cost and measurement
accuracy. See Supp F for full experimental details and results.

100 200 300 400 500 600
n

0

5

10

100 200 300 400 500 600n 100 200 300 400 500 600n 100 200 300 400 500 600n

x CLEAMBaseline

Er
ro

r, 
𝑒 !

StyleGAN2 (             ) StyleSwin (             )StyleGAN2 (  ) StyleSwin (  )

Figure 3: Comparing the point error eµ for Baseline and CLEAM when evaluating the bias of
GenData-CelebA with ResNet-18, while varying sample size, n.

6 Applying CLEAM: Bias in Current SOTA Generative Models

In this section, we leverage the improved reliability of CLEAM to study biases in the popular
generative models. Firstly, with the rise in popularity of text-to-image generators [5, 50–52], we
revisit our results when passing different prompts, with synonymous neutral meanings to an SDM,
and take a closer look at how subtle prompt changes can impact bias w.r.t. Gender. Furthermore,
we further investigate if similar results would occur in other SA, Smiling. Secondly, with the shift
in popularity from convolution to transformer-based architectures [53–55], due to its better sample
quality, we determine whether the learned bias would also change. For this, we compare StylesSwin
(transformer) and StyleGAN2 (convolution), which are both based on the same architecture backbone.

Our results, on SDM, demonstrate that the use of different synonymous neutral prompts [32, 33]
results in different degrees of bias w.r.t. both Gender and Smiling attributes. For example in Fig. 2,
a semantically insignificant prompt change from "one person" to "a person" results in a significant
shift in Gender bias. Then, in Fig. 4a, we observe that while the SDM w.r.t. our prompts appear to
be heavily biased to not-Smiling, having "person" in the prompt appears to significantly reduce this
bias. This suggests that for SDM, even semantically similar neutral prompts [32, 33] could result
in different degrees of bias, thereby demonstrating certain instability in SDM. Next, our results in
Fig. 4b compare the bias in StyleGAN2, StylesSwin, and the training CelebA-HQ dataset over an
extended number of SAs. Overall, we found that while StyleSwin produces better quality samples
[4], the same biases still remain statistically unchanged between the two architectures i.e. their IE
overlap. Interestingly, our results also found that both the GANs were less biased than the training
dataset itself.

7 Discussion

Conclusion. In this work, we address the limitations of the existing fairness measurement framework.
Since generated samples are typically unlabeled, we first introduce a new labeled dataset based
on three state-of-the-art generative models for our studies. Our findings suggest that the existing
framework, which ignores classification inaccuracies, suffers from significant measurement errors,
even when the SA classifier is very accurate. To rectify this, we propose CLEAM, which considers
these inaccuracies in its statistical model and outputs a more accurate fairness measurement. Over-
all, CLEAM demonstrates improved accuracy over extensive experimentation, including both real
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“an individual”
“a human being”

“one person”

“ a person”

Stable Diffusion

PE (not-Smiling)
PE (Smiling) Fair Point

IE

0.5 0.0 0.5

a) “A photo with the face of a human being”

b) “A photo with the face of a person”

a) “A photo with the face of a human being”

b) “A photo with the face of a person”

(a) Evaluating bias of SDM [5] w.r.t. SA Smiling using CLEAM. LHS: Bias value with different text prompts as
input to SDM. CLEAM identifies that having “person” in the prompt results in more Smiling samples generated.
RHS: Visual comparison of the samples generated for two different but semantically similar text prompts.
Samples in the same column are generated using the same random seed. Notice how the SA (smiling) of the
samples changes with a slight difference in the prompts.

NoBeard (B/NB)

Gender(F/M)

BlackHair(NBH/BH)

Young(NY/Y)

Smiling(NS/S)

Mustache(NM/M)

Chubby(NC/C)

Bald(NB/B)

HeavyMakeup(NHM/HM)

PE (Label 0) PE( Label 1) Fair PointIE

CelebA-HQ dataset StyleGAN2 StyleSwin
0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5

(b) CLEAM on StyleGAN2 [3] and StyleSwin [4], both pre-trained on CelebA-HQ but are based on different
architecture variants. We utilize a ResNet-18 and compare the bias w.r.t. various SAs.

Figure 4: Applying CLEAM to further assess the bias in popular generative models.

generators and controlled setups. Moreover, by applying CLEAM to popular generative models, we
uncover significant biases that raise efficacy concerns about these models’ real-world application.

Broader Impact. Given that generative models are becoming more widely integrated into our
everyday society e.g. text-to-image generation, it is important that we have reliable means to measure
fairness in generative models, thereby allowing us to prevent these biases from proliferating into new
technologies. CLEAM provides a step in this direction by allowing for more accurate evaluation. We
remark that our work does not introduce any social harm but instead improves on the already existing
measurement framework.

Limitations. Despite the effectiveness of the proposed method along various generative models, our
work addresses only one facet of the problems in the existing fairness measurement and there is still
room for further improvement. For instance, it may be beneficial to consider SA to be non-binary
e.g. when hair color is not necessary fully black (grey). Additionally, existing datasets used to train
classifiers are commonly human-annotated, which may itself contain certain notions of bias. See
Supp. I for further discussion.
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