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Abstract

Detecting unseen instances based on multi-view templates is a challenging problem
due to its open-world nature. Traditional methodologies, which primarily rely
on 2D representations and matching techniques, are often inadequate in handling
pose variations and occlusions. To solve this, we introduce VoxDet, a pioneer 3D
geometry-aware framework that fully utilizes the strong 3D voxel representation
and reliable voxel matching mechanism. VoxDet first ingeniously proposes tem-
plate voxel aggregation (TVA) module, effectively transforming multi-view 2D
images into 3D voxel features. By leveraging associated camera poses, these fea-
tures are aggregated into a compact 3D template voxel. In novel instance detection,
this voxel representation demonstrates heightened resilience to occlusion and pose
variations. We also discover that a 3D reconstruction objective helps to pre-train the
2D-3D mapping in TVA. Second, to quickly align with the template voxel, VoxDet
incorporates a Query Voxel Matching (QVM) module. The 2D queries are first
converted into their voxel representation with the learned 2D-3D mapping. We find
that since the 3D voxel representations encode the geometry, we can first estimate
the relative rotation and then compare the aligned voxels, leading to improved
accuracy and efficiency. In addition to method, we also introduce the first instance
detection benchmark, RoboTools, where 20 unique instances are video-recorded
with camera extrinsic. RoboTools also provides 24 challenging cluttered scenarios
with more than 9k box annotations. Exhaustive experiments are conducted on the
demanding LineMod-Occlusion, YCB-video, and RoboTools benchmarks, where
VoxDet outperforms various 2D baselines remarkably with faster speed. To the
best of our knowledge, VoxDet is the first to incorporate implicit 3D knowledge
for 2D novel instance detection tasks. Our code, data, raw results, and pre-trained
models are public at https://github.com/Jaraxxus-Me/VoxDet.

1 Introduction
Consider the common scenarios of locating the second sock of a pair in a pile of laundry or identifying
luggage amid hundreds of similar suitcases at an airport. These activities illustrate the remarkable
capability of human cognition to swiftly and accurately identify a specific instance among other
similar objects. Humans can rapidly create a mental picture of a novel instance with a few glances
even if they see such an instance for the first time or have never seen instances of the same type.
Searching for instances using mental pictures is a fundamental ability for humans, however, even the
latest object detectors [1–7] still cannot achieve this task.
We formulate the above tasks as novel instance detection, that is identification of an unseen instance
in a cluttered query image, utilizing its multi-view support references. Previous attempts mainly
work in 2D space, such as correlation [8, 5], attention mechanisms [6], or similarity matching [9],
thereby localizing and categorizing the desired instance, as depicted in Fig. 1 gray part. However,
these techniques struggle to maintain their robustness when faced with significant disparities between
the query and templates. In comparison to novel instance detection, there is a vast amount of work
centered around few-shot category-level object detection [7, 1, 2]. Yet, these class-level matching
techniques prove insufficient when it comes to discerning specific instance-level features.
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Figure 1: Architecture comparison between previous 2D methods (gray) and proposed VoxDet (black).
Previous methods resorts to pure 2D correlation/attention/matching for novel instance detection. In
contrast, VoxDet is 3D-inspired, leveraging reconstruction objective to learn the geometry-aware
voxel representation, which enables more effective and accurate voxel-based instance detection. In
the challenging newly built RoboTools benchmark shown on the right, VoxDet exhibits surprising
robustness to severe occlusion and orientation variation.

Humans exhibit the remarkable capability to swiftly formulate a mental model of an unfamiliar
instance, facilitated by a rapid comprehension of its 3D geometric structure [10–12]. Leveraging
such a mental representation, once presented with a single query image, a human can probably search
and identify the same instance despite alterations in distance, occlusion, and even approximate the
instance’s orientation. Motivated by this, we propose VoxDet, a pioneer 3D geometry-aware instance
detection framework as shown in Fig. 1 bottom. In contrast to state-of-the-art methods [7, 5, 6, 9, 13],
VoxDet adapts two novel designs: (1) a compact 3D voxel representation that is robust to occlusion
and pose variations and (2) an effective voxel matching algorithm for identifying instances.
VoxDet consists of three main modules: a template voxel aggregation (TVA) module, an open-world
detection module, and a query voxel matching (QVM) module. Initially, the TVA module transforms
multi-view 2D features of an instance into individual 3D template voxels [10]. These template voxels
are then accumulated using relative rotations, thus incorporating both geometry and appearance into
a condensed template voxel. As VoxDet learns this 2D-3D mapping via a reconstruction objective,
TVA effectively encapsulates both the geometry and appearance of any instance into a compact
template voxel. When presented with a query image, VoxDet employs an open-world detector [14]
that universally identifies potential objects within the image as 2D proposals. These proposals are
then converted to query voxels via the learned 2D-3D mapping and compared with the template voxel
by the QVM module. QVM initiates this comparison process by first estimating the relative rotation
between a query voxel and the template, which is then used to align the two voxels. Finally, the
comparison between aligned voxels is delivered by a carefully designed voxel relation module.
Besides methodology, we also construct a large-scale synthetic training dataset, Open-World Instance
Detection (OWID). OWID comprises 10k instances sourced from the ShapeNet [15] and Amazon
Berkeley Objects [16] datasets, culminating in 55k scenes and 180k query bounding boxes. Trained
on OWID, VoxDet demonstrates strong generalization ability on novel instances, which we attribute
to the meticulously designed voxel-based framework and the large-scale OWID training set.
To validate VoxDet, we further build RoboTools, a new instance detection benchmark compiled from
a diverse range of real-world cluttered environments. RoboTools consists of 20 unique instances, 24
test scenes, and over 9,000 annotated bounding boxes. As shown in Fig. 1 right, in the demanding
RoboTools benchmark, VoxDet can robustly detect the novel instances under severe occlusion or
varied orientation. Evaluations are also performed on the authoritative Linemod-Occlusion [17] and
YCB-video [18] for more compelling results. The exhaustive experiments on these three benchmarks
demonstrate that our 3D geometry-aware VoxDet not only outperforms various previous works [5–7]
and different 2D baselines [19, 9] but also achieves faster inference speed.

2 Related Works
Typical object detection [20–26] thrive in category-level tasks, where all the instances belonging to a
pre-defined class are detected. Typical object detection can be divided into two-stage approaches and
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one-stage approaches. For the former one, RCNN [20] and its variants [21, 22] serves as foundations,
where the regions of interest (ROI) are first obtained by the region proposal network. Then the
detection heads classify the labels of each ROI and regress the box coordinates. On the other hand,
the YOLO series [23–25] and recent transformer-based methods [4, 3] are developing promisingly as
the latter stream, where the detection task is tackled as an end-to-end regression problem.
Few-shot/One-shot object detection [1, 27, 28, 2, 29, 7] can work for unseen classes with only a
few labeled support samples, which are closer to our task. One stream focuses on transfer-learning
techniques [28, 27], where the fine-tuning stage is carefully designed to make the model quickly
generalize to unseen classes. While the other resorts to meta-learning strategies [1, 7, 2, 29], where
various kinds of relations between supports and queries are discovered and leveraged. Since the above
methods are category-level, they assume more than one desired instances exist in an image, so the
classification/matching designs are usually tailored for Top-100 precision, which is not a very strict
metric. However, they can easily fail in our problem, where the Top-1 accuracy is more important.
Open-world/Zero-shot object detection [30–32, 14] finds any objects on an image, which is
class-agnostic and universal. Some of them learn objectiveness [30, 14] and others [32] rely on
large-scale high-quality training sets. These methods can serve as the first module in our pipeline,
which generates object proposals for comparison with the templates. Among them, we adopt [14]
with its simple structure and promising performance.
Instance detection requires the algorithm to find an unseen instance in the test image with some
corresponding templates. Previous methods [6, 5, 8] usually utilize pure 2D representations and 2D
matching/relation techniques. For example, DTOID [6] proposed global object attention and a local
pose-specific branch to predict the template-guided heatmap for detection. However, they easily
fall short when the 2D appearance variates due to occlusion or pose variation. Differently, VoxDet
leverages the explicit 3D knowledge in the multi-view templates to represent and match instances,
which is geometry-invariant.
Multi-view 3D representations Representing 3D scenes/instances from multi-view images is a
long-standing problem in computer vision. Traditional methods resort to multi-view geometry, where
structure from motion (SfM) [33] pipeline has enabled joint optimization of the camera pose and
3D structure. Modern methods usually adopts neural 3D representations [34, 11, 35–37, 12, 10],
including deep voxels [35, 12, 10, 38] and implicit functions [36, 37], which have yielded great
success in 3D reconstruction or novel view synthesis. Our framework is mainly inspired by Video
Autoencoder [10], which encodes a video by separately learning the deep implicit 3D structure and
the camera trajectory. One biggest advantage of [10] is that the learned Autoencoder can encode and
synthesize test scenes without further tuning or optimization, which greatly satisfies the efficiency
requirement of our instance detection task.

3 Methodology
3.1 Problem Formulation
Given a training instance set Obase and an unseen test instance set Onovel, where Obase∩Onovel = ϕ,
the task of novel instance detection (open-world detection) is to find an instance detector trained on
Obase and then detect new instances in Onovel with no further training or finetuning. Specifically, for
each instance, the input to the detector is a query image IQ ∈ R3×W×H and a group of M support
templates IS ∈ RM×3×W×H of the target instance. The detector is expected to output the bounding
box b ∈ R4 of an instance on the query image. We assume there exists exactly one such instance in
the query image and the instance is located near the center of the support images.

3.2 Architecture
The architecture of VoxDet is shown in Fig. 2, which consists of an open-world detector, a template
voxel aggregation (TVA) module, and a query voxel matching (QVM) module. Given the query
image, the open-world detector aims to generate universal proposals covering all possible objects.
TVA aggregates multi-view supports into a compact template voxel via the relative camera pose
between frames. QVM lifts 2D proposal features onto 3D voxel space, which is then aligned and
matched with the template voxel. In order to empower the voxel representation with 3D geometry,
we first resort to a reconstruction objective in the first stage. The pre-trained models serve as the
initial weights for the second instance detection training stage.
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Figure 2: Architecture of VoxDet. VoxDet mainly consists of three modules, namely, open-world
detection, template voxel aggregation (TVA), and query voxel matching (QVM). We first train TVA
via the reconstruction stage, where the 2D-3D mapping learns to encode instance geometry. Then the
pre-trained mapping serves as initial weights in the TVA and QVM modules for detection training.

3.2.1 Open-World Detection
Since the desired instance is unseen during training, directly regressing its location and scale is
non-trivial. To solve this, we first use an open-world detector [14] to generate the most possible
candidates. Different from standard detection that only finds out pre-defined classes, an open-world
detector locates all possible objects in an image, which is class-agnostic.
As shown in Fig. 2, given a query image IQ, a 2D feature map fQ is extracted by a backbone
network ψ(·). To classify each pre-defined anchor as foreground (objects) or background, the
region proposal network (RPN) [22] is adopted. Concurrently, the boundaries of each anchor are
also roughly regressed. The resulting anchors with high classification scores are termed region
proposals P = [p1,p2, · · · ,pN ] ∈ RN×4, where N is the number of proposals. Next, to obtain
the features FQ for these candidates, we use region of interest pooling (ROIAlign) [22], FQ =
ROIAlign(P, fQ) ∈ RN×C×w×w, where C denotes channel dimensions and w is the spatial size of
proposal features. Finally, we obtain the final classification result and bounding box by two parallel
multi-layer perceptrons (MLP), known as the detection head, which takes the proposal features FQ

as input, and outputs the binary classification scores and the box regression targets. The training loss
is comprised of RPN classification loss LRPN

cls , RPN regression loss LRPN
reg , head classification loss

LHead
cls , and head regression loss LHead

reg .
To make the detector work for open-world objects, the classification branches (in RPN and head) are
guided by objectiveness regression [14]. Specifically, the classification score is defined (supervised)
by Intersection over Union (IoU), which showed a high recall rate over the objects in test images,
even those unseen during training. Since they have learned the class-agnostic "objectiveness", we
assume the open-world proposals probably cover the desired novel instance. Therefore, we take the
top-ranking candidates and their features as the input of the subsequent matching module.

3.2.2 Template Voxel Aggregation
To learn geometry-invariant representations, the Template Voxel Aggregation (TVA) module com-
presses multi-view 2D templates into a compact deep voxel. Inspired by previous technique [10]
developed for unsupervised video encoding, we propose to encode our instance templates via their
relative orientation in the physical 3D world. To this end, we first generate the 2D feature maps
FS = ψ(IS) ∈ RM×C×w×w using a shared backbone network ψ(·) used in the query branch and
then map the 2D features to 3D voxels for multi-view aggregation.
2D-3D mapping: To map these 2D features onto a shared 3D space for subsequent orientation-based
aggregation, we utilize an implicit mapping function M(·). This function translates the 2D features
to 3D voxel features, denoted by V = M(FS) ∈ RM×Cv×D×L×L, where V is the 3D voxel feature
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from the 2D feature, Cv is the feature dimension, and D,L indicate voxel spatial size. Specifically,
we first reshape the feature maps to F′S ∈ RM×(C/d)×d×w×w, where d is the pre-defined implicit
depth, then we apply 3D inverse convolution to obtain the feature voxel.
Note that with multi-view images, we can calculate the relative camera rotation easily via Structure
from Motion (SfM) [33] or visual odometry [39]. Given that the images are object-centered and the
object stays static in the scene, these relative rotations in fact represent the relative rotations between
the object orientations defined in the same camera coordination system. Different from previous
work [10] that implicitly learns the camera extrinsic for unsupervised encoding, we aim to explicitly
embed such geometric information. Specifically, our goal is to first transform every template into the
same coordinate system using their relative rotation, which is then aggregated:

vS =
1

M

M∑
i=1

Conv3D(Rot(Vi,R
⊤
i )) , (1)

where Vi ∈ RCv×D×L×L is the previously mapped i-th independent voxel feature, R⊤
i denotes

the relative camera rotation between the i-th support frame and the first frame. Rot(·, ·) is the 3D
transform used in [10], which first wraps a unit voxel to the new coordination system using R⊤

i and
then samples from the feature voxel Vi with the transformed unit voxel grid. Therefore, all the M
voxels are transformed into the same coordinate system defined in the first camera frame. These are
then aggregated through average pooling to produce the compact template voxel vS.
By explicitly embedding the 3D rotations into individual reference features, TVA achieves a geometry-
aware compact representation, which is more robust to occlusion and pose variation.

3.2.3 Query Voxel Matching
Given the proposal features FQ from query image IQ and the template voxel CS from supports IS,
the task of the query voxel matching (QVM) module is to classify each proposal as foreground (the
reference instance) or background. As shown in Fig. 2, in order to empower the 2D features with 3D
geometry, we first use the same mapping to get query voxels, VQ = M(FQ) ∈ RN×Cv×D×L×L.
VoxDet next accomplishes matching vS and VQ through two steps. First, we need to estimate the
relative rotation between query and support, so that VQ can be aligned in the same coordinate system
as vS. Second, we need to learn a function that measures the distance between the aligned two voxels.
To achieve this, we define a voxel relation operator Rv(·, ·):
Voxel Relation Given two voxels v1,v2 ∈ Rc×a×a×a, where c is the channel and a is the spatial di-
mension, this function seeks to discover their relations in every semantic channel. To achieve this, we
first interleave the voxels along channels as In(v1,v2) = [v1

1,v
1
2,v

2
1,v

2
2, · · · ,vc

1,v
c
2] ∈ R2c×a×a×a,

where vk
1 ,v

k
2 is the voxel feature in the k-th channel. Then, we apply grouped convolution as

Rv(v1,v2) = Conv3D(In(v1,v2), group = c). In the experiments, we found that such a design
makes relation learning easier since each convolution kernel is forced to learn the two feature voxels
from the same channel. With this voxel relation, we can then roughly estimate the rotation matrix
R̂Q ∈ RN×3×3 of each query voxel relative to the template as:

R̂Q = MLP(Rv(V
S,VQ)) , (2)

where vS is copied N times to get VS. In practice, we first predict 6D continuous vector [40] as the
network outputs and then convert the vector to a rotation matrix. Next, we can define the classification
haed with the Voxel Relation as:

ŝ = MLP
(
Rv(V

S,Rot(VQ, R̂Q))
)
, (3)

where Rot(VQ, R̂Q) rotates the queries to the support coordination system to allow for reasonable
matching. In practice, we additionally introduced a global relation branch for the final score, so that
the lost semantic information in implicit mapping can be retrieved. More details are available in the
supplementary material. During inference, we rank the proposals P according to their matching score
and take the Top-k candidates as the predicted box b̂.

3.3 Training Objectives
As illustrated in Fig. 2, VoxDet contains two training stages: reconstruction and instance detection.
Reconstruction To learn the 3D geometry relationships, specifically 3D rotation between instance
templates, we pre-train the implicit mapping function M(·) using a reconstruction objective. We
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Figure 3: The instances and test scenes in the newly built RoboTools benchmark. The 20 unique
instances are recorded as multi-view videos, where the relative camera poses between frames are
provided. RoboTools consists of various challenging scenarios, where the desired instance could be
under severe occlusion or in different orientation.

divide M multi-view templates IS into input images IS
i ∈ R(M−K)×3×W×H and outputs IS

o ∈
RK×3×W×H . Next, we construct the voxel representation VS using IS

i via the TVA module and
adopt a decoder network Dec to reconstruct the output images through the relative rotations:

ÎS
o,j = Dec(Rot(VS,R⊤

j )) , j ∈ {1, 2, · · · ,K} , (4)

where ÎS
o,j denotes the j-th reconstructed (fake) output images and Rj is the relative rotation matrix

between the 1-st to j-th camera frame. We finally define the reconstruction loss as:
Lr = wreconLrecon + wganLgan + wpercepLpercep , (5)

where Lrecon denotes the reconstruction loss, i.e., the L1 distance between IS
o and ÎS

o . Lgan is the
generative adversarial network (GAN) loss, where we additionally train a discriminator to classify
IS
o and ÎS

o . Lpercep means the perceptual loss, which is the L1 distance between the feature maps
of IS

o and ÎS
o in each level of VGGNet [41]. Even though the reconstruction is only supervised on

training instances, we observe that it can roughly reconstruct novel views for unseen instances. We
thus reason that the pre-trained voxel mapping can roughly encode the geometry of an instance.
Detection base training : In order to empower M(·) with geometry encoding capability, we initialize
it with the reconstruction pre-trained weights and conduct the instance detection training stage. In
addition to the open-world detection loss [14], we introduce the instance classification loss LIns

cls and
rotation estimation loss LIns

rot to supervise our VoxDet.
We define LIns

cls as the binary cross entropy loss between the true labels s ∈ {0, 1}N and the predicted
scores ŝ ∈ RN×2 from the QVM module. The rotation estimation loss is defined as:

LIns
rot = ∥R̂QRQ⊤ − I∥ , (6)
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Table 1: Overall performance comparison on synthectic-real datasets LM-O [17] and YCB-V [18].
Compared with various 2D methods, including correlation [5], attention [6], and feature matching [9,
19], our VoxDet holds superiority in both accuracy and efficiency. OLN* means the open-world
object detector (OW Det.) [14] is jointly trained with the matching head while OLN denotes using
fixed modules. † the model is trained on both synthetic dataset OWID and real images.

Test/Metric LM-O YCB-V Avg.
Method OW Det. Train mAR AR50 AR75 AR95 mAR AR50 AR75 AR95 mAR AR50 AR75 Speed

VoxDet OLN* OWID 29.2 43.1 33.3 0.8 31.5 51.3 33.4 1.7 30.4 47.2 33.4 6.5
OLNCorr. [14, 5] OLN* OWID 22.3 34.4 24.7 0.5 24.8 41.1 26.1 0.7 23.6 37.8 25.4 5.5

DTOID [6] N/A OWID 9.8 28.9 3.7 <0.1 16.3 48.8 4.2 <0.1 13.1 38.9 4.0 2.8
OS2D [7] N/A OWID 0.2 0.7 0.1 <0.1 5.2 18.3 1.9 <0.1 2.7 9.5 1.0 5.3

OLNCLIP [14, 19] OLN OWID† 16.2 32.1 15.3 0.5 10.7 25.4 7.3 0.2 13.5 28.8 11.3 2.8
OLNDINO [14, 9] OLN OWID† 23.6 41.6 24.8 0.6 25.6 53.0 21.1 0.8 24.6 47.3 23.0 2.8

Gen6D [5] N/A OWID† 12.0 29.8 6.6 <0.1 12.1 37.1 5.2 <0.1 12.1 33.5 5.9 1.3
BHRL [42] N/A COCO 14.1 21.0 15.7 0.5 31.8 47.0 34.8 1.4 23.0 34.0 25.3 N/A

Table 2: Overall performance comparison on the
newly built real image dataset, RoboTools. For
fairness, we only compare with the models fully
trained on synthetic dataset here, more compari-
son see Appendix D. VoxDet shows superiority
even under sim-to-real domain gap compared with
other 2D representation-based methods [14, 5–7].

Metric OW Det. mAR AR50 AR75 AR95

VoxDet OLN* 18.7 23.6 20.5 5.1
OLNCorr. [14, 5] OLN* 14.4 18.1 15.7 3.8

DTOID [6] N/A 3.6 9.0 2.0 <0.1
OS2D [7] N/A 2.9 6.5 2.0 <0.1

Table 3: Per module efficiency comparison. All
the four methods share the same open-world de-
tector [14]. Compared with 2D baselines that
adopt cosine similarity [9, 19] or learnable corre-
lation [5], our Voxel matching is more efficient,
which shows ∼ 2× faster speed. The numbers
presented below are measured in seconds.

Method/Module Open-World Det. Matching ToTal

VoxDet

0.122

0.032 0.154
OLNCLIP [14, 19] 0.248 0.370
OLNDINO [14, 9] 0.235 0.357
OLNCorr. [14, 5] 0.060 0.182

where RQ is the ground-truth rotation matrix of the query voxel. Note that here we only supervise
the positive samples. Together, our instance detection loss is defined as:

Ld = w1LRPN
cls + w2LRPN

reg + w3LHead
cls + w4LHead

reg + w5LIns
cls + w6LIns

rot , (7)

Remark 1: In both training stages, we only use the training objects, Obase. During inference, VoxDet
doesn’t need any further fine-tuning or optimization for Onovel.

4 Experiments
4.1 Implementation Details
Our research employs datasets composed of distinct training and test sets, adhering to Obase ∩
Onovel = ϕ to ensure no overlap between semantic classes of Obase and Onovel.
Synthetic Training set: In response to the scarcity of instance detection traing sets, we’ve compiled
a comprehensive synthetic dataset using 9,901 objects from ShapeNet [15] and ABO [16]. Each
instance is rendered into a 40-frame, object-centric 360o video via Blenderproc [43]. We then generate
a query scene using 8 to 15 randomly selected objects from the entire instance pool, each initialized
with a random orientation. This process yielded 55,000 scenes with 180,000 boxes for training
and an additional 500 images for evaluation, amounting to 9,800 and 101 instances respectively.
We’ve termed this expansive training set "open-world instance detection" (OWID-10k), signifying
our model’s capacity to handle unseen instances. To our knowledge, this is the first of its kind.
Synthetic-Real Test set: We utilize two authoritative benchmarks for testing. LineMod-
Occlusion [17] (LM-O) features 8 texture-less instances and 1,514 box annotations, with the primary
difficulty being heavy object occlusion. The YCB-Video [18] (YCB-V) contains 21 instances and
4,125 target boxes, where the main challenge lies in the variance in instance pose. These datasets
provide real test images while lacks the reference videos, we thus render synthetic videos using the
CAD models in Blender.
Fully-Real Test set: To test the sim-to-real transfer capability of VoxDet, we introduced a more
complex fully real-world benchmark, RoboTools, consisting of 20 instances, 9,109 annotations,
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Figure 4: Number of templates analysis of VoxDet and 2D baseline, OLNDINO [14, 9] on YCB-V
benchmark. Thanks to the learned geometry-aware 2D-3D mapping, VoxDet can work well with very
few reference images, while 2D method suffers from such setting, dropping up to 87%.
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Figure 5: Top-K analysis of VoxDet and One-shot object detector [7]. By virtue of the instance-level
matching method, QVM, VoxDet can better classify the proposals, so that 90% of the true positives
lie in Top-10, while for OS2D, this ratio is only 60%.

and 24 challenging scenarios. The instances and scenes are presented in Fig. 3. Compared with
existing benchmarks [17, 18], RoboTools is much more challenging with more cluttered backgrounds
and more severe pose variation. Besides, the reference videos of RoboTools are also real-images,
including real lighting conditions like shadows. We also provide the ground-truth camera extrinsic.
Baselines: Our baselines comprise template-driven instance detection methods, such as correla-
tion [5] and attention-based approaches [6]. However, these methods falter in cluttered scenes, like
those in LM-O, YCB-V, and RoboTools. Therefore, we’ve self-constructed several 2D baselines,
namely, OLNDINO, OLNCLIP, and OLNCorr. In these models, we initially obtain open-world 2D
proposals via our open-world detection module [14]. We then employ different 2D matching methods
to identify the proposal with the highest score. In OLNDINO and OLNCLIP, we leverage robust fea-
tures from pre-trained backbones [9, 19] and use cosine similarity for matching. 1 For OLNCorr., we
designed a 2D matching head using correlation as suggested in [5]. These open-world detection based
2D baselines significantly outperform previous methods [5, 6]. In addition to these instance-specific
methods, we also include a class-level one-shot detector, OS2D [7] and BHRL [42] for comparison.
Hardware and configurations: The reconstruction stage of VoxDet was trained on a single Nvidia
V100 GPU over a period of 6 hours, while the detection training phase utilized four Nvidia V100
GPUs for a span of ∼40 hours. For the sake of fairness, we trained the methods referenced [5–
7, 14, 19, 9] mainly on the OWID dataset, adhering to their official configuration. Inferences were
conducted on a single V100 GPU to ensure fair efficiency comparison. During testing, we supplied
each model with the same set of M = 10 template images per instance, and all methods employed
the top N = 500 ranking proposals for matching. In the initial reconstruction training stage, VoxDet
used 98% of all 9,901 instances in the OWID dataset. For each instance, a random set of K = 4
images were designated as output IS

o , while the remaining M −K = 6 images constituted the inputs
IS
i . For additional configurations of VoxDet, please refer to Appendix A and our code.

Metrics: Given our assumption that only one desired instance is present in the query image, we
default to selecting the Top-1 proposal as the predicted result. We report the average recall (AR)
rate [44] across different IoU, such as mAR (IoU ∈ 0.5 ∼ 0.95), AR50 (IoU 0.5), AR75 (IoU 0.75),
and AR95 (IoU 0.95). Note that the AR is equivalent to the average precision (AP) in our case.

4.2 Quantitative Results
Overall Performance Comparison: On the synthetic real datasets, we comprehensively compare
with all the potential baselines, the results are detailed in Table 1, demonstrating that VoxDet
consistently delivers superior performance across most settings. Notably, VoxDet surpasses the

1we default to the ViT-B model. DINO [9] and CLIP [19] might already be familiar with the test instances.
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Figure 6: Detection qualitative results comparison between VoxDet and 2D baselines on the three
benchmarks. VoxDet shows better robustness under pose variance (e.g. Obj. 5@LM-O first and
second columns) and occlusion (e.g. Obj. 13@YCB-V second column and Obj. 9@RoboTools).

next best baseline, OLNDINO, by an impressive margin of up to 20% in terms of average mAR.
Furthermore, due to its compact voxel representation, VoxDet is observed to be markedly more
efficient. On the newly built fully real dataset, RoboTools, we only compare methods trained on
the same synthetic dataset for fairness. As shown in Table 2, VoxDet demonstrates better sim2real
transfering capability compared with the 2D methods due to its 3D voxel representation. We present
the results comparison with the real-image trained models in Appendix D.
Efficiency Comparison: As QVM has a lower model complexity than OLNCLIP and OLNDINO, it
achieves faster inference speeds, as detailed in Table 3. Compared to correlation-based matching [5],
VoxDet leverages the aggregation of multi-view templates into a single compact voxel, thereby
eliminating the need for exhaustive 2D correlation and achieving 2× faster speed.
In addition to inference speed, VoxDet also demonstrates greater efficiency regarding the number of
templates. We tested the methods on the YCB-V dataset [18] using fewer templates than the default.
As illustrated in Fig. 4, we found that the 2D baseline is highly sensitive to the number of provided
references, which may plummet by 87% when the number of templates is reduced from 10 to 2.
However, such a degradation rate for VoxDet is 2× less. We attribute this capability to the learned
2D-3D mapping, which can effectively incorporate 3D geometry with very few views.
Top-K Analysis: Compared to the category-level method [7], VoxDet produces considerably
fewer false positives among its Top-10 candidates. As depicted in Fig. 5, we considered Top-
K = 1, 5, 10, 20, 30, 50, 100 proposals and compared the corresponding AR between VoxDet and
OS2D [7]. VoxDet’s AR only declines by 5 ∼ 10% when K decreases from 100 to 10, whereas
OS2D’s AR suffers a drop of up to 38%. This suggests that over 90% of VoxDet’s true positives are
found among its Top-10 candidates, whereas this ratio is only around 60% for OS2D.
Ablation Studies:

Table 4: Ablation study for VoxDet in RoboTools
benchmark. All the three critical modules are help-
ful in our design. Supervising the estimated rota-
tion achieves slightly better results. Comparison
with more matching module see Appendix B.

Recon. R R w/ sup. Voxel Rel. mAR AR50 AR75

✓ ✓ ✓ ✓ 18.7 23.6 20.5
✓ ✓ ✗ ✓ 18.2 23.2 20.0
✓ ✗ ✗ ✓ 15.6 21.9 17.0
✓ ✓ ✓ ✗ 15.1 19.4 16.2
✗ ✓ ✓ ✓ 14.2 18.3 15.7

The results of our ablation studies are presented
in Table 4. Initially, we attempted to utilize the
3D depth-wise convolution for matching (see
the fourth row). However, this proved to be
inferior to our proposed instance-level voxel re-
lation. Reconstruction pre-training is crucial for
VoxDet’s ability to learn to encode the geometry
of an instance (see the last row). Additionally,
we conducted an ablation on the rotation mea-
surement module (R) in the QVM, and also tried
not supervising the predicted rotation. Both are
inferior to our default settings.
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Support Query and Voxel Activation Support Query and Voxel Activation

Figure 7: Visualization of the high activation grids during matching. As query instance rotates along
a certain axis, the location of the high-activated grids roughly rotates in the corresponding direction.

4.3 Qualitative Results

Figure 8: Reconstruct results of VoxDet
on unseen instances. The voxel repre-
sentation in VoxDet can be decoded with
a relative rotation and synthesize novel
views, which demonstrate the geometry
embedded in our learned voxels.

Detection Visualization The qualitative comparison is
depicted in Fig. 6, where we compare VoxDet with the
two most robust baselines, OLNDINO and OLNCorr..
We notice that 2D methods can easily falter if the pose of
an instance is not seen in the reference, e.g., 2-nd query
image in the 1-st row, while VoxDet still accurately identi-
fies it. Furthermore, 2D matching exhibits less robustness
under occlusion, where the instance’s appearance could
significantly differ. VoxDet can effectively overcome these
challenges thanks to its learned 3D geometry. More visu-
alizations and qualitative comparisons see Appendix C.
Deep Voxels Visualization To better validate the
geometry-awareness of our learned voxel representation,
we present the deep visualization in Fig. 7. The gradient
of the matching score is backpropagated to the template
voxel and we visualze the activation value of each grid.
Surprisingly, we discover that as the orientation of the
query instance changes, the activated regions within our
voxel representations accurately mirror the true rotation.
This demonstrates that the voxel representation in VoxDet is aware of the orientation of the instance.
Reconstruction Visualization The voxel representation in VoxDet can be decoded to synthesize
novel views, even for unseen instances, which is demonstrated in Fig. 8. The voxel, pre-trained on
9500 instances, is capable of approximately reconstructing the geometry of unseen instances.

5 Discussions
Conclusion: This work introduces VoxDet, a novel approach to detect novel instances using multi-
view reference images. VoxDet is a pioneering 3D-aware framework that exhibits robustness to
occlusions and pose variations. VoxDet’s crucial contribution and insight stem from its geometry-
aware Template Voxel Aggregation (TVA) module and an exhaustive Query Voxel Matching (QVM)
specifically tailored for instances. Owing to the learned instance geometry in TVA and the meticu-
lously designed matching in QVM, VoxDet significantly outperforms various 2D baselines and offers
faster inference speed. Beyond methodological contributions, we also introduce the first instance
detection training set, OWID, and a challenging RoboTools benchmark for future research.
Limitations: Despite its strengths, VoxDet has two potential limitations. Firstly, the model trained
on the synthetic OWID dataset may exhibit a domain gap when applied to real-world scenarios,
we present details in Appendix D. Secondly, we assume that the relative rotation matrixes and
instance masks (box) for the reference images are known, which may not be straightforward to
calculate. However, the TVA module in VoxDet doesn’t require an extremely accurate rotation and
2D appearance. We present further experiments addressing these issues in Appendix E.
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Supplementary
To make our model fully reproducible, we present complete implementation details in Appendix A.
Besides, our code library will be released upon acceptance. We report more comparisons between
our QVM module and the 2D matching/relation techniques [1, 5, 45] in Appendix B to demonstrate
the superiority of QVM in instance-level 3D matching. In Appendix C, we present more detection
qualitative results. We further present some discussions about the sim2real domain gap of VoxDet
in Appendix D. To test the robustness of VoxDet under interference on the voxel representation,
we display results obtained from the flawed voxel in Appendix E. Finally, we provide extended
related works discussions in Appendix F, where we exhaustively compare VoxDet with the existing
instance-level tasks, including visual tracking, instance pose estimation, and instance retrieval.

A Implementation Details
Model Structure: We adopt ResNet50 [46] with feature pyramid network [26] as our feature
extractor ψ(·). The default multi-scale ROIAlign in [26] is leveraged to obtain the 2D proposal
features, where the dimensions are N = 500, C = 256, w = 7. In our 2D-3D mapping, we
set C/d = 32, d = 8, which results in the voxel feature dimension Cv = 256, D = 16, L =
14. All the 3D convolutions in TVA and QVM take kernel size as 3 and the padding equals
to 1, so that the dimension of the voxels remains the same throughout the two modules. For
the Rot(·, ·) function, we have followed [10] to use torch.nn.functional.affine_grid() and
torch.nn.functional.grid_sample() functionalities. Though the 2D-3D mapping can learn the
rotations in the physical world, it sacrifices some semantics information in the feature channels
when reshaping. Therefore, in QVM, we have a global matching branch to retrieve the lost semantic
information. To be more specific, we apply global average pooling on the support features to get
a support vector k ∈ R1×C×1×1. Then we adopt depth-wise convolution between k and FQ to
get a correlation map. Note that this correlation map preserved all the semantic channels from the
backbone ψ(cot), so that the lost information in the 2D-3D mapping. The map is added to the voxel
relation output Rv(V

S,Rot(VQ, R̂Q)) for the final score.
Training Details: In the first reconstruction stage, we set the loss weights as wrecon = 10.0, wgan =
0.01, wpercep = 1.0. The model is trained for 16 epoch on the 9600 instances from OWID datasets.
We leveraged Adam optimizer [47] with a base learning rate of 5 × 10−5 during training. In the
second detection stage, we initialize the 2D-3D mapping modules in TVA and QVM with the
reconstruction pre-trained weights. VoxDet first only learns the detection task, without learning the
rotation estimation, i.e., the loss weights are set as w1 = w2 = w3 = w4 = w5 = 1.0, w6 = 0 in the
first 10 epochs, where SGD is leveraged as an optimizer with 0.02 base learning rate. Note that in
this stage, the 2D-3D mapping part only takes 1

10 of the base learning rate. Then in the final epoch,
VoxDet learns the rotation estimation with the detection part fixed, i.e., w1 = w2 = w3 = w4 =
w5 = 0.0, w6 = 1.0. However, supervising rotation is not the key requirements and is optional for
VoxDet. It improves the performance slightly by 1 ∼ 2%.

B More Matching Module Comparison
Table 5: Comparison with different types of match-
ing module. We compare QVM with the correlation
in [5], class-level relation proposed in [1], and the
class distance defined in FSDet [45].

Method mAR AR50 AR75

QVM (Ours) 23.95 33.35 26.90
QVM† 22.45 31.75 25.05

2D Relation [1] 20.25 29.70 22.80
FSDet [45] 20.35 29.35 22.60

Local Matching [48, 49] 10.60 13.90 11.75

We compare QVM with more matching tech-
niques in Table 5, where the averaged results
onthe cluttered LM-O [17] and RoboTools
benchmark are reported. We first ablate the
Voxel Relation module in QVM, which results
in QVM†. Specifically, all the Voxel Relation
in QVM† are replaced by a simple depth-wise
convolution, i.e., we first apply global average
pooling on the template voxel to get a feature
vector, which is then taken as the convolution
kernel to calculate the correlation voxel from
the queries. We can see such a naive design
will result in a performance drop.
For all the rest methods, we used the same open-world detector to obtain the universal proposals,
which are then matched with the template images using different matching techniques. To be
more specific, 2D Corr. [5] constructs support vectors from every reference image. Then, depth-
wise convolution is conducted between each support vector and the proposal patch. The resulting
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Figure 9: Detection qualitative results comparison between VoxDet and 2D baselines, DTOID [6],
Gen6D [5], OLNDINO [14, 9] on the three benchmarks. VoxDet shows better robustness under pose
variance and occlusion. These qualitative comparisons can be better visualized in our supplementary
video.

correlation maps are sent to an MLP for classification score. In 2D Relation [1], we substitute the
simple depth-wise convolution in 2D Corr. with the spatial and channel relation proposed in [1]. In
FSDet [45], the depth-wise convolution in 2D Corr is replaced by the distance defined in [45]. Since
they are geometry-unaware, we find all the 2D techniques worse than our QVM module.
Additionally, we designed a Local Matching baseline [49, 48]. In Local Matching, we first extract
local key points from the reference images and proposals using SuperPoint [49]. Then the points
descriptors are matched by SuperGlue [48]. We take the mean matching score of all the points in the
proposal as their classification score. We find such an implementation, though geometry-invariant,
falls short in our task since it lacks semantic representation of the whole instance.
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C More Detection Visualizations
We present more detection qualitative comparisons in Fig. 9. VoxDet, in red, is compared with three
baselines, DTOID [6], Gen6D [5], and OLNDINO. Compared with previous instance detectors [6, 5],
VoxDet is more robust under orientation variation and severe occlusion by virtue of the learned
geometric knowledge. For example, in the LM-O benchmark, second column, when the duck is
partially occluded and the egg box is in different orientations, VoxDet can still find them while Gen6D
fails. Compared with similarity matching [9], VoxDet can better distinguish similar instances via
the QVM module. For instance, in the RoboTools benchmark, the third column, the desired instance
could be distracted by the motor, which has similar appearances but different geometry. Our VoxDet
can discover such geometric differences and make correct classification, while the similarity matching
falls short even if the feature from DINO [9] is stronger than ResNet50 [46].

D Sim-to-Real Comparison
VoxDet is entirely trained on synthetic dataset, OWID. We observe that the model shows some
domain gap when transferred to real-world images like RoboTools. On the synthetic-real datasets,
LM-O [17] and YCB-V [18], our model easily outperforms those trained on real images, while it
shows limitations in fully real test set RoboTools. For example, Gen6D [5] is mainly trained on
real-images, which reports 17.0 mAR, 35.5 AR50, and 14.3 AR75. Its AR50 is higher than VoxDet
(23.6) while in harder metrics like AR75, our model works better (20.5). Compared with the cutting
edge foundation models that are trained on large-scale real images, our model still shows spaces
for improvement. For example, OLNCLIP achieves 11.0 mAR, 20.8 AR50, and 9.2 AR75, which is
worse than VoxDet. Yet, OLNDINO [13] can outperform VoxDet in RoboTools with over 30 mAR.
We conclude that the feature representation from the concurrent 2D foundation model [13] could be a
stronger backbone for VoxDet to overcome the domain gap issue. Learning a geometry-aware strong
voxel representation from such foundation model will be one of our future work.

E Performance under Flawed Voxel
Table 6: Performance of VoxDet on RoboTools when
the reference is disturbed. The ratio means center
shift and scale noise with respect to width and height.

Mean Shift Ratio 0 10% 20% 30%

AR50 23.6 20.1 18.9 17.1

VoxDet assumes known instance masks and
poses for the reference video, which may
have some noise during realworld deployment.
To quantitatively analysis the robustness of
VoxDet under flawed Voxels, we present its re-
sults on RoboTools when the reference video
is disturbed in appearance and geometry.
Add noise on the reference image patches :
We tried to add random shift on the cropped area in the reference images, resulting in inaccurate
instance appearance. The results on RoboTools are shown in Table 6. We conclude that even when we
disturb around 65% of the voxel (30% shift on each 2D patch), the model still works, which means
VoxDet is robust to appearance noise.
Add noise on the relative poses : We tried to add random error on the pose of the reference images,
resulting in inaccurate instance geometry. When we add as large as 15 degree angular error, the
performance (AR50) decreased from 23.6 to 20.4. We conclude that VoxDet is not very sensitive to
the geometry noise.

F Extended Related Works
Visual Object Tracking aims to localize a general target instance in a video, given its initial
state in the first frame. Early methods adopt discriminative correlation filters [50–52], where the
calculation in the frequency domain is so efficient that real-time speed can be achieved on a single
CPU. More recently, methods are developed on Siamese Network [53] and Transformers [54–56].
Unlike detection, object tracking has a strong temporal consistency assumption, i.e., the location and
appearance of the instance in the next frame do not largely vary from the previous frame. So that they
only conduct detection/matching in the small search region with a single 2D template, which can’t
work for our whole image detection setting.
Instance Pose Estimation is developed to estimate the 6 DoF pose of an unseen instance. Some
of them [57, 58] match the local point features and resort to RANSAC to optimize the relative pose.
While others [5, 59] first selects the closest template frame and then conducts pose refinement on the

17



known template poses. Most of these methods usually assume the instance detection is perfect, i.e.,
they crop the instance out of the query image with the ground truth box and estimate the pose on the
small object-centered patch. Our VoxDet can serve as their front-end, which is robust to cluttered
environments, thus making the detection-pose estimation framework more reliable.
Instance Retrieval hopes to retrieve a specific instance from a large database with a single reference
image [60–65]. Some early work extracts local point features from template and query patch for image
matching [61, 49], which may suffer from poor discriminative capability. More recent work resorts
to the deep neural network for a global representation of the instance [62–65], which is compared
with the features from query images. However, most of them construct 2D template features from
the reference, so that their representation is unaware of the 3D geometry of the instance, which
may not be robust under severe pose variation. Besides, instance retrieval methods usually require
high-resolution query images for the discriminative features, while the instance in our cluttered query
image could be in low-resolution, which sets additional barriers to these approaches.
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