
LD2: Scalable Heterophilous Graph Neural Network
with Decoupled Embeddings

Ningyi Liao
Nanyang Technological University

liao0090@e.ntu.edu.sg

Siqiang Luo⇤

Nanyang Technological University
siqiang.luo@ntu.edu.sg

Xiang Li
East China Normal University
xiangli@dase.ecnu.edu.cn

Jieming Shi
Hong Kong Polytechnic University
jieming.shi@polyu.edu.hk

Abstract

Heterophilous Graph Neural Network (GNN) is a family of GNNs that special-
izes in learning graphs under heterophily, where connected nodes tend to have
different labels. Most existing heterophilous models incorporate iterative non-local
computations to capture node relationships. However, these approaches have lim-
ited application to large-scale graphs due to their high computational costs and
challenges in adopting minibatch schemes. In this work, we study the scalability
issues of heterophilous GNN and propose a scalable model, LD2, which simplifies
the learning process by decoupling graph propagation and generating expressive
embeddings prior to training. Theoretical analysis demonstrates that LD2 achieves
optimal time complexity in training, as well as a memory footprint that remains
independent of the graph scale. We conduct extensive experiments to showcase that
our model is capable of lightweight minibatch training on large-scale heterophilous
graphs, with up to 15⇥ speed improvement and efficient memory utilization, while
maintaining comparable or better performance than the baselines. Our code is
available at: https://github.com/gdmnl/LD2.

1 Introduction
Graph Neural Networks (GNNs) combine graph management techniques and neural networks to learn
from graph-structured data, and have shown remarkable performance in diverse graph processing
tasks, including node classification [1, 2], link prediction [3, 4], and community detection [5, 6].
Common GNN models rely on the principle of homophily, which assumes that connected nodes
tend to be similar to each other in terms of classes [7]. This inductive bias introduces additional
information from the graph structure and improves model performance in appropriate tasks [8].

However, this assumption does not always hold in practice. A broad range of real-world graphs
are heterophilous, where class labels of neighboring nodes usually differ from the ego node [9].
In such cases, the aggregation mechanism employed by conventional GNNs, which only passes
messages from a node to its neighbors, may mix the information from non-homophilous nodes and
cause them to be less discriminative. Consequently, the locality-based design is considered less
advantageous or even potentially harmful in these applications [10, 11]. Various solutions have been
proposed to address the heterophily problem, giving rise to a class of specialized GNNs known as
heterophilous GNNs. Common strategies to address heterophily include discovering multi-hop or
global graph relations [12, 13, 14, 15, 16, 17], and retrieving expressive node information through
enhanced network architectures [18, 19, 20, 21, 22, 23].

⇤Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

mailto:%7Bliao0090@e.ntu.edu.sg%7D
mailto:%7Bsiqiang.luo@ntu.edu.sg%7D
mailto:%7Bxiangli@dase.ecnu.edu.cn%7D
mailto:%7Bjieming.shi@polyu.edu.hk%7D
https://github.com/gdmnl/LD2

Table 1: Time and memory complexity of homophilous and non-homophilous models with respect to precom-
putation, training, and inference stages. “Batch” refers to the minibatch availability of the original model
design. Training and inference memory indicate the GPU usage for storing and updating representation and
weight matrices, while precomputation is mostly on RAM. Training and inference time complexity represent
the forward-passing computational operations on respective node sets.

Model Batch Pre. Mem. Training Mem. Inference Mem. Pre. Time Training Time Inference Time
MLP Y – O(LnbF + LF

2) O(LnbF + LF
2) – O(ILnF 2) O(LnF 2)

GCN [1] N – O(LnF + LF
2) O(LnF + LF

2) – O(ILmF + ILnF
2) O(LmF + LnF

2)
GSAINT [27] Y – O(LPLnbF + LF

2) O(LnF + LF
2) – O(ILPLnF + ILnF

2) O(LmF + LnF
2)

APPNP [28] Y O(m) O(LnbF + LF
2 + nnb) O(LnbF + LF

2 + nnb) O(m) O(ILPmF + ILnF
2) O(LPmF + LnF

2)
PPRGo [29] Y O(n/�) O(LnbF + LF

2) O(LnbF + LF
2) O(m/�) O(InF 2 + ILnF

2) O(nF 2 + LnF
2)

SGC [30] Y O(nF) O(LnbF + LF
2) O(LnbF + LF

2) O(LPmF) O(ILnF 2) O(LnF 2)

GPRGNN [17] N O(m) O(LnF + LF
2 +m) O(LnF + LF

2 +m) O(m) O(ILPmF + ILnF
2) O(LPmF + LnF

2)
GCNJK [21] N – O(LCnF + LCF

2) O(LCnF + LCF
2) – O(ILmF + ILnF

2) O(LmF + LnF
2)

MixHop [12] N – O(CLnF + CLF
2) O(CLnF + CLF

2) – O(ILPLmF + ILnF
2) O(LPLmF + LnF

2)
LINKX [26] Y – O(LCnbF + LCF

2 + nF) O(LCnbF + LCF
2 + nF) – O(ImF + ILnF

2) O(mF + LnF
2)

LD2 (ours) Y O(CnF) O(LCnbF + LCF
2) O(LCnbF + LCF

2) O(LPmF) O(ILnF 2) O(LnF 2)

Existing heterophilous GNNs are not scalable enough. Scalability has become a prominent concern
in GNN studies. The ever-increasing sizes of graph data nowadays can easily exceed the memory
limit of devices such as GPUs, rendering these models impractical for large-scale tasks [24, 25].
We observe that this issue is particularly critical in the context of heterophilous GNNs, due to an
inherent conflict that most current models have not taken into account: heterophily-oriented designs
usually rely on non-local information calculated by certain types of whole-graph operations. As the
graph structure is involved, the time and memory overhead escalates substantially with the graph
size. A recent investigation [26] reveals that all the evaluated full-graph GNNs run out of 24GB GPU
memory when applied to the million-scale graph wiki (1.77M nodes, 243M edges), while minibatch
strategies often result in performance loss. It is thus crucial to develop GNNs scalable to large graphs
while retaining the capability for heterophily.

LD2: a scalable solution via decoupling. In this work, we examine the scalability problem and
propose LD2, a scalable GNN model for heterophilous graphs with Low-Dimensional embeddings
and Long-Distance aggregation. The model highlights simplicity by decoupling graph dependency
from iterative computations and solely learning from a set of precomputed embeddings. Derived from
node attributes and graph topology, these novel embeddings are capable of aggregating node relations
of varying objectives and distances in the graph into low-dimensional features. To facilitate the
decoupled scheme, we specifically propose an algorithm to efficiently estimate all embeddings before
training, which enjoys time complexity only linear to the graph scale and a guaranteed precision
bound. After the precomputation, a simple but powerful multi-channel neural network is subsequently
employed to learn from the extracted node features. Theoretical and empirical results showcase
that the combination of embeddings effectively retrieves representations among heterophilous nodes.
On the efficiency aspect, LD2 is advantageous in its scalable design, including the straightforward
minibatch scheme, optimal training and inference times, and the superior memory utilization.

Our contribution. (1) We propose LD2 as a scalable GNN under heterophily, which removes the
reliance on iterative train-time full-graph computations. The model realizes theoretically optimized
training, highlighting time complexity that is only linear to the number of nodes O(n) and memory
overhead independent of the graph scale. To the best of our knowledge, LD2 is the first model
achieving such optimization in the context of heterophilous GNNs. (2) We design an array of feature
and topology embeddings by applying multi-hop discriminative propagation, encoding expressive
node representation within a compact size. An end-to-end precomputation algorithm is proposed for
efficient embedding calculation with a linear complexity. (3) We conduct comprehensive experiments
to evaluate the efficacy and efficiency of LD2. On large-scale datasets, our model demonstrates
3–15⇥ faster minibatch training and inference, and up to 5⇥ smaller memory footprint than state of
the art, with comparable or better accuracy. Particularly, it completes training on the wiki dataset
within 1 minute and inference in 0.1 seconds, demanding only 5GB of GPU memory.

2 Preliminary and Related Work
Graph Notation and Heterophily. In an undirected graph G = (V,E) with node set V and edge set
E, the number of nodes, number of edges, and average degree are denoted by n = |V |, m = |E|, and
d = m/n, respectively. The neighborhood of an ego node u 2 V is the set N (u) = {v|(u, v) 2 E},
and its degree d(u) = |N (u)|. The diagonal degree matrix is D = diag(d(u1), d(u2), · · · , d(un)).

2

The graph connectivity is represented by the adjacency matrix A 2 Rn⇥n. We adopt the general
graph normalization scheme [31, 32] with coefficients a, b 2 [0, 1] and Ā = D

�a
AD

�b. The
normalized adjacency matrix with self-loop edges is also frequently used, which is denoted as
Ã = (I + D)

�a
(I + A)(I + D)

�b, and the corresponding graph Laplacian matrix is L̃ = I � Ã.
Each node u 2 V is represented by an F -dimensional attribute vector X(u), which composes the
attribute matrix X 2 Rn⇥F . The graph heterophily is measured by the node homophily score [14],
which is the average proportion of the neighbors with the same class of each node.

Vanilla and Sampling-based GNNs. We summarize our analysis of the time and memory complexity
of related GNN models in Table 1. In general, a GNN recurrently computes the node representation
H

(l) in its l-th layer. For the vanilla GCN [1], the model input is the attribute matrix H
(0)

= X ,
and the layer representation is updated by H

(l+1) = �(ÃH
(l)
W

(l)), l = 0, 1, · · · , L� 1, where W
(l)

is the trainable weight matrix each layer, �(·) is the activation function, and L is the number of
layers. For simplicity we assume the feature size F to be constant in all layers. Previous research
[33, 31] points out that the operation of dominating expense in both GCN training and inference is the
graph propagation Ã · H

(l), which can be regarded as repetitive sparse-dense matrix multiplications,
resulting in a total complexity O(LmF). The overhead for feature transformation by applying W

(l)

is O(LnF
2
). These two procedures are iteratively performed for I epochs throughout training. In

terms of memory usage, GCN typically requires O(LnF + LF
2
) space to store layer-wise node

representations and weight matrices, respectively. For large-scale cases where n � F , the overhead
of dense node representations O(LnF) becomes the primary term [24].

The above analysis indicates that the scalability bottleneck of GCN lies in the time complexity of
graph propagation as well as the memory overhead of full-graph representation. There is a large scope
of GNNs attempting to address the issue by sampling techniques, which simplify the propagation by
replacing the entire graph with subgraphs in minibatches [2, 27, 33]. For example, the widely-used
GSAINT [27] incorporates LP -hop random walk sampling, reducing the in-memory representation
to O(LPLnbF), where nb is the batch size. However, it is not applicable to the inference stage.

Full-graph Heterophilous GNNs. In the context of GNNs under heterophily, a large number of
models augment the spatial graph convolution to a full-graph scheme, relying upon the complete
graph topology to compute inter-node relationships. For instance, H2GCN [13] and MixHop [12]
incorporate 2-hop propagation Ã

2
H

(l), while GeomGCN [14] and GloGNN [22] exploit hierarchical
computation on non-local connections. These high-order calculations are shown to be effective in
retrieving information beyond immediate neighbors, but come at the price of more complex propaga-
tion operations. Another common practice for non-homophilous design is altering transformation
to learn from multiple features, i.e. channels. MixHop [12] mixes its multi-hop representation as
H

(l+1) = �(H(l)
W

(l)
0 kÃH

(l)
W

(l)
1 kÃ

2
H

(l)
W

(l)
2), where (·k·) denotes matrix concatenation. GGCN

[19] and ACM [20] select frequency-based filters expressed by ÃHWl, (I� Ã)HWh, IHWi, while
GCNJK [21] records individual layer representations as channels. Denote the number of channels
as C and LC = L + C, employing multi-channel learning increases the memory budget for node
representations and weight matrices by a factor related to C or LC .

Alternatively, a line of approaches choose to apply learnable spectral filters for flexibility on non-
homophilous data, deriving specific propagation in the spectral domain for various graphs. GPRGNN
[17] generalizes the multi-hop propagation as T =

P
LP

l=0 ✓lÃ
l, which inevitably involves the entire

adjacency matrix for acquiring weight factors ✓l. BernNet [34] and ChebNetII [35] respectively
utilize order-LP Bernstein and Chebyshev polynomials with respect to L̃ to approximate their spectral
filters. These models focus relatively more on the expressiveness of graph propagation rather than the
overall GNN architectural design, usually demanding additional cost for determining spectral filters
and updating the learnable basis.

In spite of their advantageous capabilities, above full-graph designs hardly address the scalability
bottleneck in GNN propagation, which can be observed from the O(n) or O(m) terms in their com-
plexity. Recent studies also discover that heterophilous GNNs are naturally unsuitable for enforcing
scalable training via sampling-based minibatching, since their distant or full-graph information is
heavily overlooked in batches built on locality [11]. Evaluations show that simply fitting these models
to learn from induced subgraph samples causes performance degradation [26]. Therefore, we believe
these full-graph models targeting effectiveness are orthogonal to our study on scalability.

3

Decoupled GNNs. As the scalability of GNN is closely tied to the graph propagation, a promising
approach to simplify the process is decoupling it from iterative training and efficiently computing it
in advance. The representative two-stage model SGC [30] encodes graph information with X into an
embedding matrix P = Ã

LP ·X, which is then input to a Multi-Layer Perceptron H
(L) = MLP(P).

[36, 32, 25] further generalize the embedding aggregation. Such decoupled GNN is considered
optimal for training efficiency, as its time complexity O(ILnF) is identical to the simple MLP [31].

However, applying the decoupling technique to heterophilous GNNs is non-trivial due to the full-
graph relationships. To our knowledge, LINKX [26] is the only model conceptually similar to this
scheme, removing graph-related propagation during training iterations and enabling solely node-wise
minibatching. It exploits a simple architecture H

(L) = MLP(XWXkAWA), where the matrix A is
used as an input feature in learning. The major drawback of this design is that it suffers from the
O(nF) term in model size and O(mF) term in forward time, hindering its scalability to large graphs.

3 Method

In this section, we first present an overview of our LD2 model, then respectively elaborate on the
selection of the adjacency and feature embeddings. Lastly, an end-to-end scalable algorithm, namely
A2Prop, is proposed to efficiently and concurrently compute all the embeddings.

3.1 LD2: A Decoupled Heterophilous GNN

In order to achieve superior time and memory scalability for heterophilous GNNs, we employ the
concept of decoupling, which removes the dependency of graph adjacency propagation in training
iterations. The main idea of our model is first generating embeddings from raw features including
node attributes and adjacency in a precomputation stage. Then, these embeddings are taken as
inputs to learn representations by a simple neural network model. We embrace the multi-channel
architecture [37, 20] to enhance flexibility, where the input data is a list consisting of embedding
matrices [P1,P2, · · · ,PC]. Each embedding is separately processed and then merged in the network.

LD2 utilizes diverse embeddings based on pure graph adjacency and node attributes, denoted as
PA(A) and PX(X,A), respectively. Both types of embeddings can be produced by our precompu-
tation A2Prop following Algorithm 1. The initial layer of the LD2 network applies a separate linear
transformation to each embedding input, and the results are concatenated to form the representation
matrix. Lastly, an L-layer MLP is leveraged for the classification task. The high-level framework of
LD2 is depicted in Figure 1 and can be expressed as follow:

Precompute : PA,PX = A
2
Prop(A,X); Transform : H

(L)
= MLP(PAWAkPXWX). (1)

Training/Inference Complexity. Our decoupled model design enables a simple on-demand mini-
batch scheme in training and inference, that only nb rows corresponding to the batch nodes in the
embedding matrices are loaded into GPU and processed by the network transformation. For LD2

with C channels, the GPU memory footprint is therefore bounded by O(LCnbF + LCF
2). It is worth

noting that such complexity does not depend on the graph scale n or m. Consequently, the training
is freely configurable with an arbitrary GPU memory budget. Regarding computation operations,
the time complexity of forward inference through the graph is O(LnF

2
), being just linear to n. As

n

F

X

A <latexit sha1_base64="xAfGAKhKMYjyzdCP4w5VrDLnUYs=">AAACBHicbVC7TsNAEFyHVwivAGWaUywkqsimAMoARSiDRB5SbKLz5ZyccmebuzNSZKVD/AIt9HSIlv+g5Uu4PApIGGml0cyuZjVBwpnSjvNl5VZW19Y38puFre2d3b3i/kFTxakktEFiHst2gBXlLKINzTSn7URSLAJOW8HwauK3HqhULI5u9SihvsD9iIWMYG0k31OpQF4gsovxHe8WbafiTIGWiTsndrXs1Uq1R7veLX57vZikgkaacKxUx3US7WdYakY4HRe8VNEEkyHu046hERZU+dn06TE6MkoPhbE0E2k0VX9fZFgoNRKB2RRYD9SiNxH/9QKxkKzDcz9jUZJqGpFZcJhypGM0aQT1mKRE85EhmEhmfkdkgCUm2vRWMKW4ixUsk+ZJxT2tuDeuXb2EGfJQgjIcgwtnUIVrqEMDCNzDM7zAq/VkvVnv1sdsNWfNbw7hD6zPHwMpmrI=</latexit>P
A

l

PA

PX<latexit sha1_base64="xAfGAKhKMYjyzdCP4w5VrDLnUYs=">AAACBHicbVC7TsNAEFyHVwivAGWaUywkqsimAMoARSiDRB5SbKLz5ZyccmebuzNSZKVD/AIt9HSIlv+g5Uu4PApIGGml0cyuZjVBwpnSjvNl5VZW19Y38puFre2d3b3i/kFTxakktEFiHst2gBXlLKINzTSn7URSLAJOW8HwauK3HqhULI5u9SihvsD9iIWMYG0k31OpQF4gsovxHe8WbafiTIGWiTsndrXs1Uq1R7veLX57vZikgkaacKxUx3US7WdYakY4HRe8VNEEkyHu046hERZU+dn06TE6MkoPhbE0E2k0VX9fZFgoNRKB2RRYD9SiNxH/9QKxkKzDcz9jUZJqGpFZcJhypGM0aQT1mKRE85EhmEhmfkdkgCUm2vRWMKW4ixUsk+ZJxT2tuDeuXb2EGfJQgjIcgwtnUIVrqEMDCNzDM7zAq/VkvVnv1sdsNWfNbw7hD6zPHwMpmrI=</latexit>P
A

l

H(1) H(L)||

Approximate Propagation Feature Embedding Feature Transformation

σ

WX

WA

Precomputation Training/Inference

A2Prop

MLP

Figure 1: LD2 framework: decoupled precomputation and training.

u0 u1 u2 u3 u4

+ +

− + − +

2-hop 2-hop

1-hop 1-hop 1-hop 1-hop

y0=0 y1=1 y2=0 y3=1 y4=0

Inverse 1-hop Laplacian Propagation

Constant 2-hop Adjacency Propagation

PL2
(0) PL2

(2) PL2
(4)

PH
(0) PH

(1) PH
(2) PH

(3) PH
(4)

Figure 2: Propagations under heterophily.

4

the model complexity only contain essential operations of MLP-like transformation on nodes in the
graph with no additional expense, this is the optimal scale with respect to the iterative training of
GNN architectures.

3.2 Low-Dimensional Adjacency Embedding

Several studies reveal that, despite the feature information of nodes, the pure graph structure is equally
or even more important in the context of heterophilous GNNs [9, 14, 26]. Particularly, the most
informative aspects are often associated with 2-hop neighbors, i.e., “neighbors of neighbors” of ego
nodes. [13] proves that even under heterophily, the 2-hop neighborhood is expected to be homophily-
dominant. [38] also verifies that the 2-hop similarity is strongly relevant to GNN performance. We
thence intend to explicitly model such topological information.

The 2-hop relation can be described by the 2-hop adjacency matrix A
2. Note that as the sparse

matrix A has m entries, the number of entries in A
2 is at the scale of O(md), which indicates that

directly applying 2-hop graph propagation in the training stage will demand even more expensive
time and memory overhead to be scaled up. We instead propose an approximate scheme that seeks to
prevent the 2-hop adjacency from explicit processing, and retrieves a low-dimensional but expressive
embedding prior to training in the precomputation stage. In other words, we utilize the embedding
to resemble 2-hop information which can be directly learned by the neural network transformation.
Denote the F -dimensional embedding matrix as PA 2 Rn⇥F . We aim to minimize its approximation
error in Frobenius norm (k · kF):

PA = argmin

P2Rn⇥F

kA
2

� PP
T
k
2
F
. (2)

The solution to Eq. (2) can be derived from the eigendecomposition of the symmetric matrix A
2,

that P
⇤
A
= U |⇤|

1/2, where ⇤ = diag(�1, · · · ,�F) is the diagonal matrix with top-F eigenvalues
�1 � �2 � · · · � �F , and U 2 Rn⇥F is the matrix consisting of corresponding orthogonal
eigenvectors. The eigenvalues are also called frequencies of the graph, and large eigenvalues of the
adjacency matrix refer to low-frequency signals in the graph spectrum.

Spectral Analysis. Let A2(u, v) be the entry (u, v) of matrix A
2. Its diagonal degree matrix is

D2 = diag(d2(u1), d2(u2), · · · , d2(un)), where d2(u) =
P

v2V
A2(u, v). Denote PA(u) as the

F -dimensional adjacency embedding vector of node u. We show that the embedding matrix P
⇤
A

defined by Eq. (2) is also the solution to the following optimization problem:

PA = argmin

P2Rn⇥F ,P>D2P=⇤

X

u,v2V

A2(u, v)kP (u) � P (v)k
2
. (3)

This is because
P

u,v
A2(u, v)kP (u)� P (v)k2 = 2

P
u
d2(u)kP (u)k2 � 2

P
u,v

A2(u, v)P (u)P (v) =

2 tr(P>
D2P � P

>
A

2
P). As P

>
D2P is fixed, finding the minimum of Eq. (3) is equivalent

to optimizing maxP P
>

A
2
P , of which the solution is exactly P

⇤
A

according to the property of
eigenvectors. Equation (3) implies that, 2-hop neighbors (u, v), t 2 N (u), v 2 N (t) in the graph
will share similar embeddings PA(u) and PA(v).

In fact, the low-dimensional embedding P
⇤
A

can be interpreted as the adjacency spectral embedding
of the 2-hop graph A

2. Graph spectral embedding is a technique concerning the low-frequency
spectrum of a graph, and is employed in tasks such as graph clustering [39]. As PA corresponds
to the dominant eigenvalues of A

2, the embedding provides an approximate representation of
the 2-hop neighborhoods based on the overall graph topology. Alternatively, if we regard the
adjacency information solely as features input into the network like LINKX, PA correlates to the
uncentered principal components of matrix A. Therefore, learning a linear transformation PAWA

with weight matrix WA 2 RF⇥F in LD2 is the same expressive as the rank-F approximation of
AWA0 in LINKX, where WA0 2 Rn⇥F , but with a less computational cost independent to the
graph scale. Compared to other works attempting to generate graph embeddings based on graph
geometric or similarity measures [40, 41, 14, 16, 19, 42], our approach offers the advantages of lower
dimensionality and efficient calculation as demonstrated in Section 3.4.

3.3 Long-Distance Feature Embedding

Decoupling the node features through approximate propagation has been extensively studied in
regular GNNs with various schemes [28, 30, 36, 29, 43, 32, 44]. Nonetheless, these approaches are

5

based on the homophily assumption and focus on local neighborhoods. In order to apply decoupled
propagation to heterophilous graphs and exploit the multi-channel ability of our model, we formulate
the general form of approximate propagation as the weighted sum of powers of a propagation matrix
applied to the input feature, i.e., PX =

P
LP

l=1 ✓lT
l
X . Examples of propagation matrix T include Ã

and L̃, which respectively correspond to aggregative and discriminative operations.

LD2 utilizes the following channels jointly as input embeddings: (1) inverse summation of 1-hop
improved Laplacian propagations PX,H = 1

LP,H

PLP,H

l=1 (I+ L̃)lX, (✓l = 1, T = I+ L̃); (2) constant

summation of 2-hop adjacency propagations PX,L2 = 1
LP,L2

PLP,L2

l=1 Ā
2l
X, (✓l = 1, T = Ā

2); (3)
raw node attributes PX,0 = X.

Intuitively, the first two channels perform distinct topology-based propagations on node feature X ,
and employ inverse or constant summation to aggregate multi-hop information, in contrast to the local
decaying summation (✓l ! 0 when l ! 1) commonly adopted in homophilous GNNs. Hence, such
summations are suitable for retrieving long-range information under heterophily. The raw matrix
X is also directly used as one input channel to depict node identity, which is a ubiquitous practice
known as the skip connection or all-pass filter in heterophilous GNNs [12, 45, 20, 22].

Illustrated in Figure 2, the inverse embedding PX,H is based on the intuition that, as neighbors
tend to be different from the ego node, their features are also dissimilar. Hence in propagation, the
embedding of the ego node should contain the previous embedding of itself, as well as the inverse
of adjacent embeddings, which is exactly the interpretation of propagating node features by graph
Laplacian matrix L̃ = I � Ã, while an additional identity matrix is applied to balance the embedding
distribution. The second embedding PX,L2 performs a 2-hop propagation through the graph and
aggregates the results of multi-scale neighbors. It echoes the earlier statement on the importance
of 2-hop adjacency from the feature aspect. Note that for PX,L2, the employed adjacency matrix
is Ā which escapes self-loops, since it is shown to be relatively favorable for capturing non-local
homophily in multi-hop propagations compared with Ã [13, 23].

Spectral Analysis. Assume that kX(u)k = kP (u)k = 1. We first examine the following regular-
ization problem optimizing the embedding P based on input X for homophilous graphs [43]:

PX,L = argmin

kP (u)k=1,8u2V

X

u,v2V

A(u, v)kP (u)/d
a
(u) � P (v)/d

b
(v)k

2
+ kP � Xk

2
F
. (4)

Differentiating the objective function with respect to P leads to (I � Ã)P � X = 0. Therefore the
closed-form solution is P

⇤
X,L = (I � Ã)�1

X =
P1

l=0 Ã
l
X. In practical implementation, a limited

LP,L-hop summation is used instead due to the over-smoothing issue that the infinite form converges
to identical node-wise embeddings. This Markov diffusion kernel PX,L = 1

LP,L

PLP,L

l=0 Ã
l
X is inves-

tigated in S2GC [43] as an approach for balancing locality and multi-hop propagation, functioning as
a low-pass filter to the signal X but also preserves high frequency. Its interpretation can be observed
from Eq. (4), that it simultaneously minimizes the embedding difference of neighboring nodes as
well as the approximation closeness to the input feature X .

To obtain the channel PX,L2 used in LD2, we introduce the low-frequency regularization preferably to
2-hop adjacency in the graph, as 1-hop neighbors exhibit heterophily. Therefore, replacing Ã(u, v) in
Eq. (4) with Ā2(u, v) yields our constant 2-hop embedding PX,L2. It shares similar spectral properties
with S2GC for acting as a low-pass filter in 2-hop neighborhoods, while maintaining certain long-
distance knowledge thanks to the multi-scale aggregation. The other channel in feature embedding, i.e.
the Laplacian propagation, can be derived as PX,H = (I + L̃)(I � Ã)�1

X = (I + L̃)PX,L. Based on
the above analysis, the embedding PX,L contains multi-hop neighborhood information, while (I+L̃)

can be seen as the improved Laplacian operator extracting the high-frequency components. The
embedding PX,H thus serves as a high-pass filter focusing on discriminative structures in a non-local
manner. In terms of spatial domain interpretation, such high-frequency information corresponds to
the fine-grained embedding differences between two nodes [18, 46]. It is noticeable that these three
channels PX,L2,PX,H ,PX,0 respectively represent low-pass, high-pass, and all-pass propagations
through the graph while addressing heterophily. Combining them as inputs to the neural network
benefits the model performance with expressive information at various distances including identity,
local, and global perspectives.

6

3.4 Approximate Adjacency Propagation Precomputation

Conventionally, calculating the graph propagation Ã·P for an arbitrary feature matrix P is conducted
by the sparse-dense matrix multiplication. However, such an approach does not recognize the property
of the adjacency matrix Ã, that it can be represented by the adjacency list of nodes, and non-zero
values in its data are solely determined by node degrees. Furthermore, since the propagation result is
subsequently processed by the neural network, it is not necessary to be precise as the model is robust
to handle noisy data [46, 47]. We first define the precision bound for approximate embedding:
Definition 3.1 (Approximate Vector Embedding). Given a relative error bound 0 < ✏ < 1, a norm

threshold � > 0, and a failure probability 0 < � < 1, the estimation P̂ (u) for an arbitrary embedding

vector P (u) should satisfy that, for each u 2 V with kP (u)k > �, kP (u) � P̂ (u)k ✏ · kP (u)k

with probability at least 1 � �.

Graph power iteration algorithm is the variant of power iteration particularly applied for calculating
powers of adjacency matrix A [48]. In essence, the algorithm can be derived by maintaining a residue

R
(l)
(u) that holds the current l-hop propagation results for each node, and iteratively updating the

next-hop residues of neighboring nodes R
(l+1)

(v), v 2 N (u) for all nodes u. For each iteration, the
reserve P̂

(l) is also added up and converges to an underestimation of P .

We propose Algorithm 1 for our specific scenario, namely Approximate Adjacency Propagation
(A2Prop). Based on power iteration, our algorithm is greatly generalized to accommodate normalized
adjacency, feature vectors for nodes, and a limited number of hops. We show that the algorithmic
output can be bounded by Definition 3.1. For LP iterations, denote the acceptable error per entry for
push as �P , the matrix-wise absolute error is kP � P̂ k1,1

P
LP

f=1

P
F

f=1

P
u2V

d(u)�P = LPmF �P .
By setting �P = ✏�/LPm, the estimation P̂ satisfies Definition 3.1.

Approximate Feature Embedding. The feature embedding formed as PX =
P

LP

l=0 ✓lT
l
X can be

computed by iteratively applying graph power iterations to the initial residue R
(0)

= X . The implicit
propagation behavior is described by matrix T . For example, for Laplacian propagation T = I + L̃

to node u, the embeddings from the previous iteration are aggregated as R
(l+1)(u) = 2R(l)(u) �P

v2N (u) R
(l)(v)/da(u)db(v) =

P
v2N (u)[{u}

↵L(u,v)
da(u)db(v)

· R
(l)(v). Here ↵T (u, v) is a propagation

factor for unifying the aggregation by T , that ↵L(u, u) = 2da+b(u),↵L(u, v) = �1, v 2 N (u). For
propagation Ã and Ā, the factor is ↵A(u, v) = 1 and ↵A(u, u) = 1, 0, respectively.

In each iteration l, the reserve is updated after propagation according to the coefficient ✓l to sum up
corresponding embeddings. Intuitively, one multiplication of Ā

2 is equivalent to two iterations of Ā

propagation. Hence for PX,L2 there is ✓l = l mod 2 = 0, 1, 0, 1, · · · under the summation scheme

Algorithm 1 A2Prop: Approximate Adjacency Propagation
Input: graph G, feature matrix X , max hop LP , normalization factor a, b,

propagation factor ↵T , summation factor ✓l, push threshold �P
Output: adjacency embedding PA, feature embedding PX

1 R
(0)
A
 N(0, 1), R(0)

X
 X

2 for l from 0 to LP � 1 do
3 R

(l+1)
A

 0, R(l+1)
X

 0

4 for all u 2 V such that kR(l)(u)k > �P do
5 for all v 2 N (u) [{u} do
6 R

(l+1)
A

(v) R
(l+1)
A

(v) + ↵A(u, v) ·R(l)
A

(u)

7 R
(l+1)
X

(v) R
(l+1)
X

(v) + ↵T (u,v)
da(v)db(u)

·R(l)
X

(u)

8 if l mod 2 = 1 and l < LP � 1 then
9 PA orthonormalize(R(l)

A
)

10 PX PX + ✓l ·R
(l)
X

11 empty R
(l)
A

,R
(l)
X

12 PA PA · |(R(LP)
A

)> · PA|1/2

13 PX PX + ✓LP
·R(LP)

X

14 return PA,PX

2 4 6 8 10 12 14 16 18 20
Max Propagation Hop

80

81

82

83

84

85

86

T
es

t
A

cc
(%

)

PX,0

PA

PX,L2

PX,H

PX,L2||PX,H

PX

PA||PX

(a) genius

2 4 6 8 10 12 14 16 18 20
Max Propagation Hop

60

65

70

75

T
es

t
A

cc
(%

)

PX,0

PA

PX,L2

PX,H

PX,L2||PX,H

PX

PA||PX

(b) pokec

Figure 3: Effect of embedding channels
and propagation hops on accuracy.

7

in Algorithm 1. Since all embeddings we consider are constant, that is, ✓l 2 {0, 1}, the reserve can
be simply increased without the rescaling terms in more general cases such as [32].

Approximate Adjacency Embedding. The adjacency embedding is represented by leading eigen-
vectors PA = U |⇤|

1/2. This eigendecomposition of A
2 can be solved by the truncated power

iteration [49]: Initialize the n⇥F residue by i.i.d. Gaussian noise R
(0)

= N(0, 1). For each iteration
l, firstly multiply the residue by A

2 as R
(l+1)

= A
2
R

(l); then, perform column-wise normalization
to the residue orthonormalize(R(l+1)

) so that its columns are orthogonal to each other and of L2
norm 1. After convergence, the matrix satisfies A

2
R

(LP)
= R

(LP)⇤ within the error bound, which
leads to the estimated output Û = R

(LP)
, P̂A = Û |⇤̂|

1/2.

Similarly, the 2-hop power iteration of PA can be merged with those for PX with a shared maximal
iteration LP , and orthonormalization is conducted every two A iterations. When the algorithm
converges with error bound �, the number of iteration follows LP = O(log(F/�)/(1� |�F+1/�F |)).
By selecting proper values for F and �, the algorithm produces satisfying results within LP iterations.

Precomputation Complexity. Since A2Prop serves as a general approximation for various adjacency-
based propagations, the computation of all feature channels can be performed simultaneously in a
single run. The memory overhead of the algorithm is mainly the residue and reserve matrices for C
embedding channels, which is O(CnF) in total. Note that A2Prop precomputation is performed in
the main memory, and benefits from a less-constrained budget compared to GPU memory.

For each A2Prop iteration, neighboring connections are accessed for at most m times. The time
complexity of Algorithm 1 can thus be bounded by O(LPmF). In addition, its loops over nodes
and features can be parallelized and vectorized to reduce execution time. Moreover, the graph
power iteration design is also amendable for further enhancements, such as reduction to sub-linear
complexity [50, 25], better memory utilization [51, 52], and precision-efficiency trade-offs [53, 54].
We leave these potential improvements on A2Prop for future work.

4 Experimental Evaluation

We implement the LD2 model and evaluate its performance from the perspectives of both efficacy
and scalability. In this section we highlight key empirical results compared to minibatch GNNs
on large-scale heterophilous graphs, while parameter settings, further experiments, and subsequent
discussions can be found in the Appendix.

4.1 Experiment Setting

Datasets. We mainly perform experiments on million-scale and above heterophilous datasets [26, 55]
for the transductive node classification task, with the largest available graph wiki (m = 243M)
included. Evaluations on more homophilous and heterophilous graphs can be found in Appendices D
and E. We leverage settings as per [26] such as the random train/test splits and the induced subgraph
testing for GSAINT-sampling models.

Baselines. We focus on GNN models applicable to minibatch training in our evaluation regarding
scalability, and hence most full-batch networks mentioned in Section 2 are excluded in the main
experiments, while more comprehensive results for both minibatch and full-batch models are in
Appendices D and E. Conventional baselines in the main experiments include MLP which only
processes node attributes without considering graph topology, as well as PPRGo [29] and SGC [30]
representing decoupled schemes for traditional graph propagation. For GNNs under non-homophily,
we investigate GCNJK-GS [21] and MixHop-GS [12], where GSAINT random walk sampling [27]
is utilized to empower the original backbone models for minibatching. LINKX is the decoupled
heterophilous GNN proposed by [26]. Simple i.i.d. node batching is adopted for decoupled networks.
Explorations on the model settings are displayed in Appendix C.

Evaluation Metrics. We uniformly use classification accuracy on the test set to measure network
effectiveness. Note that since the datasets are updated and the minibatch scheme is employed, results
may be different from their original works. In order to evaluate scalability performance, we conduct
repeated experiments and record the network training/inference time and peak memory footprint
as efficiency metrics. For precomputed methods, we consider the learning process combining both

8

Table 2: Average test accuracy (%) of minibatch LD2 and baselines on heterophilous datasets. “> 12h” means
the model requires more than 12h clock time to produce proper results. Respective results of the first and second
best performances on each dataset are marked in bold and underlined fonts.

Dataset genius tolokers arxiv-year penn94 twitch-gamers pokec snap-patents wiki
Nodes n 421,858 11,758 169,343 41,536 168,114 1,632,803 2,738,035 1,770,981
Edges m 922,864 1,038,000 1,157,799 1,362,220 6,797,557 22,301,964 13,967,949 242,507,069
F / Nc 12 / 2 10 / 2 128 / 5 4,814 / 2 7 / 2 65 / 2 269 / 5 600 / 5

MLP 82.47 ±0.06 73.38 ±0.25 37.23 ±0.31 74.41 ±0.48 61.26 ±0.19 61.81 ±0.07 23.03 ±1.48 35.64 ±0.10
PPRGo 79.81 ±0.00 78.16 ±0.00 39.35 ±0.12 58.75 ±0.31 47.19 ±2.26 50.61 ±0.04 (>12h) (>12h)

SGC 79.85 ±0.01 71.16 ±0.06 43.40 ±0.16 68.31 ±0.27 57.05 ±0.21 56.58 ±0.06 37.70 ±0.06 28.12 ±0.08
GCNJK-GS 80.65 ±0.07 74.41 ±0.73 48.26 ±0.64 65.91 ±0.16 59.91 ±0.42 59.38 ±0.21 33.64 ±0.05 42.95 ±0.39
MixHop-GS 80.63 ±0.04 77.47 ±0.40 49.26 ±0.16 75.00 ±0.37 61.80 ±0.00 64.02 ±0.02 34.73 ±0.15 45.52 ±0.11

LINKX 82.51 ±0.10 77.74 ±0.13 50.44 ±0.30 78.63 ±0.25 64.15 ±0.18 68.64 ±0.65 52.69 ±0.05 50.59 ±0.12
LD2 (ours) 85.31 ±0.06 79.76 ±0.26 50.29 ±0.11 75.52 ±0.10 64.33 ±0.19 74.93 ±0.10 58.58 ±0.34 52.91 ±0.16

Table 3: Time and memory overhead of LD2 and baselines on large-scale datasets. “Learn”, “Infer”, and “Mem.”
respectively refer to minibatch learning and inference time (s) and peak GPU memory (GB). Precomputation
time is appended when applicable. “> 12h” means the model requires more than 12h clock time to produce
proper results. Respective results of the first and second best performances among heterophilous models per
metric are marked in bold and underlined fonts.

Dataset twitch-gamers pokec snap-patents wiki
Learn Infer Mem. Learn Infer Mem. Learn Infer Mem. Learn Infer Mem.

MLP 6.36 0.02 0.61 47.86 0.11 13.77 27.39 0.28 9.33 133.55 0.62 18.15
PPRGo 10.46+15.88 0.41 9.64 121.95+56.11 2.69 3.82 (>12h) (>12h)

SGC 0.09+0.74 0.01 0.28 1.05+8.08 0.01 0.28 4.94+23.54 0.01 0.42 12.66+7.98 0.01 0.52

GCNJK-GS 71.48 0.02⇤ 7.33 27.33 0.09⇤ 9.03 19.02 0.23⇤ 9.21 95.52 0.69⇤ 16.36
MixHop-GS 52.12 0.01⇤ 1.49 71.35 0.03⇤ 12.91 45.24 0.16⇤ 19.58 84.22 0.23⇤ 16.28

LINKX 10.99 0.19 2.35 28.77 0.33 9.03 39.80 0.22 21.53 180.71 1.14 14.53
LD2 (ours) 0.85+1.96 0.01 1.44 17.95+6.18 0.01 3.82 31.32+6.96 0.02 3.96 28.12+6.50 0.01 4.47

⇤ Inference time of GSAINT sampling is less precise since they are conducted on induced subgraphs smaller than the raw graph.

precomputation and training. Evaluations are conducted on a machine with 192GB RAM, two
28-core Intel Xeon CPUs (2.2GHz), and an NVIDIA RTX A5000 GPU (24GB memory).

4.2 Performance Comparison

The main evaluations of LD2 and baselines on 8 large heterophilous datasets are presented in Tables 2
and 3 for effectiveness and efficiency metrics, respectively. As an overview, our model demonstrates
its scalability in completing training and inference with fast running speed and efficient memory
utilization, especially on large graphs. At the same time, it achieves comparable or superior prediction
accuracy against the state-of-the-art minibatch heterophilous GNNs on most datasets.

Time Efficiency. We first highlight the scalability performance of our LD2 model. Specifically,
compared to heterophilous benchmarks on the four largest graphs with million-scale data, LD2

speeds up the minibatch training process by 3–15 times, with an acceptable precomputation cost. Its
inference time is also consistently below 0.1 seconds. The outstanding efficiency of LD2 is mainly
attributed to the simple model architecture that removes graph-scale operations while ensuring rapid
convergence. In contrast, the execution speeds of MixHop and LINKX are highly susceptible to node
and edge sizes, given their design dependency on the entire input graph. The extensive parameter
space also causes them to converge slower, necessitating relatively longer training times. PPRGo
shows limited scalability due to the costly post-transformation propagation. The superiority of LD2

efficiency even holds when compared to simple methods such as MLP and SGC, indicating that the
model is favorable for incorporating extra heterophilous information with no significant additional
overhead. The empirical results affirm that LD2 exhibits optimized training and inference complexity
at the same level as simple models.

Memory Footprint. LD2 remarkably reduces run-time GPU memory consumption. As the primary
overhead only comprises the model parameters and batch representations, it enables flexible config-
uration of the model size and batch size to facilitate powerful training. Even for the largest graph

9

wiki with n = 1.77M and F = 600, the footprint remains below 5GB under our hyperparameter
settings. Other heterophilous GNNs, though adopting the minibatch scheme, experience high memory
requirements and even occasionally encounter out-of-memory errors during experiments, as their
space-intensive graph propagations are executed on the GPU. Consequently, when the graph scales
up, they can only be applied with highly constrained model capacities to conserve space, potentially
resulting in compromised performance.

Test Accuracy. With regard to efficacy, LD2 achieves top testing accuracy on 6 out of 8 heterophilous
graphs and comparable performance on the remaining ones. It also consistently outperforms the
sampling-based GCNJK and MixHop, as well as conventional GNNs. Particularly, by extracting
embeddings from not only node features but pure graph topology as well, LD2 obtains significant
improvements over feature-based networks on datasets such as genius, snap-patents, and wiki,
demonstrating the importance of pure graph information in heterophilous learning. We deduce that
the relatively suboptimal accuracy on penn94 may be correlated with the difficulty of fitting one-hot
encoding features into informative embeddings, as explored in Appendix G. Consistent with the
previous studies [26], regular GNN baselines suffer from performance loss on most heterophilous
graphs, while MLP achieves comparably high accuracy when node attributes are discriminative
enough. For non-homophilous models GCNJK and MixHop, the minibatch scheme hinders them
from reaching higher results because of the neglect of their full-graph relationships.

4.3 Effect of Parameters

To gain deeper insights into the multi-channel embeddings of LD2, in Figure 3 we explore the effect
of embeddings channels and propagation hops which are critical to our model design, while more
discussions on other parameters and factors are displayed in Appendix F.

Embedding Channels. Lines in Figure 3 represent the results of learning on separate inputs on two
representative datasets genius and pokec. It can be observed that different graphs imply varying
patterns when embedding channels and propagation hops are changed. For the genius dataset
where raw node attributes already achieve an accuracy above 82%, applying the other two feature
embeddings further improves the result. While the adjacency embedding alone shows secondary
performance, integrating it with other channels proves beneficial. In comparison, on pokec, it is
the inverse embedding PX,H that becomes the key contributor. The empirical evaluation supports
our design that by adopting multi-channel and heterophily-oriented embeddings, LD2 benefits from
learning both topology and feature for a more comprehensive understanding of the graph data.

Propagation Hops. As elaborated in Section 3.4, propagation hops LP determines the number of
iterations in Algorithm 1. Particularly, for the approximate adjacency embedding PA, it also affects
the convergence of decomposition. As shown by the brown dashdotted lines in Figure 3, the accuracy
typically becomes stable when LP > 8, indicating the utility of the low-dimensional approximation
in producing effective topology embedding within limited iterations. For the multi-channel scheme in
general, as the graph scale increases, employing more propagation hops becomes advantageous in
capturing distant information. Aligned with our analysis, above observation validates that LD2 is
powerful in capturing implicit information of various frequencies and scales that is important in the
presence of heterophily.

5 Conclusion

In this work, we propose LD2, a scalable GNN design for heterophilous graphs, that leverages
long-distance propagation to capture non-local relationships among nodes, and incorporates low-
dimensional yet expressive embeddings for effective learning. The model decouples full-graph
dependency from the iterative training, and adopts an efficient precomputation algorithm for approxi-
mating multi-channel embeddings. Theoretical and empirical evidence demonstrates its optimized
training characteristics, including time efficiency with a complexity linear to O(n), and GPU memory
independence from the graph size n and m. As a noteworthy result, LD2 successfully applies to
million-scale datasets under heterophily, with learning times as short as 1 minute and GPU memory
expense below 5GB. We also recognize the current limitations of our work including potential
accelerations for precomputation and adaptability to diverse feature patterns. Detailed limitations and
broader impacts are addressed in the Appendix.

10

Acknowledgments and Disclosure of Funding

This research is supported by Singapore MOE AcRF Tier-2 funding (MOE-T2EP20122-0003), NTU
startup grant (020948-00001), and the Joint NTU-WeBank Research Centre on FinTech. Xiang Li is
supported by National Natural Science Foundation of China No. 62202172 and Shanghai Science
and Technology Committee General Program No. 22ZR1419900. Jieming Shi is supported by Hong
Kong RGC ECS No. 25201221 and National Natural Science Foundation of China No. 62202404.
We also thank Yuyuan Song for contributing to the experiments in this paper.

References

[1] Kipf, T. N., M. Welling. Semi-supervised classification with graph convolutional networks. In International

Conference on Learning Representations. 2017.

[2] Hamilton, W. L., R. Ying, J. Leskovec. Inductive representation learning on large graphs. In Proceedings

of the 31st International Conference on Neural Information Processing Systems, pages 1025–1035. 2017.

[3] Zhang, M., Y. Chen. Link prediction based on graph neural networks. Advances in Neural Information

Processing Systems, 31:5165–5175, 2018.

[4] Ying, R., R. He, K. Chen, et al. Graph convolutional neural networks for web-scale recommender systems.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 974–983. 2018.

[5] Al-Rfou, R., B. Perozzi, D. Zelle. Ddgk: Learning graph representations for deep divergence graph kernels.
In The World Wide Web Conference, pages 37–48. 2019.

[6] Chen, Z., J. Bruna, L. Li. Supervised community detection with line graph neural networks. 7th

International Conference on Learning Representations, 2019.

[7] McPherson, M., L. Smith-Lovin, J. M. Cook. Birds of a feather: Homophily in social networks. Annual

Review of Sociology, 27(1):415–444, 2001.

[8] Battaglia, P. W., J. B. Hamrick, V. Bapst, et al. Relational inductive biases, deep learning, and graph
networks. arXiv:1806.01261, 2018.

[9] Altenburger, K. M., J. Ugander. Monophily in social networks introduces similarity among friends-of-
friends. Nature Human Behaviour, 2(4):284–290, 2018.

[10] Breuer, A., R. Eilat, U. Weinsberg. Friend or faux: Graph-based early detection of fake accounts on social
networks. In Proceedings of The Web Conference 2020, WWW ’20, page 1287–1297. ACM, 2020.

[11] Zheng, X., Y. Liu, S. Pan, et al. Graph neural networks for graphs with heterophily: A survey.
arXiv:2202.07082, 2022.

[12] Abu-El-Haija, S., B. Perozzi, A. Kapoor, et al. Mixhop: Higher-order graph convolutional architectures via
sparsified neighborhood mixing. In 36th International Conference on Machine Learning, vol. 97. PMLR,
2019.

[13] Zhu, J., M. Heimann, Y. Yan, et al. Beyond homophily in graph neural networks: Current limitations and
effective designs. In 33rd Advances in Neural Information Processing Systems, page 12. 2020.

[14] Pei, H., B. Wei, K. C.-C. Chang, et al. Geom-gcn: Geometric graph convolutional networks. International

Conference on Learning Representations, 2020.

[15] Zhu, J., R. A. Rossi, A. Rao, et al. Graph neural networks with heterophily. Proceedings of the AAAI

Conference on Artificial Intelligence, 35(12):11168–11176, 2021.

[16] Suresh, S., V. Budde, J. Neville, et al. Breaking the limit of graph neural networks by improving the
assortativity of graphs with local mixing patterns. Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, 2021.

[17] Chien, E., J. Peng, P. Li, et al. Adaptive universal generalized pagerank graph neural network. In 9th

International Conference on Learning Representations. 2021.

[18] Bo, D., X. Wang, C. Shi, et al. Beyond low-frequency information in graph convolutional networks.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):3950–3957, 2021.

11

[19] Yan, Y., M. Hashemi, K. Swersky, et al. Two sides of the same coin: Heterophily and oversmoothing in
graph convolutional neural networks. In 22nd IEEE International Conference on Data Mining. 2022.

[20] Luan, S., C. Hua, Q. Lu, et al. Revisiting heterophily for graph neural networks. In 36th Advances in

Neural Information Processing Systems. 2022.

[21] Xu, K., C. Li, Y. Tian, et al. Representation learning on graphs with jumping knowledge networks. In 35th

International Conference on Machine Learning, vol. 80. PMLR, 2018.

[22] Li, X., R. Zhu, Y. Cheng, et al. Finding global homophily in graph neural networks when meeting
heterophily. In 39th International Conference on Machine Learning. 2022.

[23] Maurya, S. K., X. Liu, T. Murata. Simplifying approach to node classification in graph neural networks.
Journal of Computational Science, 62:101695, 2022.

[24] Peng, J., Z. Chen, Y. Shao, et al. Sancus: Staleness-aware communication-avoiding full-graph decentralized
training in large-scale graph neural networks. Proceedings of the VLDB Endowment, 15(9):1937–1950,
2022.

[25] Liao, N., D. Mo, S. Luo, et al. Scara: Scalable graph neural networks with feature-oriented optimization.
Proceedings of the VLDB Endowment, 15(11):3240–3248, 2022.

[26] Lim, D., F. Hohne, X. Li, et al. Large scale learning on non-homophilous graphs: New benchmarks and
strong simple methods. In 34th Advances in Neural Information Processing Systems. 2021.

[27] Zeng, H., H. Zhou, A. Srivastava, et al. Graphsaint: Graph sampling based learning method. In International

Conference on Learning Representations. 2019.

[28] Klicpera, J., A. Bojchevski, S. Günnemann. Predict then propagate: Graph neural networks meet personal-
ized pagerank. 7th International Conference on Learning Representations, pages 1–15, 2019.

[29] Bojchevski, A., J. Klicpera, B. Perozzi, et al. Scaling graph neural networks with approximate pagerank.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 2464–2473. ACM, 2020.

[30] Wu, F., A. Souza, T. Zhang, et al. Simplifying graph convolutional networks. In K. Chaudhuri, R. Salakhut-
dinov, eds., Proceedings of the 36th International Conference on Machine Learning, vol. 97, pages
6861–6871. 2019.

[31] Chen, M., Z. Wei, B. Ding, et al. Scalable graph neural networks via bidirectional propagation. 33rd

Advances in Neural Information Processing Systems, 2020.

[32] Wang, H., M. He, Z. Wei, et al. Approximate graph propagation. In Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining, pages 1686–1696. ACM, 2021.

[33] Chiang, W.-L., X. Liu, S. Si, et al. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 257–266. 2019.

[34] He, M., Z. Wei, Z. Huang, et al. Bernnet: Learning arbitrary graph spectral filters via bernstein approxima-
tion. In 34th Advances in Neural Information Processing Systems. 2021.

[35] He, M., Z. Wei, J.-R. Wen. Convolutional neural networks on graphs with chebyshev approximation,
revisited. In 35th Advances in Neural Information Processing Systems. 2022.

[36] Gasteiger, J., S. Weißenberger, S. Günnemann. Diffusion improves graph learning. In 32nd Advances in

Neural Information Processing Systems. 2019.

[37] Wang, X., M. Zhu, D. Bo, et al. Am-gcn: Adaptive multi-channel graph convolutional networks. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’20, page 1243–1253. Association for Computing Machinery, 2020.

[38] Cavallo, A., C. Grohnfeldt, M. Russo, et al. 2-hop neighbor class similarity (2ncs): A graph structural
metric indicative of graph neural network performance. In 3rd Workshop on Graphs and More Complex

Structures for Learning and Reasoning (GCLR) at AAAI 2023. 2022.

[39] Belkin, M., P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural

Computation, 15(6):1373–1396, 2003.

12

[40] Page, L., S. Brin, R. Motwani, et al. The pagerank citation ranking: Bringing order to the web. Tech. rep.,
1999.

[41] Liao, R., Z. Zhao, R. Urtasun, et al. Lanczosnet: Multi-scale deep graph convolutional networks. In
International Conference on Learning Representations. 2019.

[42] Liu, H., N. Liao, S. Luo. Simga: A simple and effective heterophilous graph neural network with efficient
global aggregation. arXiv e-prints, 2023.

[43] Zhu, H., P. Koniusz. Simple spectral graph convolution. In 9th International Conference on Learning

Representations. 2021.

[44] Zhu, Z., J. Peng, J. Li, et al. Spiking graph convolutional networks. In Proceedings of the 31st International

Joint Conference on Artificial Intelligence, pages 2434–2440. 2022.

[45] Ming, C., Z. Wei, Z. Huang, et al. Simple and deep graph convolutional networks. In 37th International

Conference on Machine Learning, vol. 119, pages 1703–1713. PMLR, 2020.

[46] Zhu, M., X. Wang, C. Shi, et al. Interpreting and unifying graph neural networks with an optimization
framework. In Proceedings of the Web Conference 2021, pages 1215–1226. ACM, 2021.

[47] Ma, Y., X. Liu, T. Zhao, et al. A unified view on graph neural networks as graph signal denoising. In
Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages
1202–1211. ACM, 2021.

[48] Berkhin, P. A survey on pagerank computing. Internet Mathematics, 2(1):73–120, 2005.

[49] Golub, G. H., C. F. V. Loan. Power iterations. In Matrix Computations, chap. 8.2, pages 450–457. JHU
Press, 2012.

[50] Wang, S., R. Yang, X. Xiao, et al. Fora: Simple and effective approximate single-source personalized
pagerank. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, Part F1296:505–514, 2017.

[51] Wang, K., S. Luo, D. Lin. River of no return: Graph percolation embeddings for efficient knowledge graph
reasoning. arXiv e-prints, 2023.

[52] Fang, P., A. Khan, S. Luo, et al. Distributed graph embedding with information-oriented random walks.
Proceedings of the VLDB Endowmen, 16(7):1643–1656, 2023.

[53] Wu, H., J. Gan, Z. Wei, et al. Unifying the global and local approaches: An efficient power iteration with
forward push. In Proceedings of the 2021 International Conference on Management of Data, vol. 1, pages
1996–2008. 2021.

[54] Mo, D., S. Luo. Agenda: Robust personalized pageranks in evolving graphs. In Proceedings of the 30th

ACM International Conference on Information and Knowledge Management. QLD, Australia, 2021.

[55] Oleg Platonov, Denis Kuznedelev, Michael Diskin, et al. A critical look at evaluation of gnns under
heterophily: Are we really making progress? In 11th International Conference on Learning Representations.
2023.

[56] Wang, X., M. Zhang. How powerful are spectral graph neural networks. In K. Chaudhuri, S. Jegelka,
L. Song, C. Szepesvari, G. Niu, S. Sabato, eds., Proceedings of the 39th International Conference on

Machine Learning, vol. 162, pages 23341–23362. PMLR, 2022.

[57] Sen, P., G. Namata, M. Bilgic, et al. Collective classification in network data. AI Magazine, 29(3):93,
2008.

[58] Hu, W., M. Fey, M. Zitnik, et al. Open Graph Benchmark: Datasets for Machine Learning on Graphs. 33rd

Advances in Neural Information Processing Systems, 2020.

[59] Ying, C., T. Cai, S. Luo, et al. Do transformers really perform bad for graph representation? In 34th

Advances in Neural Information Processing Systems. 2021.

[60] Grover, A., J. Leskovec. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, page 855–864.
ACMZ, 2016.

13

	Introduction
	Preliminary and Related Work
	Method
	LD2: A Decoupled Heterophilous GNN
	Low-Dimensional Adjacency Embedding
	Long-Distance Feature Embedding
	Approximate Adjacency Propagation Precomputation

	Experimental Evaluation
	Experiment Setting
	Performance Comparison
	Effect of Parameters

	Conclusion
	Detailed Theoretical Analysis
	Graph Spectrum
	Graph Signal Filter
	Iterative and Decoupled GNN
	Interpretation of LD2 Filters

	Detailed Explanation of Differences from Existing Models
	Iterative GNNs with High-Frequency Propagation
	Iterative GNNs with Multi-Hop Propagation
	Post-Propagation Decoupled GNNs
	Pre-Propagation Decoupled GNNs

	Experiment Settings
	Heterophily Measurement
	Datasets Statistics
	Baseline Models
	Model and Training Hyperparameters

	Extended Experiments under Heterophily
	Efficacy Results
	Efficiency Results

	Extended Experiments under Homophily
	Modification for Homophily
	Efficacy Results
	Efficiency Results

	Effect of Parameters
	Convergence Curve
	Embedding Schemes and Robustness
	Propagation Hyperparameters: Ablation Study
	Precomputation Hyperparameters: Scalability Comparison
	Directed Edges

	Case Study of Approximate Propagation
	Discussion and Limitation

