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Abstract

Online learning holds the promise of enabling efficient long-term credit assignment
in recurrent neural networks. However, current algorithms fall short of offline
backpropagation by either not being scalable or failing to learn long-range de-
pendencies. Here we present a high-performance online learning algorithm that
merely doubles the memory and computational requirements of a single inference
pass. We achieve this by leveraging independent recurrent modules in multi-layer
networks, an architectural motif that has recently been shown to be particularly
powerful. Experiments on synthetic memory problems and on the challenging
long-range arena benchmark suite reveal that our algorithm performs competitively,
establishing a new standard for what can be achieved through online learning. This
ability to learn long-range dependencies offers a new perspective on learning in the
brain and opens a promising avenue in neuromorphic computing.

1 Introduction

How can the connections between neurons in a neural network be adjusted to improve behavior? This
question, known as the credit assignment problem, is central in both neuroscience [1] and machine
learning [2], owing to its fundamental importance for elucidating learning mechanisms in the brain
and constructing intelligent artificial systems. However, the complex and nonlinear nature of neural
network processing makes the precise allocation of credit an intricate task.

Deep learning provides a compelling solution to the credit assignment problem via gradient descent,
which refines network parameters along the locally most promising direction. For networks processing
temporal sequences, gradient computation is made possible by backpropagation-through-time [BPTT;
2–4]. BPTT stores and revisits neural activity in reverse-time order to understand how infinitesimal
changes to neural activity, and thus to network parameters, would have impacted the objective
function. One important drawback of this algorithm is its requirement to store the entire activity
trajectory in memory, which constrains the sequence length for exact gradient computation, impairing
the learning of long-term interactions. This constraint becomes a critical bottleneck when working
within memory-limited systems, such as neuromorphic hardware [5] and presumably the brain [6].

Alternatives to BPTT for gradient computation do exist. One such approach, forward-mode differen-
tiation [7, 8], involves computing gradients online as the input sequence is processed, by keeping
track of the sensitivity of neural activity with respect to each of the network parameters. This marks a
qualitative departure from BPTT, as it prepares for all potential future trajectories simultaneously;
by contrast, BPTT focuses on improving the activity of a past trajectory. Importantly, the memory
footprint of this approach does not depend on sequence length. Still, it remains intractable for
real-world applications and likely infeasible in the brain due to its cubic memory scaling and quartic
computational complexity in the number of neurons. Recent research focused on approximation
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strategies to make online gradient estimation more tractable for general-purpose recurrent networks
[9–18]. Our work takes a fundamentally different approach: instead of tailoring the learning algorithm
to the neural network architecture, we fix the learning algorithm and seek an architecture that makes
it tractable.

We build upon recent advances in linear state space models, a class of recurrent neural networks
(RNNs) employing linear recurrent blocks [19–23]. These blocks are stacked and interconnected
through nonlinear networks. The key insights from this line of research are that linear recurrent
connections simplify temporal credit assignment and enable parallel temporal processing, while
nonlinearities between recurrent blocks ensure that network expressiveness remains comparable to
that of densely-connected nonlinear RNNs. Much, if not all, of the state-of-the-art performance of
those models on long-range temporal tasks [24] can be maintained by transitioning from real-valued
to complex-valued neural activities [21–23], and restricting the recurrent connectivity matrix to be
diagonal. Recurrent neurons within a given layer are now independent of each other. This greatly
improves the tractability of online gradient estimation, as the recurrent parameters of a given neuron
do not impact other neurons. We leverage this property to achieve exact online gradient computation
within a single layer with as little as twice the memory and compute requirements needed for inference.
Further, we demonstrate how this leads to improved gradient estimation compared to existing online
learning algorithms when recurrent layers are stacked.

This paper is organized as follows. We start by briefly reviewing existing gradient-based online
learning methods in Section 2.1. Next, we introduce the concept of independent recurrent modules,
showing how some of the recent high-performance models mentioned above fit in this framework in
Section 2.2. Deriving our learning rule requires complex differentiation; we give a concise overview
of those tools in Section 2.3. In Section 3, we detail our online learning algorithm that combines
exact differentiation within a layer of recurrent independent modules with spatial backpropagation
across layers. Finally, in Section 4, we analyze our algorithm and relevant baselines on a synthetic
copy task and show that it can learn sequential tasks with sequence lengths up to over 4000 steps.

2 Background

2.1 Online gradient-based RNN learning

We study gradient-based learning of recurrent neural networks, which process input data x1, . . . , xT

sequentially while maintaining an internal (hidden) state ht. The objective of learning is to minimize
a cumulative loss L(θ) =

∑T
t=1 Lt(θ) which measures performance on a task at hand as a function

of network parameters θ. The standard algorithm for computing the gradient ∇L(θ) is the offline
backpropagation-through-time method, which requires storing the entire input x1:T , loss L1:T and
internal activity h1:T sequences, and then revisiting them proceeding backwards in time. Here, we
focus on online algorithms which carry the information needed to compute or estimate ∇Lt(θ)
forward in time. This enables simultaneous processing of inputs and learning for RNNs, without
storing past data and network states. In principle, online algorithms can learn arbitrarily long temporal
dependencies as well as seamlessly handle sequences of arbitrary length T .

The classical alternative to BPTT for forward-in-time gradient computation is known as real-time
recurrent learning [RTRL; 7] in the context of RNNs2, a method which has its roots in control theory
[26]. While RTRL enables online gradient-based learning, it requires storing dθht in memory and
updating it as the RNN processes its inputs. The size of this auxiliary variable is O(n3), where
n = |h| is the number of hidden units in the RNN. For comparison, the memory requirements of
BPTT are O(nT ). In practice, this precludes the usage of RTRL for all but the smallest of models.

There has been much effort in developing memory-efficient alternatives to RTRL. We now briefly
discuss these prior efforts while referring to a recent review by Marschall et al. [14] for a more
detailed treatment. We divide prior work into three broad categories. One class of algorithms relies on
neglecting terms in dθht to reduce its size, thereby creating a biased gradient estimator. Typically this
requires introducing crude approximations, which allow going from O(n3) to a tractable O(n2) size.
Despite such approximations, in many cases, performance still holds in non-trivial tasks [13, 15, 16].
At the end of this spectrum sits instantaneous (spatial) backpropagation, which neglects all temporal

2More generally, BPTT can be seen as a special case of reverse-mode automatic differentiation, and RTRL of
forward-mode automatic differentiation [25], applied to the problem of RNN learning.
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dependencies in the hidden state when approximating the gradient. A second class of algorithms
relies on stochastic estimation; this allows retaining unbiased gradient estimates, at the expense of
introducing variance [9–11, 17, 18]. Finally, a third class of methods introduces gradient models
[critics; 27–29] to produce gradient estimates online. The critics themselves are then either trained
separately offline, making such methods hybrid on/offline; or fully online, using temporal difference
techniques [30]. We note that despite their widespread use in reinforcement learning, it is not yet well
understood whether temporal difference methods can reliably and efficiently improve the performance
of a gradient critic on real-world RNN learning problems.

As noted by Irie et al. [31], the RTRL literature mostly focuses on single-layer recurrent networks
and remains scarce for deeper networks. Recently, Javed et al. [32] developed a greedy learning
algorithm where a growing network is progressively frozen and trained one layer at a time. Existing
approximations such as [13, 15] do not prescribe how to learn the parameters of remote layers, and the
multi-layer case is not considered in the respective papers. Introducing a powerful RTRL algorithm
that scales to networks of multiple layers is the main algorithmic contribution of this paper. This
property is of great empirical relevance given the power of depth to learn the temporal structure [e.g.
19, 23].

2.2 Linear recurrent units and independent recurrent modules

Instead of developing approximate, general-purpose forward-mode differentiation methods, our goal
shifts towards seeking an expressive architecture allowing exact, tractable online gradient calculation.
We propose that networks with linear recurrent units [LRU; 23] and, more generally networks with
independent recurrent modules, are particularly well-suited for this purpose.

A linear recurrent unit, depicted in Figure 1, is defined as

ht+1 = λ⊙ ht +Bxt+1, yt = Re[Cht] +Dxt, (1)

with ⊙ the element-wise product. Here, xt ∈ RH represents the input received by the LRU at time
t, ht ∈ CN denotes its internal state, and yt ∈ RH its output. The parameters of the unit include
λ ∈ CN , B ∈ CN×H , C ∈ CH×N and D ∈ RH×H . The version of the LRU we use in our
experiments includes an element-wise normalization factor for the input Bx and uses an exponential
parametrization of λ for network stability. We omit these details in the main text for conciseness; see
Appendix A.1 for more details.

LRUs differ from traditional recurrent layers in deep learning: they have linear neural dynamics,
a complex-valued state ht, and a diagonal connectivity pattern. Orvieto et al. [23] found that the
absence of temporal linearity in networks that stack those units through nonlinear connections (see
Fig. 1) does not alter expressivity and eases gradient-based learning, a notoriously difficult process
for nonlinear RNNs [33, 34]. In addition, the diagonal structure of the recurrence matrix provides
several benefits over fully connected ones. First, it affords an easy way to control the eigenvalues of
the Jacobian of the system and thus ensure that neural dynamics remain stable. Due to the linearity, it
also enables processing the input sequence in parallel [35], significantly accelerating the training of
such models on modern computers [22]. Importantly, despite its diagonal parametrization, the LRU
remains functionally equivalent to a linear recurrent layer with dense recurrence matrix A, as A can
be approximated as accurately as needed by a complex-diagonalizable matrix.

Each complex neuron in an LRU is an independent recurrent module, meaning its current state does
not impact the dynamics of other modules. This property greatly simplifies online credit assignment
(see Section 3). We focus on this specific architecture due to its simplicity and great empirical
performance, but our theoretical insights also apply to networks of independent recurrent modules
with low-dimensional state vectors per module.

2.3 A primer on complex differentiation

The use of complex-valued networks, such as the LRU, and hence complex differentiation remains
relatively scarce. In the following, we provide a concise review of the tools of complex differentiation
integral to the derivation of our online learning rule. We use f and g to denote complex-valued
functions that take the complex variable z as input.
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Figure 1: (Left) Overview of the class of neural networks we consider in this paper. We stack layers
of independent recurrent modules (IRMs), augmented with layer norm [36] and gated linear units
[GLU; 37]. Light red indicates instantaneous spatial processing, dark red temporal processing. When
we examine networks with fully connected recurrent layers, only the dark red block is modified.
The linear recurrent unit is the instantiation of a layer of IRMs we use in our experiments. (Right)
Overview of our learning rule. As an input sequence is processed, hidden states ht and their
sensitivities et to the parameters are updated. Learning ensues by combining the sensitivities et with
spatially backpropagated error signals. No information flows in reverse time; our rule is fully online.

The Wirtinger derivatives of f are defined through
df

dz
:=

1

2

(
df

dRe[z]
− i

df

dIm[z]

)
,
df

dz̄
:=

1

2

(
df

dRe[z]
+ i

df

dIm[z]

)
. (2)

Using them for complex differentiation allows using similar calculus rules as for real functions. Note
that we use the row convention for derivatives, that is dzf is a row vector of size |z|. The following
formula holds in general dzf = dz̄ f̄ .

The complex derivative of a complex function is similar to a 2×2 real-valued matrix as both dzf ∈ C
and dz̄f ∈ C are necessary to characterize it. Yet, there exists a subclass of functions, called
holomorphic functions for which it can be reduced to a 2 dimensional real-valued vector, leading to a
more compact representation of derivatives. A continuous function f is holomorphic if it satisfies the
Cauchy-Riemann equations

dRe[f ]

dRe[z]
=

dIm[f ]

dIm[z]
and

dRe[f ]

dIm[z]
= −dIm[f ]

dRe[z]
, i.e.

df

dz̄
= 0. (3)

Any affine function, as well as the composition of two holomorphic functions, are themselves
holomorphic.

The chain rule of complex differentiation, crucial for automatic differentiation, is
d(f ◦ g)

dz
=

df

dg

dg

dz
+

df

dg

dg

dz
. (4)

When either f or g is holomorphic, the second term vanishes as dgf = 0 or dz ḡ = dzg = 0. When
f is a real-valued function, it can be optimized through gradient descent by iteratively updating its
input variable z through ∆z ∝ −dRe[z]f

⊤ − idIm[z]f
⊤ = −2dz̄f

⊤.

3 Online learning of networks of independent recurrent modules

Based on the foundations laid down in the preceding section we now derive our online gradient-based
learning algorithm for multi-layer networks of independent recurrent modules. We first focus on a
single layer, demonstrating that exact forward-mode differentiation is tractable. This insight then
guides the derivation of our rule for multi-layer networks.
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3.1 Single-layer networks

We focus on parameters θ that influence the hidden states; computing the gradient of any other
parameter does not require temporal credit assignment. For the LRU, we have θ = {λ,B}. Recall
that L(θ) =

∑T
t=1 Lt(yt(θ)) denotes the loss function that measures how good the outputs y1:T

of a network parametrized by θ are. Its derivative dθL(θ) can be calculated using forward-mode
(complex) differentiation:

dL

dθ
=

T∑
t=1

∂L

∂ht

dht

dθ
+

∂L

dht

dht

dθ
=

T∑
t=1

∂Lt

∂ht

dht

dθ
. (5)

As mentioned in Section 2.3, the last equality holds as ht+1 is a holomorphic function of ht and of θ,
hence ht is a holomorphic function of θ by recursive composition, and L only directly depends on ht

through Lt. The term δt := dht
L⊤ that is here equal to dht

L⊤
t can easily be computed by spatial

backpropagation, as the output yt at time t only depends on the current hidden state ht. We are left
with computing the sensitivities dθht of the states to the parameters.

Independent recurrent modules do not influence each other. The parameters θi that directly influence
the state ht,i of module i never impact the state ht′,j of another module. As a consequence, the
number of non-zero entries of the sensitivity dθht grows linearly with the size of θ whenever the
number of recurrent neurons within each module is fixed. Applying this to the LRU, dθht is entirely
characterized by eλt := (dλi

ht,i)i and eBt := (dBji
ht,j)ji. Differentiating Equation 1 using the

product rule gives the corresponding updates:

eλt+1 = λ⊙ eλt + ht, eBt+1 = diag(λ)eBt + 1x⊤
t+1, (6)

with 1 a vector of size |h| filled with ones. More detail on the derivation of Equation 6 and on how to
efficiently simulate this update are given in Appendix A.2. Keeping track of those quantities only
requires considering an additional hidden state of size |θ|.3 Finally, the λ and B updates can be
obtained by following the gradient, as calculated in Equation 5:

∆λ ∝
T∑

t=1

δt ⊙ eλt , ∆B ∝
T∑

t=1

diag(δt)e
B
t . (7)

Interestingly, all the e-updates are local to the neuron or synapse in question, and no approximations
were required to accomplish this. This feature makes the algorithm particularly promising for
neuroscience and neuromorphic engineering, where localized computation is highly desirable. The
parameter update for λ and B is also fully local, as it combines a parameter-specific sensitivity,
sometimes considered as an eligibility trace [13], and a postsynaptic error term.

The idea that element-wise recurrence simplifies RTRL precedes our work. It can be found in early
work by Mozer [38] and Gori et al. [39], and has been revisited recently [32, 31]. In this paper, we
extend this insight to complex numbers and thus do not lose expressivity, unlike previous work. We
also note that some approximations to RTRL such as e-prop [13] or SnAp-1 [15] end up being exact
when applied to networks with independent recurrent modules.

3.2 Multi-layer networks

The derivation in the last section presumes that the loss L only directly depends on ht through Lt.
This assumption no longer holds when layers are stacked, which is crucial to the expressiveness of
the model. In the following, we explain how we can extend our rule to the multilayer case. Let us
consider layer l of the network where we aim to compute the gradient of the loss L with respect to
its parameters θl. The sensitivity dθlhl

t can be computed as before, assuming independent recurrent
modules, as θl does not influence the behavior of the inputs it receives from previous layers. Hence,
we are left with computing δlt = dhl

t
L⊤. The simplification δlt = dhl

t
L⊤
t we made in the previous

section still holds for the last layer but is violated for the other layers. This is because L, taken
as function of the hidden states hl of layer l, now has an internal memory through the subsequent
recurrent layers. The hidden state hl

t at time t will thus directly affect all future losses Lt′ for t′ ≥ t.

3If ht is not a holomorphic function of θ, one would need to keep 2|θ| instead of |θ| states.
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As a consequence, one has to resort to backpropagation-through-time to compute dhl
t
L⊤ exactly,

which breaks causality and rules out the possibility of learning online. To circumvent this issue,
we approximate the error signal each layer receives by δlt ≈ dhl

t
L⊤
t so that it can be computed

instantaneously with spatial backpropagation. We emphasize that the only source of approximation
of this algorithm is the one above. Given that there is no approximation for the last layer, we will
always compute the exact gradient for that layer.

We summarize our learning rule in Figure 1. It prescribes augmenting the hidden state of each
recurrent layer l with the sensitivity el. For each input/output sample (xt, y

target
t ), we first update

the full entire hidden state (ht, et) using the previous one (ht−1, et−1) and current input xt. We
then spatially backpropagate the error signal obtained at the last layer by comparing the prediction
of the network to its desired value ytargett . Finally, we combine elt and δlt available at each layer
using Equation 7 to compute the current update. So far, we have only described how to update
parameters that directly influence the hidden neurons of the recurrent layer. We update the rest of the
parameters with the gradient estimate obtained with spatial backpropagation. Importantly, the size of
the extended hidden state is upper bounded by the number of neurons plus the number of parameters
and is in practice much smaller.

Next, we aim to understand the factors that may degrade the quality of the gradient estimate as a
result of the approximation δlt ≈ dht

L⊤
t which introduces bias in the gradient estimate. In the LRU,

neural activities, and thus error signals, are processed temporally through dynamics similar to the one
of Equation 1. When the norm of each λi approaches one, neural activity preserves past information,
and correspondingly, error signals backpropagated over time contain more information about the
future. This suggests that our approximation becomes less accurate as the distribution of |λi| narrows
around 1, since it discards future error information. Moreover, δ worsens as it is backpropagated
through more layers. At each layer, backpropagation mixes errors from the next layer and the future
state of the layer. Since we neglect future information, only part of the error signal is backpropagated,
resulting in a less accurate approximation. We delve deeper into these two approximation sources in
a memory task in Section 4.1.

4 Experiments

In the following, we analyze the properties of our proposed online learning method empirically and
explore how independent recurrent modules aid learning of long-range dependencies. To this end,
we first conduct an extensive analysis on the copy task [40], a well-established test bed to study
temporal credit assignment in recurrent neural networks. Comparisons to truncated online versions of
BPTT and to an extension of SnAp-1 to deep recurrent networks, reveal that independent recurrent
modules are generally beneficial for learning long-range dependencies, as they excel in both the
online and the offline setting. Finally, we evaluate our method on three tasks of the Long Range Arena
[24]: a sequential version of CIFAR [41], LISTOPS [42] and IMDB [43], scaling online learning
to sequence lengths of over 4000 time steps and to deep recurrent neural networks. For additional
experimental details and hyperparameter configurations, we refer to Appendix B.

4.1 Understanding the approximations behind online learning in networks of LRUs

In this first series of experiments, we investigate the approximation introduced by our online algorithm
in detail. We recall that our learning rule only approximates the full gradient when the network has
two recurrent layers or more, as it ignores the temporal component of backpropagated error signals.
Therefore, we expect that the learning signal becomes less accurate as we increase network depth and
shift the eigenvalue distribution towards a norm of 1. To explore the effects of our approximation in a
controlled setting, we consider a copy task [40, 10, 15, 18] in which the network observes a length-
20 sequence of 7-bit patterns that it must recall when presented with an output token. Intuitively,
temporal credit assignment is critical in this task to, among other things, convert forgetting neurons
(|λ| ≪ 1) into perfect memory units (|λ| ≈ 1) that can solve the task. To ensure that these perfect
memory units are scarce at the beginning of training, necessitating learning to create some, we
initialize λ uniformly at random in the complex unit disk and set the number of recurrent units per
layer to N = 64. The default architecture used in this section has four layers.
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Figure 2: Impact of depth of the network (left), eigenvalues of the network (middle), and type of
approximation on the quality of online learning (right). The cosine similarity measures the alignment
between the estimated gradient (with our learning rule for all panels, and with spatial backpropagation
(Spat.) and 1-step truncated backpropagation (Trunc.) for panels E and F) and the true gradient,
computed with backpropagation-through-time (BP). It is computed per layer and then averaged
across layers to make a quantitative comparison possible. The encoder and decoder alignments do
not influence this metric. This task is solved (100% accuracy) for losses lower than 0.05 and 70%
accuracy roughly corresponds to a loss of 0.5. See Section 4.1 for more details.

As remarked in Section 3.2, the updates prescribed by our learning rule match the gradient exactly
for all parameters in the last LRU layer. We confirm that empirically for a network of one layer in
Figure 2.A. While the approximation quality deteriorates with increasing depth (Fig. 2.A), alignment
remains high, noticeably better than for all baseline online learning rules (Fig. 2.E). Moreover, despite
alignment decreasing with depth, performance enhances significantly (Fig. 2.B). BPTT exhibits
similar improvements with depth, suggesting that this is likely due to the enhanced capabilities of
the model. Our rule can learn useful hierarchical temporal representations online whereas baseline
methods, 1-step truncated and spatial backpropagation, which ignore most of temporal dependencies,
fail (c.f. Fig. 2.F). Additionally, we found that, despite its bias, our learning rule can decrease the loss
to 0 when training a 4 layers network on a simpler memory task for long enough.

Exact error terms are backpropagated through recurrent units by weighting the current prediction
error by 1 and the future error by λ. In order to maintain an online algorithm, we ignore this
dependency on the future. We expect alignment with the gradient to decrease as the distribution
of |λ| shifts towards 1. To test that, we initialize the λ uniformly at random in the complex ring of
radius [|λ|min, 1]. Interestingly, alterations in the initial eigenvalue distribution only slightly affect
estimation quality in the beginning of training (Fig. 2.C). The key factor seems to be the degradation
associated with learning progress, rather than degradation due to larger eigenvalues. Smaller initial
|λ|min values slow down training, as more perfect memory neurons have to be recruited, but all
initializations eventually lead to solving the task (Fig. 2.D).

4.2 Independent recurrent modules improve online learning performance

After dissecting the learning dynamics of our algorithm, we next show the importance of the
independence of recurrent modules for online gradient-based learning. To this end, we compare linear
recurrent units to densely-connected linear recurrent layers which do not have independent recurrent
modules. To make the comparison fair, we ensure all models have the same number of parameters
and recurrent neurons. In addition to the baselines we considered in the previous section, we include
an extended version of the SnAp-1 algorithm that combines spatially backpropagated errors with
the SnAp-1 sensitivity approximation. This algorithm reduces to ours when applied to networks of
independent recurrent modules. Therefore, it enables us to isolate the impact of the independent
recurrent module design on online gradient-based learning. We report final training losses in Table 1
and refer the reader to Appendix B for experimental details.
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Table 1: Comparison of final training losses of different online learning algorithms on the copy task
of Section 4.2. The independent recurrent modules design improves online learning performance.
Performance greatly degrades when the LRU is replaced with a dense recurrent matrix (Linear
RNN). Comparison with the SnAp-1 algorithm applied to the GRU architecture highlights that online
learning of multilayer networks is difficult without element-wise recurrence. Results are averaged
over 5 seeds.

Layer LRU Linear RNN GRU GRU
Number layers 4 4 1 4

SPATIAL 4.66× 10−1 6.20× 10−1 6.26× 10−1 6.55× 10−1

TRUNCATED 2.62× 10−1 5.81× 10−1 6.20× 10−1 6.49× 10−1

OURS / SNAP-1 8.44× 10−3 5.82× 10−1 3.16× 10−1 3.27× 10−1

BPTT 7.59× 10−6 1.07× 10−4 2.61× 10−1 1.94× 10−1

Table 2: Test accuracy on three tasks of the LRA benchmark [24]
for spatial backpropagation, 1-step truncated backpropagation,
our algorithm, and full backpropagation through-time. While
we always use per time step local losses during training, we
accumulate logits over the sequence during inference. We report
the mean and std. for three seeds each.

Method SCIFAR IMDB LISTOPS

SPATIAL 58.20± 0.70 83.50± 0.20 32.02± 0.27
TRUNC. 60.01± 1.26 84.04± 0.47 31.88± 0.59
OURS 79.59± 1.01 86.48± 0.41 37.62± 0.68

BPTT 83.40± 1.54 87.69± 0.39 39.75± 0.17

Table 3: Test accuracy of a lin-
ear RNN on the CIFAR task. In-
stead of our learning rule, we ap-
ply the SnAp-1 learning rule ex-
tended to the multilayer case, as
described in Section 4.2.

SCIFAR

50.63± 0.23
50.53± 0.43
63.71± 0.33

65.23± 0.56

Our findings confirm the benefits of independent recurrent modules for online learning, in particular
for multi-layer networks. To demonstrate that, we first compare our algorithm on the LRU architecture
with the SnAp-1 algorithm applied to an equivalent linear recurrent network. The diagonal approxima-
tion of the sensitivity tensor in SnAp-1 introduces an additional bias when learning linear RNNs. We
found that this additional bias hurts performance: when moving from offline BPTT to online training,
the performance drop is significantly higher for linear RNNs. Interestingly, sensitivity approximation
does not bring any performance gain, in this setting, compared to the cruder approximations that are
1-step truncated BPTT and spatial backpropagation.

Additionally, we run experiments on another RNN architecture, the GRU [44], to better understand
the impact of depth in online and offline RNN training, and to confirm the importance of element-wise
recurrence for online learning. In the single layer case, consistent with Menick et al. [15], we find
that the SnAp-1 approximation performs competitively with offline BPTT. However, it suffers from
depth in contrast to BPTT that benefits from it. This result highlights the importance of depth in
this memory task, as well as the difficulty learning over depth poses for existing online learning
algorithms.

4.3 Scaling online learning to the long-range arena benchmark

While the approximations typically employed to enable online learning prohibit scaling to tasks with
extended temporal structure, the results from our previous section have demonstrated the potential of
independent linear units for online learning of long-range dependencies. We therefore move to tasks
from the challenging long-range arena benchmark [24] specifically designed to evaluate this ability.
Transformers excel in almost any benchmark today. However, they perform surprisingly subpar in
this setting [45] in which deep state-space models [20] and LRUs [23] achieve impressive results.

We run experiments on three tasks, sequential CIFAR, IMDB and LISTOPS. In sequential CIFAR,
the network receives the 32×32 image as a pixel sequence and has to perform a classification task. In
line with Orvieto et al. [23], we use the colored version of SCIFAR instead of the grayscale version
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originally proposed. In the IMDB task, the network is given a text encode in bytes of length at most
4000, and has to perform binary classification. In LISTOPS, the input is a sequence of numbers,
brackets and operators like MAX which the model needs to evaluate to determine a classification
target in the range from 1 to 10. We do not use the three other tasks of the LRA benchmark: the
performance gap between different models is usually small in the RETRIEVAL task (c.f. [23]) and,
in our preliminary experiments, we could not reach above chance performance in the PATHFINDER
tasks with BPTT and the modifications we made to make the loss causal, as described in the next
paragraph.

In order to make the sequence models employed on this benchmark compatible with the causality
requirement in online learning, we remove the time pooling operation during training and consider
a local loss term at every time step instead. During inference, we then evaluate our models using
the average of the last layer logits in time which respects causality. Moreover, we replace batch
normalization with layer normalization to avoid sending batch statistics backwards in time and con-
sider smaller models to lower the computational burden for online learning. For further experimental
details, please refer to Appendix B.

We report results comparing online learning to spatial backpropagation, truncated BPTT and the
BPTT upper bound in Table 2. Our online learning algorithm outperforms other online learning
approximations, significantly reducing the gap towards BPTT. As in the last section, replacing the
LRU with a linear RNN layer in the CIFAR experiment leads to worth online learning performance,
c.f. Table 3, providing further evidence for the effectiveness of independent recurrent modules for
capturing long-term dependencies.

5 Discussion

We have demonstrated that long-range dependencies can be learned online, allowing recurrent
neural networks to reach strong performance on a set of tasks from the long-range arena benchmark.
Moreover, a detailed analysis of a memory problem revealed that our method significantly outperforms
both spatial (online) backpropagation as well as prior approaches based on approximate real-time
recurrent learning, coming close to full backpropagation-through-time. These findings may inform
the design of new neuromorphic hardware with on-chip learning capabilities, an application where
approximate real-time recurrent learning is garnering significant attention [46–48].

While most prior related work focused on developing generic gradient approximation schemes, we
asked which architecture would simplify online gradient computations. In high-level terms, our
philosophy draws from seminal work on long short-term memory networks [LSTMs; 40] or neural
Turing machines [49], which established the importance of architecture design for the success of
gradient descent. We build on this insight, moving to the harder setting of online learning. This led us
to consider networks built of recurrent independent modules: decoupled units with low-dimensional
state vectors, for which exact real-time recurrent learning is cheap. Importantly, this design underlies
recent models such as deep linear recurrent units [23] and members of the HiPPO family [21, 22]
which achieve strong performance in a wide array of challenging problems, including language
modeling at scale [50] and the long-range arena benchmark [22].

We conclude by noting that modularity, the overarching principle behind our approach, is at the very
heart of the influential columnar hypothesis in neuroscience [51]. This hypothesis states that the
architecture of the neocortex is modular, with the cortical column as an elementary (or canonical, [52])
building block one level of abstraction above neurons. We thus speculate that modularity could be a
key neural network design principle discovered by evolution, that considerably simplifies the temporal
credit assignment problem. This is inline with our finding that a modular architecture enables learning
complicated temporal dependencies through simple local temporal credit assignment mechanisms,
letting spatial backpropagation take care of assigning credit over the network hierarchy. We stress this
point because numerous biological implementations and alternatives for spatial backpropagation have
been proposed [e.g., 53–62], while essentially none exist yet for backpropagation-through-time [63].
Our findings provide a starting point for understanding how the brain deals with the fundamental
problem of learning the temporal structure behind its sensory inputs.
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A Network architecture and algorithm

A.1 The linear recurrent unit (LRU)

In Section 2.2, we used a simplified version of the LRU for brevity. Here, we review the more detailed
formulation of Orvieto et al. [23]. The LRU is defined as follows:

ht+1 = λ⊙ ht + γ ⊙Bxt (8)
yt = Re[Cht] +Dxt. (9)

The only difference with Equation 1 is the inclusion of the normalization factor γ ∈ RN . Its purpose
is to ensure that all units maintain a comparable magnitude. Without normalization, hidden states
whose λ is close to 1 can blow up. We initialize γ with

γ =
√
1− |λ|2, (10)

and later update it with our learning algorithm.

We use an exponential parametrization for λ:

λ := exp(− exp(νlog) + i exp(θlog)). (11)

This parametrization ensures that the norm of λ, equal to exp(− exp(νlog)), remains below 1,
guaranteeing stability of the network dynamics. This feature provides an advantage to the LRU
compared to the linear RNN, as observed in Section 4.2. By representing θ as exp(θlog), we achieve
finer tuning of θ around 0. In the following, we focus on computing gradients with respect to λ.
However, in our simulations, we derive the update for νlog and θlog from these gradients through
the chain rule, and apply them to update the corresponding parameters. Similarly, we optimize the
logarithm of γ.

A.2 Complete derivation of our algorithm

We provide a more detailed derivation of our online learning rule for a single layer of LRUs, as
described in Section 3.1. Recall that we define et to be the non-zero terms of the sensitivity dθht of
the state ht with respect to the parameters θ, with θ = {λ, γ,B} the parameters of the LRU impacting
the recurrent dynamics. We show that the sensitivities evolve according to

eλt+1 = λ⊙ eλt + ht (12)

eγt+1 = λ⊙ eγt +Bxt+1 (13)

eBt+1 = diag(λ)eBt + γx⊤
t+1 (14)

and that gradient-following parameter updates can be calculated through

∆λ ∝
T∑

t=1

δt ⊙ eλt (15)

∆γ ∝
T∑

t=1

Re[δt ⊙ eγt ] (16)

∆B ∝
T∑

t=1

diag(δt)e
B
t , (17)

with δt = dht
Lt. These updates are the ones used in our simulations. We now derive the updates per

coordinate, and the vectorized form can be straightforwardly obtained from there.

Update for λ. We have

eλt+1,i =
dht+1,i

dλi
=

d

dλi
[λiht,i] + 0 = λie

λ
t,i + ht,i. (18)

The first equality uses the definition of eλt+1, the second the recurrent update of ht as in Equation 8
and the fact that γ ⊙ Bxt+1 does not depend on λ, and the third is the complex product rule. The
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gradient of the loss with respect to λi is then equal to

dL

dλi
=

T∑
t=1

∑
j

dLt

dht,j

dht,j

dλi
(19)

=

T∑
t=1

dLt

dht,i

dht,i

dλi
(20)

=

T∑
t=1

δt,ie
λ
t,i. (21)

In the first line, we applied forward-mode complex differentiation (combined with ht being an
holomorphic function of λ) as in Equation 5. In the second, we used that hi is independent of λj for
i ̸= j.

Update for γ. The derivation for the recurrent update of eγ being very similar to the one for λ, we
omit it. The fact that γ is a real variable does not change anything to this derivation. However, this
makes the gradient computation slightly different. One can act as if γ was a complex variable γC

i and
get

dL

dγC
i

=

T∑
t=1

δt,ie
γ
t,i. (22)

Now, looking at the real part of the previous equation, we have

dL

dγi
= 2

T∑
t=1

Re[δt,ie
γ
t,i]. (23)

Note that the factor 2 will also indirectly appear in the update of λ, although it is not yet there in the
gradient, as we have a real derivative here, when it is a complex one above.

Update for B. We have

eBt+1,ji =
dht+1,j

dBji
=

d

dBji
[λjht,j + γjBjixt+1,i] = λj

dht,i

dBji
+ γjxt+1,i (24)

and
dL

dBji
=

T∑
t=1

δt,je
B
t,ji. (25)

Note that the update for eB is more general than the one of Equation 6 in the main text in which
γ = 1.

B Experimental details

We base our implementation on the S5 [22] code base4. All networks are trained with the AdamW
optimizer, with a linear learning rate warm up, followed by a one-cycle cosine learning rate decay.
Following common practice, we do not apply weight decay for λ, γ, and use a smaller learning rate
for those parameters (global learning rate times a learning rate factor). By default, we initialize λ
uniformly at random in the complex disk and θ uniformly at random in [0, 2π].

B.1 Copy task experimental details and hyperparameters

We report the hyperparameters we used and scanned over for the copy task in Tables 4 and 5. In
Section 4.1, we take the default configuration reported in the LRU paper [23] for backpropagation-
through-time and apply it to the different methods we consider. We use 25 epochs, with a linear
warmup of 5 epochs. We tuned the learning rate for each method independently in the comparison of
Figure 2.E and F and in the one of Table 1. For the 1-layer GRU architecture, following Menick et al.
[15], we add an extra readout layer: a 1-hidden layer MLP with hidden dimension 1072 processes
the hidden state to generate the output.

4https://github.com/lindermanlab/S5
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Table 4: Hyperparameter configurations for Section 4.1. We use [· · · ] to denote hyperparameters that
were scanned over with grid search and {· · · } to denote the variables of interest for the figure.

Hyperparameter FIG.2.A/B FIG.2.C/D FIG.2.E/F

Learning rule Ours Ours {Ours, Spat., Trunc., BP}

Pattern length 20 20 20
Padding 7 7 7
Training samples 20000 20000 20000

Number of layers {1, 2, 3, 4} 4 4
Recurrent state size N 64 64 64
Model size H 128 128 128
|λmin| 0 {0, 0.5, 0.75, 0.9} 0

Epochs 25 25 25
Warmup 0 0 0
Batch-size 50 50 50
Base learning rate 10−3 2× 10−3 2[0,1,2,3]10−3

Learning rate factor 0.5 0.5 0.5
Dropout probability 0.1 0.1 0.1
Weight-decay 0 0 0

Table 5: Hyperparameter configurations for Section 4.2. We use [· · · ] to denote hyperparameters that
were scanned over.

Layer LRU Linear RNN GRU GRU
Number layers 4 4 1 4

Pattern length 20 20 20 20
Padding 7 7 7 7
Training samples 20000 20000 20000 20000

GLU Yes Yes No Yes
N 64 64 134 91
H 128 146 134 91
Extra readout No No 1072 No
Number parameters 268,430 267,956 269,488 270,011

Batch-size 20 20 20 20
Base learning rate 2[0,··· ,5]10−3 2[0,··· ,5]10−3 2[0,··· ,5]10−3 2[0,··· ,5]10−3

Learning rate factor 1 1 1 1
Dropout probability 0.1 0.1 0.1 0.1
Weight-decay 0 0 0 0

16



Table 6: Hyperparameter configurations for SCIFAR, IMDB and LISTOPS experiments. We use
[· · · ] to denote hyperparameters that were scanned over with grid search. By default, the {λ, γ}
parameters have no weight decay and have a slower learning rate (c.f. learning rate factor).

Hyperparameter CIFAR IMDB LISTOPS

Number of layers 4 4 4
Recurrent state size N 128 128 128
Model size H 256 256 256
|λ|min 0.9 [0.0, 0.9] [0.0, 0.9]
|λ|max 0.999 1 1

Batch-size 100 32 32
Base learning rate [0.001, 0.004] [0.001, 0.003] [0.001, 0.003]
Learning rate factor 0.5 0.5 0.5
Dropout probability 0.1 0 0.1
Weight-decay [0.1, 0.5] 0.05 0.05
Epochs 180 40 35
Warmup 18 4 0

B.2 Experimental details and hyperparameters for SCIFAR, IMDB and LISTOPS

For all experiments, we first ran a manual coarse-grained hyperparameter tuning to identify the most
important parameters, and then ran the grid search described in 6. The final hyperparameters were
each evaluated on 3 fresh seeds for the results reported in Table 2. The training time for our online
learning rule on a single Nvidia RTX3090 GPU for SCIFAR, IMDB and LISTOPS was respectively
36, 10 and 40 hours.

For the comparison with linear RNNs, we kept the number N of hidden neurons fixed compared to
the one used the LRU (c.f. Table 6), but changed the model size H to 294 in order to obtain the same
number of parameters (our Linear RNN has 1,068,086 parameters vs. 1,063,178 for the LRU). We
used the same hyperparameter optimization scheme.
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