
Fast Rank-1 Lattice Targeted Sampling for Black-box
Optimization

Yueming LYU
Centre for Frontier AI Research (CFAR)

Institute of High Performance Computing (IHPC)
Agency for Science, Technology and Research (A*STAR)
1 Fusionopolis Way, #16-16 Connexis, Singapore 138632

Lyu_Yueming@cfar.a-star.edu.sg

Abstract

Black-box optimization has gained great attention for its success in recent ap-
plications. However, scaling up to high-dimensional problems with good query
efficiency remains challenging. This paper proposes a novel Rank-1 Lattice Tar-
geted Sampling (RLTS) technique to address this issue. Our RLTS benefits from
random rank-1 lattice Quasi-Monte Carlo, which enables us to perform fast local
exact Gaussian processes (GP) training and inference with O(n log n) complexity
w.r.t. n batch samples. Furthermore, we developed a fast coordinate searching
method with O(n log n) time complexity for fast targeted sampling. The fast
computation enables us to plug our RLTS into the sampling phase of stochastic op-
timization methods. This improves the query efficiency while scaling up to higher
dimensional problems than Bayesian optimization. Moreover, to construct rank-1
lattices efficiently, we proposed a closed-form construction. Extensive experiments
on challenging benchmark test functions and black-box prompt fine-tuning for
large language models demonstrate the query efficiency of our RLTS technique.

1 Introduction

Black-box optimization has gained great attention for its success in many recent applications, such as
prompt fine-tuning for large language models [Sun et al., 2022b,a], policy search for robot control
and reinforcement learning [Choromanski et al., 2019, Lizotte et al., 2007, Barsce et al., 2017,
Salimans et al., 2017], automatic hyper-parameters tuning in machine learning problems [Snoek
et al., 2012], black-box architecture search in engineering design [Wang and Shan, 2007], drug
discovery [Negoescu et al., 2011] and accelerated simulation for scientific discovery [Maddox et al.,
2021, Hernández-Lobato et al., 2017], etc. Many efforts have been made for black-box optimization
in the literature, including Bayesian optimization (BO) methods [Srinivas et al., 2010, Gardner et al.,
2017, Nayebi et al., 2019], stochastic optimization methods like evolution strategies (ES) [Back et al.,
1991, Hansen, 2006, Wierstra et al., 2014b, Lyu and Tsang, 2021] and genetic algorithms [Srinivas
and Patnaik, 1994, Mirjalili and Mirjalili, 2019].

Bayesian optimization usually builds a global (GP) model as a surrogate and provides queries by
optimizing some acquisition functions [Snoek et al., 2012]. Although BO achieves good query
efficiency for low-dimensional problems, it often fails to handle high-dimensional problems with
large sample budgets [Eriksson et al., 2019]. The computation of GP with a large number of samples
itself is expensive, and the internal optimization of the acquisition functions is challenging. Recently,
Müller et al. [2021], Nguyen et al. [2022] builds a GP model for both the function value and the
gradient and performs local Bayesian optimization. Although these methods improve the scalability
of global BO, they usually cannot scale up to five hundred dimensional complex problems. This may

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

be because the learned gradient heavily depends on the accuracy of the GP model. However, achieving
an accurate GP model is challenging for high-dimensional problems. A slightly misspecified GP
model may lead to a wrong estimated gradient due to the highly nonlinear acquisition functions.

On the other line, stochastic optimization methods, e.g., ES [Rechenberg and Eigen, 1973, Nesterov
and Spokoiny, 2017], natural evolution strategies (NES) [Wierstra et al., 2014b], CMAES [Hansen,
2006], and implicit natural gradient optimizer (INGO) [Lyu and Tsang, 2021], typically sampling form
Gaussian distribution and approximate the (natural) gradient for the update of the Gaussian distribution
parameters for continuous optimization. These methods can scale up to higher dimensional problems
compared with BO. However, the gradient approximation may have a large variance, especially for
high-dimensional problems. Thus, the update direction may not be toward the descent direction,
leading to inferior query efficiency.

To address high-dimensional black-box problems with good query efficiency, we propose a novel
Rank-1 Lattice Targeted Sampling (RLTS) technique. Our RLTS has a O(n log n) time complexity,
which is fast for plugging into the sampling phase of stochastic optimization methods. In this way,
our methods can improve the query efficiency of stochastic optimization methods while addressing
higher-dimensional problems than BO. Our contributions are summarized as follows:

• We propose a novel Rank-1 Lattice Targeted Sampling (RLTS) technique. Our RLTS builds
a local GP with a random rank-1 lattice, which enables fast exact GP training and inference
with O(n log n) time complexity w.r.t. n batch samples. Furthermore, we develop a fast
coordinate search that enables target sampling with O(n log n) time complexity.

• We propose a closed-form subgroup rank-1 lattice by considering the dual lattice regarding
the integral approximation error of functions in Korobov space. Our rank-1 lattice has a
more regular pattern of approximation error terms. Moreover, our subgroup rank-1 lattice
capitalizes on constructing a circulant kernel Gram matrix benefit from its group property.
This enables efficient O(n log n) computations in GP training/inference and fast candidate
searching. In contrast, low-discrepancy QMC sequences, such as Sobol sequences or Halton
sequences, lack these capabilities. In addition, our new closed-form rank-1 lattice may have
potential applications in downstream tasks beyond black-box optimization.

• We plug our RLTS into the sampling phase at each step of stochastic optimization methods to
improve query efficiency. In this way, during the optimization procedure, our RLTS sampling
from an updated promising region instead of a fixed one at each step. This approach can
scale up to address high-dimensional problems.

• Empirically, extensive experiments on high-dimensional challenging benchmark test func-
tions and practical black-box prompt fine-tuning for large language models demonstrate the
effectiveness of our RLTS technique.

2 Background
2.1 Black-box Optimization

Given a proper function f(x) : Rd → R such that f(x) > −∞, black-box optimization is to
minimize f(x) by using function queries only. Black-box stochastic optimization methods typically
employ a sampling distribution p(x;θ) and optimizes the parameter of the distribution regarding the
relaxed problem: J(θ) := Ep(x;θ)[f(x)].

Evolution Strategies (ES) [Rechenberg and Eigen, 1973, Nesterov and Spokoiny, 2017] employ a
Gaussian distribution N (µ, σ2I) for sampling. The approximate gradient descent update is given as

µt+1 = µt −
β

nσ

n∑
i=1

ϵif(µt + σϵi), (1)

where ϵi ∼ N (0, I) and β denotes the step-size. The ES method performs the approximate first-order
gradient descent update. As a result, the convergence of ES may be slow. Several second-order
gradient descent methods have been proposed to improve convergence. Wierstra et al. [2014a]
proposed the natural evolution strategies (NES), which perform the approximate natural gradient
update. When a Gaussian distribution N (µ,Σ) is employed for sampling. The update rule of NES is

2

given in Eq.(2) and Eq.(3):

Σt+1 = Σt −
β

n

n∑
i=1

f(µt +Σ
1
2
t ϵi)

(
Σ

1
2
t ϵiϵ

⊤
i Σ

1
2
t −Σt

)
(2)

µt+1 = µt −
β

n

n∑
i=1

f(µt +Σ
1
2
t ϵi)Σ

1
2
t ϵi. (3)

where ϵi ∼ N (0, I) and Σ
1
2 = Σ

1
2⊤ and Σ

1
2Σ

1
2 = Σ. The NES takes advantage of second-order

gradient information, which improves the convergence of ES.

Lyu and Tsang [2021] proposed an implicit natural gradient optimizer (INGO) for black-box opti-
mization, which provides an alternative way to compute the natural gradient update. The update rule
of INGO is given as in Eq.(4) and Eq.(5):

Σ−1
t+1 = Σ−1

t + β

n∑
i=1

f(xi)− µ̂

nσ̂

(
Σ−1

t (xi−µt)(xi−µt)
⊤Σ−1

t

)
(4)

µt+1 = µt − β

n∑
i=1

f(xi)− µ̂

nσ̂
(xi − µt). (5)

where xi ∼ N (µt,Σt), µ̂ =
∑n

i=1 f(xi)

n and σ̂ denotes the standard deviation of f(xi). The
normalization f(xi)−µ̂

σ̂ is employed to reduce the variance.

CMAES [Hansen, 2006] provides a more sophisticated update rule and performs well on a wide range
of black-box optimization problems. All the above stochastic optimization methods rely on sampling.
Thus, the sampling phase is vitally important. And a better sampling technique is promising to
achieve further improvement.

2.2 Rank-1 Lattice
A rank-1 lattice is a particular case of the general lattice with a simple operation for point-set
construction. It can be used as Quasi-Monte Carlo for integral approximation [Sloan, 2000, Dick
et al., 2013]. A rank-1 lattice point set P = {x1, · · · ,xn} can be constructed as Eq.(6):

xi :=
iz mod n

n
, i ∈ {1, · · · , n}, (6)

where z ∈ Zd is the so-called generating vector, and mod denotes the modulo operation.

Korobov [1960] proposes a rank-1 lattice with the generating vector having a particular form as Eq.(7)
z := [1, k, · · · , kd−1] mod n, (7)

where k is searching over {1, · · · , n−1} to reduce approximation error.

Sloan and Reztsov [2002] further proposed a component-by-component searching method for the
generating vector without assuming the Korobov form in Eq. (7). Recently, Lyu et al. [2020] proposed
a simple closed-form subgroup-based rank-1 lattice by considering the Toroidal distance in the primal
lattice space. The generating vector is given as Eq.(8)

z = [g0, g
n−1
2d , g

2(n−1)
2d , · · · , g

(d−1)(n−1)
2d] mod n, (8)

where g denotes the primitive root modulo the prime number n. More details of the lattice rules for
numerical integration can be found in the book [Dick et al., 2022].

In this paper, we proposed a closed-form subgroup rank-1 lattice by ensuring the approximation error
terms of the dual lattice have a more regular pattern. In contrast, Lyu et al. [2020] construct the rank-1
lattice evenly spaced in the primal lattice space.

3 Fast Rank-1 Lattice Targeted Sampling
3.1 Random Rank-1 Lattice Quasi-Monte Carlo Gaussian Sampling

We first show how to construct random rank-1 lattice Quasi-Monte Carlo Gassuain samples. These
samples enable us to perform the black-box stochastic optimization listed in section 2.1. More
importantly, the nice property of the structure of these samples facilitates a fast targeted sampling.

3

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3

X2

0.02 0.04
0.06

0.08 0.10

0.12 0.14

(a) Our Closed-form Rank-1 Lattice Sampling

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3

X2

0.02 0.04
0.06

0.08 0.10

0.12 0.14

(b) i.i.d. Gaussian Sampling

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3

X2

0.03

0.06

0.09

0.1
2

0.15
0.1

80.21

(c) Our Closed-form Rank-1 Lattice Sampling

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3

X2

0.03

0.06

0.09

0.1
2

0.15
0.1

80.21

(d) i.i.d. Gaussian Sampling

Figure 1: Illustration of the our closed-form Rank-1 Lattice sampling and i.i.d. Gaussian sampling.

Given a rank-1 lattice point set P = {x1, · · · ,xn}, we first construct a random shifted rank-1
lattice [Dick et al., 2013] as Eq. (9),

x̄i = xi +∆ mod 1 ∀i ∈ {1, · · · , n}, (9)

where ∆ ∼ Uniform[0, 1]d, and the mod 1 operation denotes a modulo operation that takes the
non-negative fractional part of the input number element-wise. Then, we can construct random QMC
Gaussian samples as Eq. (10)

ϵi = Φ−1(x̄i) ∀i ∈ {1, · · · , n}, (10)

where Φ−1(·) computes the inverse cumulative density function of the standard Gaussian distribution
w.r.t. the input element-wise. Then, the samples for Gaussian N (µ,Σ) can be constructed as follows:

ξi = µ+Σ
1
2 ϵi. (11)

An illustration of the random QMC Gaussian samples constructed by our closed-form rank-1 lattice
is shown in Figure 1. We can see that our rank-1 lattice QMC Gassuan samples are spaced more
evenly w.r.t. the density.

3.2 Fast Exact GP Training and Inference with Rank-1 Lattice

This subsection will show how to perform fast exact GP training and inference using our rank-1
lattice samples with a O(n log n) time complexity w.r.t n samples.

Let Kθ denotes the kernel Gram matrix, i.e., Kθ = [kθ(xi,xj)]1≤i,j≤n, the marginal log-likelihood
of a GP model [Williams and Rasmussen, 2006] can be formulated as Eq. (12)

L(p(y|X)) = −1

2
y⊤(Kθ + σ2I)−1y − 1

2
log(

∣∣Kθ + σ2I
∣∣)− n

2
log 2π. (12)

4

The standard GP model needs a O(n3) time complexity to compute the marginal log-likelihood,
which is prohibitive for fast training as an inner step for stochastic optimization.

In this paper, we construct the random QMC samples based on rank-1 lattice, which enables us to
perform fast GP training. Specifically, we build the GP model with the rank-1 lattice as the training
data instead of the Gaussian samples. Define modulo kernel as Eq. (13):

k(xi,xj) := k∆(ϕ(xi − xj)), (13)

where k∆(·) is a shift-invariant kernel, and the function ϕ(xi − xj) is given as Eq. (14)

ϕ(xi − xj) = min
(
(xi − xj) mod 1,1− (xi − xj) mod 1

)
, (14)

where operation min(·, ·) outputs the minimum among its two inputs element-wise, and mod 1 output
the positive fractional parts of its inputs element-wise. The nonnegative fractional part of a real
number x is x− ⌊x⌋, where ⌊·⌋ denotes the floor function.

For a GP model with a modulo kernel defined in Eq.(13), the kernel Gram matrix is a circulant matrix
thanks to the properties of rank-1 lattice. To be concrete, for rank-1 lattice data, we have Eq.(15)

k(xi,xj) = k(xi+1,xj+1) = k∆

(
min

((i− j)z mod n

n
,1− (i− j)z mod n

n

))
. (15)

Then the marginal log-likelihood L(p(y|X)) can be computed with a O(n log n) time complexity
by Fast Fourier Transform (FFT).

Specifically, note that the kernel Gram matrix Kθ + σ2I is a symmetric circulant matrix generated
by vector k∆

1, where k∆ is a vector with its ith element given as Eq. (16) .

k∆i = k∆

(
min

((i− 1)z mod n

n
,1− (i− 1)z mod n

n

))
. (16)

We know that Kθ + σ2I can be diagonalized as Kθ + σ2I = 1
nF

∗ΛF , where the jth row and kth

column element of F is Fjk = e−2πjki/n. And the matrix Λ is the diagonal eigenvalue matrix that
can be computed as Λ = diag(Fk∆). The matrix-vector product Fk∆ can be computed via FFT
with O(n log n) time complexity. And matrix-vector product 1

nF
∗v for a vector v can be computed

via inverse FFT. More details about the properties of circulant matrices and fast computation via FFT
can be found in [Gray et al., 2006].

Then, we achieve the fast computation of the terms in log-likelihood as Eq.(17) and Eq.(18):

y⊤(Kθ + σ2I)−1y = y⊤ifft(fft(y)/fft(k∆)) (17)

log(
∣∣Kθ + σ2I

∣∣) = n∑
i=1

log(λi + σ2) = 1⊤ log
(
fft(k∆)

)
, (18)

where ifft(·), fft(·) denotes the inverse FFT and FFT operation, respectively, the operator / in Eq.(17)
performs divide element-wise. And the log(·) is an element-wise operation. And λi in Eq.(18)
denotes the eigenvalue of kernel Gram matrix Kθ.

For inference, GP model has closed-form posterior mean and variance [Williams and Rasmussen,
2006] given as Eq.(19) and Eq.(20) :

m̂(x) = kθ(x)
⊤(Kθ + σ2I)−1y (19)

σ̂2(x) = kθ(x,x)− kθ(x)
⊤
(Kθ + σ2I)−1kθ(x), (20)

where kθ(x) = [kθ(x,x1), ..., kθ(x,xn)]
⊤.

With rank-1 lattice input data, we can perform fast inference by Eq.(21) and Eq.(22):

m̂(x) = kθ(x)
⊤ifft(fft(y)/fft(k∆)) (21)

σ̂2(x) = kθ(x,x)− kθ(x)
⊤ifft(fft(kθ(x))/fft(k∆)). (22)

Both the exact GP training and inference benefit from the structure of rank-1 lattice and FFT
acceleration, which can be performed with a O(n log n) time complexity. A deep learning toolbox,
e.g., Pytorch, can be used to train the parameters of the kernel.

5

Algorithm 1 Fast Coordinate Search
Input: Number of iterations T , weight vector w, and generating vector z = [z1, · · · , zd] for
rank-1 lattice X .
Initialization: Initialize x∗ by uniformly sampling from grids {0, 1

n , · · · ,
n−1
n }d.

for t= 1:T do
for q= 1:d do

Compute cq = ifft(fft(kq
∆(0))⊙ fft(k̂

q

∆ ⊙w)) by Eq.(27).
Get the index i∗ of the minimum elements in cq , and set x∗

q =
i∗zq mod n

n .
end for

end for
Return: x∗

3.3 Fast Coordinate Search for Targeted Sampling

This subsection shows how to perform a fast coordinate search for targeted sampling. A rank-1 lattice
with n points is contained in a grid {0, 1

n , · · · ,
n−1
n }d. We thus perform a coordinate descent search

from the index set {0, 1, · · · , n−1}d to minimize the GP posterior mean in Eq.(19).

Let k(·, ·) = k∆(·) be a shift-invariant kernel with a decomposition structure as Eq. (23):

k(x∗,x) = k∆(ϕ(x
∗ − x)) = Πd

q=1k∆(ϕ(x
∗
q − xq)), (23)

where x∗
q , xq denotes the qth element in x∗, x, respectively. We can perform a coordinate search by

fixing all the components except the qth one as the current working component for index searching.
Formally, let w = (Kθ +σ2I)−1y. Then, we have the GP posterior mean function given as Eq. (24):

m̂(x∗) = kq⊤
∆ (x∗

q)
(
k̂
q

∆ ⊙w
)
, (24)

where ⊙ denotes the element-wise product, and kq
∆(x

∗
q) denotes a vector with ith element given as

kq
∆i = k∆(ϕ(x

∗
q −Xqi)), and Xqi denotes the element in qth-row and ith-column of the rank-1

lattice matrix X = [x1, · · · ,xn]. The vector k̂
q

∆ denotes the remainder vector with its ith-element
given as Eq. (25):

k̂
q

∆i =
1

k∆(ϕ(x∗
q −Xqi))

Πd
q=1k∆(ϕ(x

∗
q −Xqi)). (25)

To optimize the qth component x∗
q of x∗, we fix the other components of x∗ and the corresponding

vector k̂
q

∆. We find x∗
q by solving the subproblem given in Eq. (26)

x∗
q = argmin

x∈{0,··· ,n−1}
kq
∆(x)

⊤(k̂q

∆ ⊙w
)
. (26)

Directly enumerate computation of the problem (26) needs a O(n2) time complexity. In our paper,
we can perform a fast computation with O(n log n) time complexity thanks to the rank-1 lattice
X . Specially, when X is a rank-1 lattice with the generating vector z = [z1, · · · , zd], then the
matrix Kq

∆ = [kq
∆(0),k

q
∆(

1zq mod n
n), · · · ,kq

∆(
(n−1)zq mod n

n)] forms a circulant matrix, and the
problem (26) can be accelerated via FFT by Eq. (27)

cq = Kq⊤
∆

(
k̂
q

∆ ⊙w
)
= ifft(fft(kq

∆(0))⊙ fft(k̂
q

∆ ⊙w)), (27)

where fft(·) and ifft(·) denote the FFT and inverse FFT operation. Then, we can achieve x∗
q by the

index i∗ of the minimum element in vector cq = Kq⊤
∆

(
k̂
q

∆ ⊙w
)
, and set x∗

q =
i∗zq mod n

n .

We present the algorithm of the fast coordinate search in Algorithm 1. The Algorithm 1 return a
targeted sample with a small prediction value in a fast manner. We can use the targeted sample
to accelerate the stochastic optimization. Finally, we present our overall stochastic optimization
algorithm in the Algorithm 2. We choose INGO [Lyu and Tsang, 2021] as our backbone algorithm
because of its simple implementation and fewer hyperparameters. One can plug our RLTS into other
stochastic optimization methods to improve query efficiency.

1The first element of k∆ is set to k∆(0) + σ2.

6

Algorithm 2 Rank-1 Lattice Targeted Sampling
Input: Number of batch samples n, step-size β and η, number of internal iterations T for Fast
Coordinate Search, and initial variance σ2.
Initialization: Initialize µ0 = 0 and Σ0 = σ2I .
while Termination condition not satisfied do

Sample a shift vector ∆ uniformly from [0, 1]d.
Construct shifted rank-1 lattice X̄ = [x̄1, · · · , x̄n] by Eq.(9).
Construct QMC Gaussian Samples ϵ1, · · · , ϵn by Eq.(10).
Set ξi = µt +Σ

1
2
t ϵi for i ∈ {1, · · ·n}.

Query the batch observations {f(ξ1), ..., f(ξn)}
Compute σ̂ = std(f(ξ1), ..., f(ξn)).
Compute µ̂ = 1

n

∑n
i=1 f(ξi).

Set yi =
f(ξi)−µ̂

σ̂ for i ∈ {1, · · ·n}.
Perform fast exact GP training with rank-1 lattice X̄ and y by Eq.(17) and Eq.(18).
Get targeted grid sample x̄∗ by Algorithm 1 with T steps.
Get targeted Gaussian sample ξ∗ = Φ−1(x̄∗ +∆ mod 1)
Query the observation f(ξ∗).

Set Σ−1
t+1 = Σ−1

t + β
n

∑n
i=1 yiΣ

− 1
2

t ϵiϵ
⊤
i Σ

− 1
2

t .

Set µt+1 = µt −
β
n

∑n
i=1yiΣ

1
2
t ϵi

if f(ξ∗) < mini∈{1,··· ,n} f(ξi) then
Set µt+1 = (1− η)µt+1 + ηξ∗

end if
end while

3.4 Closed-form Rank-1 Lattice Construction

This subsection will show how to construct our closed-form rank-1 lattice for fast sampling. For
∀x,y ∈ [0, 1]d and α > 1, define a reproducing kernel as Eq. (28)

K(x,y) =
∑
k∈Zd

γα(k) exp
(
2πik⊤(x− y)

)
, (28)

where i2 = −1 and γα(k) =
∏d

j=1 γα(kj) with γα(k) is given as follows:

γα(k) =

{
1 if k = 0

|k|−α if k ̸= 0.
(29)

A Korobov space is a reproducing kernel Hilbert space (RKHS) associated with the kernel in Eq.(28),
denoted as Hk.

Our closed form of the generating vector is given as Eq.(30):

z = [g0, g
n−1
2d−1 , g

2(n−1)
2d−1 , · · · , g

(d−1)(n−1)
2d−1] mod n, (30)

where g denotes the primitive root modulo the prime number n, and (2d−1)|(n−1). Then, our
close-form rank-1 lattice can be achieved by Eq. (6)

Given a point set P = {x1, · · · ,xn}, the square worst case integral approximation error for f ∈ Hk

is defined as Eq.(31):

e2(Hk;P) = sup
f∈Hk,∥f∥Hk

≤1

∣∣∣ ∫
[0,1]d

f(x)dx− 1

n

n−1∑
j=0

f (xj)
∣∣∣2. (31)

We further show that our rank-1 lattice constructed by Eq. (30) has a regular worst-case error pattern
in Theorem 1. The proof is given in the Appendix.
Theorem 1. Let n be a prime number such that (2d− 1)|(n− 1). Suppose the integrand function
f ∈ Hk, ∥f∥Hk

≤ 1, the square worst-case integral approximation error of rank-1 lattice P
constructed by Eq.(30) is given as Eq.(32):
e2(Hk;P) = 1

2n1
⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)

)
+ 1

nα ζ(α, 1),

(32)

7

0 5000 10000 15000 20000 25000 30000
Number of Evaluations

0

1

2

3

4

Ob
je

ct
iv

e
Va

lu
e

1e6
RLTS
INGO
CMAES

(a) Rosenbrock-dim-50

0 5000 10000 15000 20000 25000 30000
Number of Evaluations

0

5000

10000

15000

20000

25000

Ob
je

ct
iv

e
Va

lu
e

RLTS
INGO
CMAES

(b) Rastrigin10-dim-50

0 5000 10000 15000 20000 25000 30000
Number of Evaluations

0

100

200

300

400

500

600

700

Ob
je

ct
iv

e
Va

lu
e

RLTS
INGO
CMAES

(c) Nesterov-dim-50

0 50000 100000 150000 200000 250000 300000
Number of Evaluations

0

1

2

3

4

Ob
je

ct
iv

e
Va

lu
e

1e7
RLTS
INGO
CMAES

(d) Rosenbrock-dim-500

0 50000 100000 150000 200000 250000 300000
Number of Evaluations

0

50000

100000

150000

200000

250000

Ob
je

ct
iv

e
Va

lu
e

RLTS
INGO
CMAES

(e) Rastrigin10-dim-500

0 50000 100000 150000 200000 250000 300000
Number of Evaluations

0

1000

2000

3000

4000

5000

6000

7000

Ob
je

ct
iv

e
Va

lu
e

RLTS
INGO
CMAES

(f) Nesterov-dim-500

Figure 2: Cumulative min objective value v.s. the number of query evaluations on 50-dimensional
and 500-dimensional benchmark test functions.

where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones,
and hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn), and F i denotes
the matrix after permutation of the rows of F such that the jth row of F i equals to the j̃th row of
F , where j̃ = jg

i(n−1)
2d−1 mod n. And γ = [γ1, · · · , γn]⊤ with γk = 1

nα

(
ζ(α, ki

n) + ζ(α, n−ki

n)
)

for
k ∈ {1, · · · , n− 1} and γn = 1 + 2

nα ζ(α, 1), where ζ(·, ·) denotes the Hurwitz zeta function.

Remarks: The term H = h0⊙· · ·⊙h2d−2−1−(h1⊙· · ·⊙hd−1−1)⊙h0⊙(h−1⊙· · ·⊙h−(d−1)−1)
has a regular pattern because of {g0, g

n−1
2d−1 , g

2(n−1)
2d−1 , · · · , g

(d−1)(n−1)
2d−1 , · · · , g

(2d−2)(n−1)
2d−1 } mod n

forms a subgroup of {1, · · · , n − 1} mod n. According to the Lagrange’s theorem in group
theory [Dummit and Foote, 2004], the vector h0 ⊙ · · · ⊙ h2d−2 has n−1

2d−1 different elements.

4 Experiments

We replace the i.i.d. Gaussian sampling of the INGO [Lyu and Tsang, 2021] with our RLTS. We
evaluate our RLTS by comparing it with the standard INGO and the CMAES [Hansen, 2006]. In
all the experiments, we keep the number of batch samples and the initialization the same for RLTS,
INGO and CMAES. For all the methods, we initialize the µ = 0. For INGO and RLTS, we set
the step-size parameter β = 0.2 in all experiments. For RLTS, we set the parameter η = 1 in all
experiments.

4.1 Evaluation on Benchmark Functions

We first evaluate our RLTS on challenging benchmark test functions: Rosenbrock, Rastrigin, and
Nesterov. Rastrigin and Rosenbrock are smooth multi-mode functions, and Nesterov is a non-smooth
function. These functions are very challenging benchmarks for black-box optimization. We offset the
optimum by setting x = x− 5 of the test functions. This increases the distance between the optimum
and the initial point µ = 0, which makes the test problems more challenging. We implement INGO
by ourselves. For CMAES, we use the publicly available code 2. We initialized Σ = I for all the
methods.

2https://pypi.org/project/cma/

8

0 20000 40000 60000 80000
Number of Evaluations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Lo
ss

RLTS
INGO
CMAES

(a) DBpedia

0 20000 40000 60000 80000
Number of Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

RLTS
INGO
CMAES

(b) SS2

0 20000 40000 60000 80000
Number of Evaluations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

RLTS
INGO
CMAES

(c) SNLI

0 20000 40000 60000 80000
Number of Evaluations

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

RLTS
INGO
CMAES

(d) AG’s News

0 20000 40000 60000 80000
Number of Evaluations

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

RLTS
INGO
CMAES

(e) MRPC

0 20000 40000 60000 80000
Number of Evaluations

0.5

1.0

1.5

2.0

Lo
ss

RLTS
INGO
CMAES

(f) RTE

Figure 3: Hinge loss v.s. the number of query evaluations on different black-box fine-tuning models.

We evaluate RLTS on 50 and 500-dimensional problems. The batchsize of all the methods are
set to 200 and 2000 for 50 and 500-dimensional problems, respectively. All the experiments are
performed in ten independent runs. The experimental results are shown in Figure 2. From Figure 2,
we can observe that RLTS consistently converge faster than INGO on all the test functions on both
50-dimensional and 500-dimensional cases. It shows that our RLTS significantly improves the query
efficiency of INGO, which verifies the effectiveness of RLTS. Moreover, we can see that RLTS
outperforms CMAES on all the test functions on both 50-dimensional and 500-dimensional cases. In
addition, we see that CMAES converge slowly on the 500-dimensional benchmark problems, while
RLTS converges faster.

4.2 Evaluation on Black-box Prompt Fine-tuning Tasks

Prompt fine-tuning of large language models is a promising direction to achieve expertise models
efficiently for downstream tasks. We evaluate our RLTS on black-box prompt fine-tuning tasks.

We employ the deep model in [Sun et al., 2022a] with publicly available code 3 as the backbone
model for black-box prompt fine-tuning. It has 24 layers. For each layer, we set the dimension of
the continuous prompt to 500. Thus, the total dimension is 24× 500. We employ the hinge loss of
training data as the black-box objective. Six benchmark datasets for different language tasks are
employed for evaluation: DBpedia, SS2, SNLI, AG’s News, MRPC and RTE. The SST2 [Socher et al.,
2013] dataset is a dataset for the sentiment analysis task. AG’s News and DBPedia datasets [Zhang
et al., 2015] are used for topic classification tasks. SNLI [Bowman et al., 2015] and RTE [Wang et al.,
2019] are employed for natural language inference. MRPC dataset [Dolan and Brockett, 2005] is
used for the paraphrasing task.

In all the experiments, we keep the number of batch samples and the initialization the same for
RLTS, INGO and CMAES. We set the number of batch samples to 2000. Specifically, our RLTS
employs 1999 rank-1 lattice QMC Gaussian samples and one sample from targeted sampling. INGO
employs 1999 rank-1 lattice QMC Gaussian samples and one Gaussian sample. CMAES employs
2000 Gaussian samples. We initialize the µ = 0 and Σ = 0.2I for all the methods. For INGO and
RLTS, we set the step-size parameter β = 0.2 in all experiments. For RLTS, we set the parameter
η = 1 in all experiments. All the experiments are performed in five independent runs with seeds in
{1, 2, 3, 4, 5}. The layer-wise coordinate descent update approach in [Sun et al., 2022a] is employed
for all the methods.

3https://github.com/txsun1997/Black-Box-Tuning

9

0 10000 20000 30000 40000 50000
Number of Query Evaluations

0

1

2

3

4

Ob
je

ct
iv

e
Va

lu
e

1e7
RLTS
TuRBO

(a) Rosenbrock-dim-500

0 10000 20000 30000 40000 50000
Number of Query Evaluations

0

50000

100000

150000

200000

250000

Ob
je

ct
iv

e
Va

lu
e

RLTS
TuRBO

(b) Rastrigin10-dim-500

0 10000 20000 30000 40000 50000
Number of Query Evaluations

0

1000

2000

3000

4000

5000

6000

7000

Ob
je

ct
iv

e
Va

lu
e

RLTS
TuRBO

(c) Nesterov-dim-500

Figure 4: Cumulative min objective value v.s. the number of query evaluations on 500-dimensional
benchmark test functions.

The experimental results of mean objective ± std v.s. the number of queries are shown in Figure 3.
From Figure 3, we can observe that our RLTS decreases the objective significantly faster than INGO
and CMAES on all six fine-tuning tasks, which shows the superior query efficiency of our RLTS.

4.3 Additional Comparison with High-dimensional Bayesian Optimization

We further compare our RLTS with the high-dimensional BO method TuRBO [Eriksson et al., 2019].
We evaluate RLTS on the three benchmark functions: the Rosenbrock function, the Rastrigin10
function, and the Nesterov function. We offset the optimum by setting x = x−5 of the test functions.
The dimension is set to 500. The number of initial points of TuRBO is set to 2000. The batch size of
both RLTS and TuRBO is set to 2000. The maximum number of queries is set to 50,000. We employ
the default box boundary for TuRBO, i.e., [−5, 10]d. The initial parameter µ of RLTS is set to µ = 0,
and Σ is set to Σ = I . For TuRBO, we employ the official code provided in the paper [Eriksson
et al., 2019]. All the methods are performed in three independent runs.

The convergence performance regarding the number of query evaluations is shown in Figure 4. We
can observe that RLTS converges faster than TuRBO on the benchmark test problems, demonstrating
that RLTS improves query efficiency.

We further report the running time of RLTS and TuRBO on the same machine for evaluation. The
results are shown in Table 1. We can observe that RLTS performs significantly faster than TuRBO,
achieving around 300 times speedup regarding running time. The computation time of Bayesian
Optimization usually grows cubically fast as the number of queries increases. In contrast, our RLTS
reduces the expensive O(n3) operation to O(n log n) time complexity, which enables a fast plug-in
of the ES-type algorithms.

Table 1: Running time on benchmark test functions. Symbol (s) denotes seconds.

Rosenbrock Rastrigin10 Nesterov
RLTS 83.62(s) 84.04(s) 83.46(s)

TuRBO 25927.39(s) 25941.66(s) 25697.87(s)

5 Conclusion

We proposed a novel Rank-1 Lattice Targeted Sampling technique in this paper. Our RLTS has
a O(n log n) time complexity w.r.t. n batch samples, which is fast for plugging into stochastic
optimization methods to improve query efficiency while scaling up to high-dimensional problems.
Empirically, we plugged our RLTS into the sampling phase of INGO, significantly improving the
query efficiency on benchmark test functions and black-box prompt fine-tuning tasks. Moreover, we
proposed a closed-form rank-1 lattice by analyzing the integral approximation error of functions in
Korobov space. Our closed-form rank-1 lattice provides an efficient way for QMC Gaussian sampling,
with properties enabling fast exact GP training and inference with a O(n log n) time complexity,
which is critical for our RLTS to be a fast internal step for stochastic optimization. In addition, our
closed-form rank-1 lattice is a fundamental tool that may have potential applications beyond the
black-box optimization task.

10

Acknowledgement

We thank the anonymous reviewers for their valuable comments and helpful suggestions.

References
Thomas Back, Frank Hoffmeister, and Hans-Paul Schwefel. A survey of evolution strategies. In

Proceedings of the fourth international conference on genetic algorithms, volume 2. Morgan
Kaufmann Publishers San Mateo, CA, 1991.

Juan Cruz Barsce, Jorge A Palombarini, and Ernesto C Martínez. Towards autonomous reinforcement
learning: Automatic setting of hyper-parameters using bayesian optimization. In Computer
Conference (CLEI), 2017 XLIII Latin American, pages 1–9. IEEE, 2017.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated
corpus for learning natural language inference. Proceedings of the 2015 conference on empirical
methods in natural language processing, 2015.

Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, and Yunhao Tang. From complexity to
simplicity: Adaptive es-active subspaces for blackbox optimization. arXiv:1903.04268, 2019.

Josef Dick, Frances Y Kuo, and Ian H Sloan. High-dimensional integration: the quasi-monte carlo
way. Acta Numerica, 22:133–288, 2013.

Josef Dick, Peter Kritzer, and Friedrich Pillichshammer. Lattice Rules. Springer, 2022.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third International Workshop on Paraphrasing (IWP2005), 2005.

David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley Hoboken, 2004.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. Advances in neural information processing
systems, 32, 2019.

Jacob Gardner, Chuan Guo, Kilian Weinberger, Roman Garnett, and Roger Grosse. Discovering and
exploiting additive structure for bayesian optimization. In Artificial Intelligence and Statistics,
pages 1311–1319. PMLR, 2017.

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends® in
Communications and Information Theory, 2(3):155–239, 2006.

Nikolaus Hansen. The cma evolution strategy: a comparing review. In Towards a new evolutionary
computation, pages 75–102. Springer, 2006.

José Miguel Hernández-Lobato, James Requeima, Edward O Pyzer-Knapp, and Alán Aspuru-Guzik.
Parallel and distributed thompson sampling for large-scale accelerated exploration of chemical
space. In International conference on machine learning, pages 1470–1479. PMLR, 2017.

Nikolai Mikhailovich Korobov. Properties and calculation of optimal coefficients. In Doklady
Akademii Nauk, volume 132, pages 1009–1012. Russian Academy of Sciences, 1960.

Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuurmans. Automatic gait optimization
with gaussian process regression. In IJCAI, volume 7, pages 944–949, 2007.

Yueming Lyu and Ivor W Tsang. Black-box optimizer with stochastic implicit natural gradient. In
Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference,
ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part III 21, pages
217–232. Springer, 2021.

Yueming Lyu, Yuan Yuan, and Ivor Tsang. Subgroup-based rank-1 lattice quasi-monte carlo. Ad-
vances in Neural Information Processing Systems, 33:6269–6280, 2020.

11

Wesley Maddox, Qing Feng, and Max Balandat. Optimizing high-dimensional physics simulations
via composite bayesian optimization. arXiv preprint arXiv:2111.14911, 2021.

Seyedali Mirjalili and Seyedali Mirjalili. Genetic algorithm. Evolutionary Algorithms and Neural
Networks: Theory and Applications, pages 43–55, 2019.

Sarah Müller, Alexander von Rohr, and Sebastian Trimpe. Local policy search with bayesian
optimization. Advances in Neural Information Processing Systems, 34:20708–20720, 2021.

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for bayesian optimization
in embedded subspaces. In International Conference on Machine Learning, pages 4752–4761.
PMLR, 2019.

Diana M Negoescu, Peter I Frazier, and Warren B Powell. The knowledge-gradient algorithm for
sequencing experiments in drug discovery. INFORMS Journal on Computing, 23(3):346–363,
2011.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Quan Nguyen, Kaiwen Wu, Jacob Gardner, and Roman Garnett. Local bayesian optimization
via maximizing probability of descent. Advances in neural information processing systems, 35:
13190–13202, 2022.

Ingo Rechenberg and M. Eigen. Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution. PhD thesis, 1973.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

I Sloan and A Reztsov. Component-by-component construction of good lattice rules. Mathematics of
Computation, 71(237):263–273, 2002.

Ian H Sloan. Multiple integration is intractable but not hopeless. The ANZIAM Journal, 42(1):3–8,
2000.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In NeurIPS, pages 2951–2959, 2012.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pages
1631–1642, 2013.

Mandavilli Srinivas and Lalit M Patnaik. Genetic algorithms: A survey. computer, 27(6):17–26,
1994.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In ICML, 2010.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, and Xipeng Qiu. Bbtv2:
Towards a gradient-free future with large language models. In Proceedings of EMNLP, 2022a.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In Proceedings of ICML, 2022b.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, ICLR, 2019.

G Gary Wang and Songqing Shan. Review of metamodeling techniques in support of engineering
design optimization. Journal of Mechanical design, 129(4):370–380, 2007.

12

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research (JMLR), 15(1):949–980,
2014a.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014b.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

13

Appendix

A Proof of Theorem 1

Theorem 1. Let n be a prime number such that (2d− 1)|(n− 1). Suppose the integrand function
f ∈ Hk, ∥f∥Hk

≤ 1, the square worst-case integral approximation error of rank-1 lattice P
constructed by Eq.(30) is given as Eq.(33):

e2(Hk;P) = 1
2n1

⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)
)
+ 1

nα ζ(α, 1),

(33)
where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones,
and hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn), and F i denotes
the matrix after permutation of the rows of F such that the jth row of F i equals to the j̃th row of
F , where j̃ = jg

i(n−1)
2d−1 mod n. And γ = [γ1, · · · , γn]⊤ with γk = 1

nα

(
ζ(α, ki

n) + ζ(α, n−ki

n)
)

for
k ∈ {1, · · · , n− 1} and γn = 1 + 2

nα ζ(α, 1), where ζ(·, ·) denotes the Hurwitz zeta function.

To prove our main Theorem 1, we begin with several Lemma.

Lemma 1. For ∀x,y ∈ [0, 1]d and α > 1, define a reproducing kernel as Eq.(34)

K(x,y) =
∑
k∈Zd

γα(k) exp
(
2πik⊤(x− y)

)
, (34)

where γα(k) =
∏d

j=1 γα(kj) with γα(k) given in Eq.(35)

γα(k) =

{
1 if k = 0

|k|−α if k ̸= 0.
(35)

Let P = [x1, · · · ,xn] be a rank-1 lattice constructed by the generating vector z with a prime number
n. Then, for ∀f ∈ Hk, ∥f∥Hk

≤ 1 associated with the reproducing kernel Eq.(34), we have the
square worst-case integral approximation error of P as Eq.(36).

e2(Hk;P) = sup
f∈Hk,∥f∥Hk

≤1

∣∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

n

n−1∑
j=0

f (xj)

∣∣∣∣∣∣
2

=
∑

k∈L⊥\{0}

γα(k) (36)

where L⊥ denote the dual lattice defined in Eq.(37).

L⊥ := {k|k⊤z ≡ 0 (mod n),k ∈ Zd}. (37)

Proof. Given a point set P = {x1, · · · ,xn}, the worst case approximation error for ∀f ∈
Hk, ∥f∥Hk

≤ 1 is

e2(Hk;P) = sup
f∈Hk,∥f∥Hk

≤1

∣∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

n

n−1∑
j=0

f (xj)

∣∣∣∣∣∣
2

(38)

= sup
f∈Hk,∥f∥Hk

≤1

∣∣∣∣∣∣
〈
f,

∫
[0,1]d

K(x, ·)dx− 1

n

n−1∑
j=0

K (xj , ·)

〉
Hk

∣∣∣∣∣∣
2

(39)

= sup
f∈Hk,∥f∥Hk

≤1

∥f∥Hk

∥∥∥∫
[0,1]d

K(x, ·)dx− 1

n

n−1∑
j=0

K (xj , ·)
∥∥∥
Hk

(40)

=

∫
[0,1]d

∫
[0,1]d

K(x,y)dxdy − 2

n

n∑
j=1

∫
[0,1]d

K(x,xj)dx+
1

n2

n∑
i,j=1

K(xi,xj)

(41)

14

Then, from the definition of the reproducing kernel K(x,y) in Eq.(34), we know that∫
[0,1]d

∫
[0,1]d

K(x,y)dxdy =

∫
[0,1]d

∫
[0,1]d

∑
k∈Zd

γα(k) exp
(
2πik⊤(x− y)

)
dxdy (42)

= 1 +
∑

k∈Zd,k ̸=0

γα(k)

∫
[0,1]d

∫
[0,1]d

exp
(
2πik⊤(x− y)

)
dxdy

(43)

= 1 +
∑

k∈Zd,k ̸=0

γα(k) · 0 = 1 (44)

In addition, the second term in Eq.(41) as follows

− 2

n

n∑
j=1

∫
[0,1]d

K(x,xj)dx (45)

= − 2

n

n∑
j=1

∫
[0,1]d

∑
k∈Zd

γα(k) exp
(
2πik⊤(x− xj)

)
dx (46)

= − 2

n

n∑
j=1

γα(0)−
2

n

n∑
j=1

∑
k∈Zd,k ̸=0

γα(k)

∫
[0,1]d

exp
(
2πik⊤(x− xj)

)
dx (47)

= − 2

n

n∑
j=1

γα(0)−
2

n

n∑
j=1

∑
k∈Zd,k ̸=0

γα(k) · 0 (48)

= −2 (49)
Moreover, from the definition of rank-1 lattice P with prime n and generating vector z, we have the
third term in Eq.(41) as follows

1

n2

n∑
i,j=1

K(xi,xj) (50)

=
1

n2

n∑
i,j=1

∑
k∈Zd

γα(k) exp
(
2πik⊤(xi − xj)

)
(51)

= 1 +
1

n2

n∑
i,j=1

∑
k∈Zd,k ̸=0

γα(k) exp

(
2πi(i− j)k⊤z

n

)
(52)

= 1 +
∑

k∈Zd,k ̸=0

γα(k)
1

n2

n∑
i,j=1

exp

(
2πi(i− j)k⊤z

n

)
(53)

= 1 +
∑

k∈Zd,k ̸=0

γα(k)
1

n

n∑
j=1

exp

(
2πijk⊤z

n

)
(54)

Put Eq.(44), Eq.(49) and Eq.(54) together , we know that

e2(Hk;P) =
∑

k∈Zd,k ̸=0

γα(k)
1

n

n∑
j=1

exp

(
2πijk⊤z

n

)
(55)

Note that for a prime number n, we have

1

n

n∑
j=1

exp

(
2πijk⊤z

n

)
=

{
1 if k⊤z ≡ 0 mod n

0 otherwise
(56)

It follows that

e2(Hk;P) = sup
f∈Hk,∥f∥Hk

≤1

∣∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

n

n−1∑
j=0

f (xj)

∣∣∣∣∣∣
2

=
∑

k∈L⊥\{0}

γα(k), (57)

15

where L⊥ := {k|k⊤z ≡ 0 (mod n),k ∈ Zd} denotes the dual lattice.

Lemma 2. Given a prime n , construct a rank-1 lattice P = [x1, · · · ,xn] by the generating vector
z = [z1, · · · , zd], then we have that

e2(Hk;P) = −1 +
1

n

n−1∑
j=0

d∏
i=1

(∑
ki∈{1,··· ,n}

χ(ki) exp

(
2πi

kijzi
n

))
, (58)

where function χ(·) on domain {1, · · · , n} is given as Eq.(59)

χ(ki) =

{
1 + 2

nα ζ(α, 1) if ki = n
1
nα

(
ζ(α, ki

n) + ζ(α, n−ki

n)
)

otherwise
, (59)

where ζ(·, ·) denotes the Hurwitz zeta function.

Proof. From Lemma 1, we know that

e2(Hk;P) =
∑

k∈Zd\{0}

γα(k)

 1

n

n−1∑
j=0

exp

(
2πi

k⊤xj

n

) (60)

= −1 +
1

n

n−1∑
j=0

∑
k∈Zd

γα(k)exp

(
2πi

k⊤xj

n

)
(61)

= −1 +
1

n

n−1∑
j=0

d∏
i=1

(∑
ki∈Z

γα(ki) exp

(
2πi

kijzi
n

))
(62)

= −1 +
1

n

n−1∑
j=0

d∏
i=1

(∑
ki∈{1,··· ,n}

(∑
qi≡ki mod n

γα(qi)
)
exp

(
2πi

kijzi
n

))
(63)

Now, we check the term
∑

ki∈{1,··· ,n}
(∑

qi≡ki mod n γα(qi)
)
. From the definition of the function

γα(·), for ∀ki ∈ {1, · · · , n}, we have that

χ(ki) =
∑

qi≡ki mod n

γα(qi) =

{
1 + 2

∑∞
m=1

1
(mn)α if ki = n∑∞

m=0
1

(ki+mn)α +
∑∞

m=0
1

(n−ki+mn)α otherwise
(64)

Note that series
∑∞

m=1
1

(mn)α ,
∑∞

m=0
1

(ki+mn)α and
∑∞

m=0
1

(n−ki+mn)α can be rewritten as
∞∑

m=1

1

(mn)α
=

1

nα

∞∑
m=1

1

mα
=

1

nα
ζ(α, 1) (65)

∞∑
m=0

1

(ki +mn)α
=

1

nα

∞∑
m=0

1

(ki

n +m)α
=

1

nα
ζ(α,

ki
n
) (66)

∞∑
m=0

1

(n− ki +mn)α
=

1

nα

∞∑
m=0

1

(n−ki

n +m)α
=

1

nα
ζ(α,

n− ki
n

) (67)

where ζ(·, ·) denotes the Hurwitz zeta function.

Plug them into Eq.(64), we know that

χ(ki) =
∑

qi≡ki mod n

γα(qi) =

{
1 + 2

nα ζ(α, 1) if ki = n
1
nα

(
ζ(α, ki

n) + ζ(α, n−ki

n)
)

otherwise
(68)

Plug Eq.(68) into Eq.(63), we have that

e2(Hk;P) = −1 +
1

n

n−1∑
j=0

d∏
i=1

(∑
ki∈{1,··· ,n}

χ(ki) exp

(
2πi

kijzi
n

))
(69)

16

Lemma 3. Let n be a prime number. Let γ = [γ1, · · · , γn]⊤ be a vector with γk = χ(k) for
k ∈ {1, · · · , n}, where χ(·) is defined in Lemma 2. The square worst-case integral approximation
error of rank-1 lattice P constructed by generating vector z = [z1, · · · , zd] can be rewritten in a
matrix form as Eq.(70)

e2(Hk;P) =
1

n
1⊤
(
h0 ⊙ · · · ⊙ hd−1 − 1

)
(70)

where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones, and
hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn), and F i denotes the matrix
after permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where
j̃ = jzi+1 mod n.

Proof. Define hi as Eq.(71)

hi = F iγ (71)

where F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn), and F i denotes the matrix after
permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where
j̃ = jzi+1 mod n, and g denotes the primitive root modulo n.

From Lemma 2, we know that

e2(Hk;P) = −1 +
1

n

n−1∑
j=0

d∏
i=1

(∑
ki∈{1,··· ,n}

χ(ki) exp

(
2πi

kijzi
n

))
(72)

Note that γ = [γ1, · · · , γn]⊤ is a vector with γk = χ(k) for k ∈ {1, · · · , n}, it follows that

e2(Hk;P) = −1 +
1

n
1⊤
(
F 0γ ⊙ · · · ⊙ F d−1γ

)
(73)

= −1 +
1

n
1⊤
(
h0 ⊙ · · · ⊙ hd−1

)
(74)

=
1

n
1⊤
(
h0 ⊙ · · · ⊙ hd−1 − 1

)
(75)

Lemma 4. Let n be a prime number such that (2d− 1)|(n− 1). Let γ = [γ1, · · · , γn]⊤ be a vector
with γk = χ(k) for k ∈ {1, · · · , n}, where χ(·) is defined in Lemma 2. Given a rank-1 lattice P
constructed by generating vector in Eq.(30), then we have Eq.(76)

1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) = 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1) +
〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
+ 1⊤(h0 − 1) (76)

where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones, and
hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn), and F i denotes the matrix
after permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where
j̃ = jg

i(n−1)
2d−1 mod n, and g denotes the primitive root modulo n.

Proof. Note that hi = F iγ is a permutation of h0. From the definition of permutation F i, we know
that the jth row of F i equals to the j̃th row of F with j̃ = jg

i(n−1)
2d−1 mod n. Note that (2d−1)|(n−1)

and n is a prime number, we know {1, g
1(n−1)
2d−1 , · · · , g

(2d−2)(n−1)
2d−1 } modulo n forms a subgroup of

{1, · · · , n − 1} modulo n. Thus, we know {h0,h1, · · · ,h2d−2} forms a group, and h0 = h2d−1.
Furthermore, we know that hk is a permutation of hi such that jth row of F k equals to the j̄th row
of F i with j̄ = jg

(k−i)(n−1)
2d−1 mod n. Thus, we know that

1⊤(h0 ⊙ · · · ⊙ hd−1) = 1⊤(hd ⊙ · · · ⊙ h2d−1) (77)

17

Note that h0 = h2d−1. It follows that

1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) = 1⊤(hd ⊙ · · · ⊙ h2d−1 − 1) (78)

= 1⊤(hd ⊙ · · · ⊙ h2d−2 ⊙ h0 − 1) (79)

In addition, we have that〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
(80)

=
〈
hd ⊙ · · · ⊙ h2d−2,h0

〉
− 1⊤(hd ⊙ · · · ⊙ h2d−2)− 1⊤h0 + 1⊤1 (81)

= 1⊤(hd ⊙ · · · ⊙ h2d−2 ⊙ h0)− 1⊤(hd ⊙ · · · ⊙ h2d−2)− 1⊤h0 + 1⊤1 (82)

= 1⊤(hd ⊙ · · · ⊙ h2d−2 ⊙ h0)− 1⊤1− 1⊤(hd ⊙ · · · ⊙ h2d−2) + 1⊤1− 1⊤h0 + 1⊤1 (83)

= 1⊤(hd ⊙ · · · ⊙ h2d−2 ⊙ h0 − 1)− 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)− 1⊤(h0 − 1) (84)

It follows that

1⊤(hd⊙· · ·⊙h2d−2⊙h0 − 1) =
〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
+ 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)

+ 1⊤(h0 − 1) (85)

Plug Eq.(85) into Eq.(79), we know that

1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) =
〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
+ 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)

+ 1⊤(h0 − 1) (86)

Lemma 5. Let n be a prime number such that (2d− 1)|(n− 1). Let γ = [γ1, · · · , γn]⊤ be a vector
with γk = χ(k) for k ∈ {1, · · · , n}, where χ(·) is defined in Lemma 2. Given a rank-1 lattice P
constructed by generating vector in Eq.(30), then we have Eq.(87)

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) + 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)

+
〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(87)

where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones, and
hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn), and F i denotes the matrix
after permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where
j̃ = jg

i(n−1)
2d−1 mod n, and g denotes the primitive root modulo n.

Proof. Similar to the proof of Lemma 4 , we have that〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(88)

=
〈
h0⊙· · ·⊙hd−1,hd⊙· · ·⊙h2d−2

〉
− 1⊤(h0⊙· · ·⊙hd−1)− 1⊤(hd⊙· · ·⊙h2d−2) + 1⊤1

(89)

= 1⊤(h0 ⊙ · · · ⊙ h2d−2)− 1⊤(h0 ⊙ · · · ⊙ hd−1)− 1⊤(hd ⊙ · · · ⊙ h2d−2) + 1⊤1 (90)

= 1⊤(h0⊙· · ·⊙h2d−2)− 1⊤1− 1⊤(h0⊙· · ·⊙hd−1) + 1⊤1− 1⊤(hd⊙· · ·⊙h2d−2) + 1⊤1
(91)

= 1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1)− 1⊤(h0 ⊙ · · · ⊙ hd−1 − 1)− 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1) (92)

It follows that

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 1⊤(h0 ⊙ · · · ⊙ hd−1 − 1) + 1⊤(hd ⊙ · · · ⊙ h2d−2 − 1)

+
〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(93)

18

Lemma 6. Let n be a prime number such that (2d− 1)|(n− 1). Let γ = [γ1, · · · , γn]⊤ be a vector
with γk = χ(k) for k ∈ {1, · · · , n}, where χ(·) is defined in Lemma 2. Given a rank-1 lattice P
constructed by generating vector in Eq.(30), then we have Eq.(94)

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 1⊤((h1 ⊙ · · · ⊙ hd−1 − 1)⊙ h0 ⊙ (h−(d−1) ⊙ · · · ⊙ h−1 − 1)
)

+ 21⊤(h0 ⊙ · · · ⊙ hd−1 − 1)− 1⊤(h0 − 1) (94)

where ⊙ denotes the element-wise product, symbol 1 denotes the vector with elements all ones, and
hi = F iγ with F as the discrete Fourier matrix, i.e., F jk = exp(2πi jkn), and F i denotes the matrix
after permutation of the rows of F such that the jth row of F i equals to the j̃th row of F , where
j̃ = jg

i(n−1)
2d−1 mod n, and g denotes the primitive root modulo n.

Proof. Plug Eq.(76) in Lemma 4 into Eq.(87) in Lemma 5, we know that

1⊤(h0⊙· · ·⊙h2d−2−1) = 21⊤(h0⊙· · ·⊙hd−1−1)− 1⊤(h0−1)−
〈
hd⊙· · ·⊙h2d−2−1,h0−1

〉
+
〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(95)

Now we check the last two terms in Eq.(95). Note that〈
h0 ⊙ · · · ⊙ hd−1 − 1,hd ⊙ · · · ⊙ h2d−2 − 1

〉
−
〈
hd ⊙ · · · ⊙ h2d−2 − 1,h0 − 1

〉
(96)

=
〈
h0 ⊙ · · · ⊙ hd−1 − 1− (h0 − 1),hd ⊙ · · · ⊙ h2d−2 − 1

〉
(97)

=
〈
h0 ⊙ · · · ⊙ hd−1 − h0,hd ⊙ · · · ⊙ h2d−2 − 1

〉
(98)

=
〈
h0 ⊙ (h1 ⊙ · · · ⊙ hd−1 − 1),hd ⊙ · · · ⊙ h2d−2 − 1

〉
(99)

= 1⊤((h1 ⊙ · · · ⊙ hd−1 − 1)⊙ h0 ⊙ (hd ⊙ · · · ⊙ h2d−2 − 1)
)

(100)

It follows that

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 21⊤(h0 ⊙ · · · ⊙ hd−1 − 1)− 1⊤(h0 − 1)

+ 1⊤((h1 ⊙ · · · ⊙ hd−1 − 1)⊙ h0 ⊙ (hd ⊙ · · · ⊙ h2d−2 − 1)
)

(101)

Because {h0,h1, · · · ,h2d−2} forms a group, and h0 = h2d−1 with a modulo period 2d − 1, we
know that

hd ⊙ · · · ⊙ h2d−2 = h−(d−1) ⊙ · · · ⊙ h−1 (102)

Plug Eq.(102) into Eq.(101), we have that

1⊤(h0 ⊙ · · · ⊙ h2d−2 − 1) = 21⊤(h0 ⊙ · · · ⊙ hd−1 − 1)− 1⊤(h0 − 1)

+ 1⊤((h1 ⊙ · · · ⊙ hd−1 − 1)⊙ h0 ⊙ (h−d−1 ⊙ · · · ⊙ h−1 − 1)
)

(103)

Now, we are ready to prove our main Theorem 1.

Proof. From Lemma 3, we know that

e2(Hk;P) =
1

n
1⊤
(
h0 ⊙ · · · ⊙ hd−1 − 1

)
(104)

From Lemma 6, we know that

1⊤(h0 ⊙ · · · ⊙ hd−1 − 1)

=
1

2
1⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)

)
+

1

2
1⊤(h0 − 1) (105)

19

Plug Eq.(105) into Eq.(104), we have that

e2(Hk;P)

=
1

2n
1⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)

)
+

1

2n
1⊤(h0 − 1) (106)

Note that h0 = Fγ and F denotes the discrete Fourier matrix, we have that

1⊤(h0 − 1) = 1⊤Fγ − n (107)

= b⊤γ − n (108)

where b = [0, 0, · · · , 0, n]⊤.

Note that the nth element in γ is γn = 1+ 2
nα ζ(α, 1), where ζ(·, ·) denotes the Hurwitz zeta function.

It follows that

1⊤(h0 − 1) = b⊤γ − n = n+ n
2

nα
ζ(α, 1)− n = n

2

nα
ζ(α, 1) (109)

Plug Eq.(109) into Eq.(106), we achieve the result in Theorem 1

e2(Hk;P)

=
1

2n
1⊤(h0 ⊙ · · · ⊙ h2d−2−1− (h1 ⊙ · · · ⊙ hd−1−1)⊙ h0 ⊙ (h−1 ⊙ · · · ⊙ h−(d−1)−1)

)
+

1

nα
ζ(α, 1) (110)

B Benchmark Test Functions

The benchmark test functions employed in section 4.1 are listed in Table 2, which contains multi-mode
functions and non-smooth functions that are challenging for optimization.

Table 2: Test functions

name function

Rosenbrock
d−1∑
i=1

(
100(xi+1 − x2

i)
2
+ (1− xi)

2
)

Nesterov 1
4 |x1 − 1|+

d−1∑
i=1

|xi+1 − 2 |xi|+ 1|

Rastrigin 10d+
∑d

i=1

(
x2
i − 10 cos (2πxi)

)

20

C Training Time and Fast Coordinate Search Time

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e6

0

10

20

30

40

50
Ti

m
e

(s
)

Rank-1 Lattice GP

(a) Training Time (seconds)

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e6

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
(s

)

Fast Coordinate Search

(b) Fast Coordinate Search Time (seconds)

Figure 5: Training Time and Fast Coordinate Search Time (seconds) v.s. the number of samples

We provide the training time of our rank- 1 lattice GP and the time of our fast coordinate
search for targeted sampling in Figure 5(a) and Figure 5(b), respectively. The dimension of
the rank-1 lattice data is set to d = 50. The number of samples n is set to the parameter in
{1783, 5347, 10099, 51283, 100189, 501139, 1000099}. The number of samples n is a prime num-
ber such that (2d− 1)|(n− 1) to achieve our closed-form rank-1 lattice construction. The number of
epochs of training is set to 2000. The number of iterations of fast coordinate search is set to T = 50.
All the experiments are performed in 50 runs on a single NVIDIA A40 Card.

We report the mean value ± std in Figure 5. The standard deviation of the time is small. From
Figure 5(a), we can see that it takes around 50 seconds for our rank-1 GP training with one million
lattice data. Moreover, our fast coordinate search for targeted sampling takes around 1.5 seconds to
optimize rank-1 lattice GP posterior prediction conditioned on one million lattice data.

D Additional Experiments of Black-box Prompt Fine-tuning

0 2500 5000 7500 10000 12500 15000 17500
Number of Evaluations

0

2

4

6

8

10

12

14

16

Lo
ss

RLTS
INGO
CMAES

(a) DBpedia

0 2500 5000 7500 10000 12500 15000 17500
Number of Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

RLTS
INGO
CMAES

(b) SS2

0 2500 5000 7500 10000 12500 15000 17500
Number of Evaluations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

RLTS
INGO
CMAES

(c) SNLI

0 2500 5000 7500 10000 12500 15000 17500
Number of Evaluations

0.5

1.0

1.5

2.0

2.5

Lo
ss

RLTS
INGO
CMAES

(d) AG’s News

0 2500 5000 7500 10000 12500 15000 17500
Number of Evaluations

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

RLTS
INGO
CMAES

(e) MRPC

0 2500 5000 7500 10000 12500 15000 17500
Number of Evaluations

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

RLTS
INGO
CMAES

(f) RTE

Figure 6: Hinge loss v.s. the number of query evaluations on different black-box fine-tuning models.

21

We provide additional experimental results of black-box prompt fine-tuning for large language models.
We employ the deep model in [Sun et al., 2022a] as the backbone. It has 24 layers. For each layer, we
set the dimension of the continuous prompt to 50. Thus, the total dimension is 24× 50. We employ
the hinge loss of training data as the black-box objective.

In all the experiments, we keep the number of batch samples and the initialization the same for RLTS,
INGO and CMAES. We set the number of batch samples to 200. Our RLTS employs 199 rank-1
lattice QMC Gaussian samples and one sample from targeted sampling. INGO employs 199 rank-1
lattice QMC Gaussian samples and one Gaussian sample. CMAES employs 200 Gaussian samples.
We initialize the µ = 0 for all the methods. For INGO and RLTS, we set the step-size parameter
β = 0.2 in all experiments. For RLTS, we set the parameter η = 1 in all experiments. All the
experiments are performed in five independent runs with seeds in {1, 2, 3, 4, 5}.

The experimental results of mean objective ± std v.s. the number of queries are shown in Figure 6.
From Figure 6, we can observe that RLTS decreases the loss consistently faster than INGO and
CMAES on all benchmark datasets. More importantly, RLTS decreases the loss significantly faster
than INGO. Note that RLTS employs INGO as the backbone algorithm, which shows that RLTS
improves the query efficiency of INGO.

22

	Introduction
	Background
	Black-box Optimization
	Rank-1 Lattice

	Fast Rank-1 Lattice Targeted Sampling
	Random Rank-1 Lattice Quasi-Monte Carlo Gaussian Sampling
	Fast Exact GP Training and Inference with Rank-1 Lattice
	Fast Coordinate Search for Targeted Sampling
	Closed-form Rank-1 Lattice Construction

	Experiments
	Evaluation on Benchmark Functions
	Evaluation on Black-box Prompt Fine-tuning Tasks
	Additional Comparison with High-dimensional Bayesian Optimization

	Conclusion
	Proof of Theorem 1
	Benchmark Test Functions
	Training Time and Fast Coordinate Search Time
	Additional Experiments of Black-box Prompt Fine-tuning

