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Abstract

Inverse protein folding is challenging due to its inherent one-to-many mapping1

characteristic, where numerous possible amino acid sequences can fold into a single,2

identical protein backbone. This task involves not only identifying viable sequences3

but also representing the sheer diversity of potential solutions. However, existing4

discriminative models, such as transformer-based auto-regressive models, struggle5

to encapsulate the diverse range of plausible solutions. In contrast, diffusion6

probabilistic models, as an emerging genre of generative approaches, offer the7

potential to generate a diverse set of sequence candidates for determined protein8

backbones. We propose a novel graph denoising diffusion model for inverse9

protein folding, where a given protein backbone guides the diffusion process on10

the corresponding amino acid residue types. The model infers the joint distribution11

of amino acids conditioned on the nodes’ physiochemical properties and local12

environment. Moreover, we utilize amino acid replacement matrices for the13

diffusion forward process, encoding the biologically-meaningful prior knowledge14

of amino acids from their spatial and sequential neighbors as well as themselves,15

which reduces the sampling space of the generative process. Our model achieves16

state-of-the-art performance over a set of popular baseline methods in sequence17

recovery and exhibits great potential in generating diverse protein sequences for a18

determined protein backbone structure.19

1 Introduction20

Inverse protein folding, or inverse folding, aims to predict feasible amino acid (AA) sequences that21

can fold into a specified 3D protein structure [21]. The results from inverse folding can facilitate22

the design of novel proteins with desired structural and functional characteristics. These proteins23

can serve numerous applications, ranging from targeted drug delivery to enzyme design for both24

academic and industrial purposes [24, 30, 37]. In this paper, we develop a diffusion model tailored25

for graph node denoising to obtain new AA sequences given a protein backbone.26

Despite its importance, inverse folding remains challenging due to the immense sequence space to27

explore, coupled with the complexity of protein folding. On top of energy-based physical reasoning28

of a protein’s folded state [1], recent advancements in deep learning yield significant progress in29

learning the mapping from protein structures to AA sequences directly. For example, discriminative30

models formulate this problem as the prediction of the most likely sequence for a given structure via31

Transformer-based models [6, 16, 22, 32]. However, they have struggled to accurately capture the32

one-to-many mapping from the protein structure to non-unique AA sequences.33

Due to their powerful learning ability, diffusion probabilistic models have gained increasing attention.34

They are capable of generating a diverse range of molecule outputs from a fixed set of conditions35

given the inherent stochastic nature. For example, Torsion Diffusion [18] learns the distribution36

of torsion angles of heavy atoms to simulate conformations for small molecules. Concurrently,37

SMCDIFF [42] enhances protein folding tasks by learning the stable scaffold distribution supporting38
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Figure 1: Overview of GRADE-IF. In the diffusion process, the original amino acid is stochastically
transitioned to other amino acids, leveraging BLOSUM with varied temperatures as the transition
kernel. During the denoising generation phase, initial node features are randomly sampled across
the 20 amino acids with a uniform distribution. This is followed by a gradual denoising process,
conditional on the graph structure and protein secondary structure at different time points. We employ
a roto-translation equivariant graph neural network as the denoising network.

a target motif with diffusion. Similarly, DIFFDOCK [4] adopts a generative approach to protein-ligand39

docking, creating a range of possible ligand binding poses for a target pocket structure.40

Despite the widespread use of diffusion models, their comprehensive potential within the context41

of protein inverse folding remains relatively unexplored. Current methods in sequence design are42

primarily anchored in language models, encompassing Masked Language Models (MLMs) [24, 22]43

and autoregressive generative models [16, 25, 27]. By tokenizing AAs, MLMs formulate the44

sequence generation tasks as masked token enrichment. These models usually operate by drawing45

an initial sequence with a certain number of tokens masked as a specific schedule and then learning46

to predict the masked tokens from the given context. Intriguingly, this procedure can be viewed as47

a discrete diffusion-absorbing model when trained by a parameterized objective. Autoregressive48

models, conversely, can be perceived as deterministic diffusion processes. It induces conditional49

distribution to each token, but the overall dependency along the entire AA sequence is recast via an50

independently-executed diffusion process.51

On the contrary, diffusion probabilistic models employ an iterative prediction methodology that52

generates less noisy samples and demonstrates potential in capturing the diversity inherent in real53

data distributions. This unique characteristic further underscores the promising role diffusion models54

could play in advancing the field of protein sequence design. To bridge the gap, we make the first55

attempt at a diffusion model for inverse folding. We model the inverse problem as a denoising56

problem where the randomly assigned AA types in a protein (backbone) graph is recovered to the57

wild type. The protein graph which contains the spatial and biochemical information of all AAs58

is represented by equivariant graph neural networks, and diffusion process takes places on graph59

nodes. In real inverse folding tasks, the proposed model achieves SOTA recovery rate, improve 4.2%60

and 5.4% on recovery rate for single-chain proteins and short sequences, respectively, , especially61

for conserved region which has a biologically significance. Moreover, the predicted structure of62

generated sequence is identical to the structure of native sequence.63

The preservation of the desired functionalities is achieved by innovatively conditioning the model on64

both secondary and third structures in the form of residue graphs and corresponding node features.65

The major contributions of this paper are three-fold. Firstly, we propose GRADE-IF, a diffusion66

model backed by roto-translation equivariant graph neural network for inverse folding. It stands out67

from its counterparts for its ability to produce a wide array of diverse sequence candidates. Secondly,68

as a departure from conventional uniform noise in discrete diffusion models, we encode the prior69

knowledge of the response of AAs to evolutionary pressures by the utilization of Blocks Substitution70

Matrix as the translation kernel. Moreover, to accelerate the sampling process, we adopt Denoising71

Diffusion Implicit Model (DDIM) from its original continuous form to suit the discrete circumstances72

and back it with thorough theoretical analysis.73
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2 Problem Formulation74

2.1 Residue Graph by Protein Backbone75

A residue graph, denoted as G = (X,A,E), aims to delineate the geometric configuration of a76

protein. Specifically, every node stands for an AA within the protein. Correspondingly, each node77

is assigned a collection of meticulously curated node attributes X to reflect its physiochemical and78

topological attributes. The local environment of a given node is defined by its spatial neighbors, as79

determined by the k-nearest neighbor (kNN) algorithm. Consequently, each AA node is linked to80

a maximum of k other nodes within the graph, specifically those with the least Euclidean distance81

amongst all nodes within a 30Å contact region. The edge attributes, represented as E ∈ R93, illustrate82

the relationships between connected nodes. These relationships are determined through parameters83

such as inter-atomic distances, local N-C positions, and a sequential position encoding scheme. We84

detail the attribute construction in Appendix C.85

2.2 Inverse Folding as a Denoising Problem86

The objective of inverse folding is to engineer sequences that can fold to a pre-specified desired87

structure. we utilize the coordinates of Cα atoms to represent the 3D positions of AAs in88

Euclidean space, thereby embodying the protein backbone. Based on the naturally existing89

protein structures, our model is constructed to generate a protein’s native sequence based on the90

coordinates of its backbone atoms. Formally we represent this problem as learning the conditional91

distribution p(Xaa|Xpos). Given a protein of length n and a sequence of spatial coordinates92

X = {xpos
1 , . . . , xposi , . . . , xposn } representing each of the backbone Cα atoms in the structure, the93

target is to predict Xaa = {xaa
1 , . . . ,x

aa
i , . . . ,x

aa
n }, the native sequence of AAs. This density is94

modeled in conjunction with the other AAs along the entire chain. Our model is trained by minimizing95

the negative log-likelihood of the generated AA sequence relative to the native wild-type sequence.96

Sequences can then be designed either by sampling or by identifying sequences that maximize the97

conditional probability given the desired secondary and tertiary structure.98

2.3 Discrete Denoising Diffusion Probabilistic Models99

Diffusion models belong to the class of generative models, where the training stage encompasses100

diffusion and denoising processes. The diffusion process q (x1, . . . ,xT | x0) =
∏T

t=1 q (xt | xt−1)101

corrupts the original data x0 ∼ q (x) into a series of latent variables {x1, . . . ,xT }, with each102

carrying progressively higher levels of noise. Inversely, the denoising process pθ (x0,x1, ...,xT ) =103

p (xT )
∏T

t=1 pθ (xt−1 | xt) gradually reduces the noise within these latent variables, steering them104

back towards the original data distribution. The iterative denoising procedure is driven by a105

differentiable operator, such as a trainable neural network.106

While in theory there is no strict form for q (xt | xt−1) to take, several conditions are required107

to be fulfilled by pθ for efficient sampling: (i) The diffusion kernel q(xt|x0) requires a closed108

form to sample noisy data at different time steps for parallel training. (ii) The kernel should109

possess a tractable formulation for the posterior q (xt−1 | xt,x0). Consequently, the posterior110

pθ(xt−1|xt) =
∫
q (xt−1 | xt,x0) dpθ(x0|xt), and x0 can be used as the target of the trainable111

neural network. (iii) The marginal distribution q(xT ) should be independent of x0. This independence112

allows us to employ q(xT ) as a prior distribution for inference.113

The aforementioned criteria are crucial for the development of suitable noise-adding modules and114

training pipelines. To satisfy these prerequisites, we follow the setting in previous work [2]. For115

categorical data xt ∈ {1, ...,K}, the transition probabilities are calculated by the matrix [Qt]ij =116

q (xt = j | xt−1 = i). Employing the transition matrix and on one-hot encoded categorical feature117

xt, we can define the transitional kernel in the diffusion process by:118

q (xt | xt−1) = xt−1Qt and q (xt | x) = xQ̄t, (1)

where Q̄t = Q1 . . .Qt. The Bayes rule yields that the posterior distribution can be calculated119

in closed form as q (xt−1 | xt,x) ∝ xtQ
⊤
t ⊙ xQ̄t−1. The generative probability can thus be120

determined using the transition kernel, the model output at time t, and the state of the process xt.121

Through iterative sampling, we eventually produce the generated output x0.122
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The prior distribution p(xT ) should be independent of the observation x0. Consequently, the123

construction of the transition matrix necessitates the use of a noise schedule. The most straightforward124

and commonly utilized method is the uniform transition, which can be parameterized as Qt =125

αtI + (1− αt)II
⊤/d with I⊤ be the transpose of the identity matrix I . As t approaches infinity, α126

undergoes a progressive decay until it reaches 0. Consequently, the distribution q(xT ) asymptotically127

approaches a uniform distribution, which is essentially independent of x.128

3 Graph Denoising Diffusion for Inverse Protein Folding129

In this section, we introduce a discrete graph denoising diffusion model for protein inverse folding,130

which utilizes a given graph G = {X,E} with node feature X and edge feature E as the condition.131

Specifically, the node feature depicts the AA position, AA type, and the spatial and biochemical132

properties X = [Xpos,Xaa,Xprop]. We define a diffusion process on the AA feature Xaa, and133

denoise it conditioned on the graph structure E which is encoded by equrivariant neural networks [35].134

Moreover, we incorporate protein-specific prior knowledge, including an AA substitution scoring135

matrix and protein secondary structure during modeling. We also introduce a new acceleration136

algorithm for the discrete diffusion generative process based on a transition matrix.137

3.1 Diffusion Process and Generative Denoising Process138

Diffusion Process To capture the distribution of AA types, we independently add noise to each AA
node of the protein. For any given node, the transition probabilities are defined by the matrix Qt.
With the predefined transition matrix, we can define the forward diffusion kernel by

q
(
Xaa

t | Xaa
t−1

)
= Xaa

t−1Qt and q (Xaa
t | Xaa) = XaaQ̄t,

where Q̄t = Q1 . . .Qt is the transition probability matrix up to step t.139

Training Denoising Networks The second component of the diffusion model is the denoising140

neural network fθ, parameterized by θ. This network accepts a noisy input Gt = (Xt,E), where Xt141

is the concatenation of the noisy AA types and other AA properties including 20 one-hot encoded AA142

type and 15 geometry properties, such as SASA, orm.alized surface-aware node features, dihedral143

angles of backbone atoms, and 3D positions. It aims to predict the clean type of AA Xaa, which144

allows us to model the underlying sequence diversity in the protein structure while maintaining145

their inherent structural constraints. To train fθ, we optimize the cross-entropy loss L between the146

predicted probabilities p̂(Xaa) for each node’s AA type.147

Parameterized Generative Process A new AA sequence is generated through the reverse diffusion148

iterations on each node x. The generative probability distribution pθ(xt−1|xt) is estimated from the149

predicted probability p̂(xaa|xt) by the neural networks. We marginalize over the network predictions150

to compute for generative distribution at each iteration:151

pθ (xt−1 | xt) ∝
∑
x̂aa

q(xt−1|xt,x
aa)p̂θ(x

aa|xt), (2)

where the posterior152

q (xt−1 | xt,x
aa) = Cat

(
xt−1

∣∣∣xtQ
⊤
t ⊙ xaaQ̄t−1

xaaQ̄tx⊤
t

)
(3)

can be calculated from the transition matrix, state of node feature at step t and AA type xaa. The xaa153

is the sample of the denoising network prediction p̂(xaa).154

3.2 Prior Distribution from Protein Observations155

3.2.1 Markov Transition Matrices156

The transition matrix serves as a guide for a discrete diffusion model, facilitating transitions between157

the states by providing the probability of moving from the current time step to the next. As it reflects158

the possibility from one AA type to another, this matrix plays a critical role in both the diffusion159
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Figure 2: The middle two panels depict the transition probability of Leucine (L) from t = 0 to T .
Both the uniform and BLOSUM start as Dirichlet distributions and become uniform at time T . As
shown in the two side figures, while the uniform matrix evenly disperses L’s probability to other AAs
over time, BLOSUM favors AAs similar to L.

and generative processes. During the diffusion stage, the transition matrix is iteratively applied160

to the observed data, which evolves over time due to inherent noise. As diffusion time increases,161

the probability of the original AA type gradually decays, eventually converging towards a uniform162

distribution across all AA types. In the generative stage, the conditional probability p(xt−1|xt)163

is determined by both the model’s prediction and the characteristics of the transition matrix Q, as164

described in Equation 2.165

Given the biological specificity of AA substitutions, the transition probabilities between AAs are166

not uniformly distributed, making it illogical to define random directions for the generative or167

sampling process. As an alternative, the diffusion process could reflect evolutionary pressures by168

utilizing substitution scoring matrices that conserve protein functionality, structure, or stability in169

wild-type protein families. Formally, an AA substitution scoring matrix quantifies the rates at which170

various AAs in proteins are substituted by other AAs over time [43]. In this study, we employ the171

Blocks Substitution Matrix (BLOSUM) [11], which identifies conserved regions within proteins172

that are presumed to have greater functional relevance. Grounded in empirical observations of173

protein evolution, BLOSUM provides an estimate of the likelihood of substitutions between different174

AAs. We thus incorporate BLOSUM into both the diffusion and generative processes. Initially, the175

matrix is normalized into probabilities using the softmax function. Then, we use the normalized176

matrix B with different probability temperatures to control the noise scale of the diffusion process.177

Consequently, the transition matrix at time t is given by Qt = BT . By using this matrix to refine the178

transition probabilities, the generative space to be sampled is reduced effectively, thereby the model’s179

predictions converge toward a meaningful subspace. See Figure 2 for a comparison of the transition180

matrix over time in random and BLOSUM cases.181

3.2.2 Secondary Structure182

Protein secondary structure refers to the local spatial arrangement of AA residues in a protein chain.183

The two most common types of protein secondary structure are alpha helices and beta sheets, which184

are stabilized by hydrogen bonds between backbone atoms. The secondary structure of a protein185

serves as a critical intermediary, bridging the gap between the AA sequence and the overall 3D186

conformation of the protein. In our study, we incorporate eight distinct types of secondary structures187

into AA nodes as conditions during the sampling process. This strategic approach effectively narrows188

down the exploration space of potential AA sequences. Specifically, we employ DSSP (Define189

Secondary Structure of Proteins) to predict the secondary structures of each AA and represent these190

structures using one-hot encoding. Our neural network takes the one-hot encoding as input and191

utilizes it to denoise the AA conditioned on it.192

The imposition of motif conditions such as alpha helices and beta sheets on the search for AA193

sequences not only leads to a significant reduction in the sampling space of potential sequences, but194

also imparts biological implications for the generated protein sequence. By conditioning the sampling195

process of AA types on their corresponding secondary structure types, we guide the resulting protein196

sequence towards acquiring not only the appropriate 3D structure with feasible thermal stability but197

also the capability to perform its intended function.198

3.3 Equivariant Graph Denoising Network199

Bio-molecules such as proteins and chemical compounds are structured in the 3-dimensional space,200

and it is vital for the model to predict the same binding complex no matter how the input proteins are201
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positioned and oriented to encode a robust and expressive hidden representation. This property can be202

guaranteed by rotation equivariance of the neural networks. A typical such a network is equivariant203

graph neural network [35]. We modify its SE(3)-equivariant neural layers to update representations204

for both nodes and edges, which reserves SO(3) rotation equivariance and E(3) translation invariance.205

At the lth layer, an Equivariant Graph Convolution (EGC) inputs a set of n hidden node embeddings206

H(l) =
{
h
(l)
1 , . . . ,h

(l)
n

}
describing AA type and geometry properties, edge embedding m

(l)
ij with207

respect to connected nodes i and j, and Xpos = {xpos
1 , . . . ,xpos

n } for node coordinates. The target208

of a modified EGC layer is to update hidden representations H(l+1) for nodes and M (l+1) for edges.209

Concisely, H(l+1),M (l+1) = EGC
[
H(l),Xpos,M (l)

]
. To achieve this, an EGC layer defines210

m
(l+1)
ij = ϕe

(
h
(l)
i ,h

(l)
j ,
∥∥∥x(l)

i − x
(l)
j

∥∥∥2 ,m(l)
ij

)
x
(l+1)
i = x

(l)
i +

1

n

∑
j ̸=i

(
x
(l)
i − x

(l)
j

)
ϕx

(
m

(l+1)
ij

)
h
(l+1)
i = ϕh

(
h
(l)
i ,
∑
j ̸=i

m
(l+1)
ij

)
,

(4)

where ϕe, ϕh are the edge and node propagation operations, respectively. The ϕx is an additional211

operation that projects the vector edge embedding mij to a scalar. The modified EGC layer preserves212

equivariance to rotations and translations on the set of 3D node coordinates Xpos and performs213

invariance to permutations on the nodes set identical to any other GNNs.214

3.4 DDIM Sampling Process215

A significant drawback of diffusion models lies in the speed of generation process, which is typically216

characterized by numerous incremental steps and can be quite slow. Deterministic Denoising Implicit217

Models (DDIM) [39] are frequently utilized to counter this issue in continuous variable diffusion218

generative models. DDIM operates on a non-Markovian forward diffusion process, consistently219

conditioning on the input rather than the previous step. By setting the noise variance on each step to220

0, the reverse generative process becomes entirely deterministic, given an initial prior sample.221

Similarly, since we possess the closed form of generative probability pθ(xt−1|xt) in terms of a222

predicted xaa and the posterior distribution p(xt−1|xt,x
aa), we can also render the generative model223

deterministic by controlling the sampling temperature of p(xaa|xt). Consequently, we can define the224

multi-step generative process by225

pθ (xt−k | xt) ∝
∑
x̂aa

q(xt−k|xt,x
aa)p̂T (xaa|xt) (5)

where the temperature T controls whether it is deterministic or stochastic, and the multi-step posterior226

distribution is227

q (xt−k | xt,x
aa) = Cat

(
xt−k

∣∣∣xtQ
⊤
t · · ·Q⊤

t−k ⊙ xaaQ̄t−k

xaaQ̄tx⊤
t

)
. (6)

4 Experiments228

We validate our GRADE-IF on recovering native protein sequences in CATH [29]. The performance is229

mainly compared with structure-aware SOTA models. The implementations at https://anonymous.230

4open.science/r/GraDe_IF-9574/ are programmed with PyTorch-Geometric (ver 2.2.0) and231

PyTorch (ver 1.12.1) and executed on an NVIDIA® Tesla V100 GPU with 5, 120 CUDA cores and232

32GB HBM2 installed on an HPC cluster.233

4.1 Experimental Protocol234

Training Setup We employ CATH v4.3.0 based partitioning as conducted by GRAPHTRANS [17]235

and GVP [19]. Proteins are categorized based on CATH topology classification, leading to a division236
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Table 1: Recovery rate performance of CATH on zero-shot models.

Model Perplexity ↓ Recovery Rate % ↑ CATH version
Short Single-chain All Short Single-chain All 4.2 4.3

STRUCTGNN [17] 8.29 8.74 6.40 29.44 28.26 35.91 ✓
GRAPHTRANS [17] 8.39 8.83 6.63 28.14 28.46 35.82 ✓

GCA [41] 7.09 7.49 6.05 32.62 31.10 37.64 ✓
GVP [19] 7.23 7.84 5.36 30.60 28.95 39.47 ✓

GVP-large [16] 7.68 6.12 6.17 32.6 39.4 39.2 ✓
ALPHADESIGN [8] 7.32 7.63 6.30 34.16 32.66 41.31 ✓

ESM-IF1 [16] 8.18 6.33 6.44 31.3 38.5 38.3 ✓
ProteinMPNN [5] 6.21 6.68 4.61 36.35 34.43 45.96 ✓

PIFOLD [9] 6.04 6.31 4.55 39.84 38.53 51.66 ✓

GRADE-IF 5.49 6.21 4.35 45.27 42.77 52.21 ✓

Figure 3: Recovery rate on core and surface residues and different secondary structure

of 18, 024 proteins for training, 608 for validation, and 1, 120 for testing. To evaluate the generative237

quality of different proteins, we test our model across three distinct categories: short, single-chain,238

and all proteins. The short category includes proteins with sequence lengths shorter than 100. The239

single-chain category encompasses proteins composed of a single chain. In addition, the total time240

step of the diffusion model is configured as 500, adhering to a cosine schedule for noise [26]. For the241

denoising network, we implement six stacked EGNN blocks, each possessing a hidden dimension of242

128. Our model undergoes training for default of 200 epochs, making use of the Adam optimizer.243

A batch size of 64 and a learning rate of 0.0005 are applied during training. Moreover, to prevent244

overfitting, we incorporate a dropout rate of 0.1 into our model’s architecture.245

Evaluation Metric The quality of recovered protein sequences is quantified by perplexity and246

recovery rate. The former measures how well the model’s predicted AA probabilities match the247

actual AA at each position in the sequence. A lower perplexity indicates a better fit of the model to248

the data. The recovery rate assesses the model’s ability to recover the correct AA sequence given the249

protein’s 3D structure. It is typically computed as the proportion of AAs in the predicted sequence250

that matches the original sequence. A higher recovery rate indicates a better capability of the model251

to predict the original sequence from the structure.252

4.2 Inverse Folding253

Table 1 compares GRADE-IF’s performance on recovering proteins in CATH, with the last column254

indicating the training dataset of each baseline method. To generate high-confidence sequences,255

GRADE-IF integrates out uncertainties in the prior by approximating the probability p(xaa) ≈256 ∑N
i=1 p(x

aa|xi
T )p(x

i
T ). Notably, we observed an improvement of 4.2% and 5.4% in the recovery257

rate for single-chain proteins and short sequences, respectively. We also conducted evaluations on258

TS50 and TS500 datasets, with results included in Appendix E for further reference.259

Upon subdividing the recovery performance based on buried and surface AAs, we find that the more260

conserved core residues exhibit a higher native sequence recovery rate. In contrast, the active surface261

AAs demonstrate a lower sequence recovery rate. Figure 7 examines AA conservation by Solvent262
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Figure 4: t-SNE of the generated sequences of GRADE-
IF compared to PIFOLD and PROTEINMPNN.

Figure 5: Trade-off of sampling speed
and recovery rate.

Accessible Surface Area (SASA) (with SASA< 0.25 indicating internal AAs) and contact number263

(with the number of neighboring AAs within 8-Åin 3D space) [10]. The recovery rate of internal264

residues significantly exceeds that of external residues across all three protein sequence classes, with265

the recovery rate increasing in conjunction with the contact number. We also present the recovery266

rate for different secondary structures, where we achieve high recovery for the majority of secondary267

structures, with the exception of a minor 5-turn helix structure that occurs infrequently.268

We further compare the diversity of GRADE-IF with PIFOLD and PROTEINMPNN in Figure 4.269

For a given backbone, we generate 100 sequences with a self-similarity less than 50% and employ270

t-SNE [44] for projection into a 2-dimensional space. At the same level of diversity, GRADE-271

IF encompasses the wild-type sequence, whereas the other two methods fail to include the wild-type272

within their sample region. Furthermore, inspiring at a recovery rate threshold of 45% for this protein,273

GRADE-IF manages to generate a substantial number of samples, whereas the other two methods274

revert to deterministic results. This further substantiates the superiority of our model in terms of275

achieving sequence diversity and a high recovery rate concurrently.276

We also evaluated the speed-up sampling algorithm within this dataset, as depicted in Figure 5. As277

outlined in Equation equation 5, we can bypass k steps during the sampling phase. We selected a278

range of step sizes and assessed their performance in terms of the recovery rate and the time required279

to sample 1200 sequences. The recovery rate mildly declines with the increment in step size, reaching280

48.13% at a step size of 100. However, the sampling speed at a step size of 100 is effectively 100281

times faster than at a step size of 1, demonstrating a considerable speed-up.282

4.3 Folding Prediction on Generated Sequences283

We extend our investigation to the foldability of sequences generated at various sequence recovery284

rates. Figure 6 contrasts the crystal structure of a native protein (PDB ID: 3FKF) with three structures285

folded by ALPHAFOLD2 [20], each derived from a different GRADE-IF-generated sequence. The286

resolution of the crystal structure stands at 2.2Å, suggesting that the folded structures of all generated287

sequences are nearly identical to the native one, boasting an RMSD of approximately 1-Åover 139288

residues. The average pLDDT score is 0.835, which, when compared to the native protein’s pLDDT of289

0.91, underscores the reliability of their folded structures. In conjunction with the evidence presented290

in Figure 7, indicating our method’s superior performance in generating more identical results within291

conserved regions, we confidently posit that GRADE-IF can generate biologically plausible novel292

sequences for given protein structures. We supplement more folding results in Appendix G.293

5 Related Work294

Deep Learning models for protein sequence design Self-supervised models have emerged as a295

pivotal tool in the field of computational biology, providing a robust method for training extensive296

protein sequences for representation learning. These models are typically divided into two categories:297

structure-based generative models and sequence-based generative models. The former approaches298

protein design by formulating the problem of fixed-backbone protein design as a conditional sequence299

generation problem. They predict node labels, which represent AA types, with invariant or equivariant300

graph neural networks [16, 17, 19, 40]. Alternatively, the latter sequence-based generative models301
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Figure 6: Folding prediction of generated protein sequence by GRADE-IF with respect to the native
protein (PDB ID: 3FKF, colored in nude).

draw parallels between protein sequences and natural language processing. They employ attention-302

based methods to infer residue-wise relationships within the protein structure. These methods303

typically recover protein sequences autoregressively conditioned on the last inferred AA [24, 28, 36],304

or employing a BERT-style generative framework with masked language modeling objectives and305

enable the model to predict missing or masked parts of the protein sequence [22, 25, 33, 45].306

Denoising Diffusion models The Diffusion Generative Model, initially introduced by Sohl-307

Dickstein et al. [38] and further developed by Ho et al. [12], has emerged as a potent instrument308

for a myriad of generative tasks in continuous time spaces. Its applications span diverse domains,309

from image synthesis [34] to audio generation [48], and it has also found utility in the creation of310

high-quality animations [13], the generation of realistic 3D objects [23], and drug design [4, 42].311

Discrete adaptations of the diffusion model, on the other hand, have demonstrated efficacy in a312

variety of contexts, including but not limited to, text generation [2], image segmentation [14], and313

graph generation [15, 47]. Two distinct strategies have been proposed to establish a discrete variable314

diffusion process. The first approach involves the transformation of categorical data into a continuous315

space and then applying Gaussian diffusion [3, 15]. The alternative strategy is to define the diffusion316

process directly on the categorical data, an approach notably utilized in developing the D3PM model317

for text generation [2]. D3PM has been further extended to graph generation, facilitating the joint318

generation of node features and graph structure [46].319

6 Conclusion320

Deep learning approaches have striven to address a multitude of critical issues in bioengineering,321

such as protein folding, rigid-body docking, and property prediction. However, only a few methods322

have successfully generated diverse sequences for fixed backbones. In this study, we offered a viable323

solution by developing a denoising diffusion model to generate plausible protein sequences for a324

predetermined backbone structure. Our method, referred to as GRADE-IF, leverages substitution325

matrices for both diffusion and sampling processes, thereby exploring a practical search space for326

defining proteins. The iterative denoising process is predicated on the protein backbone revealing both327

the secondary and tertiary structure. The 3D geometry is analyzed by a modified equivariant graph328

neural network, which applies roto-translation equivariance to protein graphs without the necessity329

for intensive data augmentation. Given a protein backbone, our method successfully generated a330

diverse set of protein sequences, demonstrating a significant recovery rate. Importantly, these newly331

generated sequences are generally biologically meaningful, preserving more natural designs in the332

protein’s conserved regions and demonstrating a high likelihood of folding back into a structure333

highly similar to the native protein. The design of novel proteins with desired structural and functional334

characteristics is of paramount importance in the biotechnology and pharmaceutical industries, where335

such proteins can serve diverse purposes, ranging from targeted drug delivery to enzyme design336

for industrial applications. Additionally, understanding how varied sequences can yield identical337

structures propels the exploration of protein folding principles, thereby helping to decipher the rules338

that govern protein folding and misfolding. Furthermore, resolving the inverse folding problem339

allows the identification of different sequences that fold into the same structure, shedding light on the340

evolutionary history of proteins by enhancing our understanding of how proteins have evolved and341

diversified over time while preserving their functions.342
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A Broader Impact and Limitations522

Broader Impact We have developed a generative model rooted in the diffusion denoising paradigm,523

specifically tailored to the context of protein inverse folding. As with any other generative models, it524

is capable of generating de novo content (protein sequences) under specified conditions (e.g., protein525

tertiary structure). While this method holds substantial potential for facilitating scientific research and526

biological discoveries, its misuse could pose potential risks to human society. For instance, in theory,527

it possesses the capacity to generate novel viral protein sequences with enhanced functionalities. To528

mitigate this potential risk, one approach could be to confine the training dataset for the model to529

proteins derived from prokaryotes and/or eukaryotes, thereby excluding viral proteins. Although this530

strategy may to some extent compromise the overall performance and generalizability of the trained531

model, it also curtails the risk of misuse of the model by limiting the understanding and analysis of532

viral protein construction.533

Limitations The conditions imposed on the sampling process gently guide the generated protein534

sequences. However, in certain scenarios, stringent restrictions may be necessary to produce a535

functional protein. Secondary structure, as a living example, actively contributes to the protein’s536

functionality. For instance, transmembrane α-helices play essential roles in protein functions, such as537

passing ions or other molecules and transmitting a signal across the membrane. Moreover, the current538

zero-shot model is trained on a general protein database. For specific downstream applications,539

such as generating new sequences for a particular protein or protein family, it may necessitate the540

incorporation of auxiliary modules or the modification of training procedures to yield more fitting541

sequences.542

B Non-Markovian Forward Process543

We give the derivation of posterior distribution q (xt−1 | xt,x
aa) for generative process from step to544

step. The proof relies on the Bayes rule, Markov property, and the pre-defined transition matrix for545

AAs.546

Propsition 1. For q (xt−1 | xt,x
aa) defined in Eq 3, we have547

q (xt−1 | xt,x
aa) = Cat

(
xt−1

∣∣∣xtQ
⊤
t ⊙ xaaQ̄t−1

xaaQ̄tx⊤
t

)
.

Proof. By Bayes rules, we can expand the original equation q (xt−1 | xt,x
aa) to548

q (xt−1 | xt,x
aa) =

q (xt | xt−1,x
aa) q (xt−1 | xaa)

q (xt | xaa)
=
q (xt | xt−1) q (xt−1 | xaa)

q (xt | xaa)
.

As pre-defined diffusion process, we get q (xt | xaa) = xaaQ̄t, and q (xt−1 | xaa) = xaaQ̄t−1.549

For the term of q (xt | xt−1,x
aa) by Bayes rule and Markov property, we have

q (xt | xt−1,x
aa) = q (xt | xt−1) ∝ q(xt−1 | xt)π(xt) ∝ xtQ

⊤
t ⊙ π(xt)

where the normalizing constant is
∑

xt−1
xtQ

⊤
t ⊙ π(xt) = (xt

∑
xt−1

Q⊤
t )⊙ π(xt) = xt ⊙ π(xt)550

Then q (xt | xt−1,x
aa) =

xtQ
⊤
t

xt
, and the posterior distribution is:551

q (xt−1 | xaa,xt) = Cat
(
xt−1

∣∣∣xtQ
⊤
t ⊙ xaaQ̄t−1

xaaQ̄tx⊤
t

)
.

552

The following gives the derivation for the discrete DDIM which accelerates the generative process.553

Propsition 2. For q (xt−k | xt,x
aa) defined in Eq 6,554

q (xt−k | xt,x
aa) = Cat

(
xt−k

∣∣∣xtQ
⊤
t · · ·Q⊤

t−k ⊙ xaaQ̄t−k

xaaQ̄tx⊤
t

)
.
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Proof. By Bayes rules, we can expand the original equation q (xt−k | xt,x
aa) to555

q (xt−k | xt,x
aa) =

q (xt | xt−k,x
aa) q (xt−k | xaa)

q (xt | xaa)
=
q (xt | xt−k) q (xt−k | xaa)

q (xt | xaa)
.

As pre-defined diffusion process, we get q (xt | xaa) = xaaQ̄t, and q (xt−1 | xaa) = xaaQ̄t−k.556

Similarly with q (xt | xt−1,x
aa) in Proposition 1, q (xt | xt−k,x

aa) =
xtQ

⊤
t ···Q⊤

t−k

xt
and the557

posterior is558

q (xt−k | xt,x
aa) = Cat

(
xt−k

∣∣∣xtQ
⊤
t · · ·Q⊤

t−k ⊙ xaaQ̄t−k

xaaQ̄tx⊤
t

)
.

559

C Graph Representation of Folded Proteins560

The geometry of proteins suggests higher-level structures and topological relationships, which are561

vital to protein functionality. For a given protein, we create a k-nearest neighbor (kNN) graph562

G = (X,E) to describe its physiochemical and geometric properties with nodes representing AAs563

by X ∈ R39 node attributes with 20-dim AA type encoder, 16-dim AA properties, and 3-dim AA564

positions. The undirected edge connections are formulated via a kNN-graph with cutoff. In other565

words, each node is connected to up to k other nodes in the graph that has the smallest Euclidean566

distance over other nodes and the distance is smaller than a certain cutoff (e.g., 30Å). Edge attributes567

are defined for connected node pairs. For instance, if node i and j are connected to each other, their568

relationship will be described by Eij = Eji ∈ R93.569

The AA types are one-hot encoded to 20 binary values by Xaa. On top of it, the properties of AAs570

and AAs’ local environment are described by Xprop, including the normalized crystallographic571

B-factor, solvent-accessible surface area (SASA), normalized surface-aware node features, dihedral572

angles of backbone atoms, and 3D positions. SASA measures the level of exposure of an AA to573

solvent in a protein by a scalar value, which provides an important indicator of active sites of proteins574

to locate whether a residue is on the surface of the protein. Both B-factor and SASA are standardized575

with AA-wise mean and standard deviation on the associate attribute. Surface-aware features [7] of576

an AA is non-linear projections to the weighted average distance of the central AA to its one-hop577

neighbors i′ ∈ Ni, i.e.,578

ρ (xi;λ) =

∥∥∥∑i′∈Ni
wi,i′,λ

(
Xpos,i −Xpos,i′

)∥∥∥∑
i′∈Ni

wi,i′,λ ∥Xpos,i −Xpos,i′∥
,

where the weights are defined by579

wi,i′,λ =
exp

(
−∥Xpos,i −Xpos,i′∥2 /λ

)
∑

i′∈Ni
exp

(
−∥Xpos,i −Xpos,i′∥2 /λ

)
with λ ∈ {1, 2, 5, 10, 30}. The Xpos,i ∈ R3 denotes the 3D coordinates of the ith residue, which580

is represented by the position of α-carbon. We also use the backbone atom positions to define the581

spatial conformation of each AA in the protein chain with trigonometric values of dihedral angles582

{sin, cos} ◦ {ϕi, ψi, ωi}.583

Edge attributes E ∈ R93, on the other hand, include kernel-based distances, relative spatial positions,584

and relative sequential distances for pairwise distance characterization. For two connected residues i585

and j, the kernel-based distance between them is projected by Gaussian radial basis functions (RBF)586

of exp
{

∥xj−xi∥2

2σ2
r

}
with r = 1, 2, . . . , R. A total number of 15 distinct distance-based features587

are created with σr = {1.5k | k = 0, 1, 2, . . . , 14}. Next, local frames [7] are created from the588

corresponding residues’ heavy atoms positions to define 12 relative positions. They represent local589

fine-grained relations between AAs and the rigid property of how the two residues interact with each590

other. Finally, the residues’ sequential relationship is encoded with 66 binary features by their relative591

position di,j = |si − sj |, where si and sj are the absolute positions of the two nodes in the AA chain592

[49]. We further define a binary contact signal [17] to indicate whether two residues contact in the593

space, i.e., the Euclidean distance ∥Cαi − Cαj∥ < 8.594
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D Training and Inference595

In this section, we elucidate the training and inference methodologies implemented in the diffusion596

generative model. As shown in Algorithm 1, training commences with a random sampling of a time597

scale t from a uniform distribution between 1 and T . Subsequently, we calculate the noise posterior598

and integrate noise as dictated by its respective distribution. We then utilize an equivariant graph599

neural network for denoising predictions, using both the noisy amino acid and other properties as600

node features, and leveraging the graph structure for geometric information. This results in the model601

outputting the denoised amino acid type. Ultimately, the cross-entropy loss is computed between the602

predicted and original amino acid types, providing a parameter for optimizing the neural network.603

Algorithm 1 Training

1: Input: A graph G = {X,E}
2: Sample t ∼ U(1, T )
3: Compute q(Xt|Xaa) = XaaQ̄t

4: Sample noisy Xt ∼ q(Xt|Xaa)
5: Forward pass: p̂(Xaa) = fθ(Xt, t,E, ss)
6: Compute cross-entropy loss: L = LCE(p̂(X

aa),X)
7: Compute the gradient and optimize denoise network fθ

Upon completing the training, we are capable of sampling data using the neural network and the604

posterior distribution p(xt−1|xt,x
aa). As delineated in the algorithm, we initially sample an amino605

acid uniformly from 20 classes, then employ our neural network to denoise Xaa from time t. From606

here, we can calculate the forward probability utilizing the model output and the posterior distribution.607

Through iterative processing, the ultimate model sample closely approximates the original data608

distribution. More importantly, we illustrate how to speed up the sampling procedure using DDIM in609

Algorithm 3. It can be regarded as skipping several steps in DDPM but with close performance (see610

Figure 5 in Section 4.2). DDPM is a special case of DDIM when skipping step k = 1.611

Algorithm 2 Sampling (DDPM)

1: Sample from uniformly prior XT ∼ p(XT )
2: for t in {T, T − 1, ..., 1} do
3: Predict p̂(X0|Xt) by neural network p̂(X0|Xt) = fθ(Xt, t,E, ss)

4: Compute pθ(Xt−1|Xt) =
∑

X̂aa q(Xt−1|Xt, X̂
aa)p̂(Xaa|Xt)

5: Sample Xt−1 ∼ pθ(Xt−1|Xt)
6: end for
7: Sample Xaa ∼ pθ(X

aa|X1)

Algorithm 3 Sampling (DDIM)

1: Sample from uniformly prior XT ∼ p(XT )
2: for t in {T, T − k, ..., 1} do
3: Predict p̂(X0|Xt) by neural network p̂(X0|Xt) = fθ(Xt, t,E, ss)

4: Compute pθ(Xt−k|Xt) =
∑

X̂aa q(Xt−k|Xt, X̂
aa)p̂(Xaa|Xt)

5: Sample Xt−k ∼ pθ(Xt−k|Xt)
6: end for
7: Sample Xaa ∼ pθ(X

aa|X1)

E Inverse Folding Performance on TS50 and T500612

In addition to the CATH dataset, we also evaluated our model using the TS50 and T500 datasets.613

These datasets were introduced by DenseCPD [31], encompassing 9888 structures for training, and614

two distinct test datasets comprising 50 (TS50) and 500 (T500) test datasets, respectively. The615
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Table 2: Recovery rate performance of TS50 and T500 on zero-shot models.

Model TS50 T500
Perplexity ↓ Recovery ↑ Perplexity ↓ Recovery ↑

STRUCTGNN [17] 5.40 43.89 4.98 45.69
GRAPHTRANS [17] 5.60 42.20 5.16 44.66

GVP [19] 4.71 44.14 4.20 49.14
GCA [41] 5.09 47.02 4.72 47.74

ALPHADESIGN [8] 5.25 48.36 4.93 49.23
PROTEINMPNN [5] 3.93 54.43 3.53 58.08

PIFOLD [9] 3.86 58.72 3.44 60.42

GRADE-IF(ours) 3.71 56.32 3.23 61.22

same preprocessing steps applied to the CATH dataset were utilized here. The denoising network616

comprises six sequentially arranged EGNN blocks, each boasting a hidden dimension of 256. Our617

model’s performance, outlined in Table 2, achieved an accuracy of 61.22% on T500, and 56.32% on618

TS50, respectively.619

F Ablation Study620

We conducted ablation studies to assess the impact of various factors on our model’s performance.621

These elements encompassed the selection of the transition matrix (uniform versus BLOSUM),622

the integration of secondary structure embeddings in the denoising procedure, and the function of623

the equivariant neural network. As demonstrated in Figure 7, incorporating equivariance into the624

denoising neural network substantially enhances the model’s performance. Given that the placement625

of protein structures in space can be arbitrary, considering symmetry in the denoising neural network626

helps to mitigate disturbances. Moreover, we found that including secondary structure as auxiliary627

information lessens uncertainty and improves recovery. Lastly, utilizing the BLOSUM matrix as628

the noise transition matrix boosted the recovery rate by 2%, highlighting the benefits of infusing629

biological information into the diffusion and generative processes. This approach reduces sample630

variance and substantially benefits overall model performance.631

Figure 7: Recovery rate with the different selection of the transition matrix, whether considering
equivariance and secondary structure.

In our sampling procedure, we accelerate the original DDPM sampling algorithm, which takes every632

step in the reverse sampling process, by implementing the discrete DDIM as per Equation 6. This633

discrete DDIM allows us to skip every k steps, resulting in a speed-up of the original DDPM by634

a factor of k. We conducted an ablation study on the impact of speed and recovery rate by trying635

different skip steps: 1, 2, 5, 10, 20, 25, 50, and 100. We compare the recovery rates achieved by these636

different steps. Our results revealed that the recovery rate performance decays as the number of637

skipped steps increases. The best performance is achieved when skipping a single step, resulting in a638

recovery rate of 52.21%, but at a speed of 100 times slower than when skipping 100 steps, which639

yields a recovery rate of 47.66%.640
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Figure 8: Comparison of the distribution of mutational prior (BLOSUM replacement matrix) and
sampling results.

G Additional Folding Results641

We further analyzed the generated sequences by comparing different protein folding predictions. We642

consider the crystal structures of three native proteins with PDB IDs: 1ud9 (A chain), 2rem (B chain),643

3drn (B chain), which we randomly choose from CATH dataset. For each structure, we generated644

three sequences from the diffusion model and used ALPHAFOLD 2 [20] to predict the respective645

structures. As shown in Figure 9, these predictions (in purple) were then compared with the structures646

of the native protein sequences (in nude). We can observe that the RMSD for all cases is lower than647

the preparation accuracy of the wet experiment. The results demonstrate that our model-generated648

sequences retain the core structure, indicating their fidelity to the original structures.649

Figure 9: Folding comparsion between native sequence and generated sequence
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