
A Detailed Theoretical Analysis

A.1 Graph Spectrum

Consider an undirected graph G = (V,E) whose adjacency matrix is symmetric. Following notations
in Section 2, we denote the eigendecomposition of the normalized graph adjacency and Laplacian
matrices respectively as Ã = UMU

> and L̃ = V NV
>, where M = diag(µ1, · · · , µn), |µ1| �

|µ2| � · · · � |µn|, N = diag(⌫1, · · · , ⌫n), 0 = ⌫1 < ⌫2  · · ·  ⌫n, and U ,V are the matrices of
corresponding eigenvectors. We also immediately have Ã

2
= UM

2
U

>
= U⇤U

>
, �f = |µf |

2.

Intuitively, since L̃ = I � Ã, the leading eigenvalues µ1, µ2, · · · of Ã correspond to the smallest of
those ⌫1, ⌫2, · · · of L̃. These eigenvalues are known as the low-frequency spectrum of the graph that
correlates to graph connectivity. Specially, ⌫2 > 0 if and only if the graph is connected, which is our
case. Similarly, small values of µf and large values of ⌫i represent the high frequency part of the
graph. Graph spectrum is a graph invariant despite the status of node labels.

We plot the spectrum computed by A2Prop of 7 heterophilous graphs and 2 homophilous graphs in
Figure 4, which shows the leading k eigenvalues µ1, µ2, · · · , µk. The figure indicates the importance
of high-frequency information in graphs under heterophily. For appropriately large heterophilous
graphs penn94, arxiv-year, genius, and twitch-gamers, the spectrum converges slowly to 0. In other
words, even high-frequency parts with large f still exhibit relatively large eigenvalues compared to
the dominant µ1. In contrast, the homophilous protein and reddit are significant in low frequency of a
few eigenvalues. Hence, during the iterative propagation, the topology information carried by these
high-frequency components can be preserved to enhance performance.

(a) actor (b) chameleon (c) squirrel

(d) penn94 (e) arxiv-year (f) genius

(g) twitch-gamers (h) protein (i) reddit

Figure 4: Spectrum and adjacency embedding distribution of heterophilous and homophilous graphs.
Blue lines are the magnitude of leading adjacency eigenvalues. Yellow areas are the norm value
distributions of adjacency embeddings.
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A.2 Graph Signal Filter

Given an arbitrary signal, i.e. a feature matrix X , the graph Fourier transform is X̂ = V
>

X , and
the inverse transform is X = V X̂ . A convolutional kernel f is an operator applied to conduct the
transform. The graph convolution is defined for feature vector x as:

f ⇤ x = V hV
>
f,V

>
xi = V g(N)V

>
x,

where g(N) denotes the corresponding filter in spectral domain.

To parameterize the filter, it is often expressed as an Lp-degree polynomial on the input eigenvalue ⌫:

g(⌫) =

LPX

l=0

✓l⌫
l
.

And the spectral filter is:

g(L̃) =

LPX

l=0

✓lV ⌫
l
V

>
=

LPX

l=0

✓lL̃
l
. (5)

Hence, a spectral filtering process to signal X is equivalent to multiplying the polynomial filter
g(L̃)X , and vice versa. Note that since L̃ = I � Ã, the filter can be equivalently expressed by g(Ã)

with respect to Ã. We use the term filter in both cases interchangeably when there is no confusion.

Common GNN operations can thus be interpreted as an approach of graph signal processing. For
example, the vanilla GCN [1] propagates by Ã, which indicates ✓0 = 1, ✓1 = �1, ✓l = 0, l > 2 and
g(N) = I�N . It strengthens the low frequency value ⌫0 and suppresses ⌫1. In comparison, FAGCN
[18] defines its high-frequency filter as ✏I � Ā, or equivalently, ✓0 = ✏ � 1, ✓1 = 1, ✓l = 0, l > 2.
It is shown by the paper that the combination of low-pass, high-pass, and all-pass filters is more
expressive under heterophily.

A.3 Iterative and Decoupled GNN

For general GNN architecture with iterative propagation, each of its layer applies the signal filtering
as:

H
(l+1)

= �(g(L̃)H
(l)

W
(l)
), H

(0)
= X.

To simplify the process, assume the transformation is linear. Then all the weight transformations can
be compressed together as W , and

H
(L)

= g
L
(L̃)XW .

The filter g
L
(L̃) can be similarly expressed by a polynomial with proper LP and ✓l. Thus the

decoupled GNN is simply replacing the weight multiplication with MLP transformation:
H

(L)
= MLP(P ), P = g(L̃)X.

Despite its simplicity, the formulation of decoupled GNN completely preserves the spectral filter used
in iterative GNNs. Hence their expressiveness in processing graph signals with polynomial filters is
the same, and the difference only lies in the neural network transformation. In fact, [56] proves that
such design is sufficient to node discrimination tasks under mild conditions.

A.4 Interpretation of LD2 Filters

The spectral interpretation of the adjacency and feature channels utilized in Sections 3.2 and 3.3 is
clearer under Eq. (5). For the inverse Laplacian filter

PLP,H

l=1 L̃
l, there is the finite geometric series

✓0 = 0, ✓1 = · · · = ✓LP
= 1. Hence, it is able to preserve up to LP high-frequency components,

while stopping the low frequency by ✓0 = 0.

For the constant 2-hop adjacency filter
PLP,L2

l=1 Ā
2l, it corresponds to a low-pass filter

PLP,L2

l=1 (I �

L̄2)
l on the 2-hop neighbor graph, whose Laplacian is L̄2. When the 2-hop neighborhood is

homophily-dominant, PX,L2 is useful for aggregating neighborhood-based information.

Lastly, the adjacency embedding is PA = U |⇤|
1/2

= U |M |, which is invariant under graph filter
PA = (AM

�1
)PA. It hence explicitly contains information of the graph spectrum. As we show in

Figure 4, its relative column norms are related with the corresponding eigenvalues.
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B Detailed Explanation of Differences from Existing Models

B.1 Iterative GNNs with High-Frequency Propagation

We regard the message-passing GNN architectures performing iterative graph propagation and feature
transformation procedures as the family of iterative GNNs. We recognize there are existing works
utilizing the concept of high-pass filters or negative edges, which is similar to the inverse Laplacian
propagation used in our LD2:

• FAGCN [18] introduces the high-frequency filter ✏I � Ā. In each layer, it respectively
applies low- and high-frequency filters to the layer representation and aggregates by attention
mechanism.

• GGCN [19] proposes the process of assigning signs to edges based on inter- and intra-node
similarity. In practice, they utilize cosine similarity between node feature vectors. Its
aggregation is performed on the representations corresponding to the positive edges, the
negative edges, and the raw representation of previous layer, with weights of each channel
controlled by a learnable scalar factor.

• ACM [20] explores the channel mixing mechanism, similarly applying multiple channels to
learn the layer representation. For each layer, low-frequency, high-frequency, and identity
channels are respectively applied to the current representation before a learnable node-wise
aggregation: ÃHWl, (I � Ã)HWh, IHWi

We compare LD2 in the aspects of selection of filers and aggregation scheme. The filter combination
1

LP,L2

PLP,L2

l=1 Ā
2l, 1

LP,H

PLP,H

l=1 L̃
l, and I is different to all these works. More importantly, all

above models utilize learnable aggregation, i.e. attention, matrix-wise, or vector-wise weighted
summation, for adding up these channels. However, this strategy potentially mixes the opposite
information from homophilous and heterophilous nodes and leads to performance degradation. It
also brings additional overhead in learning. In Appendix D we show that the overhead of GGCN is
too high to be employed on graphs larger that penn94. Instead, in LD2 we use a simple concatenation,
and the relationship among channels is learned by the MLP.

B.2 Iterative GNNs with Multi-Hop Propagation

We also compare the constant 2-hop adjacency propagation with other multi-scale designs:

• H2GCN [13] examines the homophily-dominant property for 2-hop neighbors, and simul-
taneously performs propagation on both 1-hop and 2-hop adjacency matrices Ã and Ã2.
Specifically, the 2-hop matrix Ã2 is the adjacency matrix of the induced subgraph consisting
of only strict 2-hop neighbors N̄2(u) = {v|t 2 N (u), v 2 N (t), v /2 N (u)}. The two
representations are usually aggregated by a jumping knowledge layer.

• MixHop [12] concatenates identity, 1-hop, and 2-hop propagations in each of its layer
H

(l+1)
= �(H

(l)
W

(l)
0 kÃH

(l)
W

(l)
1 kÃ

2
H

(l)
W

(l)
2 ). Such aggregation results in expand-

ing width of representations over multiple layers.

• FSGNN [23] explores convolutions Ā
l and Ã

l for l = 1, 2, 3 on their effectiveness for
homophilous and heterophilous graphs. It demands up to O(LPnF ) memory for keeping
all the embeddings.

• GloGNN [22] considers global information during message-passing, which is equivalent to
a propagation of layer representations of nodes from different hops.

We note that the full-graph multi-scale propagation usually results in difficulties for minibatching. The
iterative additional propagation also escalates the issue in scalability. As the number of entries in A

2

is at the scale of O(md), for each propagation the expense is increased by O(d) times. Evaluations
of full-batch MixHop and GloGNN in Appendix D validates our analysis that their model size and
memory overhead scales greatly when the graph size increases.

In LD2, we address these two drawbacks by adopting a low-dimensional embedding that integrates
with raw features, which forms the channel PX,L2 and is straightforward for batching.
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B.3 Post-Propagation Decoupled GNNs

For GNNs decoupling the graph structure from iterative propagation, we further divide them into two
categories according to their decoupling scheme. Models in the post-propagation category apply an
embedding matrix that contains graph information only after the MLP feature transformation. Its
general framework is H

(L)
= �(P (A) · MLP(X)).

• APPNP [28] is among the first models proposing the decoupling design in GNN studies.
It introduces the personalized PageRank (PPR) [40] matrix P =

P
LP

l=0 ↵(1 � ↵)
l
Ã

l to
replace the iterative propagation. The decaying aggregation is shown to be only effective in
locality-based homophilous settings.

• PPRGo [29] enhances the APPNP structure by a top-k PPR matrix and a precomputation
phase. It hence enjoys better adaptability to minibatch training.

• GPRGNN [17] is the post-propagation decoupled model for graphs of non-homophily. A
learnable Generalized PPR matrix is calculated every forward passing to fit different weights
for varying hops: P✓ =

P
LP

l=0 ✓lÃ
l.

• BernNet [34] learns the graph filter by an order-LP Bernstein polynomial with non-negative
coefficients constraints, denoted as P✓ =

P
LP

l=0 ✓lTl,LP
(L̃), where Tl,LP

(·) is the Bernstein
polynomial.

• ChebNetII [35] similarly applies the Chebyshev polynomial approximation with decoupled
transformation, that P✓ =

P
LP

l=0

P
LP

j=0 ✓jTl(xj)Tl(L̃).

Although simplifying the training process, post-propagation designs still suffer from batching and scal-
ability issues as they require graph propagation in every training epochs. Spectral models including
GPRGNN, BernNet, and ChebNetII face the scalability bottleneck of storing the intermediate feature
matrices of all orders in their trivial batching implementation, since they need to learn the coefficient
from these feature matrices. While APPNP and PPRGo are more suitable for minibatch training,
their efficiency is constrained due to the iterative propagation.

B.4 Pre-Propagation Decoupled GNNs

In contrast to post-propagation decoupling, pre-propagation models conduct graph propagation in
advance, mostly interacting with the node feature matrix. Then they perform transformation on the
fixed embeddings: H

(L)
= MLP(P (X,A)).

• SGC [30] is the simple decoupled propagation with a fix-hop propagation P = Ã
LP · X .

• S2GC [43] performs constant summation on the powers of graph adjacency to obtain a
low-frequency embedding P =

1
LP,L

PLP,L

l=0 Ã
l
· X .

• GDC [36] formulates the generalized form P✓ =
P

LP

l=0 ✓lÃ
l
·X . It however mostly focuses

on the Heat Kernel scheme where ✓l = e
�t

·
t
l

l! .
• AGP [32] proposes generalization in two aspects. First, it extends graph normalization

D
�1/2

AD
�1/2 to arbitrary D

�a
AD

�b with a, b 2 [0, 1]. Second, it efficiently computes
propagation with general coefficients ✓l. In the paper, it explores the SGC, APPNP, and
GDC-HeatKernel schemes.

• LINKX [26] directly utilizes adjacency and node feature matrices as inputs without precom-
putation.

The pre-propagation decoupling is known to be the most scalable design with respect to GNN training,
thanks to the simple transformation scheme. We hence usually refer to this kind of architecture when
using the term decoupled GNNs. As the graph structure is decoupled, the model scalability in training
is only related with the dimension of inputs and layer width, and the depth of network. An extreme
case, however, is LINKX that incorporates the adjacency matrix as input. Hence, its complexity is
still at the scale of O(m) and O(n) of time and memory, respectively.

Despite the simple architecture, the embedding scheme for pre-propagation models needs to be
carefully designed, otherwise they may suffer from accuracy degradation due to information loss
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in the approximate propagation. Experiments in Appendix D show that most of these homophilous
models cannot achieve high accuracy on heterophilous datasets. Our model, LD2, is thence the first
attempt that proposes novel embeddings that specifically suitable for heterophilous graphs, while
maintaining the low-dimension and long-distance advantages of the decoupling design.

C Experiment Settings

C.1 Heterophily Measurement

For multiclass classification task on graph G = (V,E), a node u 2 V is labeled by y(u) 2

{0, 1, · · · , Nc � 1}, where Nc is the number of classes. We measure the graph heterophily by node
homophily score [14], which is the average proportion of the 1-hop neighbors with the same class of
each node:

Hn,1 =
1

|V |

X

u2V

|{v 2 N (u) : y(v) = y(u)}|

|N (u)|
. (6)

Generally, Hn,1 2 [0, 1]. A homophily score closer to 0 indicates higher heterophily, and vice versa.

As we are particularly interested in 2-hop neighbors, we also calculate the 2-hop node homophily
score Hn,2, which is achieved by substituting the 1-hop neighbor set in Eq. (6) with the strict 2-hop
set N̄2(u) = {v|t 2 N (u), v 2 N (t), v /2 N (u)}.

C.2 Datasets Statistics

We extensively evaluate 22 node classification datasets. Among them, actor, chameleon, and squirrel
are heterophilous datasets used by [14]; roman-empire, minesweeper, amazon-ratings, and tolokers are
from [55]; penn94, arxiv-year, genius, twitch-gamers, pokec, snap-patents, and wiki are heterophilous

datasets proposed in [26]; cora, pubmed, ogbn-arxiv, protein, yelp, reddit, amazon, and ogbn-papers
are popular large-scale homophilous datasets. Sources of the datasets are respectively cited in
Table 4. Several issues revealed by [55] on the heterophilous graphs are addressed before conducting
experiments. Isolated nodes in the graph are removed.

Directed edges are only considered in arxiv-year and snap-patents as per [26], while all other graphs
are transformed to undirected ones. We explore the effect of directed edges in Appendix F.5.

Protein and yelp are multilabel classification tasks where more than one target classes exist for each
node, while other datasets are multiclass tasks. For main experiments, we apply random 50/25/25

Table 4: Dataset statistics. Hn,1 and Hn,2 are 1-hop and 2-hop homophilous scores, respectively.

Description Dataset Nodes n Edges m d F Nc Notes Hn,1 Hn,2

Heterophilous
Small-scale

actor [14] 7, 600 34, 259 4.508 932 5 – 0.216 0.216
chameleon [14] 2, 277 65, 019 28.555 2, 325 5 – 0.247 0.253

squirrel [14] 5, 201 401, 907 77.275 2, 089 5 – 0.217 0.214
roman-empire [55] 22, 662 65, 854 2.906 300 18 – 0.046 0.084
minesweeper [55] 10, 000 78, 804 7.880 7 2 – 0.683 0.680

amazon-ratings [55] 24, 492 186, 100 7.598 300 5 – 0.376 0.366

Heterophilous
Large-scale

tolokers [55] 11, 758 1, 038, 000 88.280 10 2 – 0.634 0.651
penn94 [26] 41, 536 1, 362, 220 33.796 4.814 2 – 0.504 0.478

arxiv-year [26] 169, 343 1, 157, 799 7.837 128 5 directed 0.289 0.337
genius [26] 421, 858 922, 864 3.188 12 2 – 0.368 0.823

twitch-gamers [26] 168, 114 6, 797, 557 41.434 7 2 – 0.562 0.531
pokec [26] 1, 632, 803 22, 301, 964 14.659 65 2 – 0.454 0.605

snap-patents [26] 2, 738, 035 13, 967, 949 6.101 269 5 directed 0.220 0.298
wiki [26] 1, 770, 981 242, 507, 069 137.934 600 5 – 0.306 –

Homophilous

cora [57] 2, 485 12, 623 5.080 1, 433 7 – 0.814 0.720
pubmed [57] 19, 717 88, 648 4.496 500 3 – 0.792 0.742
protein [2] 56, 944 818, 716 14.378 50 121 multilabel – –

ogbn-arxiv [58] 169, 343 2, 484, 941 14.674 128 40 – 0.635 0.489
yelp [27] 716, 847 6, 977, 410 9.733 300 100 multilabel – –
reddit [2] 232, 965 114, 615, 892 491.988 602 41 – 0.445 –

amazon [33] 2, 400, 608 123, 718, 024 51.536 100 47 – 0.833 –
ogbn-papers [58] 111, 059, 956 1, 615, 685, 872 14.548 128 172 – 0.964 –
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train/validate/test splits for all graphs, and perform transductive predictions on them, with the only
exception ogbn-papers. We also mark protein and yelp in inductive settings as protein-ind and
yelp-ind, respectively. We uniformly use the micro F1 score to evaluate efficacy, which is equivalent
to accuracy for multiclass predictions.

We list the statistics of these datasets in Table 4, including the 1-hop and 2-hop node homophily scores
for non-multilabel datasets. The empirical results support our analysis in Section 3 that regardless of
heterophily, 2-hop neighbors in the graph tend to exhibit higher homophily.

C.3 Baseline Models

Here we list all 17 types of baseline models we evaluate, varying from common and heterophilous
GNNs with full-batch and mini-batch training schemes. Since we mostly focus on scalability and
evaluate on large graphs, models such as H2GCN [13], GeomGCN [14], FAGCN [18], and WRGCN
[16] are not included, as they experience prohibited running time or out-of-memory error on most of
the datasets.

• I.I.D. Minibatch Heterophilous Models: LINKX [26] is applicable to the simple i.i.d.
node batching scheme by design.

• Graph Sampling Minibatch Heterophilous Models: GCNJK-GS [21] and MixHop-GS
[12] are the variants of these models employed with GSAINT random walk sampling [27],
which is the sampling scheme of best performance evaluated in [26].

• I.I.D. Minibatch Homophilous Models: MLP processes only node attributes without
considering graph topology. PPRGo [29] is the post-propagation decoupled model as a
faster alternative of APPNP. SGC [30] is the 2-hop varaint of the pre-propagation model.
All decoupled models utilize simple sampling.

• Full-batch Heterophilous Models: LINKX [26], GCNJK [21], MixHop [12], GCNII [45],
and GPRGNN [17] are based on the implementation of [26]. GGCN [19], FSGNN [23],
GloGNN++ [22] and ACM [20] mostly follow their own public source codes.

• Full-batch Homophilous Models: The vanilla GCN [1], decoupled models APPNP [28] and
SGC [30] are evaluated as representatives of homophilous GNNs with different scalabilities.

C.4 Model and Training Hyperparameters

We particularly explore model hyperparameters including the number of layers L, i.e. model depth,
and the number of hidden size, i.e. layer width, since these settings are mostly correlated with the
efficacy and efficiency performance of models.

For minibatch training, we comprehensively tune the hyperparameters of batch size and learning
rate among baselines to produce comparable performance. We exploit the validation set to select the
training epoch with best validation accuracy, and use early stopping if the model training converges.

We select above hyperparameters based on the following principle: We first refer to their original
papers and implementations and explore model depth and width, in order to achieve relatively optimal
reproduced performance. Then we select the largest batch size applicable to the GPU while preventing
out of memory error for efficiency consideration. Other hyperparameters including weight decays and
learning rates are tuned accordingly. For other architectural and training settings, we mostly follow
the implementation in [26] when applicable, in order to produce similar evaluation to the benchmark.

Table 5 shows the details of hyperparameters exploration ranges and eventual settings of 8 datasets
and 7 minibatch models corresponding to main experiments in Tables 2 and 3. Explorations and
settings of LD2 hyperparameters are further discussed in Appendix F.
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Table 5: Hyperparameter explorations and settings of respective datasets and minibatch models in
main experiments. Hyperparameters are explored based on the combination of listed ranges, and
underlined values are optimal settings used.

Dataset Model learning rate batch layer hidden weight decay dropout other

tolokers

MLP 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 –
PPRGo 0.01, 0.005, 0.001 8192 2, 3 256 1.00E-04 0.1 ↵=0.5, k=128

SGC 0.01, 0.005, 0.001 8192 2, 3 256 1.00E-04 0.5 ↵=0.5, a=0.5
GCNJK-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 jk_type=cat
MixHop-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –

LINKX 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-05 0.5 –
LD2 0.01, 0.005, 0.002, 0.001 8192 1, 2, 3 512 1.00E-04 0.5 LP =10, a=0.5

penn94

MLP 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 –
PPRGo 0.01, 0.005, 0.001 2048 2, 3 256 1.00E-04 0.1 ↵=0.5, k=256

SGC 0.01, 0.005, 0.001 81920 2, 3 256 1.00E-04 0.5 ↵=0.5, a=0.5
GCNJK-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 jk_type=cat
MixHop-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –

LINKX 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –
LD2 0.01, 0.005, 0.002, 0.001 20480 1, 2, 3 512 1.00E-04 0.5 LP =20, a=0.5

arxiv-year

MLP 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 –
PPRGo 0.01, 0.005, 0.001 8192 2, 3 256 1.00E-04 0.1 ↵=0.5, k=128

SGC 0.01, 0.005, 0.001 81920 2, 3 256 1.00E-04 0.5 ↵=0.5, a=0.5
GCNJK-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 jk_type=cat
MixHop-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –

LINKX 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –
LD2 0.01, 0.005, 0.002, 0.001 81920 1, 2, 3 512 1.00E-04 0.5 LP =16, a=0.5

genius

MLP 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 –
PPRGo 0.01, 0.005, 0.001 8192 2, 3 256 1.00E-04 0.1 ↵=0.5, k=128

SGC 0.01, 0.005, 0.001 81920 2, 3 256 1.00E-04 0.5 ↵=0.5, a=0.5
GCNJK-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 jk_type=cat
MixHop-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –

LINKX 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –
LD2 0.01, 0.005, 0.002, 0.001 20480 1, 2, 3 512 1.00E-04 0.5 LP =20, a=0.5

twitch-gamers

MLP 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 –
PPRGo 0.01, 0.005, 0.001 8192 2, 3 256 1.00E-04 0.1 ↵=0.5, k=128

SGC 0.01, 0.005, 0.001 81920 2, 3 256 1.00E-04 0.5 ↵=0.5, a=0.5
GCNJK-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 jk_type=cat
MixHop-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –

LINKX 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –
LD2 0.01, 0.005, 0.002, 0.001 20480 1, 2, 3 512 1.00E-04 0.5 LP =10, a=0.5

pokec

MLP 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 –
PPRGo 0.01, 0.005, 0.001 8192 2, 3 256 1.00E-04 0.1 ↵=0.5, k=128

SGC 0.01, 0.005, 0.001 81920 2, 3 256 1.00E-04 0.5 ↵=0.5, a=0.5
GCNJK-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 jk_type=cat
MixHop-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –

LINKX 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 256 1.00E-03 0.5 –
LD2 0.01, 0.005, 0.002, 0.001 81920 1, 2, 3 512 1.00E-04 0.5 LP =20, a=0.5

snap-patents

MLP 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 –
PPRGo 0.01, 0.005, 0.001 1024 2, 3 256 1.00E-04 0.1 ↵=0.5, k=64

SGC 0.01, 0.005, 0.001 81920 2, 3 256 1.00E-04 0.5 ↵=0.5, a=0.5
GCNJK-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 jk_type=cat
MixHop-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –

LINKX 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 256 1.00E-03 0.5 –
LD2 0.01, 0.005, 0.002, 0.001 81920 1, 2, 3 256 1.00E-04 0.5 LP =20, a=0.5

wiki

MLP 0.05, 0.02, 0.01, 0.005, 0.001 8192 2, 3, 4 512 1.00E-03 0.5 –
PPRGo 0.01, 0.005, 0.001 1024 2, 3 256 1.00E-04 0.1 ↵=0.5, k=64

SGC 0.01, 0.005, 0.001 81920 2, 3 256 1.00E-04 0.5 ↵=0.5, a=0.5
GCNJK-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 jk_type=cat
MixHop-GS 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 512 1.00E-03 0.5 –

LINKX 0.05, 0.02, 0.01, 0.005, 0.001 8192 1, 2, 3, 4 128 1.00E-03 0.5 –
LD2 0.01, 0.005, 0.002, 0.001 81920 1, 2, 3 512 1.00E-04 0.5 LP =10, a=0.5
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Table 6: Average test accuracy (%) of minibatch LD2 and baselines on 6 small-scale heterophilous
datasets. “rank” is the average ranking among all 14 heterophilous datasets.

Dataset actor chameleon squirrel roman-empire minesweeper amazon-ratings rank

MLP 36.05 43.86 33.16 65.89 49.26 44.14 4.9
PPRGo 21.51 49.48 33.95 72.84 80.00 48.10 4.9

SGC 26.14 66.96 59.39 64.37 79.89 46.49 4.8
GCNJK-GS 29.00 41.58 27.63 53.49 58.03 40.58 5.1
MixHop-GS 33.24 75.00 33.24 63.47 60.07 46.79 3.8

LINKX 30.58 67.37 60.26 49.74 50.96 51.97 2.6
LD2 33.04 69.76 66.87 77.30 77.11 52.05 2.0

Table 7: Average test accuracy (%) of full-batch LD2 and baselines on 10 heterophilous datasets.
“OOM” means the model occurs out of memory error with applicable hyperparameters. “rank” is the
average ranking among these 10 datasets.

Dataset actor chameleon squirrel penn94 arxiv-year genius twitch-gamers pokec snap-patents wiki rank

APPNP 32.11 48.95 33.97 72.85 38.31 83.59 60.07 61.23 31.11 (OOM) 9.1
SGC 34.42 44.74 29.59 72.92 34.85 80.00 59.56 61.27 29.89 (OOM) 9.9
GCN 25.11 43.33 29.21 72.95 46.24 80.07 61.01 67.31 46.55 (OOM) 9.1

GCNII 25.11 52.46 37.59 72.71 45.29 80.02 60.70 72.60 (OOM) (OOM) 9.4
GPR-GNN 32.47 56.49 34.82 73.88 44.81 83.16 60.13 73.48 42.82 (OOM) 7.0

GCNJK 26.42 57.89 28.52 70.94 50.38 50.38 61.50 69.10 47.79 (OOM) 8.7
MixHop 31.26 60.35 47.35 75.00 54.31 84.33 64.30 78.05 54.24 (OOM) 4.2
LINKX 27.21 66.14 60.11 76.17 53.38 82.57 64.06 66.93 53.91 (OOM) 5.4
GGCN 35.21 50.35 32.82 73.44 (OOM) (OOM) (OOM) (OOM) (OOM) (OOM) 10.5
FSGNN 33.96 71.17 60.34 74.28 42.74 82.61 60.97 (OOM) (OOM) (OOM) 7.3

ACM 34.79 63.68 50.96 74.10 43.22 80.64 58.65 55.05 (OOM) (OOM) 8.1
GloGNN++ 34.16 69.12 24.21 79.43 53.70 82.67 64.14 70.82 (OOM) (OOM) 6.0

LD2 33.35 61.87 51.22 73.24 49.53 80.45 63.97 72.66 54.52 49.19 3.9

D Extended Experiments under Heterophily

D.1 Efficacy Results

To supplement the main results shown in Table 2, we conduct extensive experiments on a total number
of 14 heterophilous datasets, covering 7 minibatch models and 13 full-batch models. We produce all
the experiments by our own to ensure the dataset updates and comparable efficiency performance.

Results regarding prediction accuracy are shown in Tables 6 and 7 for minibatch and full-batch
models, respectively. We also include a rank of each model calculated by the average ranking on
these 10 datasets. Models without final results due to exceeding running time or memory are regarded
as 0% accuracy on the specific dataset when computing the rankings.

Our observations and conclusions in Section 4 still hold, that the LD2 model achieves comparable or
better results on most of the datasets, with the best average ranking for both minibatch and full-batch
training. It is also the only model that succeeds in full-batch training on graph wiki under the 24GB

GPU memory constraint.

However, we also note that, on certain datasets such as chameleon, squirrel, and genius, the testing
performance of LD2 full-batch learning is lower than those in minibatch training. We deduce the
reason may root in suboptimal convergence for the model, where full-batch training may mix the
gradient of heterophilous nodes and fail to discover certain sets of minority node groups which are
beneficial for model prediction. Instead, smaller batches of samples are able to guide the model to
the better global optimum.

In summary, the evaluation emphasizes the need of minibatch training for scaling GNNs to large-scale
graphs to prevent prohibited overhead. We believe LD2 provides an effective and practical solution to
this scenario.
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Table 8: Efficiency evaluation of minibatch LD2 and baselines on heterophilous datasets. “Pre.”,
“Train”, and “Infer” respectively refer to precomputation, training, and inference time (s). “Avg” is the
average training time per epoch (ms) with a total number “#” of epochs before convergence. “RAM”
and “GPU” respectively refer to peak RAM and GPU memory (GB). “Param.” and “Size” are the
number of trainable model parameters (M) and estimated memory size (MB), respectively.

Model Dataset Learn Infer # Avg RAM GPU Param. Size Dataset Learn Infer # Avg RAM GPU Param. Size

MLP

actor

1.78 0.004 236 7.56 4.89 0.06 1.01 3.86

chameleon

1.38 0.004 224 6.18 4.88 0.06 1.72 6.58
PPRGo 0.29+1.02 0.026 106 9.59 5.86 0.85 0.31 1.17 0.41+3.23 0.024 234 13.81 6.90 3.17 0.66 2.53

SGC 0.02+0.52 0.010 94 5.49 5.08 0.04 0.24 0.92 0.03+0.57 0.001 154 3.72 5.08 0.04 0.60 2.28
GCNJK-GS 9.07 0.013 115 78.85 4.96 0.50 1.28 4.89 9.61 0.011 119 80.76 4.95 0.44 1.99 7.61
MixHop-GS 29.06 0.010 200 145.30 5.13 0.71 3.82 14.61 35.37 0.040 113 313.01 6.20 1.49 5.96 22.77

LINKX 0.78 0.006 144 5.44 4.89 0.07 2.32 8.84 1.10 0.005 192 5.74 4.88 0.04 1.31 5.00
LD2 0.42+0.90 0.008 54 16.58 5.19 0.10 1.36 5.21 1.51+0.79 0.002 87 9.12 5.16 0.13 2.75 10.48
MLP

squirrel

2.01 0.010 260 7.73 4.99 0.05 1.60 6.12

penn94

3.47 0.040 133 26.09 5.86 0.64 2.99 11.44
PPRGo 0.40+7.01 0.040 291 24.09 8.34 4.33 0.60 2.29 2.56+24.70 0.470 147 168.41 56.53 18.73 1.23 4.70

SGC 0.21+1.07 0.010 236 4.53 5.10 0.06 0.54 2.05 0.75+2.99 0.010 93 32.15 5.87 0.22 1.23 4.71
GCNJK-GS 35.52 0.000 241 147.39 5.10 4.89 1.34 5.11 48.82 0.040 141 346.24 6.30 4.62 2.73 10.42
MixHop-GS 29.06 0.010 200 145.30 5.13 0.71 7.96 30.42 35.37 0.040 113 313.01 6.20 1.49 7.41 28.27

LINKX 2.23 0.006 234 9.51 3.00 0.07 2.00 7.63 2.67 0.040 119 22.50 6.17 0.71 5.98 22.82
LD2 3.87+0.66 0.001 122 5.41 5.06 0.05 0.44 1.70 27.19+1.11 0.010 92 12.11 8.57 1.07 11.71 44.67
MLP

roman-empire

1.04 0.004 212 4.92 5.16 0.07 0.43 1.64

minesweeper

0.73 0.002 188 3.90 5.13 0.03 0.27 1.04
PPRGo 0.40+4.42 0.044 461 9.60 5.82 1.57 0.08 0.31 0.53+0.31 0.009 52 5.90 5.20 1.77 0.00 0.01

SGC 1.17 0.002 119 9.80 5.09 0.06 0.08 0.32 0.31 0.001 65 4.80 5.05 0.04 0.00 0.01
GCNJK-GS 9.29 0.009 111 0.08 5.00 0.91 0.71 2.71 7.83 0.007 131 0.06 4.86 0.86 0.53 2.05
MixHop-GS 25.02 0.011 229 0.43 4.97 1.95 2.91 11.14 7.52 0.007 107 0.07 4.86 1.23 2.39 9.13

LINKX 0.81 0.006 152 0.01 4.90 0.19 6.01 22.94 0.71 0.004 120 0.01 4.86 0.07 2.69 10.28
LD2 0.07+2.07 0.002 157 13.20 5.22 0.27 0.70 2.67 0.02+0.69 0.002 68 10.20 5.06 0.25 1.35 5.17
MLP

amazon-ratings

4.13 0.005 500 8.25 5.20 0.10 0.42 1.62

tolokers

2.51 0.011 221 11.34 5.23 0.05 0.27 1.04
PPRGo 1.11+9.81 0.038 500 19.60 6.81 3.29 0.08 0.30 0.91+0.34 0.050 52 6.50 5.24 1.43 0.00 0.01

SGC 1.87 0.002 191 9.83 5.08 0.06 0.08 0.30 0.65 0.001 121 5.47 5.05 0.03 0.00 0.02
GCNJK-GS 31.04 0.010 261 0.12 5.00 1.98 0.69 2.64 39.54 0.008 115 0.34 5.05 20.13 0.54 2.05
MixHop-GS 36.35 0.010 323 0.11 4.99 1.35 2.85 10.90 13.64 0.007 118 0.12 5.03 1.31 2.39 9.15

LINKX 2.34 0.013 253 0.01 4.91 0.19 6.48 24.72 3.41 0.061 128 0.03 4.96 0.09 3.14 12.00
LD2 0.32+1.35 0.003 100 13.46 5.22 0.47 2.01 7.67 0.07+1.16 0.003 111 10.44 5.07 0.31 1.47 5.60
MLP

arxiv-year

5.74 0.011 420 8.45 5.11 0.61 0.60 2.29

genius

7.99 0.020 128 62.42 4.99 2.01 0.54 2.06
PPRGo 9.12+59.67 0.290 294 202.96 13.43 4.26 0.03 0.13 13.38+25.61 0.200 146 175.81 6.02 1.40 0.07 0.26

SGC 1.82+6.90 0.010 305 22.60 5.15 0.04 0.03 0.13 0.05+18.16 0.010 256 70.94 5.12 0.10 0.00 0.02
GCNJK-GS 81.15 0.050 283 286.75 5.40 2.83 0.87 3.32 13.69 0.030 224 61.12 5.14 13.04 0.80 3.07
MixHop-GS 64.74 0.015 311 208.17 5.45 6.01 4.95 18.93 13.53 0.010 163 83.01 5.16 8.96 2.40 9.16

LINKX 5.42 0.090 261 20.80 5.36 2.34 87.30 333.01 7.07 0.073 117 60.30 5.96 5.57 216.52 825.97
LD2 2.83+5.60 0.010 74 76.01 7.98 0.56 1.71 6.52 0.79+29.00 0.020 168 172.28 5.38 0.45 0.36 1.36
MLP

twitch-gamers

6.36 0.020 383 16.61 5.08 0.61 0.53 2.05

pokec

47.86 0.110 408 117.30 6.24 13.77 0.56 2.16
PPRGo 10.46+15.88 0.410 145 109.52 6.03 9.64 0.00 0.01 121.95+56.11 2.690 128 439.49 29.03 3.82 0.02 0.07

SGC 0.09+0.74 0.010 84 8.81 5.01 0.28 0.00 0.01 1.05+8.08 0.010 117 68.87 5.47 0.28 0.02 0.07
GCNJK-GS 71.48 0.022 471 151.77 5.36 7.33 0.53 2.05 27.33 0.090 451 60.60 6.82 9.03 0.56 2.16
MixHop-GS 52.12 0.010 475 109.73 5.35 1.49 2.39 9.13 71.35 0.030 469 152.13 6.81 12.91 4.84 18.50

LINKX 5.39 0.098 113 47.70 4.38 1.23 43.17 164.69 24.31 0.314 130 187.60 7.59 15.67 418.28 1595.61
LD2 0.85+1.96 0.010 99 19.80 5.43 1.44 1.48 5.66 17.95+6.18 0.010 108 57.05 10.67 3.82 1.50 5.72
MLP

snap-patents

27.39 0.280 141 194.26 9.60 9.33 0.41 1.55

wiki

133.55 0.620 375 356.13 16.75 18.15 0.84 3.21
PPRGo (>12h) (>12h)

SGC 4.94+23.54 0.010 396 59.49 12.18 0.42 0.07 0.27 12.66+7.98 0.010 200 39.83 16.25 0.52 0.16 0.60
GCNJK-GS 19.02 0.232 323 58.87 9.06 9.21 0.41 1.56 95.52 0.690 423 225.82 23.25 16.36 1.11 4.24
MixHop-GS 45.23 0.159 387 116.89 9.09 19.58 2.80 10.72 84.22 0.230 422 199.57 23.26 16.28 3.31 12.66

LINKX 39.80 0.220 205 194.50 17.53 21.53 701.14 2674.63 233.01 1.730 259 899.65 24.57 21.57 453.66 1730.57
LD2 31.32+6.96 0.020 68 102.35 35.07 3.96 0.63 2.40 28.12+6.50 0.010 90 71.96 35.45 4.47 2.61 9.97
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Table 9: Efficiency evaluation of full-batch LD2 and baselines on heterophilous datasets.

Model Dataset Learn Infer # Avg RAM GPU Param. Size Dataset Learn Infer # Avg RAM GPU Param. Size

APPNP

actor

1.13 0.001 166 6.79 4.86 0.08 0.24 0.92

chameleon

1.04 0.001 158 6.60 4.86 0.07 0.60 2.28
SGC 0.48 0.001 194 2.49 4.87 0.03 0.00 0.02 0.61 0.001 282 2.15 4.86 0.03 0.01 0.04
GCN 2.98 0.005 139 21.42 4.86 0.07 0.06 0.23 2.39 0.005 111 21.52 4.86 0.06 0.15 0.57

GCNII 5.37 0.006 122 44.02 4.86 0.21 0.13 0.49 17.99 0.005 446 40.34 4.86 0.12 0.22 0.83
GPRGNN 1.96 0.003 121 16.21 4.86 0.08 0.24 0.92 5.22 0.003 331 15.78 4.86 0.07 0.60 2.28
GCNJK 1.92 0.001 243 7.90 4.87 0.34 1.01 3.87 1.53 0.002 164 9.33 4.86 0.43 1.73 6.59
MixHop 1.62 0.001 165 9.82 4.87 0.36 1.32 5.05 2.84 0.001 289 9.82 4.87 0.18 2.39 9.14
LINKX 0.63 0.000 113 5.56 4.87 0.15 2.32 8.84 0.81 0.000 173 4.70 4.86 0.07 1.31 5.00
GGCN 21.71 0.025 112 193.80 5.12 0.42 0.48 1.83 50.82 0.053 121 420.00 5.12 0.50 1.19 4.55
FSGNN 0.16+2.55 0.002 178 14.30 5.14 0.51 0.54 2.06 0.13+6.72 0.003 500 13.43 5.12 0.43 1.34 5.12

ACM 1.84 0.001 114 16.20 5.13 0.15 0.72 2.75 3.44 0.001 231 14.90 5.12 0.11 1.79 6.83
GloGNN++ 10.77 0.002 501 21.50 5.15 0.12 0.55 4.20 7.45 0.003 272 27.30 5.12 0.07 0.30 2.28

LD2 0.42+0.28 0.001 60 4.73 5.16 0.22 1.36 5.21 1.51+0.41 0.001 98 4.33 5.12 0.17 2.75 10.48
APPNP

squirrel

1.24 0.001 232 5.34 4.88 0.10 0.54 2.05

penn94

1.23 0.002 118 10.39 5.61 0.98 1.23 4.71
SGC 0.62 0.001 286 2.16 4.88 0.10 0.01 0.04 0.95 0.001 195 4.85 5.60 0.92 0.01 0.04
GCN 3.49 0.005 155 22.54 4.90 0.28 0.13 0.51 8.06 0.007 254 31.74 5.60 1.53 0.31 1.18

GCNII 13.72 0.005 348 39.44 4.88 0.21 0.20 0.78 16.13 0.006 384 42.00 5.60 2.41 0.38 1.44
GPRGNN 2.76 0.003 168 16.43 4.89 0.10 0.54 2.05 3.73 0.005 148 25.17 5.61 0.99 1.23 4.71
GCNJK 8.03 0.004 369 21.77 4.89 2.41 1.61 6.13 14.80 0.019 184 80.45 5.61 9.07 3.00 11.44
MixHop 5.10 0.001 213 23.94 4.91 0.57 5.60 21.39 5.31 0.001 342 15.52 5.62 2.43 4.30 16.40
LINKX 0.82 0.000 155 5.28 4.89 0.17 2.00 7.63 6.26 0.001 110 56.87 5.64 1.34 12.00 45.77
GGCN 379.63 0.444 119 3190.20 5.18 2.77 1.07 4.09 1431.42 1.540 111 12895.70 5.95 11.42 2.47 9.41
FSGNN 0.17+5.39 0.002 500 10.80 5.21 0.81 1.21 4.60 2.31+16.41 0.054 177 92.27 7.84 13.55 2.77 10.58

ACM 8.97 0.002 477 18.80 5.19 0.20 1.61 6.14 10.89 0.009 173 62.90 5.97 2.01 3.70 14.11
GloGNN++ 3.02 0.003 105 28.50 5.17 0.17 0.47 3.59 118.13 0.172 142 826.10 6.04 3.43 24.00 183.07

LD2 3.87+0.43 0.001 99 4.37 5.23 0.42 5.77 22.03 27.19+0.40 0.001 87 4.60 8.04 3.72 11.45 43.66
APPNP

arxiv-year

5.15 0.001 500 10.30 4.94 0.74 0.03 0.13

genius

3.32 0.002 250 13.29 4.89 1.78 0.00 0.02
SGC 0.59 0.001 210 2.80 4.94 0.27 0.00 0.00 0.31 0.001 128 2.45 4.90 0.21 0.00 0.00
GCN 15.74 0.006 500 31.47 4.94 1.23 0.01 0.03 7.00 0.007 215 32.56 4.89 1.07 0.00 0.00

GCNII 33.46 0.006 488 68.56 4.96 3.27 0.08 0.30 2.69 0.002 103 26.10 4.89 3.87 0.02 0.07
GPRGNN 11.19 0.004 500 22.38 4.94 0.82 0.03 0.13 10.14 0.006 324 31.29 4.89 1.78 0.00 0.02
GCNJK 39.59 0.019 500 79.17 4.94 8.49 0.60 2.30 39.59 0.019 500 79.17 4.94 8.49 0.60 2.30
MixHop 8.18 0.001 499 16.39 4.94 6.28 0.70 2.70 3.55 0.001 337 10.53 4.88 7.67 0.16 0.60
LINKX 9.21 0.001 122 75.52 5.10 2.01 43.52 166.01 12.16 0.001 103 118.07 5.29 4.58 108.13 412.49
GGCN (OOM) (OOM)
FSGNN 0.17+47.74 0.064 441 108.90 5.39 3.26 0.08 0.29 0.08+60.62 0.062 469 129.33 5.19 6.16 0.01 0.03

ACM 49.13 0.011 500 98.30 6.22 1.69 0.10 0.39 84.27 0.031 400 210.70 5.25 3.53 0.01 0.04
GloGNN++ 106.30 0.109 116 916.40 5.88 6.98 87.04 664.03 306.54 0.214 148 2071.20 6.79 14.67 216.26 1649.95

LD2 2.83+0.91 0.001 194 4.77 5.55 4.29 1.71 6.52 0.79+0.90 0.002 133 6.77 5.23 10.06 2.16 8.24
APPNP

twitch-gamers

4.76 0.001 500 9.53 4.97 1.03 0.00 0.01

pokec

19.91 0.009 500 39.82 5.74 7.44 0.02 0.07
SGC 0.65 0.001 126 5.12 4.98 0.99 0.00 0.00 7.81 0.004 500 15.62 5.74 3.74 0.00 0.00
GCN 7.95 0.003 500 15.90 4.98 3.01 0.00 0.00 27.55 0.013 500 55.09 5.74 8.20 0.00 0.01

GCNII 23.10 0.006 234 98.74 4.99 3.45 0.07 0.27 84.30 0.005 500 168.60 5.76 16.97 0.02 0.08
GPRGNN 11.28 0.004 500 22.57 4.97 1.03 0.00 0.01 42.23 0.020 500 84.46 5.74 7.44 0.02 0.07
GCNJK 24.59 0.011 500 49.18 5.01 10.64 0.02 0.07 28.40 0.013 500 56.80 5.74 10.86 0.00 0.01
MixHop 6.10 0.001 499 12.21 4.97 3.85 0.15 0.60 11.46 0.004 499 22.97 5.74 17.76 0.05 0.20
LINKX 30.27 0.002 108 280.25 5.13 2.71 43.17 164.69 140.68 0.009 122 1153.10 7.29 19.57 418.15 1595.10
GGCN (OOM) (OOM)
FSGNN 0.19+45.55 0.118 500 91.10 5.53 2.77 0.01 0.02 (OOM)

ACM 26.01 0.038 104 250.10 6.28 2.06 0.01 0.03 124.71 0.145 111 1123.50 7.98 16.47 0.05 0.20
GloGNN++ 156.76 0.215 114 1375.00 5.87 7.19 86.34 658.74 200.56 0.214 140 1422.40 7.56 18.98 209.02 1594.73

LD2 0.85+0.81 0.001 145 5.57 5.25 3.99 1.48 5.66 17.95+0.99 0.001 274 3.60 7.23 8.06 0.05 0.18
APPNP

snap-patents

33.84 0.016 500 67.68 7.99 14.19 0.07 0.27

wiki

(OOM)
SGC 2.75 0.004 145 18.95 7.97 5.16 0.00 0.01 (OOM)
GCN 25.66 0.012 500 51.32 8.00 8.94 0.01 0.03 (OOM)

GCNII (OOM) (OOM)
GPRGNN (OOM) (OOM)
GCNJK 26.41 0.012 500 52.81 7.97 12.60 0.01 0.04 (OOM)
MixHop 8.36 0.003 499 16.75 7.97 20.79 0.06 0.21 (OOM)
LINKX 51.31 0.006 156 328.93 8.52 11.41 175.26 668.56 (OOM)
GGCN (OOM) (OOM)
FSGNN (OOM) (OOM)

ACM (OOM) (OOM)
GloGNN++ (OOM) (OOM)

LD2 31.32+1.80 0.001 172 3.67 24.14 16.80 0.08 0.29 28.12+0.99 0.001 253 3.90 33.82 19.91 0.16 0.63
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D.2 Efficiency Results

We then present the corresponding results on efficiency metrics for the minibatch and full-batch
experiments in Tables 8 and 9, respectively.

Beside the time and memory metrics used in Section 4, we also include a wide range of efficiency
measurements, presenting the model performance from different perspectives. To study the training
procedure, we further record the convergence epoch number and average training epoch time. We
also estimate the size of learnable parameters as well as the overall model size including parameters
and buffer. These metrics are useful in explaining the GPU memory footprint occupied by the model
architecture.

Summarized from the results, we again highlight the efficiency and scalability of LD2 including fast
training and inference and low GPU memory usage. In particular, for full-batch training on wiki, the
model manages to finish in 1 second and 20GB of GPU memory, which is the only model to achieve
this without the out-of-memory error.

By comparing minibatch and full-batch training, it can be inferred that the time efficiency of LD2 is
even superior for full-batch settings, reaching up to 200⇥ acceleration than previous models (pokec,
GloGNN++). Its inference speed is also fast, mostly within 1ms. However, its memory overhead
relatively increase while the model size being constant. This is the natural consequence of full-batch
execution that loads all node in the GPU device, hence demands more space for representation and
loses the superiority of O(nb) in memory complexity.

For other baselines, we notice LINKX and GloGNN++, both utilizing full-graph feature as input,
exhibit significantly large model sizes. On graphs such as genius and pokec, they even demand up
to 2GB solely for storing model weight parameters. The expanding model size may account for a
series of scalability issues on large graphs, including slower convergence and longer forward time.
Other efficacy-oriented advanced models, such as ACM and GGCN, are also less efficient due to the
complicated calculations in training epochs, while compact designs such as GCNJK and MixHop are
more scalable, experiencing less OOM errors. For non-heterophilous models, the only architecture of
comparable efficiency performance to LD2 is SGC, demonstrating the benefits of pre-propagation
decoupling. Post-propagation approaches APPNP and GPRGNN show limited scalability, which
aligns our analysis in Appendix B.

E Extended Experiments under Homophily

E.1 Modification for Homophily

As analyzed in Section 3, the channel embeddings proposed by our work is specifically designed for
graphs under heterophily, hence filtering out homophilous information. To enhance expressiveness
when migrating to homophilous graphs, LD2 can be modified with different channels to fit different
graph patterns. For a preliminary attempt, we additionally consider the following channels as the
model input when training LD2 under homophily:

• The 1-hop adjacency spectral embedding: PA,1 = argminP2Rn⇥F kA � PP
T
k
2
F

;

• The constant 1-hop adjacency propagation with self-loops PX,L =
1

LP,L

PLP,L

l=1 Ã
l
X;

• The constant 1-hop adjacency propagation without self-loops PX,L0 =
1

L
P,L0

PL
P,L0

l=1 Ā
l
X;

• The raw node attributes PX,0 = X .

E.2 Efficacy Results

We also include experiments on 8 large-scale homophilous datasets, as the evaluation of the generality
of LD2. Similarly, the accuracy of minibatch and full-batch models are in Tables 10 and 11,
respectively. Note that the implementation of [26] easily exceeds GPU memory when performing
multilabel predictions, causing a series of model triggering OOM errors on protein and yelp.

Results in Tables 10 and 11 show that by amending homophilous channels to gather low-frequency
information, LD2 is able to achieve comparable performance on all datasets. Its minibatch perfor-
mance is generally better than both homophilous and non-homophilous competitors. For large-scale
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Table 10: Average test accuracy (%) of minibatch LD2 and baselines on 7 homophilous datasets.
“OOM” means the model occurs out of memory error with applicable hyperparameters.

Dataset cora pubmed protein ogbn-arxiv yelp reddit amazon

MLP 73.39 87.04 32.41 57.57 42.43 63.79 70.41
PPRGo 85.85 88.88 41.24 68.00 55.49 61.49 87.92

SGC 80.86 87.83 44.67 69.44 9.29 14.88 28.77
GCNJK-GS 77.73 81.93 40.63 60.03 (OOM) 22.94 84.75
MixHop-GS 77.09 85.45 39.85 60.38 (OOM) 67.11 85.96

LINKX 87.70 85.38 87.48 72.35 (OOM) 19.56 89.85
LD2 87.66 89.19 97.18 73.48 59.14 72.99 89.54

Table 11: Average test accuracy (%) of full-batch LD2 and baselines on 5 homophilous datasets.
“OOM” means the model occurs out of memory error with applicable hyperparameters.

Dataset protein ogbn-arxiv yelp reddit amazon

APPNP 43.57 66.95 (OOM) (OOM) (OOM)
SGC 27.10 54.02 (OOM) 54.70 52.29
GCN 37.14 71.56 (OOM) (OOM) (OOM)

GCNII 19.37 70.00 (OOM) 45.21 (OOM)
GPRGNN (OOM) 72.98 (OOM) (OOM) (OOM)
GCNJK 52.95 73.38 (OOM) (OOM) (OOM)
MixHop 76.28 74.39 (OOM) 58.17 88.14
LINKX 99.78 72.37 (OOM) 13.55 89.33
ACM 53.69 67.08 (OOM) (OOM) (OOM)

GloGNN++ (OOM) 71.08 (OOM) (OOM) (OOM)
LD2 75.47 71.52 57.43 70.05 85.22

Table 12: Evaluation of minibatch LD2 and baselines on 3 homophilous datasets with fixed splits.
“OOM” means the model occurs out of memory error with applicable hyperparameters.

Dataset protein-ind yelp-ind ogbn-papers
Model Acc Learn Infer RAM Acc Learn Infer RAM Acc Learn Infer RAM

GCN-GS 89.15 97.77 2.888 8.94 65.03 799.81 30.732 55.22 (OOM)
PPRGo 48.33 7.40+33.37 0.816 6.98 26.25 6.29+130.37 18.315 9.88 (OOM)

LD2 90.87 0.48+3.86 0.270 5.20 61.63 3.21+2.90 1.908 8.64 50.37 123.15+52.60 4.690 105.32

full-batch training, LD2 is the only models that does not exceed memory limit on all datasets, again
demonstrating its scalability regardless of graph heterophily.

Specifically, we here explore the capability of LD2 on handling inductive tasks. This can be
implemented by conducting precomputation respectively on the training and inference graphs. After
that, the feature transformation model can be easily trained on the precomputed embeddings of the
training graph and then perform inductive inference based on the embeddings of the other graph.
Results are shown in Table 12. As a brief summary, LD2 achieves comparable accuracy with GCN-GS,
while PPRGo fails to adapt such settings.

E.3 Efficiency Results

We similarly explore the efficiency metrics of LD2 and 16 baselines on the homophilous graphs, with
results shown in Tables 13 and 14. Our main conclusion still hold, that LD2 exhibit great scalability
with respect to learning time and memory footprint compared to both homophilous and heterophilous
models. Its metrics on yelp and amazon explain that the success of finishing learning on these large
datasets is achieved by the compact and efficient architectural design.
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Table 13: Efficiency evaluation of minibatch LD2 and baselines on homophilous datasets.

Model Dataset Learn Infer # Avg RAM GPU Param. Size Dataset Learn Infer # Avg RAM GPU Param. Size

MLP

cora

0.68 0.003 138 4.90 5.13 0.04 1.00 3.83

pubmed

1.35 0.005 243 5.60 5.21 0.05 0.52 2.00
PPRGo 0.41+1.24 0.014 136 9.10 6.42 2.12 0.37 1.41 0.90+10.06 0.029 332 30.30 8.71 7.16 0.13 0.49

SGC 0.27 0.001 64 4.30 5.07 0.04 0.37 1.41 1.72 0.002 183 9.40 5.12 0.06 0.13 0.50
GCNJK-GS 4.82 0.008 104 0.05 4.97 0.15 1.27 4.86 10.77 0.011 113 0.10 5.05 0.98 0.79 3.02
MixHop-GS 12.16 0.008 181 0.07 4.97 0.30 4.60 17.58 40.31 0.013 336 0.12 5.09 0.97 3.15 12.04

LINKX 0.82 0.004 178 0.00 4.86 0.04 1.14 4.34 1.11 0.005 195 0.01 4.91 0.14 5.31 20.25
LD2 0.07+0.94 0.001 127 7.40 5.12 0.09 1.44 5.48 0.04+2.15 0.004 85 25.33 5.20 0.08 0.72 2.75
MLP

protein

1.33 1.845 102 13.06 5.10 13.09 0.62 2.36

ogbn-arxiv

8.08 0.024 500 16.17 5.16 0.62 0.61 2.36
PPRGo 6.10+10.70 0.799 500 21.40 5.68 1.32 0.04 0.17 8.92+147.71 0.809 426 346.47 13.65 2.73 0.11 0.41

SGC 0.08+1.69 0.000 312 5.43 5.16 0.35 0.02 0.07 1.74+1.79 0.010 220 8.10 5.21 0.38 0.04 0.17
GCNJK-GS 1.33 1.845 102 13.06 5.10 13.09 1.07 4.07 8.08 0.024 500 16.17 5.16 0.62 0.94 3.59
MixHop-GS 1.33 1.845 102 13.06 5.10 13.09 3.05 11.65 8.08 0.024 500 16.17 5.16 0.62 2.75 10.53

LINKX 4.36 1.080 500 8.71 5.10 13.27 14.75 56.28 4.37 0.067 204 21.43 5.18 1.19 43.53 166.04
LD2 0.16+2.98 0.002 403 7.39 5.24 0.64 0.36 1.38 9.07+1.81 0.002 147 12.31 5.84 3.91 1.74 6.64
MLP

reddit

50.30 0.213 500 100.59 13.06 0.91 0.86 3.29

amazon

90.22 0.258 500 180.43 13.76 6.20 0.60 2.32
PPRGo 8.56+44.16 25.500 499 51.00 18.15 2.29 0.16 0.63 74.04+2408.53 184.590 499 369.18 37.35 16.72 0.16 0.63

SGC 2.62+1.02 0.000 118 8.67 5.83 0.52 0.17 0.63 2.36+8.94 0.010 155 57.71 6.95 0.37 0.04 0.15
GCNJK-GS 50.30 0.213 500 100.59 13.06 0.91 0.24 0.92 90.22 0.258 500 180.43 13.76 6.20 0.94 3.59
MixHop-GS 50.30 0.213 500 100.59 13.06 0.91 3.49 13.33 90.22 0.258 500 180.43 13.76 6.20 2.75 10.50

LINKX 123.18 0.949 299 411.98 13.05 2.53 59.94 228.63 170.52 1.281 292 583.96 13.76 19.26 614.73 2344.99
LD2 1.98+1.23 0.002 102 11.99 7.51 3.66 2.12 8.09 45.01+8.31 0.004 121 68.70 9.14 4.54 0.87 3.32

Table 14: Efficiency evaluation of full-batch LD2 and baselines on homophilous datasets.

Model Dataset Learn Infer # Avg RAM GPU Param. Size Dataset Learn Infer # Avg RAM GPU Param. Size

APPNP

protein

4.38 0.098 500 8.76 4.98 19.72 0.04 0.17

ogbn-arxiv

4.76 0.001 500 9.51 4.96 1.78 0.04 0.17
SGC 0.34 0.051 101 3.34 4.98 17.40 0.01 0.02 1.65 0.001 500 3.30 4.97 0.53 0.01 0.02
GCN 3.34 0.121 486 6.87 4.97 19.19 0.01 0.02 18.21 0.009 478 38.09 4.97 2.12 0.01 0.04

GCNII 2.52 0.206 101 24.96 4.97 17.96 0.02 0.09 37.24 0.006 500 74.48 4.97 3.41 0.08 0.31
GPRGNN (OOM) 11.26 0.004 500 22.52 5.00 2.16 0.04 0.17
GCNJK 16.33 2.175 212 77.03 4.97 14.51 0.74 2.83 36.22 0.033 265 136.68 4.96 15.13 0.65 2.51
MixHop 5.51 0.120 499 11.05 4.98 19.08 0.96 3.66 6.77 0.001 451 15.01 4.96 6.42 0.79 3.02
LINKX 73.89 0.098 499 148.07 4.98 17.79 14.75 56.28 18.94 0.001 149 127.11 5.12 2.44 43.53 166.04
GGCN (OOM) (OOM)
ACM 89.89 0.804 500 179.80 6.14 14.71 0.13 0.51 76.28 0.019 500 152.60 6.22 1.94 0.13 0.50

GloGNN++ (OOM) 238.53 0.145 209 1141.30 5.88 7.54 87.05 664.16
LD2 0.16+0.56 0.001 180 3.17 5.09 0.27 0.10 0.36 9.07+0.38 0.001 114 3.30 5.43 0.92 0.11 0.40

APPNP

reddit

(OOM)

amazon

(OOM)
SGC 29.20 0.014 500 58.40 7.93 15.38 0.02 0.09 22.31 0.018 304 73.40 8.21 17.58 0.00 0.02
GCN (OOM) (OOM)

GCNII 198.17 0.015 500 396.35 7.93 17.09 0.04 0.15 (OOM)
GPRGNN (OOM) (OOM)
GCNJK (OOM) (OOM)
MixHop 33.66 0.015 499 67.45 7.93 18.85 1.16 4.42 38.37 0.018 499 76.89 8.21 20.98 0.03 0.12
LINKX 518.21 0.040 150 3454.72 8.15 13.71 59.94 228.64 506.61 0.043 101 5015.91 8.77 19.78 153.66 586.15
GGCN (OOM) (OOM)
ACM (OOM) (OOM)

GloGNN++ (OOM) (OOM)
LD2 1.98+0.39 0.001 118 3.27 6.79 2.13 0.14 0.54 45.01+2.02 0.001 165 4.07 9.62 7.30 0.04 0.15

F Effect of Parameters

F.1 Convergence Curve

To examine the effect of model and training settings, in Figure 5, we display the model convergence
curve, i.e. validation accuracy versus training time on heterophilous datasets and minibatch models
corresponding to Table 2. It can be obviously observed that LD2 outperforms other baseline methods
on most datasets, demonstrating more stable curve, faster convergence, and significantly shorter
overall training time. It is worth noting that the convergence of some baselines is beyond the display
scopes in Figure 5.

Among other baselines, on small graphs, LINKX is relatively fast compared to GCNJK and MixHop
which generally take more time per epoch. However, its large parameter space results in unstable
performance, and hence requires more epochs to converge. When the graph scales larger, the efficiency
of LINKX degrades due to its full-graph dependency. For simple and non-heterophilous models,
though the decoupling design benefits them for less epoch time, their accuracies are suboptimal, and
hence experience more training epochs than LD2. Particularly, the PPRGo model is so large that it
overfits on validation sets of small graphs such as squirrel.
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Figure 5: Validation accuracy convergence curves of minibatch LD2 and baseline models on 8
heterophilous datasets. Curves only represents the process of the training phase. Shaded area is the
result range of multiple runs.
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F.2 Embedding Schemes and Robustness

We conduct additional exploration on validating the effectiveness of utilizing A
2 adjacency spectral

embedding (ASE) as the LD2 embedding scheme. Experiments of other schemes are shown in
Table 15, including the shortest path distance used as spatial encodings in Graphormer SPD [59] and
node2vec embedding [60]. There are also rank-F approximations in Eq. (2) by replacing A

2 with A

and A
3, which are respectively denoted as ASE(A) and ASE(A

3
).

We compare the advantages of our proposed ASE(A
2
) with other structural embeddings such as

SPD from three aspects:

• Regarding effectiveness, as we analyzed in Section 3.2, the ASE embedding is able to
capture structural information especially on the homophilous components of the 2-hop
graph, while SPD is more specific to encode distance information of directly connected
nodes and node2vec represents local neighborhood, which are less suitable for heterophilous
graphs.

• As for memory efficiency, ASE is a low-dimensional embedding of shape n ⇥ F , where
the feature dimension F is generally much smaller than the graph scale. This implies
better scalability compared to SPD embedding which is a dense n ⇥ n matrix. Node2vec
requires additional O(nd

2
) space for storing the random walk results. As the average degree

d = m/n is at the scale of O(log n) to O(n), node2vec is less scalable especially to large
and dense graphs, which explains the OOM error on genius.

• ASE also benefits from better time efficiency in our model as described in Section 3.4, which
can be computed along with feature embeddings with a complexity linear to edge size m,
while node2vec exhibits the same O(nd

2
) complexity. The node2vec design is based on

random walks, which is known to be less efficient for time efficiency and cache locality,
which further degrades its scalability. Additionally, our ASE and other embeddings can be
efficiently computed by an end-to-end algorithm as described in Section 3.4.

We also conduct experiments to evaluate the model performance under different levels of noise and
incompleteness. The results are shown in Table 16. We mainly consider three types of noises, which
are analyzed respectively as following:

• Push threshold: We vary the threshold �P in Algorithm 1 to control the precision of
propagation. A larger �P implies less precise propagation ignoring small feature values,
while �P = 10

�5 is the original setting. It can be seen that by improving the precision,
the final learning accuracy does not change significantly. It indicates that our setting of
�P = 10

�5 is sufficient for propagation and does not affect the learning performance.

• Edge removal: We randomly remove a percentage of edges to generate an incomplete variant
of the graph. The LD2 model is then applied to learn on the incomplete graph. The removal

Table 15: Performance of LD2 with alternative adjacency embeddings on selected datasets. Par-
ticularly, PA = ASE(A

2
) indicates the proposed LD2 model with adjacency spectral embedding

denoted in Eq. (2).

PA ASE(A
2
) ASE(A) ASE(A

3
) node2vec SPD

Dataset Acc Pre. RAM Acc Pre. RAM Acc Pre. RAM Acc Pre. RAM Acc Pre. RAM

squirrel 66.87 3.87 0.64 60.95 2.47 0.47 62.26 3594.90 0.61 50.19 1620.58 4.58 54.50 323.30 0.99
penn94 75.52 27.19 0.53 74.09 1.83 0.40 74.36 306.85 0.72 73.15 24654.00 22.82 (>12h)
genius 85.31 0.79 0.60 84.68 0.63 0.58 84.56 293.28 0.62 (OOM) (>12h)

Table 16: Performance of LD2 with different noisy data on selected datasets. Particularly, �P = 10
�5

is the original LD2 model result presented in main experiments.

Noise Push Threshold �P Edge Removal Attribute Noise
Dataset 10�5 10�6 10�7 10% 20% 40% 0.5� 1� 2�

penn94 75.52 75.56 75.57 72.63 72.11 71.53 69.39 67.41 62.57
genius 85.31 85.29 85.16 84.98 84.77 84.30 81.29 81.22 81.18
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causes a negative impact on the accuracy. However, as the node attributes X are kept
unchanged under the noise, the model is still able to achieve a reasonable performance.

• Attribute noise: We apply Gaussian noise with standard deviations proportional to the devia-
tion of each feature dimension to the raw node attribute matrix X before precomputation.
This is more aggressive as the noise level is much larger than the scale of propagation
precision.Consequently, the model suffers a more significant accuracy reduction. However,
as the noise level increases, the model’s performance converges towards the performance
achieved by only learning the adjacency embedding PA. This is because the adjacency
information is unaffected under such kind of noise.

F.3 Propagation Hyperparameters: Ablation Study

We here present our investigation in hyperparameters of the LD2 design. According to Section 3,
its tunable hyperparameters include the maximal propagation hop LP and the graph adjacency
normalization coefficient a, b. The former hyperparameter affect the most distant scale of feature
embeddings and the iteration convergence of adjacency embeddings in A2Prop, while the latter is for
Ā or L̃ propagation in feature embeddings.

As listed in Table 5, we explore the range of LP in [2, 4, 6, · · · , 20] for each each embeddings per
dataset. To study the long-distance information retrieval ability of our model, we also evaluate
the effect on different embedding combinations, such as PX,L2kPX,H , PX = PX,0kPX,L2kPX,H ,
and PXkPA. These partial combinations are similarly input into the MLP for training following
Eq. (1). Comparison among different channel combinations is useful for studying the effect of each
embedding channel.

Beside the representative results on genius and pokec shown in Figure 3, we display the effect of
propagation hops LP on different embeddings on other heterophilous datasets in Figure 6. It can be
inferred that our analysis in Section 4 generally holds, while different datasets present some different
patterns. For example, the effect of the inverse embedding PX,H decreases when adding multiple
hops in graphs such as genius, pokec, penn94, and arxiv-year. However, on the small heterophilous
graph squirrel, it reaches maximum when LP = 10, indicating that non-local inter-node relationships
are beneficial in this case. We summarize our investigation that despite the pattern of specific channels
or graphs, LD2 is capable of gathering useful information from different embedding channels, and its
performance generally increases when applying more hops, demonstrating the effectiveness of our
long-distance design.

For graph adjacency normalization coefficients a, b 2 [0, 1] applied to features, we uniformly use
b = 1 � a and only tune the coefficient a for the normalized feature embeddings PX,L2 and PX,H .
We explore the choices respectively for each dataset.

Results of changing normalization are shown in Figure 7 on 9 heterophilous graphs. Different graphs
have various favors of adapting the normalization, considering the varying implicit meanings of their
features. In general, the accuracy gap is not significant for most varying parameter values. Note that
the entire LD2 model comprehensively extracts information from different inputs, we hence state that
it is relatively not sensitive to the normalization parameter value.

F.4 Precomputation Hyperparameters: Scalability Comparison

The maximal propagation hop LP and feature dimension F also affects the A2Prop precomputation
algorithmic efficiency. To study the effect, we change LP in [4, 8, 12, 16, 20] and the target dimension
F in [F/5, 2F/5, 3F/5, 4F/5, F ] to perform A2Prop computation.

Results o 6 datasets with respect to precomputation time and RAM memory are displayed in Figure 8.
As the graph and feature size scale up, the time and memory overhead of A2Prop also increase,
mostly linear to the scale of n and F , which is in consistent to our complexity analysis. Figure 8 also
implies that, when the graph scale is large, the dominant factor affecting the precomputation time is
the number of propagation hops LP , while the influence from F is relatively minor. When varying
LP and F , the RAM memory overhead of A2Prop merely changes, indicating its efficient usage.

For precision related hyperparameters in A2Prop, we commonly use relative error bound ✏ = 0.1,
norm threshold � = 1 ⇥ 10

�5, and failure probability � = 0.01.
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Figure 6: Effect of A2Prop propagation hops on the effectiveness of different adjacency and feature
embedding channels and their combinations on 4 heterophilous datasets.
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Figure 7: Effect of A2Prop adjacency normalization on the effectiveness of different feature embed-
ding channels on 9 heterophilous datasets.
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Figure 8: Effect of propagation hops and feature dimensions on A2Prop precomputation time and
memory overhead on 6 heterophilous datasets.

F.5 Directed Edges

While the discussion in the main paper are based on undirected graphs, our LD2 design can be
easily applied to directed graphs by replacing A

2 with AA
>. In our main experiments, we utilize

the graphs with directed edges for heterophilous datasets arxiv-year and snap-patents to be aligned
with [26]. Here we also evaluate the model performance compared to minibatch baselines on the
undirected version. Performance results on snap-patents are shown in Table 17.

Table 17: Average test accuracy (%) and efficiency metrics of minibatch LD2 and baselines on
snap-patents variants with directed or undirected edges.

Dataset snap-patents snap-patents
Acc. Learn Infer RAM GPU Acc. Learn Infer RAM GPU

Direction undirected directed
Nodes n 2,738,035 2,738,035
Edges m 30,869,012 16,705,984

MLP 23.03 27.39 0.28 9.60 9.33 23.03 27.39 0.28 9.60 9.33
GCNJK-GS 32.99 30.87 0.23 10.33 12.61 33.64 19.02 0.23 9.06 9.21
MixHop-GS 33.42 74.00 0.12 10.37 21.07 34.73 45.24 0.16 9.09 19.58

LINKX 49.78 74.54 0.60 11.3 19.96 52.69 39.80 0.22 10.87 21.53
LD2 (ours) 44.28 66.58+12.75 0.02 35.07 2.26 58.58 31.32+6.96 0.02 31.14 3.96
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For graph statistics, the undirected variant of graph is of the same node size n with the directed
one, but about twice the edge size m. This is because the edge list representation require to store
twice (u, v) and (v, u) for an undirected edge in order to carry out propagation. Consequently,
the time and memory overhead of most models also increase. With respect to accuracy, it can be
inferred from Table 17 that considering the edge direction is beneficial for GNN accuracy, and LD2

achieves an increment of nearly 15%. We hence conclude that edge direction is informative for
certain heterophilous graph tasks.

G Case Study of Approximate Propagation

In order to intuitively illustrate the effect of approximate propagation used in LD2, here we consider
a toy example. Figure 9 depicts a graph with 9 nodes and 10 edges. Its nodes belong to 3 classes, and
the connections are mostly heterophilous.

Figure 9: An example heterophilous graph where Hn,1 = 0.204.

We specifically focus on the inverse Laplacian propagation PX,H =
1

LP,H

PLP,H

l=1 (I + L̃)
l
X , as the

2-hop propagation is not suitable for such a small graph.

We first consider the F = 3 feature distribution with values in [�1, 0, 1] as shown in the left side
of Figure 10. Nodes inside the same class are of the same value in each feature dimension. We
then perform l = 1 to 8 times of propagation and illustrate the embedding in the figure. It can be
interpreted that the propagation is useful in assigning inverse values to neighboring nodes based
on the current ego node embedding. When the number of hops increases, the embedding gradually
converges in each feature dimension. It is intuitive in the figure that, with proper steps of propagation,
such as l = 3 or 4, it is easy to distinguish nodes in different classes, that their embeddings show
different patterns. The Laplacian propagation procedure is hence useful for classifying heterophilous
nodes in this case.

In another example in Figure 11, we investigate the one-hot style node feature, where nodes in the
same class are assigned with 1 for one feature, and 0 for others. No negative value exists in the raw
feature. In this case, the embedding produced by Laplacian propagation quickly converges. When
setting l = 3 or 4, it is difficult to distinguish class 0 and 2, since all their nodes exhibit a similar
pattern of having negative values in feature dimension F = 0, 2 and positive values in F = 1.
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Figure 10: Progression of inverse Laplacian embedding with increasing propagation hops on given
positive-negative distribution raw feature.
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The example illustrates the propagation procedure of the heterophilous filter. We intend to use the
case study to explain the difficulty of LD2 adapting to certain patterns of input features, such as
one-hot encoding. We believe this is partially the reason that LD2 with only feature embeddings
achieves suboptimal accuracy on graphs with such one-hot features including squirrel and penn94.
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Figure 11: Progression of inverse Laplacian embedding with increasing propagation hops on given
one-hot distribution raw feature.

H Discussion and Limitation

Limitation. In the main paper and supplementary experiments, we observe that LD2 exhibits varying
performance on graphs with different types of features.In Figure 6 we display the effects of these
feature embeddings when changing propagation steps, and in Appendix G we examine a toy model
attempting to explain the reason behind the varying propagations. We think that the propagation of
LD2 may be less effective for generating expressive embeddings from certain types of features.

As mentioned in Section 3.4, the complexity of our precomputation algorithm A2Prop is O(LPmF ).
We also empirically evaluate the effect of these factors on different graphs in Appendix F.4. The
evidence indicates that the efficiency bottleneck of the precomputation lies in the linear dependency
on the graph and feature size in the algorithm.

Future Work. Given these current limitations, we believe that efforts towards more robust precompu-
tation schemes and better adaptability to diverse features could further enhance the non-homophilous
model in the future. Although the A2Prop is efficient in implementation, we do recognize that there
are graph centrality algorithms and decoupled GNN precomputations reaching sub-linear complexity
[50, 53, 25]. A2Prop is potentially configurable for these enhancements. Secondly, various data
augmentation approaches are able to transfer the one-hot features to other feature distributions, for
instance, by using an embedding model or a simple MLP. Applying LD2 to propagate the augmented
embeddings is a promising way to address its limitation on feature distribution.

Broader Impact. As our work primarily focuses on theoretical contributions to improve the scalabil-
ity of graph neural networks, we do not foresee it having a direct negative social impact.
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