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Abstract

Open-vocabulary semantic segmentation is a challenging task that requires segment-
ing novel object categories at inference time. Recent works explore vision-language
pre-training to handle this task, but suffer from unrealistic assumptions in practical
scenarios, i.e., low-quality textual category names. For example, this paradigm
assumes that new textual categories will be accurately and completely provided,
and exist in lexicons during pre-training. However, exceptions often happen when
meet with ambiguity for brief or incomplete names, new words that are not present
in the pre-trained lexicons, and difficult-to-describe categories for users. To ad-
dress these issues, this work proposes a novel attribute decomposition-aggregation
framework, AttrSeg, inspired by human cognition in understanding new concepts.
Specifically, in the decomposition stage, we decouple class names into diverse
attribute descriptions to complement semantic contexts from multiple perspectives.
Two attribute construction strategies are designed: using large language models
for common categories, and involving manually labelling for human-invented cat-
egories. In the aggregation stage, we group diverse attributes into an integrated
global description, to form a discriminative classifier that distinguishes the target
object from others. One hierarchical aggregation architecture is further proposed
to achieve multi-level aggregations, leveraging the meticulously designed cluster-
ing module. The final results are obtained by computing the similarity between
aggregated attributes and images embeddings. To evaluate the effectiveness, we
annotate three types of datasets with attribute descriptions, and conduct extensive
experiments and ablation studies. The results show the superior performance of
attribute decomposition-aggregation. We refer readers to the latest arXiv version at
https://arxiv.org/abs/2309.00096.

1 Introduction

Semantic segmentation is one of the fundamental tasks in computer vision that involves partitioning
an image into some semantically meaningful regions. Despite great progress has been made, existing
research has mainly focuses on closed-set scenarios, where object categories remain constant during
training and inference stages [50, 24]. This assumption is an oversimplification of real-life and limits
its practical application. Another line of research considers a more challenging problem, that requires
the vision system to handle a broader range of categories, including novel (unseen) categories during
inference. This problem is referred as open-vocabulary semantic segmentation (OVSS).

To handle OVSS, vision-language pre-training (VLP) paradigm [42, 17, 49] provides a preliminary
but popular idea. By leveraging language as an internal representation for visual recognition,
segmentation is formulated as a similarity between a category’s textual representation and pixel-level
visual representation. Following on this paradigm, recent works focus on minor improvements, e.g.,
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Figure 1: Left: Open-vocabulary semantic segmentation (OVSS) assumes the given new textual
categories are accurate, complete, and exist in pre-trained lexicons. However, in real-life situations,
practical uses are limited due to textual ambiguity, neologisms, and unnameability. Middle: We
propose a novel attribute decomposition-aggregation framework where vanilla class names are first
decomposed into various attribute descriptions (decomposition stage), and then, different attribute
representations are aggregated hierarchically into a final class representation for further segmentations
(aggregation stage). Right: Our framework successfully addresses the aforementioned issues and
facilitates more practical applications of OVSS in real-world scenarios.

explore to better align vision-language modalities [52, 25, 32]. Although promising, these researches
all maintain one unrealistic assumption in real-world scenarios, i.e., the given new textual categories
are accurate and complete, and exist in the pre-trained lexicons. As a result, three main issues persist.
(1) Ambiguity: brief or incomplete names bring lexical ambiguity, posing a great challenge for
semantic discriminability. (2) Neologisms: new words that frequently emerge may not be present
in the lexicons during vision-language pre-training, preventing pre-trained language models from
interpreting their semantics, let alone aligning them with images. (3) Unnameability: unnamed or
difficult-to-describe categories, such as specialized terms, rare animal names, or specific objects, can
create a labeling problem for users, adding complexity during application. The above three issues
result in low-quality category comprehension, limiting the empirical segmentation performance.

To address these issues, we turn our attention to cognitive psychology when human understanding
new concepts [36, 45]. For example, if a child asks how to find a flamingo in the zoo, one can explain
the process by looking for its pink feathers, long neck, and more. Then by combining these answers,
a child can easily recognize a flamingo. Such answers provide detailed descriptions from multiple
distinct or complementary perspectives, which we refer to as diverse “attributes”. Compared to
vanilla categories, attributes have three advantages. (1) For ambiguous categories, attributes can
make up for missing context information to achieve completeness. (2) For unseen categories, they
can be transformed into known attributes, easily interpreted by pre-trained language models. (3) For
unnamed or indescribable categories, attributes can be used to replace in a more detailed manner.
These attribute descriptions, aggregated at scale, provide a strong basis for visual recognition.

Inspired by this, we propose a novel decomposition-aggregation framework where vanilla class
names are first decomposed into various attribute descriptions, and then different attribute repre-
sentations are aggregated into a final class representation for further segmentations. Specifically,
for the decomposition stage, our goal is to generate various attribute descriptions from coarse
category names and build attributes for datasets. We propose two construction strategies: one is
to generate using language models, and the other involves manually labelling. The first strategy
corresponds to situations where common category names are sometimes brief or incomplete, with
semantic ambiguity or insufficient discriminability. In this case, we can simply annotate attributes
upon existing datasets, such as PASCAL [13, 16] and COCO [28]. The second strategy involves
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a newly collected dataset called “Fantastic Beasts”, which contains imaginal creatures and their
invented names by humans. This dataset is used to simulate situations for new words for pre-trained
vision-language models, and difficult-to-describe categories for users. In the aggregation stage,
our aim is to combine the separate attribute pieces into an integrated global description, which then
serves as a classifier to differentiate the target object from others. This stage can also be viewed as
the process of combining regions reflected by different attributes into a specific one, which yields
the segmentation result. Since attributes describing objects may potentially contain hierarchy, we
propose a hierarchical aggregation architecture to leverage this potential. A clustering module is
carefully designed to aggregate attributes from different levels, and the final mask is obtained by
computing similarities between the grouped attribute embeddings and the image features.

To evaluate the significance of attribute understanding for OVSS, we annotate attribute descriptions
on three types of datasets, namely, PASCAL series [13, 16, 35], COCO series [28, 8], and Fantastic
Beasts. Extensive experiments demonstrate the superior performance of our attribute decomposition-
aggregation framework over multiple baselines and competitors. Furthermore, we performed thorough
ablation studies to dissect each stage and component, both quantitatively and qualitatively.

To sum up, our contributions lie in three folds:

• We pioneer the early exploration in leveraging only the attribute descriptions for open-vocabulary
segmentation, and to achieve this end, we construct detailed attributes descriptions for two types of
existing datasets and one newly collected dataset Fantastic Beasts;

• We design a novel decomposition-aggregation framework that decompose class names into attribute
descriptions, and then aggregate them into a final class representation;

• We conduct thorough experiments and ablations to reveal the significance of attribute decomposition-
aggregation, and our model’s superior performance on all proposed datasets.

2 Related Work

Vision-Language Pre-training (VLP) aims to jointly optimize image-text embeddings with large-
scale web data. Recently, some studies have further scaled up the training to form “the foundation
models”, e.g., CLIP [42], ALIGN [17], Florence [49], and FILIP [48]. These foundation models
usually contain one visual encoder and one textual encoder, which are trained using simple noise
contrastive learning for powerful cross-modal alignment. They have shown promising potential in
many tasks: grounding [18, 20], detection [21, 19], and segmentation [47, 31, 51, 29]. This paper
uses CLIP for OVSS, but the same technique should be applicable to other foundation models as well.

Open-Vocabulary Semantic Segmentation (OVSS) aims to understand images in terms of cat-
egories described by textual descriptions. Pioneering works [7, 26, 15] use generative models to
synthesize visual features from word embeddings of novel categories. SPNet [46] and JoEm [4]
employ a mapping process that assigns each pixel and semantic word to a joint embedding space. Re-
cently, researchers have proposed to leverage pre-trained vision-language models (VLMs) for OVSS.
OpenSeg [14] aligns region-level visual features with text embedding via region-text grounding.
LSeg [25] aligns pixel-level visual embeddings with the category text embedding of CLIP. Subse-
quent methods like Fusioner [32], Zegformer [11], OVseg [27] and CAT-Seg [10] have thoroughly
investigated the open-vocabulary capability of CLIP. However, these methods heavily rely on category
names, ignoring text ambiguity, neologisms, and unnameable are common in real-world scenarios.
This paper designs novel framework of attribute decomposition-aggregation to tackle these issues.

Attribute Understanding. Visual attributes are first studied in the traditional zero-shot learning [23,
43, 22]. With the emergence of vision-language models, the attribute understanding has developed
towards a more scalable, open, and practical direction. One line of research is focused on detecting and
recognizing an open set of objects, along with an open set of attributes for each object [39, 40, 5, 9].
Another line of research focus on object classification by incorporating attributes as part of text
prompts, which aim to evaluate the discriminative ability of VLMs with enriched text [41, 37], or
to enhance interpretability and explainability of model reasoning [34, 33]. Different from above,
our work investigates attribute understanding from the perspective of open-vocabulary semantic
segmentation, using a decomposition-aggregation strategy.
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3 Method

This paper considers open-vocabulary semantic segmentation (OVSS). We start by giving the prelimi-
nary in Sec. 3.1; then we introduce our attribute decomposition-aggregation framework in Sec. 3.2;
decomposition stage and aggregation stage will be detailed in Sec. 3.3 and Sec. 3.4, respectively.

3.1 Problem Formulation & Preliminary

Problem. Given an image I ∈ RH×W×3, OVSS aims to train one model Φ(Θ) that can segment the
target object according to its text description T , that is, outputting one pixel-level mask M:

M = Φseg(I, T ; Θ) ∈ {0, 1}H×W×1. (1)

Under open-vocabulary settings, training classes Cbase and testing class Cnovel are disjoint, i.e., Cbase ∩
Cnovel = ∅. During training, image-mask pairs from the base class are provided, i.e., {(I,M) ∼
Cbase}; while during testing, the model is evaluated on the disjoint novel classes, i.e., {I ∼ Cnovel}.

Vision-Language Paradigm. To enable open-vocabulary capability, recent OVSS studies [52, 25, 32]
embrace vision-language pre-trainings (VLPs), for their notable ability in cross-modal alignment.
Specifically, regarding vanilla class names as textual descriptions, open-vocabulary segmentation can
be achieved by measuring the similarity between class-level textual and pixel-level visual embeddings:

M = Fv ∗ Ft, Fv = Φvis(I) ∈ RH×W×D, Ft = Φtxt(T ) ∈ R1×D, (2)

where Φvis and Φtxt refer to the visual and textual encoders in VLPs. This paradigm has a fancy
dream, but meets poor reality. In practice, the textual names of novel classes may potentially suffer
low-quality comprehension in three aspects: (1) Ambiguity. Certain names exhibit lexical ambiguity,
while others sometimes may incomplete due to excessive simplification. These result in a deficiency
of semantic discriminability. (2) Neologisms. The pre-training text corpus is inevitably limited in its
coverage of vocabulary, and thus may not include certain terms that have emerged as neologisms in the
real world. (3) Unnameability. Certain categories of entities may lack a known or easily describable
name for users, particularly in cases involving specialized terminology, rare or obscure animal names,
etc. These issues greatly limit the use and development of open-vocabulary segmentation.

3.2 Attribute Decomposition-Aggregation Framework

To solve the above issues, we introduce one novel attribute decomposition-aggregation framework.

Motivation. Such textual semantic issues are caused by the low-quality category comprehension. We
consider to decompose class name from multiple perspectives, such as color, shape, parts and material,
etc. This forms informative attribute sets for the text stream. Treated as partial representations
describing categories, (1) attributes can supplement missing information for incompleteness and
ambiguity; (2) for new words, attributes can be transformed into known words, which can be easily
interpreted by the pre-trained language model; (3) for unnamed or not easily describable categories,
attributes can be used to describe them in a more detailed and accurate way. These attributes, when
aggregated to a global description, can provide a strong basis for visual recognition.

Framework Overview. As illustrated in Fig. 2, given an image and a set of attributes descriptions
(Sec. 3.3), we first obtain its visual and attribute embeddings (Sec. 3.4.1). Considering the potential
hierarchy inside attributes, we suggest a hierarchical pipeline to progressively aggregate all given
attributes embeddings into one specific token (Sec. 3.4.2). As the final grouped token represents
all attributes’ information, segmentations can be acquired by computing the similarity between this
token and the visual embeddings (Sec. 3.4.3). Formally,

M = Fv ∗ Ft, Fv = Φvis(I) ∈ RH×W×D, Ft = Φaggr ◦ Φtxt ◦ Φdecp(T ) ∈ R1×D, (3)

where Φdecp(·) denotes the decomposition module that returns the set of n attributes’ textual descrip-
tions of the target category. Note that, category names (and synonyms) are strictly not contained in
this set. Φaggr(·) refers to the aggregation module that groups attributes into one specific embedding.

3.3 Decompose: Detailed Attribute Descriptions for Class Names

In real-world scenarios, vanilla class names T may be coarse-grained, ambiguous, or neologisms.
Unfortunately, there is a lack of existing datasets that provide detailed attribute descriptions to offer
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Figure 2: Overview of Attribute Decomposition-Aggregation Framework. (a) Decomposition
stage aims to decouple vanilla class names into various attribute descriptions. We design two strategies
to build attributes, i.e., using LLMs and manual collections. (b) Aggregation stage aims to merge
separated attribute representations into an integrated global description. We propose to hierarchically
aggregate attribute tokens to one specific token in L stages. Each stage alternates a fusion module
and a clustering module. Masks are generated by calculating the similarity.

informative contexts. So, we here propose two strategies to construct diverse attributes A. As shown
in Fig. 2a, one involves utilizing large language models, while the other relies on manual collection.

A = Φdecp(T ) = {attr1, attr2, . . . , attrn}. (4)

3.3.1 Attribute Descriptions by Large Language Models

For the cases where vanilla category names are semantically coarse or ambiguous, one promising
solution is to describe attributes or contexts for better discriminability. To generate such attributes,
manual writing can be time-consuming and inefficient, particularly for a large number of classes.
Hence, for cost-effectiveness, we turn to large language models (LLMs) [6, 38], pre-trained on large
corpora of data, showing remarkable performance of semantic understanding and text generation.

More specifically, to automatically adapt LLMs to enrich class contexts, we carefully designed a
set of question templates for attribute descriptions mining from various perspectives. Taking the
category “flamingo” as an example, we first pose multiple questions, such as “List all attributes for
distinguishing a {flamingo} in a photo” or “What are visual features of a {flamingo} in the image”.
Then we prompt ChatGPT [38] to obtain answers of attribute descriptions, such as “pink feathers;
long neck; thin legs; large wingspan; ...”. Finally, we filter and combine answers to form an attribute
set for each category. Please refer to the supplementary materials for further details.

3.3.2 Attribute Descriptions by Manual Collection

In addition to the above cases, there are two common cases that require attribute descriptions. One is
vanilla category names are neologisms that are unseen by LLMs and VLPs; the other is when users are
not familiar with an object, so they may have difficulty naming it, especially when it comes to a rare
or obscure category. Given that, existing datasets typically do not include rare or obscure vocabulary,
so we manually collect a dataset of human-made objects and rare categories for simulation.

The dataset is called “Fantastic Beasts”, which consists of 20 categories of magical creatures from
the film series of Fantastic Beasts [1, 2, 3]. We first scrap and filter the dataset images from the web,
then organize fan volunteers of the film series to carefully annotate the paired masks and the category
attributes. Since all these creatures and names are human inventions, they are unlikely to been learned
by existing LLMs and VLPs. Some images, alone with their corresponding class names and attributes,
are shown in Fig. 1. Please also refer to the supplementary materials for dataset information.

3.3.3 Discussion

(1) Datasets: developing high-quality attribute datasets is a crucial contribution towards advancing
the practicality of OVSS. As there are currently no existing benchmarks and evaluations, an essential
first step has been made that involves annotating the attributes on top of the existing datasets such as
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PASCAL and COCO, as well as manually collecting a dataset, Fantastic Beasts. (2) Why LLMs:
thanks to the capabilities of LLMs, category attributes for existing datasets can be obtained in a
scalable manner. Despite not receiving any visual input during training, LLMs can successfully
imitate visual attributes since they are trained on a large corpus containing descriptions with visual
knowledge. (3) Significances: we believe that the attribute decomposition strategy, and the produced
datasets, will have a great impact on the community to further promote practical uses of OVSS.

3.4 Aggregate: Hierarchical Fusion for Vision-Attribute Alignments

Given image I and attribute descriptions A, we aim to aggregate these separate pieces of attribute
embeddings hierarchically into one integrated global representation G, with the help of visual
information. Then, it can serve as a discriminative classifier to distinguish the target object.

G = Φaggr(Φtxt(A); Φvis(I)) ∈ R1×D. (5)

3.4.1 Vision Embeddings and Attribute Embeddings

We here adopt vision-language pre-trainings [42] as encoders and mostly consider ViT-based archi-
tectures [12], due to their good performance, and flexibility for encoding different modalities.

Given an image I ∈ RH×W×3, the visual embeddings V ∈ RNv×d are extracted from the visual
encoder, where Nv is the number of image tokens; and d is the channel dimension. The attribute
embeddings A ∈ RNa×d are obtained by first feeding each attribute into the text encoder separately,
then concatenating all of them, where Na is the number of attributes describing one target object.

3.4.2 Hierarchical Aggregation Architecture

Attributes descriptions may potentially contain hierarchy. We propose to hierarchically aggregate
these attributes in L stages, hoping to explicitly leveraging this potential, as shown in Fig. 2b.

Overview. Each stage alternates a fusion module and a clustering module. Specifically, the fusion
module facilitates interaction between different modalities. Given these enriched representations, the
following clustering module groups attribute tokens to fewer tokens. This procedure utilizes learnable
cluster tokens as centers for clustering, and considers both visual and attribute information. Based on
the similarity, these clustering centers can gather and merge all attributes tokens into specific groups.

Formally, for the l-th stage, we denote Nv visual tokens as Vl ∈ RNv×d; Na
l attribute tokens

describing one target object as Al ∈ RNa
l ×d; and Ng

l learnable cluster tokens for aggregation as
Gl ∈ RNg

l ×d. The fusion module fuses and enriches the information globally between Vl, Al, and Gl:

Vl, Al, Gl = Ψl
fuse(Vl,Al,Gl). (6)

To avoid notation abuse, we still use the same notation for the output. After fusion, the Na
l attribute

tokens Al are merged and grouped to fewer Na
l+1 (Na

l+1 < Na
l ) tokens Al+1 through clustering:

Al+1 = Ψl
cluster(Al;Vl,Gl) ∈ RNa

l+1×d. (7)

Note that, the attribute tokens are grouped not only based on itself, but also depending on the visual
embeddings. And the number of grouped attributes Al+1 (output for this stage) is equal to the number
of input learnable cluster tokens Gl for this stage, i.e., Na

l+1 = Ng
l .

Fusion Module. Ψl
fuse is flexible and adaptable to multiple network architectures. Here we use

multiple transformer encoder layers as representatives, in order to effectively capture and propagate
the long-range information of different modalities, by iteratively attending to each other.

Clustering Module. Learnable cluster tokens are used here to represent the clustering center for each
grouping stage. It’s unreasonable to aggregate solely based on attribute embeddings, as the visual
information also plays a part in the segmentation. To better incorporate both modalities, the learnable
clustering center first obtain the contextual information through vision and attribute cross attentions:

Gl = ϕcross-attn(q = Gl, k = Vl, v = Vl), G̃l = ϕcross-attn(q = Gl, k = Al, v = Al), (8)

where G̃l ∈ RNg
l ×d is the contextual centers; Vl and Al are visual and attribute embeddings. By

exchanging information for the visual tokens and attribute tokens respectively, G̃l has the knowledge
of both modalities, providing a good prior for the subsequent processing.
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Figure 3: Comparison between Various Aggregation Strategies. The orange / blue colors represent
visual / attribute tokens, respectively. Detailed discussions can be found in Sec. 3.4.4.

Next, we assign each attribute token to one of the contextual centers, and calculate the representation
of newly grouped attributes Ãl as output. We use slot attention [30], by seeing each cluster as a slot:

Ãl = ϕslot-attn(q = G̃l, k = Al, v = Al), Al+1 = ϕmixer(Ãl + G̃l). (9)

The final grouped attributes Al+1 for this stage can be obtained after adding the residual to G̃l,
and then updating and propagating the information between tokens through ϕmixer. Here we use
MLPMixer [44] with two consecutive group-wise and channel-wise MLPs.

3.4.3 Mask Calculation

The total L stages aggregation gives the result of one specific token AL+1 ∈ R1×d, which can be
thought as condensing the collective knowledge of the provided attributes’ information. Logits Y can
be generated by computing the similarity between the final stage visual embedding VL+1 and AL+1:

Y = ϕsim(VL+1,AL+1). (10)

The final predictions can be obtained by simply reshaping to spatial size and upsampling, then
applying sigmoid with a temperature τ and thresholding.

3.4.4 Discussion

The fundamental concept of aggregation strategies involves identifying one single embedding that
represents all attributes. As shown in Fig. 3, we present four optional designs: “Direct”, “Pre-”,
“Post-”, and “Hierarchy”, which are able to be applied to all existing open-vocabulary methods. (1)
“Direct” involves listing all attributes in one sentence, which is then directly sent to a text encoder.
The aggregated embedding is obtained from the output [CLS] token, which is subsequently fed
into the open-vocabulary model for further processing. (2) In contrast to “direct”, the other three
strategies feed attributes into the text encoder separately. “Pre-” first aggregates all attribute tokens
into one token, which is then fed into the model similar to “direct”. (3) “Post-” inputs all attribute
tokens together into the open-vocabulary model. The output attribute tokens of this model are further
aggregated to one token. (4) “Hierarchy” progressively aggregates multiple tokens into one in
multiple stages, as detailed in this section. In Sec. 4.1 and Sec. 4.2, we conduct comprehensive
comparisons and explore the adaptability of these strategies to existing open-vocabulary models. This
analysis demonstrates the universality and effectiveness of our decomposition-aggregation motivation.

3.5 Training and Inference

During training, the visual and textual encoders are kept frozen, and we uniformly sample N
attributes describing the target category with replacement from the attribute set. The predicted mask
is supervised by the ground truth using standard cross-entropy loss. During inference, the user has
the flexibility to provide test images along with any number of attributes describing the object of
interest. The model can then generate the corresponding segmentation mask based on this input.

4 Experiments

Datasets. We evaluate on PASCAL-5i [13, 16] COCO-20i [28] following [25, 32], and evaluate on
Pascal VOC [13] and Pascal Context [35] following [11, 27, 10]. PASCAL-5i contains 20 categories
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that are divided into 4 folds of 5 classes each, i.e., {5i}3i=0. COCO-20i is more challenging with 80
categories that are also divided into 4 folds, i.e., {20i}3i=0, with each fold having 20 categories. Of
the four folds in the two datasets, one is used for evaluation, while the other three are used for training.
PASCAL VOC is a classical dataset. We evaluate on the 1.5k validation images with 20 categories
(PAS-20). PASCAL-Context contains 5k validation images. We evaluate on the most frequent used
59 classes version (PC-59). Besides, we also annotate Fantastic Beasts, which contains 20 categories
of human invented magical creatures from the Fantastic Beasts film series [1, 2, 3]. Detailed datasets’
information can be found in the supplementary materials.

Evaluation. We report mean intersection-over-union (mIoU), following the recent open-vocabulary
semantic segmentation (OVSS) literatures [25, 32, 11, 27, 10].

Implementation Details. We adopt CLIP ViT-L and ResNet101 as our backbone, and choose
aggregation stages L = 4. Numbers of learnable cluster in each stage are (15, 10, 5, 1). During
training, the sampled attributes N = 15. AdamW optimizer is used with CosineLRScheduler
by first warm up 10 epochs from initial learning rate 4e-6 to 1e-3, and the weight decay is set to 0.05.

4.1 Comparison with the State-of-the-art

Table 1: Evaluation on PASCAL-5i and COCO-20i. For textual inputs, we compare “cls name” (category
names) and “attr” (attributes). “direct”, “pre-”, “post-” and “hrchy” are four aggregation strategies in Sec. 3.4.4.

Model Settings Backbone PASCAL-5i COCO-20i

50 51 52 53 mIoU 200 201 202 203 mIoU

SPNet [46] cls name RN101 23.8 17.0 14.1 18.3 18.3 - - - - -
ZS3Net [7] cls name RN101 40.8 39.4 39.3 33.6 38.3 18.8 20.1 24.8 20.5 21.1
LSeg [25] cls name RN101 52.8 53.8 44.4 38.5 47.4 22.1 25.1 24.9 21.5 23.4
LSeg [25] cls name ViT-L 61.3 63.6 43.1 41.0 52.3 28.1 27.5 30.0 23.2 27.2

LSeg [25] attr (direct) RN101 48.6 51.2 39.7 36.2 44.0 20.9 23.6 20.8 18.4 20.9
LSeg [25] attr (pre-) RN101 49.1 51.4 40.9 35.9 44.3 21.7 24.5 22.0 19.6 22.0
LSeg [25] attr (post-) RN101 50.0 52.2 42.1 36.8 45.3 21.2 24.0 22.5 19.2 21.7

AttrSeg (Ours) attr (hrchy) RN101 52.9 55.3 45.0 43.1 49.1 27.6 28.4 26.1 22.7 26.2
AttrSeg (Ours) attr (hrchy) ViT-L 61.5 67.5 46.1 50.5 56.4 34.8 32.6 31.6 24.2 30.8

PASCAL-5i and COCO-20i. We compare our method on PASCAL-5i and COCO-20i with state-
of-the-art OVSS models SPNet [46], ZS3Net [7] and LSeg [25]. We also compare different textual
input settings for LSeg. As shown in Tab. 1, our method outperform the competitive baselines.
Note that, heavily relying on VLP that aligns image modality with its textual class name, it is
undeniable that class names hold core and most direct information. Existing open-vocabulary
segmentation models are inherently bound by this characteristic, i.e., adding challenges when
using only attributes that describe categories from indirect perspectives for segmentation. As a
representative, LSeg shows weakness when the textual inputs are attributes descriptions only. In
contrast, our method demonstrates good potential for segmenting the target object described by
attributes through hierarchical aggregations, even surpass the SOTA with class name input.

Table 2: Evaluation on PASCAL-Context (PC-
59) and PASCAL VOC (PAS-20) with attributes
input using RN101 backbone.

Model Training Data PC-59 PAS-20

LSeg [25] PASCAL VOC-15 24.2 44.0
Fusioner [32] PASCAL VOC-15 25.2 44.3

AttrSeg (Ours) PASCAL VOC-15 29.1 49.1
Zegformer [11] COCO-Stuff 39.0 83.7

OVSeg [27] COCO-Stuff 51.2 90.3
CAT-Seg [10] COCO-Stuff 53.6 90.9

AttrSeg (Ours) COCO-Stuff 56.3 91.6

PASCAL-Context and PASCAL VOC. We also
evalute our method on PASCAL-Context (PC-59)
and PASCAL VOC (PAS-20), to compare with re-
cent state-of-the-art OVSS works Zegformer [11],
OVSeg [27] and CAT-Seg [10]. They are trained on a
larger dataset COCO-Stuff [8] with more classes and
more images. As shown in Tab. 2, our method still
demonstrates superiority. Besides, compared with
our method trained on COCO-Stuff and PASCAL
VOC-15, the performance increased dramatically.
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Table 3: Evaluation on Fantastic Beasts (using checkpoints transferred from PASCAL-5i and COCO-20i).
For textual inputs, we compare “cls name” (category names) and “attr” (attributes). “direct”, “pre-”, “post-” and
“hrchy” are four aggregation strategies. 5i and 20i refer to the best checkpoints from the ith fold for evaluation.

Model Settings Backbone PASCAL-5i COCO-20i

50 51 52 53 mIoU 200 201 202 203 mIoU

LSeg [25] cls name RN101 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10

LSeg [25] attr (direct) RN101 44.8 46.6 46.4 46.2 46.0 50.1 51.2 51.7 49.3 50.6
LSeg [25] attr (pre-) RN101 46.4 47.7 48.2 47.3 47.4 51.3 52.7 52.9 50.9 52.0
LSeg [25] attr (post-) RN101 46.9 48.3 48.8 47.7 47.9 52.8 52.5 52.4 51.2 52.2

AttrSeg (Ours) attr (hrchy) RN101 50.7 53.4 53.6 51.3 52.3 56.4 54.9 55.7 55.3 55.6
AttrSeg (Ours) attr (hrchy) ViT-L 54.1 55.8 55.4 54.5 55.0 59.2 58.8 58.3 58.5 58.7

Table 4: Evaluation on Fantastic Beasts with attributes
input using RN101 backbone (using checkpoints trans-
ferred from the corresponding training datasets).

Model Training Data mIoU (cls) mIoU (attr)

LSeg [25] PASCAL VOC-15 <10 46.0
Fusioner [32] PASCAL VOC-15 <10 46.1

AttrSeg (Ours) PASCAL VOC-15 - 52.3
Zegformer [11] COCO-Stuff <20 55.7

OVSeg [27] COCO-Stuff <20 58.1
CAT-Seg [10] COCO-Stuff <20 59.4

AttrSeg (Ours) COCO-Stuff - 61.9

Fantastic Beasts. We take Fantastic Beasts
as an outstanding representative of the real-
world that may encounter various situations
like ambiguity, neologism and unnameability.
To simulate real-world scenarios, we directly
transfer the checkpoints of previous methods
and ours trained from the their corresponding
datasets for evaluation. As shown in Tab. 3 and
Tab. 4, our method establish a new solid base-
line. The existing SOTA methods are not able
to handle these scenarios when taking class
name as input. Despite using CLIP [42], which implicitly aligns visual and language features to some
extent, these methods performance suffers due to the presence of unfamiliar words that break this
alignment. However, when decomposing into attributes and then aggregating them, the performance
of these methods remarkably increase, showing significant gains with robust performance. This
demonstrates the universality and effectiveness of our motivation.

4.2 Ablation Study
Table 5: Effectiveness of various aggregation strategies on
PASCAL-5i with RN101 backbone.

Strat LSeg Ours

50 51 52 53 mIoU 50 51 52 53 mIoU

Direct 48.6 51.2 39.7 36.2 44.0 48.8 51.4 39.7 39.2 44.8
Pre- 49.1 51.4 40.9 35.9 44.3 49.8 52.8 41.7 40.3 46.1
Post- 50.0 52.2 42.1 36.8 45.3 50.3 53.0 42.3 41.0 46.7
Hrchy - - - - - 52.9 55.3 45.0 43.1 49.1

Various Aggregation Strategies.
Here, we present a comparison of
different aggregation methods, as de-
picted in Tab. 5. The results demon-
strate that: (1) “direct” gives the poor-
est results, suggesting that listing all
attributes in one sentence cannot pro-
vide sufficient interactions between to-
kens. (2) Both the “pre-” and “post-” both exhibit improvements compared with “direct”. This may
stem from the exchange of information between attribute and visual modalities within the open-
vocabulary model. (3) In most cases, “Post-” performs better than “pre-”, indicating that attribute
aggregation after the model can facilitate greater interactions between different modalities. (4) It is
not necessarily optimal to have an excessive or insufficient number of interactions throughout the
entire process. Our proposed hierarchical aggregation method accounts for the regularity that the
visual component learns differently at different stages. This necessitates its attribute counterpart
to possess varying hierarchy. For instance, lower stages may focus on learning low-level features,
requiring more attributes that represent local regions. Conversely, higher stages may concentrate on
global information, necessitating fewer high-level attributes that are semantically abstract.

Table 6: Ablation of components in clustering mod-
ule on PASCAL-5i with ViT-L backbone.

Comp Cross Attn Mixer 50 51 52 53 mIoUImg Attr
Full ! ! ! 61.5 67.5 46.1 50.5 56.4

Cross
Attn

✘ ! ! 59.2 65.6 44.1 47.4 54.1
! ✘ ! 59.6 65.8 44.4 48.6 54.6
✘ ✘ ! 58.6 65.0 42.9 46.4 53.2

Mixer ! ! ✘ 60.7 67.0 45.6 49.6 55.7
Mini ✘ ✘ ✘ 58.4 64.9 42.4 46.0 52.9

Components in Aggregation Module. We
conduct ablation studies to investigate the impor-
tance of each component in our clustering mod-
ule, as illustrated in Tab. 6. The result show that
(1) the full module with all components achieves
the best performance. (2) Cross attention on im-
ages contribute more compared with on attributes.
As the aggregation among attributes finally aims
to recognize the object in the image, it’s impor-
tant for the cluster tokens attending to the visual
feature. (3) If no cross attentions given, the performance further degraded. This demonstrates the
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cross attentions on two modalities enable the learnable cluster centers match better with the correct
attributes. (4) Mixer also plays a role in the bottom part of the module, as it helps to propagate and
exchange information between clusters for further aggregation. (5) When neither of these is applied,
only the SlotAttn is introduced, which, unsurprisingly, yields the poorest result.

Table 7: Ablation of #Attributes inputs and #Stages on
PASCAL-5i with ViT-L backbone.

#Attr #Stage #Tokens/Stage 50 51 52 53 mIoU

15

5 (15, 10, 5, 3, 1) 61.0 67.3 46.9 50.7 56.5
4 (15, 10, 5, 1) 61.5 67.5 46.1 50.5 56.4
3 (15, 10, 1) 60.1 66.2 44.7 48.9 55.0
2 (15, 1) 57.8 63.5 41.9 46.4 52.4

10

5 (10, 5, 3, 2, 1) 59.4 65.8 44.9 49.2 54.8
4 (10, 5, 3, 1) 59.6 66.1 44.7 49.9 55.1
3 (10, 5, 1) 58.0 64.8 43.8 47.1 53.4
2 (10, 1) 55.9 62.8 42.5 45.4 51.7

5

5 (5, 4, 3, 2, 1) 51.8 62.9 41.9 44.8 50.4
4 (5, 3, 2, 1) 52.4 63.1 43.7 45.2 51.1
3 (5, 3, 1) 52.1 62.7 43.0 45.4 50.8
2 (5, 1) 49.2 61.6 42.1 44.2 49.3

Numbers of Decomposed Attributes.
Tab. 7 shows the results when given
input numbers of attribute (#Attr)
changes. As #Attr decreases, the avail-
able information diminishes, poten-
tially resulting in an incomplete object
description. In general, such a reduc-
tion in attribute quantity can lead to
a significant decline in performance.
However, our method demonstrates a
certain level of robustness even when
#Attr decreases from 15 to 10, and even
5. This resilience can be ascribed to the
fact that the attributes are randomly sampled (with repetition) from the attribute set during training.
Consequently, the attributes describing a specific category do not necessarily need to be complete or
highly informative for the model to generate accurate outputs.

Numbers of Aggregation Stages. As shown in Tab. 7, we reduce the numbers of stage (#Stage)
from 5 to 2. In each stage, we attempt to aggregate to half of the tokens until there is only one
left. In most cases, less aggregation stages cause deficient results, and more stages result in better
performance. However, blindly increasing stages do not necessarily lead to better performance. For
#Attr is 5 or 10, 5 stages aggregation lead to a decrease compared with 4 stages. A reason may be that
too much aggregation operation is excessive for limited attributes, which may disrupt the hierarchy
inside, thus negatively affects the result. Considering the trade-off, we choose 4 stages in our method.

Table 8: Ablation of the impact of inaccu-
rate/incorrect attributes during decompo-
sition, and the VLM filtering strategy.

Clean
Attr

Inaccurate
Attr

Incorrect
Attr

VLM
Filtering mIoU

! 59.5
! ! 59.1
! ! ! 55.4
! ! ! ! 58.9

Impact of Inaccurate/Incorrect Attributes. In real-
world scenarios, attribute decomposition may include
slight noise. Our aggregation module exhibits a certain
level of robustness to noise during both training and infer-
ence. (1) For inaccurate attributes (attributes that are not
visible in a specific image, but are still related to the class,
such as “four-legged” to “dog” in a dog lying down im-
age), during training, we randomly select attributes from
the attribute pool for a given class, which means that the
model is trained with potentially noisy and inaccurate at-
tributes. However, as demonstrated in Tab. 8, our model can learn to ignore these inaccurate attributes
during aggregation, and instead focus on other attributes to produce correct segmentation results. (2)
For incorrect attributes (attributes that are completely unrelated to the target class, such as “red” to
“dog”), a naive approach would be to first filter the input attributes using existing VLMs, and then
select the top related attributes for downstream processing. Tab. 8 assess the impact of incorrect
attributes and VLM filtering on inference. The results indicate a simple VLM filtering has the effect.

Table 9: Ablation of decomposed at-
tributes’ types on Fantastic Beast
with RN101 backbone.

Color Shape Parts Others mIoU

! 30.8
! ! 42.5
! ! ! 51.0
! ! ! ! 52.3

Types of Decomposed Attributes. We roughly categorize
the decomposed attributes into four types: color, shape, parts,
and others, and maintain a consistent total number of inputs. As
shown in Tab. 9, all types of attributes contribute to the overall
performance, highlighting the significance of attribute diversity.

5 Conclusion

We pioneer the early exploration in utilizing only attribute descriptions for open-vocabulary segmen-
tation, and provide detailed attribute descriptions for two types of existing datasets and one newly
collected dataset. Based on this, we propose a novel attribute decomposition-aggregation framework
that first decouples class names into attribute descriptions, and then combines them into final class
representations. Extensive experiments demonstrate the effectiveness of our method, showcasing its
ability to achieve the state-of-the-art performance across various scenarios.
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