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Abstract

Expressing universal semantics common to all languages is helpful in understand-
ing the meanings of complex and culture-specific sentences. The research theme
underlying this scenario focuses on learning universal representations across lan-
guages with the usage of massive parallel corpora. However, due to the sparsity
and scarcity of parallel data, there is still a big challenge in learning authentic “uni-
versals” for any two languages. In this paper, we propose EMMA-X: an EM-like
Multilingual pre-training Algorithm, to learn (X)Cross-lingual universals with the
aid of excessive multilingual non-parallel data. EMMA-X unifies the cross-lingual
representation learning task and an extra semantic relation prediction task within
an EM framework. Both the extra semantic classifier and the cross-lingual sentence
encoder approximate the semantic relation of two sentences, and supervise each
other until convergence. To evaluate EMMA-X, we conduct experiments on XRETE,
a newly introduced benchmark containing 12 widely studied cross-lingual tasks
that fully depend on sentence-level representations. Results reveal that EMMA-X
achieves state-of-the-art performance. Further geometric analysis of the built repre-
sentation space with three requirements demonstrates the superiority of EMMA-X
over advanced models 2.

1 Introduction

Research on how to express universal semantics for natural languages (metaphorically as “alphabet
of human thoughts” by Leibniz and von Leibniz [1996]) has lasted a long time. Usually, these
universal meanings underlying all human natural languages are referred to as irreducible semantic
cores [Wierzbicka, 1999]. These common cores across languages can serve as a bridge, to help better
understand the exact meanings of complex sentences in different languages.
In the context of computational linguistics, various works [Huang et al., 2019, Conneau et al.,
2020, Chi et al., 2021, Wei et al., 2021, Lee et al., 2022, Li et al., 2023, Chen et al., 2023] have
led to great improvements on learning cross-lingual universal representations with the usage of
parallel corpora, and verify that multilingual universality contributes a major performance on cross-
lingual understanding. However, due to the sparsity and scarcity of parallel data, these advanced
techniques face a big challenge in learning real universality among all languages. For instance,
among the widely-available top 100 languages that theoretically can build 4950 language pairs,
only about 200 language pairs have considerable parallel data [Aharoni et al., 2019, Bapna et al.,

∗Corresponding Author.
2Codes and datasets of the XRETE benchmark: https://github.com/guopingiie/EMMA-X

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/guopingiie/EMMA-X


2022]. Recently, Large Language Models (LLMs) (e.g., PaLM [Chowdhery et al., 2022], OPT [Zhang
et al., 2022b], BLOOMZ [Workshop et al., 2023], ChatGPT, etc.) have reached a milestone in the
field of Natural Language Processing, for their promising capability at understanding and following
complex natural language instructions in different languages. By modeling a wide variety of sentence
samples in discrete sentence space, LLMs can capture some universal linguistic phenomena to gain
cross-lingual transferability. This is consistent with our goal of building a universal basement that
supports all languages. The difference lies in that we achieve it through learning universal continuous
representations across different languages.
Concretely, we propose EMMA-X to tackle the above challenge from a continuous perspective.
EMMA-X can learn cross-lingual universal sentence representations with excessive non-parallel
multilingual data by unifying two highly dependent tasks in an EM [Moon, 1996] framework:
semantic relation classification and cross-lingual universal representation learning. For the former,
we introduce a Gaussian Mixture Model [Everitt and Hand, 1981] classifier (GMM classifier) to
deal with the key challenge of forming positive sentence pairs for non-parallel multilingual corpora,
by annotating the semantic relationship of sentence pairs in any two arbitrary languages on the
fly. For the latter, we employ a cross-lingual encoder to learn universal sentence representations
via contrastive learning, where positive pairs are chosen by GMM classifier. Further, we construct
training signals according to the output of the cross-lingual encoder, to inversely supervise GMM
classifier. From the perspective of EM algorithm, in E-step, both modules try to approximate the
semantic relationship given a sentence pair sampled from two arbitrary languages. One module is
supervised by the approximation of the other to build its own expectation. In M-step, two modules
update their parameters by maximizing expectations, respectively. We give a theoretical justification
about how these two tasks can be interpreted from an EM perspective (Section 4).
To incentivize the research of universal sentence representation learning, we form a Cross-lingual
REpresentation Transfer Evaluation (XRETE) benchmark, which includes 12 cross-lingual tasks cov-
ering more than 50 languages. XRETE fully depends on sentence-level representations. Experimental
results demonstrate that EMMA-X significantly outperforms pre-trained language models [Conneau
et al., 2020, Chi et al., 2021] by 32% at most on XRETE. We also perform an evaluation of ChatGPT
on XRETE to explore its multilingual performance. Detailed analysis also shows that EMMA-X can
mitigate the representation discrepancy between head and massive long-tail languages. We further
conduct geometric analysis directly on representation space from three perspectives: Invariance
[Abend and Rappoport, 2017], Canonical Form [Teller, 2000] and Isotropy [Mu and Viswanath,
2018], which provides a further understanding of the cross-lingual transferability of these models.

2 Preliminaries

Cross-lingual representation learning aims at mapping sentences from different languages into a
unified continuous space, where synonyms across different languages are pulled closer. Given a
sentence x, the representation is formulated as

γ(x) = f
[
g
(
M(x; ΘM)

)]
, (1)

where M(·; ΘM) denotes the encoder network with a set of trainable parameters ΘM, which is
typically implemented as a transformer encoder architecture [Vaswani et al., 2017, Devlin et al., 2019,
Lee et al., 2022, Feng et al., 2022]. f(·) is L-2 normalization and g(·) is the aggregate function. We
take the final hidden states of “[CLS]” token as the aggregate sentence representation.

To learn reasonable representations that can express universal semantics across different languages,
various well-designed techniques have been applied to γ(x). A predominant one is to build contrastive
learning (CTL) [Saunshi et al., 2019] objective with parallel corpora. The basic idea is to maximize
the similarity between representations (i.e., γ(x) and γ(y)) of two semantically-equivalent sentences
(x,y), while keep randomly sampled irrelevant ones γ(y′) away. Formally, assume B to be a batch
of multilingual parallel bitexts, the contrastive loss under InfoNCE [Oord et al., 2018] formulation is

LCTL = − log
es(γ

(x),γ(y))

es(γ(x),γ(y)) +
∑

y′∈B,y′ ̸=y e
s(γ(x),γ(y′))

, (2)

where s(·) is implemented as the cosine similarity s(γ(x), γ(y)) = γ(x)⊤γ(y)

∥γ(x)∥·∥γ(y)∥ , y and y′ are
typically called positive and negative samples.
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E-Step Cross-Lingual EncoderGMM Classifier
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Figure 1: Illustration of EMMA-X, involving two modules (GMM classifier and Cross-lingual
Encoder) that are reciprocated from each other and are updated alternatively. x means the current
instance, {y1, y2, y3, ...} are samples in various languages for comparison. γ(x) is the continuous
representation given a discrete sentence x. c∗M and c∗G formulate the semantic ranks approximated
according to Eq. 10 and Eq. 9, to supervise the GMM classifier and cross-lingual encoder, respectively.

3 Methodology

We propose EMMA-X that fully exploits massive monolingual data to learn cross-lingual universal
representations. As illustrated in Figure 1, EMMA-X consists of two modules: 1) A GMM classifier
G(·; ΘG) to approximate the semantic relation of non-parallel sentences. 2) A cross-lingual encoder
M(·; ΘM) to convert multilingual sentences into universal representations. For optimization, EMMA-
X unifies these two modules in an EM framework with dual supervision. In this section, we begin
with a definition of the semantic relation rank (§3.1). Then, we introduce model initialization (§3.2)
and the proposed training paradigm (§3.3), followed by a dual supervision strategy (§3.4). For a
clearer presentation, an Algorithm of EMMA-X is shown in Algorithm 1.

3.1 Rank of Semantic Relations

Mainstream methods model semantic relations with a strict binary separation: positives and negatives.
However, the boundary between positives and negatives is blurry, and many samples cannot be clearly
classified as either positives or negatives. So it cannot maximize the potential of models to perceive
more subtle semantic changes. Also, a binary separation will lead to far more negative samples
than positive ones (imbalanced data). To more accurately capture the semantic relation between two
sentences and alleviate imbalanced problem, we subdivide the relation into N semantic ranks, where
the semantic similarity of each rank decreases as N increases, e.g., c = 1 denotes two sentences are
paraphrases of each other, while c = N implies sentences are irrelevant. In practice, we set N to 4.

3.2 Model Initialization

In EMMA-X, the GMM classifier G(·; ΘG) and cross-lingual encoderM(·; ΘM) are initialized by
training with massive parallel corpora, respectively.

Initialization of Cross-lingual Encoder. It is initialized with XLM-R [Conneau et al., 2020] and then
continuously trained with InfoNCE [Oord et al., 2018] loss by Eq.2. Following HICTL [Wei et al.,
2021] and INFOXLM [Chi et al., 2021], we treat the parallel sentence pairs as the query sentence x
and its positive counterpart y, while treating the randomly sampled sentence as a negative one y′.

Initialization of GMM Classifier. A reasonable solution to warm up the GMM classifier is to use the
available cross-lingual parallel corpora as training signals. Suppose x and y are parallel sentences,
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and y′ is an outlier. We set the semantic ranks for (γ(x), γ(y)) and (γ(x), γ(y′)) as c = 1 and c = N ,
respectively, according to the definition described in § 3.1. To obtain the fine-grained semantic ranks,
we design a linear interpolation strategy similar to Wei et al. [2022] and mixup [Zhang et al., 2018],
which provides virtual training examples for each semantic rank. Formally,

γ(ỹ) = (1− λ) · γ(y) + λ · γ(y′), (3)

where λ ∈ [0, 1] is sampled from a uniform distribution. We compute r = ⌈(1−λ) ·(c = 1)+λ ·(c =
N)⌉ as the soft semantic rank for (γ(x), γ(ỹ)), where ⌈·⌉ means the least integer greater than or equal
to the input. The virtual training examples are grouped together with the real parallel corpora to
optimize the GMM classifier:

LMLE = − logPG(c = 1|x,y; ΘG)− logPG(c = N |x,y′; ΘG)−
∑
ỹ

logPG(c = r|x, ỹ; ΘG). (4)

The posterior probability PG(·) is formulated as

PG(c = r|x,y; ΘG) =
πr · Nr

(
γ(x) − γ(y)|µr, σr

)∑N
j=1 πj · Nj

(
γ(x) − γ(y)|µj , σj

) , (5)

where the Gaussian form Nr is assigned with a prior probability πr, mean µr and standard deviation
σr that are all parameterized by trainable variables, thus ΘG = {(πr, µr, σr) | r ∈ [1, N ]}. See
Appendix G for the specific calculation of Gaussian form Nr.

3.3 The EM Iteration Framework

After initialization, EMMA-X further trains the GMM classifier G(·; ΘG) and cross-lingual encoder
M(·; ΘM) with only multilingual non-parallel data with an EM framework.

E-Step. For optimization, we represent a training batch of multilingual non-parallel sentences as
X = {x1,x2, ...,xI} accompanied by a queue of random sentences as Y = {y1,y2, ...,yK} for
instance comparison. Formally, the expectation for GMM classifier is:

LMLE(X ,Y; ΘG) = −Exi∼X Eyk∼Y
[
logPG(c = c∗M|xi,yk; ΘG)

]
, (6)

where c∗M ∈ [1, N ] represents an approximated semantic rank for the combination of anchor xi and
another random sentence yk, based on the cosine similarity among representations (i.e., γ(xi) and
γ(yk)) produced by the cross-lingual encoder (i.e.,M(·; ΘM)). Please refer to §3.4 for details.

Correspondingly, the expectation for the cross-lingual encoder can be calculated with contrastive
learning, where the positive samples are established by the maximum a posteriori approximation
(argmax prediction) c∗G given by the GMM classifier. Specifically, we apply ranking InfoNCE [Hoff-
mann et al., 2022] as the training objective, which recursively takes parallel sentence pairs in each
rank (e.g, c∗G) as positives and ranks that are larger than c∗G as negatives. Formally,

LCTL(X ,Y; ΘM) = −Exi∼X

[
log

∑
yk∼Yc∗G=1

es[γ
(xi),γ(yk)]∑

yt∼Yc∗G∈[1,N]
es[γ

(xi),γ(yt)]
+ log

∑
yk∼Yc∗G=2

es[γ
(xi),γ(yk)]∑

yt∼Yc∗G∈[2,N]
es[γ

(xi),γ(yt)]

+ ...+ log

∑
yk∼Yc∗G=N−1

es[γ
(xi),γ(yk)]∑

yt∼Yc∗G∈[N−1,N]
es[γ

(xi),γ(yt)]

]
,

(7)

where c∗G ∈ [1, N ] represents a semantic rank approximated by the posteriori of GMM classifier
(§3.4). For simplicity, we omit the temperature term in Eq. 7, and please see Appendix G for details.

M-Step. We use gradient descent algorithm to update the parameters of each module by optimizing
its expectation. At each time step t, where η and η′ are learning rates for each expectation, formally,

Θt+1
G ← Θt

G − η ×∇ΘGLMLE(X ,Y; ΘG),

Θt+1
M ← Θt

M − η′ ×∇ΘMLCTL(X ,Y; ΘM).
(8)
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Algorithm 1: EMMA-X Training Algorithm
Input: multilingual parallel and non-parallel corpora
Output:M(·; ΘM) and G(·; ΘG)
Phase 1 ; /* Warm-up two modules with multilingual parallel corpora */
while not convergence do

Sample a batch of multilingual bitexts B;
for (x,y) ∈ B do

Sample y′ ∈ B,y′ ̸= y, Build virtual training examples ỹ with Eq. 3;
Compute LCTL with Eq. 2 to update ΘM and LMLE with Eq. 4 to update ΘG ;

end
end
Phase 2 ; /* Emma-X training with EM framework using only non-parallel corpora */
while not convergence do

E-Step
Sample a batch of multilingual anchors X , Queue a batch of random sentences Y;
for (xi,yk) ∈ X × Y do

Approximate semantic rank c∗G with Eq. 9 and c∗M with Eq. 10 ;
end
Compute LMLE(X ,Y; ΘG) according to Eq. 6 and LCTL(X ,Y; ΘM) according to Eq. 7;

M-Step
Update ΘM and ΘG according to Eq. 8;

end

3.4 Dual Supervision

The approximated semantic ranks c∗G and c∗M are critical in EMMA-X training algorithm. To preserve
their quality, we propose dual supervision: predictions from one module are fed to the other to
calculate the expectation. In this section, we explain in detail how we approximate the semantic ranks
for GMM classifier and cross-lingual encoder, respectively.

Approximate Semantic Rank with GMM classifier. The way to obtain semantic rank with semantic
classifier is straightforward. The semantic rank corresponding to the highest probability among
multiple Gaussian distributions is chosen as the prediction, which is further used to supervise the
cross-lingual encoderM(·; ΘM), as illustrated in Eq. 7. Formally,

c∗G = argmax
r

PG(c = r|xi,yk; ΘG). (9)

Approximate Semantic Rank with Cross-lingual Encoder. One common way to calculate sentence
relation is to measure the similarity between two real-valued representations. Assuming sr (a scalar
initialized as r

N ) can reflect the general similarity score in semantic rank c = r. Given a random
sentence pair (xi,yk), if its similarity score is close to sr, the sentence pair is likely to belong to rank
c = r. Cross-lingual encoderM(·; ΘM) determines the semantic relation for each pair according to

c∗M = argmin
r
|s(γ(xi), γ(yk))− sr|, (10)

where | · | refers to absolute value. Symmetrically, c∗M is used to supervise GMM classifier (Eq. 6).

During the training process, the general similarity score for each semantic rank may vary. Thus,
we propose a moving-average strategy to adaptively adjust the value of sr to simulate this change.
Specifically, at time step t, sr is updated by cosine similarity of all the sentence pairs, which are
currently categorized into the rank c = r according to the cross-lingual encoder in Eq. 9.

str ← ϵ · st−1
r + (1− ϵ) · s(γ(xi), γ(yk)), if yk ∈ Yc∗G=r. (11)

Here ϵ ∈ [0, 1] is a momentum coefficient to make sn evolve smoothly during training.

4 Theoretical Analysis

In this section, we provide theoretical justification for EMMA-X and demonstrate the mutual influence
between two modules with rigorous interpretation from an EM algorithm perspective. We show that
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under dual supervision, minimizing the positive terms in Eq. 7 intrinsically maximizes the objective
of a classical clustering algorithm. For simplicity, we assume that each semantic rank has the same
number of sentence pairs n and represents model parameters with Θ. In EMMA-X, we model the
semantic relation of sentence pair (xi,yk) through a joint distribution P (xi,yk) with the semantic
rank c as a latent variable. Let Q(c) be a prior distribution over the possible values of semantic ranks.
That is

∑
r Q(c = r) = 1, Q(c) ≥ 0. The training goal is to maximize the following likelihood:

argmax
Θ

∑
xi∈X

∑
yk∈Y

logP (xi,yk|Θ) = argmax
Θ

∑
xi∈X

∑
yk∈Y

log

N∑
r=1

P (xi,yk, c = r|Θ)

≥ argmax
Θ

∑
xi∈X

∑
yk∈Y

N∑
r=1

Q(c = r) log
P (xi,yk, c = r|Θ)

Q(c = r)
.

(12)

E-Step. To make the inequality hold with equality, we have:

Q(c = r) =
P (xi,yk, c = r|Θ)∑N
j=1 P (xi,yk, c = j|Θ)

= P (c = r|xi,yk,Θ), (13)

which is the posterior probability and is approximated by the prediction from GMM classifier. Since
each sentence pair (xi,yk) belongs to only one semantic rank, we approximate Q(c = r) = I(c∗G =
r), which is a one-hot distribution.

M-Step. We try to maximize the likelihood in Eq. 12 under the semantic rank c∗G :

argmax
Θ

∑
xi∈X

∑
yk∈Y

N∑
r=1

Q(r) log
P (xi,yk, r|Θ)

Q(r)
≈ argmax

Θ

∑
xi∈X

∑
yk∈Y

N∑
r=1

logP (xi,yk|c∗G = r,Θ)

≥ argmax
Θ

n(n− 1)

N∑
r=1

µ̃2
r,

(14)

The above derivation uses the assumption that P (xi,yk|c∗G = r,Θ) ∼ Nr

(
xi − yk|µ̃r, σ̃r

)
, with µ̃r

and σ̃r being the mean value and standard deviation of the Euclidean distance between sentence pairs
in semantic rank r. Detailed proof of Eq. 14 is in Appendix G.

Next, we prove that minimizing the positive terms in expectation LCTL(X ,Y; ΘM) actually equal
to maximizing a lower bound of Eq. 14. As we apply dual supervision, data in the contrastive label
space also follows the distribution Nr

(
xi − yk|µ̃r, σ̃r

)
. Hence, under mild assumptions, we can get:

L+
CTL(X ,Y; ΘM) = n2

N−1∑
r=1

µ̃2
r < n(n− 1)

N∑
r=1

µ̃2
r ≤

∑
xi∈X

∑
yk∈Y

logP (xi,yk|Θ), (15)

where L+
CTL(·) means the positive terms. In the derivation, we use the intrinsic property of semantic

ranks (µ̃1 < µ̃2 < ... < µ̃N ). Detailed proof is in Appendix G. Eq. 15 demonstrates that with dual
supervision, minimizing the contrastive loss can partially maximize the likelihood in Eq. 12.

5 Experiments

To thoroughly evaluate the performance of EMMA-X, we conduct experiments on XRETE benchmark
to verify the transfer ability of EMMA-X on various cross-lingual downstream tasks with strong
baselines (pre-trained models: XLM-R [Conneau et al., 2020], INFOXLM [Chi et al., 2021], HICTL
[Wei et al., 2021], sentence models: LaBSE [Feng et al., 2022], S-BERT [Reimers and Gurevych,
2020]) and ChatGPT in Section 5.2. See Appendices C and D for details. We further conduct
geometric analysis in Section 5.3 to better interpret the cross-lingual transferability in EMMA-X.

5.1 Setup

Corpus & Model. We collect parallel corpora from CCAligned [El-Kishky et al., 2020], CCMatrix
[Schwenk et al., 2021], WMT [Akhbardeh et al., 2021], and MultiUN [Ziemski et al., 2016], involving
94 languages with 3.2 billion sentence pairs. In addition, we add CC-100 [Conneau et al., 2020]
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Model Inference Similarity Retrieval Classification
XNLI ANLI MultiSTS QE LAReQA Mewsli-X BUCC Tatoeba XCOPA MultiEURLEX MultiARC PAWS-X

Metrics Acc. (↑) Acc. (↑) Spearman (↑) Pearson (↑) mAP@20 (↑) mAP@20 (↑) F1 (↑) Acc. (↑) Acc. (↑) Acc. (↑) MAE (↓) Acc. (↑)

MBERT∗ 75.1a - 55.8s - 21.6d 38.6d 56.7a 39.0a 56.1d 67.4s 48.2s 81.9a

XLM∗ 77.8b - - - - - 56.8a 32.6a - - - 80.9a

XLM-R∗ 83.6b 49.12s 61.5s 58.7s 40.7d 45.7d 66.0a 57.7a 69.2d 66.6s - 88.9a

HICTL∗ 84.7c - - - - - 77.6c 69.1c - - - 92.8c

CHATGPT† 60.9 41.7 68.6 60.9 - - - - 74.2 68.7 40.2 64.2

Ours re-implementation, translate-train-all (models are trained on English training data and on its data translated to the target language)

XLM-R‡ 82.8 48.48 65.9 63.2 40.3 48.6 67.9 59.1 71.2 66.9 44.9 90.1
INFOXLM‡ 84.2 49.10 82.2 64.1 44.9 57.1 77.4 66.2 74.6 67.7 36.2 93.0
HICTL‡ 85.1 49.02 81.6 64.9 46.1 54.8 77.6 65.8 74.8 68.3 38.2 92.8

EMMA-X 88.1 50.21 87.3 67.2 50.6 59.6 87.1 82.5 78.2 71.4 32.7 94.2

Table 1: Results on the XRETE benchmark. ∗ denotes the results from previous literature, aHu et al.
[2020] bConneau et al. [2020] cWei et al. [2021] dRuder et al. [2021]. s denotes the results from the
original paper. ‡ denotes results from our re-trained models with the same model size and training
corpora as EMMA-X. † denotes the zero-shot performance. Refer to Appendix F for greater details
on each task and language.

Model Similarity Retrieval
MultiSTS QE LAReQA Mewsli-X BUCC Tatoeba

Metrics Spearman (↑) Pearson (↑) mAP@20 (↑) mAP@20 (↑) F1 (↑) Acc. (↑)
S-BERT 84.0 39.3 31.8 14.4 88.5 68.6
LaBSE 74.4 31.6 12.8 11.2 93.2 83.6
INFOXLM 55.2 49.4 16.9 23.9 77.4 66.2
XLM-R 25.0 10.4 16.1 11.7 67.9 59.1

EMMA-X 62.9 54.7 19.4 29.4 87.1 82.5

Table 2: Zero-shot Results on Similarity and Retrieved
tasks. Results of LaBSE use Customized Vocab setting. Re-
sults of S-BERT are from XLM-r←SBERT-paraphrases.
The bold font denotes the best 2 results.

Model FLORES-200 Tatoeba
Head Long-tail Head Long-tail

Metrics Acc. (↑) Acc. (↑) Acc. (↑) Acc. (↑)
S-BERT 87.5 51.6 91.4 57.8
LaBSE 99.9 82.5 95.7 77.9
INFOXLM 83.4 53.8 87.8 56.1
XLM-R 68.2 45.3 66.3 55.7

EMMA-X 94.5 84.2 91.9 78.1

Table 3: Retrieval results on FLORES-
200 and Tatoeba in xx→ En direction.
The bold font denotes the best results.

as the large-scale monolingual corpus with about 800 billion sentences that covers 94 languages.
The cross-lingual encoder starts from the well-trained XLM-R large model [Conneau et al., 2020].
The GMM classifier is implemented as a mixture of Gaussian forms, each of which consists of a
prior π ∈ R1, a mean µ ∈ R1024 and a standard deviation σ ∈ R1024, all are trainable variables. We
set the total semantic ranks as N = 4. The statistics of all data and hyper-parameters are shown in
Appendix A.

5.2 XRETE Evaluation

XRETE includes 12 cross-lingual tasks divided into 4 different categories. We report the “translate-
train” performance in Table 1 on most tasks but zero-shot performance on BUCC and Tatoeba
following [Ruder et al., 2021]. Table 2 presents zero-shot comparisons with sentence models.

Comparisons with Pre-trained Models. In Table 1, EMMA-X consistently outperforms all baseline
models (XLM-R [Conneau et al., 2020], HICTL [Wei et al., 2021] and INFOXLM [Chi et al.,
2021]) with 7.97% improvements on average. Specifically, EMMA-X achieves 88.1% accuracy on
XNLI [Conneau et al., 2018] and 50.21% accuracy on ANLI [Ebrahimi et al., 2022] with up to
6.4% improvements than baselines. On the MultiSTS [Reimers and Gurevych, 2020] task, EMMA-X
achieves an 87.3 correlation score, outperforming several strong baselines by 5.1∼21.4, and even
achieves comparable performance in the cross-lingual and the monolingual settings (see Appendix F
for language-specific results). Furthermore, EMMA-X obtains a 67.2 Pearson score on QE [Specia
et al., 2021] task, which is comparable to the winner on the leaderboard3 without any specific
finetuning techniques. As for sentence retrieval, EMMA-X consistently outperforms previous strong
baselines among all 4 tasks [Ruder et al., 2021], and demonstrates 2.6%∼39.6% improvements over
these baselines. Similar results can be found in sentence classification tasks. EMMA-X obtains an
81.3% top-1 accuracy averaged on XCOPA [Ponti et al., 2020], MultiEURLEX [Chalkidis et al.,
2021] and PAWS-X [Yang et al., 2019b] tasks, outperforming XLM-R, INFOXLM and HICTL by
7.0%, 3.9% and 3.5% improvements, respectively. On MultiARC [Keung et al., 2020] task, EMMA-X
shows the lowest error rates among all models. The consistent improvements on all tasks reveal that
EMMA-X can obtain better universal representations for different natural languages with various

3https://www.statmt.org/wmt21/quality-estimation-task_results.html
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topics and domains. We further conduct experiments with ChatGPT on XRETE tasks without 4
Retrieval tasks. We list the prompts for each task in Appendix E. ChatGPT’s zero-shot performance
is worse than fine-tuned pre-trained models and the performance gap is very large on most tasks.

Zero-shot comparisons with sentence models. Compared with XLM-R and INFOXLM, which
adopt the same amount of training data as EMMA-X, EMMA-X consistently outperforms XLM-R
and INFOXLM by 73.2% and 25.1% on average, as shown in Table 2. The results further prove the
effectiveness of our pre-training technique. Through the reciprocation between GMM classifier and
cross-lingual encoder, EMMA-X can generate reliable semantic rank for multilingual non-parallel
corpora, which can provide more supervision signals than previous baselines. EMMA-X even achieves
comparable results with strong supervised methods: LaBSE [Feng et al., 2022] and S-BERT [Reimers
and Gurevych, 2020], which both trained on supervised data. LaBSE is trained on a fine-filtered
bilingual corpus with 6B translation pairs (2 times larger than EMMA-X), while S-BERT is distilled
from a S-BERT model fine-tuned on English NLI, STS datasets, and 50M English paraphrase pairs.
Compared with these two methods, EMMA-X can achieve the best results on QE and Mewsli-X by
outperforming S-BERT and LaBSE by 71.7% and 117.8% averaged. EMMA-X performs worse than
these baselines on MultiSTS and BUCC, for these two tasks only contain rich-resource languages,
which already have great deal of parallel data.

Model Head Langs. Long-tail Langs. All Langs.
Invariance Canonical Form Isotropy Invariance Canonical Form Isotropy Invariance Canonical Form Isotropy

Metrics KL-D (↓) CH-I (↑) PR (↑) KL-D (↓) CH-I (↑) PR (↑) KL-D (↓) CH-I (↑) PR (↑)
XLM-R (cls) 0.7356 30.19 0.3681 2.0042 7.96 0.3686 1.6501 20.80 0.3683
INFOXLM (cls) 0.4491 38.82 0.4478 1.8555 13.02 0.4406 1.4747 31.51 0.4665
S-BERT (mean) 0.1115 108.22 0.4519 1.3112 44.32 0.4414 0.9782 102.36 0.4467

EMMA-X (cls) 0.3603 43.52 0.5318 0.3963 46.53 0.5732 1.1904 48.70 0.5918

Table 4: Comparisons with existing methods on FLORES dataset for geometric analysis. “cls” and
“mean” represent different pooling strategies to obtain sentence representations.

Performance on Long-tail Languages. One goal of EMMA-X is to learn universal sentence
representations accommodated for more languages. To better prove this, we report the retrieval
accuracy on FLORES-200 [Costa-jussà et al., 2022] and Tatoeba [Artetxe and Schwenk, 2019].
We reformulate FLORES-200, which contains manual translations in 204 languages (totaling 3001
sentences) to perform retrieval tasks in the same way as Tatoeba and report the performance in terms
of language data scale in Table 3. Details about the separation of languages and FLORES-200 are
shown in Appendices A and B. On head languages, EMMA-X performs worse than LaBSE by about
4.6% but outperforms S-BERT by 3.5%. On the long-tail languages, EMMA-X can surpass S-BERT
by 4.3% averaged on two tasks. EMMA-X can even exceed the strongest LaBSE by 2.1% on FLORES.
One reason for the superior results on long-tail languages is that for those long-tail languages that
have only bi-lingual parallel data with rich-resource languages (often English), EMMA-X can provide
multi-lingual semantic relation signals for them with arbitrary languages through dual supervision.

5.3 Geometric Analysis

To interpret the advantages of EMMA-X, we evaluate the geometric characteristics of it on FLORES-
200 dataset [Costa-jussà et al., 2022] without any fine-tuning. The criteria of three requirements are
Invariance, measured with KL-divergence (KL-D) [Kullback and Leibler, 1951], Canonical Form,
measured with Calinski-Harabasz Index (CH-I) [Caliński and Harabasz, 1974] and Isotropy, measured
with principal ratio (PR) [Mu and Viswanath, 2018]. Details of them are shown in Appendix B. We
report the numerical results in Table 4 and visualize each characteristic in Figure 2.

Invariance & Canonical Form aim to measure how languages are aligned in the representation
space. If the sentence representations are universal, then sentences in different languages should
follow a similar distribution, which is measured by invariance in KL-divergence. Similarly, canonical
form measures how well semantic equivalent sentences are grouped into one cluster, with a clustering
metric (CH-I). In Table 4, S-BERT outperforms other baselines in “Invariance” and “Canonical Form”
on head languages. However, EMMA-X shows better performance on long-tail languages in these two
metrics, which is consistent with Table 3. Figure 2 presents similar results. Among the 20 languages
we randomly sampled from FLORES, EMMA-X can align 17 languages as shown in Figure 2d, with
“xh, eo, ur” as outliers. In Figure 2e, 2g, 2f and 2h, different colors represent different languages. So
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(a) XLM-R (Invariance)
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(b) INFOXLM (Invariance)
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(c) S-BERT (Invariance)
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(d) EMMA-X (Invariance)
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(e) XLM-R (Canonical)
100 50 0 50 100100

50

0

50

100
ml
eo
ko
cs
es
mr
ug
sr
te
ta
tk
tt
ur
fr
xh
hu
bs
zh
sk
en

(f) INFOXLM (Canonical)
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(g) S-BERT (Canonical)
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(h) EMMA-X (Canonical)
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(i) XLM-R (Isotropy)
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(j) INFOXLM (Isotropy)
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(k) S-BERT (Isotropy)
0.2 0.1 0.0 0.1 0.2 0.3 0.40.3

0.2

0.1

0.0

0.1

0.2

20

40

60

80

100

Fr
eq

ue
nc

y 
of

 th
e 

sa
m

e 
pl

ot
s

(l) EMMA-X (Isotropy)

Figure 2: Visualization of representations from EMMA-X, XLM-R, INFOXLM and S-BERT. We use
t-SNE [van der Maaten and Hinton, 2008] to visualize each geometric metrics.

a cluster with only one color means this language is isolated from other languages and not aligned
well in representation space. Figure 2h shows that EMMA-X performs well in most languages.

Isotropy measures how expressive a representation space is since high-dimensional representation
space can easily deteriorate into a low-dimensional manifold. From Table 4, EMMA-X achieves the
best results in isotropy. The Isotropy of S-BERT (k) is different from other methods. We conjecture the
reason is that S-BERT removes MLM tasks during fine-tuning, so token embeddings will only receive
sentence-level supervision, resulting in identical sentence representations for different languages.
The abnormal results observed on the high KL-divergence, as depicted in Table 4 and Figure 2c, can
be attributed to the representation space for S-BERT deteriorating into a low-dimensional manifold
(low isotropy score in Table 4 and Figure 2k), and different languages are not distributed uniformly
across the whole representation space, which limits the expressive ability.

Model\Language af ar bg bn de el es et eu fa fi fr he hi hu id it ja
+ Phase 1 86.7 84.9 87.8 80.0 96.6 89.8 91.9 90.3 81.5 84.3 88.2 88.3 85.2 84.9 89.1 93.7 88.7 86.2
+ fixed GMM 86.2 84.3 89.6 79.4 92.6 87.5 93.9 92.6 84.5 87.9 92.1 91.4 84.4 92.6 87.1 90.9 87.1 82.4
EMMA-X 93.9 90.2 91.4 92.1 95.9 92.0 95.7 94.3 96.4 96.0 94.7 92.1 90.3 98.5 92.0 93.4 91.6 91.3
Model\Language jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh
+ Phase 1 22.6 88.3 61.6 85.0 93.9 82.0 94.7 92.1 88.7 70.5 70.9 81.5 84.9 59.2 88.2 85.8 97.1 91.7
+ fixed GMM 37.9 91.8 67.1 87.6 91.8 85.3 93.1 88.9 90.8 75.4 72.4 82.3 86.7 68.1 91.6 89.3 94.9 88.8
EMMA-X 56.7 93.2 86.0 91.4 96.7 94.8 93.6 92.7 91.6 87.2 87.8 95.4 96.9 85.7 96.5 93.4 96.1 92.7

Table 5: Ablation Study about EMMA-X on 36 languages in Tatoeba. We mark the 14 long-tail
languages with color red. We highlight the best results with bold font and the second-best results
with underlines.

5.4 Ablation Analysis

The primary goal of EMMA-X is to acquire universal semantic representations for a multitude of
languages. For the limited number of parallel data, EMMA-X strives to leverage non-parallel data
to extend language coverage for universal semantic representations and to enhance representation
performance for those languages. To provide additional evidence supporting our claim, we propose
an ablation experiment in Table 5. The results in Table 5 demonstrate that EMMA-X significantly
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Setting XNLI ANLI MultiSTS QE LAReQA Mewsli-X BUCC Tatoeba XCOPA MultiEURLEX MultiARC PAWS-X
Acc. (↑) Acc. (↑) Spearman (↑) Pearson (↑) mAP@20 (↑) mAP@20 (↑) F1 (↑) Acc. (↑) Acc. (↑) Acc. (↑) MAE (↓) Acc. (↑)

(FCN, N = 4) 86.4 46.63 87.0 66.1 46.6 54.2 81.1 78.2 76.2 68.5 34.9 90.8

(GMM, N = 2) 85.2 49.52 84.7 67.3 47.8 56.6 85.6 82.3 77.0 70.1 30.6 90.9
(GMM, N = 4)‡ 88.1 50.21 87.3 67.2 50.6 59.6 87.1 82.5 78.2 71.4 32.7 94.2
(GMM, N = 8) 87.9 50.58 86.3 67.4 49.2 59.5 85.7 82.5 78.8 71.3 32.5 95.1

Table 6: Effect of different settings on the XRETE benchmark. ‡ means results with default settings
(i.e., GMM classifier and N = 4). “FCN” means the semantic classifier is developed as fully
connected networks.

improves the retrieval accuracy by 8.1 when compared to solely using parallel data. Moreover, on
16 long-tail languages, the retrieval accuracy further increases from 76.2 to 90.7, representing a
substantial improvement of 19.0%. These findings support our claim that EMMA-X can indeed learn
effective universal semantic representations from an abundance of non-parallel data.

5.5 Semantic Rank and GMM Analysis

We assessed EMMA-X’s performance on XRETE benchmark with various settings in Table 6. The
evaluation focuses on two aspects: the classifier type and the value of semantic similarity rank.

Type of the classifier. Without direct supervision, we propose each semantic rank follow a Gaussian
distribution. Comparing “GMM” with “FCN” in Table 6, the performance drops from 70.7 to 68.1.
This decline is attributed to the handling of outliers: the “GMM” handles them better due to its soft
assignment approach, giving outliers low probabilities and thereby minimizing their influence.

Value of Semantic Similarity Rank. Different semantic similarity ranks were evaluated in Table 6.
The peak performance at N = 4 implies that a refined similarity rank ensures a balanced distribution
of semantic ranks, which helps alleviate data imbalance. However, increasing the number of semantic
ranks complicates the learning process for both “GMM” and the cross-lingual encoder. N = 4
strikes a balance between data distribution and learning complexity.

6 Related Work

Cross-lingual Representation Pre-training In recent years, various studies [Devlin et al., 2019,
Conneau et al., 2020] have shifted the monolingual pre-training procedure to multilingual scenarios.
Most of them often rely heavily on parallel data to learn cross-lingual sentence representations,
with several improved techniques, such as language modeling [Conneau and Lample, 2019] and
contrastive learning [Chi et al., 2021, Hu et al., 2021, Wei et al., 2021]. Recently, some endeavors
incorporate monolingual data into parallel corpora, by translating monolingual corpora into pseudo
parallel corpora [Kvapilíková et al., 2020, Ouyang et al., 2021], or computing the semantic similarity
in monolingual corpora off-the-shelf and using it as supervision signals [Goswami et al., 2021].

Contrastive Learning has become a popular paradigm in NLP. Besides constructing the positives
and negatives through parallel corpora [Zhang et al., 2021] or other labeled data [Gunel et al., 2021,
Ni et al., 2022], researchers also adopt self-supervised methods, which build positives and negatives
by corrupting sentences [Gao et al., 2021, Chuang et al., 2022] or data augmentation methods
[Zhang et al., 2022a, Wu et al., 2022]. Another line of research improves the quality of negatives
by preserving a memory queue [Yang et al., 2021, Wang et al., 2021] or generating high-quality
negatives [Zhang et al., 2022c, Wei et al., 2022].

7 Conclusion

In this paper, we study the problem of learning cross-lingual universal representations. Major
contributions are fourfold: 1) We propose a novel paradigm EMMA-X, which can make full use
of massive monolingual data to learn universities for any two languages. 2) We summarize three
requirements for the universal representation space among all languages and verify the superiority
of EMMA-X towards strong baselines. 3) To incentivize the research of cross-lingual universal
representation learning, we form a novel benchmark (XRETE) with 12 cross-lingual tasks fully
depending on sentence-level representations. 4) Experiments on XRETE demonstrate that EMMA-X
achieved state-of-the-art results over strong baselines.
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A Training Corpora and Hyper-parameters

A.1 Training Corpora

As for monolingual data, we follow Conneau et al. [2020] to build a Common-Crawl Corpus using
the CCNet [Wenzek et al., 2020] tool4, which is widely used in the literature Huang et al. [2019],
Luo et al. [2021], Chi et al. [2021], Wei et al. [2021]. Further, we collect parallel corpora from
CCAligned El-Kishky et al. [2020], CCMatrix Schwenk et al. [2021], WMT Akhbardeh et al. [2021],
and MultiUN Ziemski et al. [2016], involving 94 languages with more than 4.8 billion sentence
pairs. We use the OpusFilter5 tool to remove noisy bitexts, which results in 3.2 billion sentence pairs.
Table 7 shows the statistics for both monolingual and parallel data. We apply subword tokenization
directly on raw text data using Sentence Piece Model Kudo and Richardson [2018] without any
additional preprocessing. To better support our motivation that EMMA-X can cover more languages
than previous cross-lingual sentence representations, we divide Tatoeba Artetxe and Schwenk [2019]
into two subsets: “Head”, containing languages usually covered in previous methods, and “Long-tail”,
with other languages. We treat the 36 languages contained in XTREME Ruder et al. [2021] as head
languages, which are: “ar, he, vi, id, jv, tl, eu, ml, ta, te, af, nl, en, de, el, bn, hi, mr, ur, fa, fr, it, pt,
es, bg, ru, ja, ka, ko, th, sw, zh, kk, tr, et, fi, hu, az, lt, pl, uk, ro”. The remaining 76 languages in
Tatoeba are treated as long-tail ones.

A.2 Hyper-parameters

The parameters of EMMA-X are first initialized with XLM-R, with 24 layers of Transformer [Vaswani
et al., 2017] encoder, 1024 hidden states, and 16 attention heads. We set the total semantic ranks as 4.
The GMM classifier is implemented as a mixture of Gaussian forms, each of which consists of a prior
π ∈ R1, a mean µ ∈ R1024, and a variance σ ∈ R1024, all are trainable variables. We optimize the
GMM classifier with Adam (β1=0.9, β2=0.999) Kingma and Ba [2015] using a batch size of 1024
and a learning rate of 3e-5. For cross-lingual encoder, we apply the same training setting as MoCo He
et al. [2020], with the momentum queue K to be 256 and temperature as 0.04. We set the momentum
coefficient to 0.999 and use the Adam optimizer with a cosine decay learning rate whose peak is 5e-4.

B FLORES-200 Dataset and Geometric Analysis

B.1 FLORES-200 dataset

FLORES-200 Goyal et al. [2022], Costa-jussà et al. [2022] is a many-to-many multilingual bench-
mark, which consists of 3001 sentences in 204 total languages. FLORES-200 sourced all sentences
from English WikiMedia and translated these English sentences into 204 languages by human trans-
lators. In particular, sentences in FLORES-200 have a much larger breadth of topics, for they are
collected from three different sources: WikiNews6, WikiJunior7 and WikiVoyage8. We summa-
rize the basic statistics of all languages in FLORES-200 in Table 8. Similar to Tatoeba [Artetxe
and Schwenk, 2019], we treat English data “eng_Latn” as retrieval labels and report the retrieval
accuracy using the same scripts as Tatoeba in XTREME [Ruder et al., 2021]. We set the 68 lan-
guages: “bel_Cyrl, bos_Latn, hun_Latn, epo_Latn, khm_Khmr, urd_Arab, srp_Cyrl, jav_Latn,
hye_Armn, gla_Latn, por_Latn, lit_Latn, bul_Cyrl, slk_Latn, mal_Mlym, ita_Latn, nno_Latn,
mar_Deva, hrv_Latn, hin_Deva, kat_Geor, ben_Beng, fin_Latn, cym_Latn, oci_Latn, cat_Latn,
fao_Latn, xho_Latn, spa_Latn, ron_Latn, amh_Ethi, ces_Latn, swe_Latn, nld_Latn, tat_Cyrl,
kor_Hang, glg_Latn, fra_Latn, eus_Latn, ind_Latn, dan_Latn, tha_Thai, deu_Latn, tel_Telu,
afr_Latn, pol_Latn, est_Latn, uig_Arab, ukr_Cyrl, uzn_Latn, heb_Hebr, kaz_Cyrl, nob_Latn,
rus_Cyrl, vie_Latn, arb_Arab, zho_Hans, tuk_Latn, khk_Cyrl, jpn_Jpan, ell_Grek, isl_Latn,
tam_Taml, slv_Latn, tur_Latn, mkd_Cyrl, tgl_Latn, gle_Latn” as “Head” languages, and the
remaining 135 languages (excluded English data) as “Long-tail” ones.

4https://github.com/facebookresearch/cc_net
5https://github.com/Helsinki-NLP/OpusFilter
6https://en.wikinews.org/wiki/MainPage
7https://en.wikibooks.org/wiki/Wikijunior
8https://en.wikivoyage.org/wiki/Main_Page
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Code Size (GB) Sent. (M) Code Size (GB) Sent. (M) Code Size (GB) Sent. (M) Code Size (GB) Sent. (M) Code Size (GB) Sent. (M)
af 1.3 - et 6.1 22.3 ja 24.2 89.2 mt 0.2 - sq 3.0 -
am 0.7 - eu 2.0 0.81 jv 0.2 - my 0.9 - sr 5.1 -
ar 20.4 72.3 fa 21.6 7.5 ka 3.4 2.0 ne 2.6 - su 0.1 -
as 0.1 - fi 19.2 92.8 kk 2.6 2.8 nl 15.8 66.0 sv 10.8 74.2
az 3.6 0.82 fr 46.5 331.5 km 1.0 0.84 no 3.7 - sw 1.6 1.7
be 3.5 0.51 fy 0.2 0.13 kn 1.2 - om 0.1 - ta 8.2 2.79
bg 22.6 47.2 ga 0.5 - ko 17.2 79.3 or 0.6 - te 2.6 -
bn 7.9 7.52 gd 0.1 0.05 ku 0.4 - pa 0.8 - th 14.7 13.1
br 0.1 - gl 2.9 0.77 ky 1.2 - pl 16.8 79.7 tl 0.8 -
bs 0.1 - gu 0.3 - la 2.5 - ps 0.7 - tr 17.3 93.8
ca 10.1 14.9 ha 0.3 - lo 0.6 - pt 15.9 247.6 ug 0.4 -
cs 16.3 108.4 he 6.7 47.1 lt 7.2 11.0 ro 8.6 60.4 uk 9.1 0.78
cy 0.8 - hi 20.2 3.2 lv 6.4 0.37 ru 48.1 134.9 ur 5.0 1.15
da 15.2 8.0 hr 5.4 - mg 0.2 - sa 0.3 - uz 0.7 -
de 46.3 283.4 hu 9.5 55.2 mk 1.9 - sd 0.4 - vi 44.6 15.3
el 29.3 95.1 hy 5.5 1.7 ml 4.3 1.07 si 2.1 0.60 xh 0.1 -
en 49.7 - id 10.6 184.6 mn 1.7 0.19 sk 4.9 - yi 0.3 -
eo 0.9 0.18 is 1.3 - mr 1.3 - sl 2.8 9.8 zh 36.8 379.4
es 44.6 279.6 it 19.8 179.3 ms 3.2 2.1 so 0.4 - - -

Table 7: The statistics of CC-100 and the collected parallel corpora used for training. We report the
list of 94 languages and include the size of the monolingual data (in GiB) and the number of sentence
pairs (in Millions, which denotes the number of sentence pairs between the specific language and
English) in parallel corpora for each language. “-” means the number of sentence pairs is less than
0.1 million.

Number of Sentences 3001
Average Words per Sentence 21
Number of Articles 842
Average Number of Sentences per Article 3.5

Domain Articles Sentences
WikiNews 309 993
WikiJunior 284 1006
WikiVoyage 249 1002

Sub-Topic Articles Sentences
Crime 155 313
Disasters 27 65
Entertainment 28 68
Geography 36 86
Health 27 67
Nature 17 45
Politics 171 341
Science 154 325
Sports 154 162
Travel 505 1529

Table 8: Basic Statistics of FLORES-200.

B.2 Three measurements in Geometric Analysis

Invariance Measurement implies whether the semantic distributions of all languages are simi-
lar [Abend and Rappoport, 2017]. We adopt a Gaussian form Nl(µl,σ

2
l ) where µl=

∑
x∈l γ(x)

3001 and
σ2
l =

∑
x∈l(γ

(x)−µl)(γ
(x)−µl)

T , to approximate the semantic distribution of each language l. Further, we
compute the mean averaged KL-divergence (KL-D for short) [Kullback and Leibler, 1951] among all
language pairs as the overall Invariance score Iv with L as the total number of languages:

Iv =
1

L × (L − 1)

∑
l1 ̸=l2

KL(Nl1
||Nl2

) + KL(Nl2
||Nl1

)

2
. (16)

Canonical Form Measurement Previous works [Teller, 2000, Irwin et al., 2009] have demonstrated
that a good multilingual space should distribute sentence representations based on their semantic
similarities rather than language families. To measure this in quantity, we focus on Calinski-Harabasz
Index (CH-I) [Caliński and Harabasz, 1974], which measures how similar an object is to its own
cluster compared to other clusters. We group all semantically equivalent sentences in a cluster, which
leads to 3001 clusters and each obsesses 204 sentences in 204 different languages. Assuming ck and
c are the centroid of cluster k and the whole dataset S, respectively. The CH-I Ch is defined as:

Ch =
[
204 ×

K∑
k=1

∥ck − c∥2
]
/
[ K∑

k=1

∑
s∈S

∥s − ck∥2
]
. (17)
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Task category Task Train Dev Test Lang. Metric Domain

Inference AmericasNLI 392,702 222-743 738-750 10 Accuracy Misc.
XNLI 392,702 2,490 5,010 15 Accuracy Misc.

Semantic Similarity Multi-STS 550,152+5,749 10,000+1,500 250 7 Spearman Misc.
WMT21QETask1 7,000 1,000 1,000 7 (11) Pearson News

Sentence Retrieval

LAReQA 87,599 10,579 1,190 11 mAP@20 Wikipedia
Mewsli-X 116,093 10,252 428-1,482 11 (50) mAP@20 News
BUCC - - 1,896-14,330 5 F1 Wiki/News
Tatoeba - - 1,000 36 (122) Accuracy Misc.

Classification

XCOPA 33,410+400 100 500 11 Accuracy Misc.
MultiEURLEX 55,000 5,000 5,000 23 Accuracy Legal
MultiARC 200,000 5,000 5,000 6 MAE Reviews
PAWS-X 49,401 2,000 2,000 7 Accuracy Wiki/Quora

Table 9: Overview of XRETE tasks. For tasks that have training and dev sets in other languages,
we only report the number of sentences in English sets. We report the number of test examples per
language.

The higher the CH-I is, the better the semantically equivalent sentences are clustered.

Isotropy Measurement A high-dimensional embedding space often demonstrates poor isotropy,
and deteriorates into a low-dimensional manifold that greatly limits the expressive ability of the
embedding space. We adopt principal ratio (PR) [Mu and Viswanath, 2018] to measure isotropy. Let
E be the sentence representation matrix, V be the set of the eigenvectors of E, the Isotropy Iso is

Iso = min
v∈V

∑
e∈E

exp(vTe)/max
v∈V

∑
e∈E

exp(vTe). (18)

The closer Iso is to 1, the more isotropic the representation space is.

C XRETE: Cross-lingual Representation Transfer Evaluation

XRETE consists of 12 tasks that fall into four different categories. In our “translate-train-all” setting,
we individually fine-tune models with English training set and its translated training sets on each
task. Then we report the performance of our fine-tuned model. We give an overview in Table 9 and
describe the task details as follows.

XNLI The Cross-lingual Natural Language Inference corpus Conneau et al. [2018] tasks the
systems with reading two sentences and determining whether one entails the other, contradicts it,
or neither (neutral). A crowdsourcing-based procedure is used for collecting English examples,
which are later translated into ten target languages for evaluation. Training data stays consistent
with the English training data of MultiNLI Williams et al. [2018]. For evaluation, we concatenate
two sentences as input and apply a new classification head to distinguish sentence relationships. We
perform “translate-train-all” evaluation, where the model is first fine-tuned on English training data
and its translated data in other languages, then evaluated on test sets.

AmericasNLI (ANLI) The AmericasNLI Ebrahimi et al. [2022] is an extension of XNLI task to
10 Indigenous languages of the Americas. All of these languages are truly low-resource languages
and serve as a good testbed for zero-shot cross-lingual transferability. As Spanish is more relative to
the target languages, the Spanish version of XNLI subset is translated for evaluation. For training,
both English and Spanish versions of MultiNLI training data are provided. We evaluate on ANLI
following the same settings as in XNLI.

MultiSTS The Multilingual Semantic Textual Similarity dataset Cer et al. [2017], Reimers and
Gurevych [2020] aims to assign a semantic similarity score for a pair of sentences. The MultiSTS
dataset contains 7 cross-lingual sentence pairs and 3 monolingual pairs. Stanford NLI Bowman et al.
[2015] and English STS Cer et al. [2017] are provided as training sets. We report the results after first
fine-tuning on English training set using a Siamese network structure [Reimers and Gurevych, 2020].
Then we compute the cosine similarity between the sentence pairs and compute Spearman’s rank
correlation between the predicted score and gold score following Reimers and Gurevych [2020].
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WMT21QETask1 (QE) The WMT21 Quality Estimation Task 1 Sentence-level Direct Assessment
Specia et al. [2021] aims at testing the translation quality and this task has been applied to test the
sensitivity of language models to semantic similarity Tiyajamorn et al. [2021]. The training and
evaluation sets are collected from Wikipedia by translating sentences using state-of-the-art translation
models to 6 languages and annotated by professional translators. In WMT21, 4 new language pairs
with no training data are given to test zero-shot cross-lingual transferability. Our evaluation setting
on QE is similar to that on MultiSTS, but we report Pearson’s rank correlation [Kepler et al., 2019].

LAReQA The Language-Agnostic Retrieval Question Answering Roy et al. [2020] is a QA retrieval
task where models are required to retrieve all relevant answers in different languages over a large
multilingual pool. The dataset is constructed on XQuAD Artetxe et al. [2020] and a question is
linked with answer sentences in different languages. The training set of SQuAD v1.1 Rajpurkar et al.
[2016] is used to fine-tune the model to adapt to QA retrieval task. During the evaluation, sentence
embeddings are also obtained by a siamese network, and we retrieve the sentences with the highest
cosine similarity as predictions.

Mewsli-X Mewsli (Multilingual Entities in News, linked) requires linking an entity mention to
its entry in a language-agnostic knowledge base Botha et al. [2020]. Mewsli-X Ruder et al. [2021]
features 15k mentions in 11 languages. For each mention, Mewsli-X offers entity descriptions
candidate pool containing 1M candidates across 50 languages. Fine-tuning is done on a predefined
set of English-only mention-entity pairs from English Wikipedia hyperlinks. Our evaluation setting is
identical to LAReQA.

BUCC The second and third shared task of the workshop on Building and Using Parallel Corpora
Zweigenbaum et al. [2017], Pierre Zweigenbaum and Rapp [2018] aims to examine the ability of
models to detect parallel sentence pairs in a pair of monolingual corpora. The dataset provides train
and test splits in 5 languages. Following XTREME Hu et al. [2020], we directly evaluate on BUCC
without fine-tuning and retrieve sentences with the highest cosine similarity.

Tatoeba The goal of the Tatoeba dataset Artetxe and Schwenk [2019] is to find the nearest neighbor
for each sentence in the other language according to cosine similarity and compute the error rate. The
dataset consists of up to 1,000 English-aligned sentence pairs covering 122 languages. Following
XTREME Hu et al. [2020], we directly evaluate on Tatoeba without fine-tuning and retrieve sentences
with the highest cosine similarity.

XCOPA In the Cross-lingual Choice of Plausible Alternatives dataset Ponti et al. [2020], each
XCOPA instance corresponds to a premise and two alternatives. The task is formulated as a binary
classification to predict the more plausible choice. The English COPA Gordon et al. [2012] training
set and Social IQa Sap et al. [2019] training data are used for fine-tuning, while the validation and
test sets of English COPA are translated and re-annotated into 11 languages for evaluation.

MultiEURLEX The MultiEURLEX dataset Chalkidis et al. [2021] is a legal topic classification
task that comprises 65k European Union (EU) laws in 23 official EU languages. The dataset provides
multi-granular labels per document. The dataset is split into training, development, and test subsets
chronologically, resulting in 55k training documents for 7 languages, and 5k each for development
and test subsets in all 23 languages.

MultiARC The Multilingual Amazon Reviews Corpus Keung et al. [2020] is a large-scale collection
of Amazon reviews for multilingual text classification in 6 languages. Different languages are directly
gathered from the marketplaces in different countries. The goal is to predict the reviewer’s rating on
the 5-star scale using the test of the review as input. The data is clearly split into training (200,000
reviews), development (5,000 reviews), and test sets (5,000 reviews) for each language.

PAWS-X The Cross-lingual Paraphrase Adversaries from Word Scrambling Yang et al. [2019b]
dataset requires identifying whether two sentences are paraphrases. A subset of the evaluation pairs
in English PAWS Zhang et al. [2019] are human-translated into 6 typologically distinct languages for
evaluation, while the English PAWS training set is used for training.
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Model en ar bg de el es fr hi ru sw th tr ur vi zh Avg.

XLM-R 88.6 84.5 86.7 84.6 85.2 84.7 82.0 82.5 82.6 82.4 80.6 83.1 80.3 77.3 77.2 82.8
INFOXLM 90.4 83.9 85.8 86.0 85.6 87.8 86.9 83.9 83.5 83.3 81.2 84.6 82.7 81.6 75.7 84.2
HICTL 90.6 86.8 88.2 87.4 87.0 87.4 85.0 83.9 83.3 84.8 83.1 85.7 82.8 79.7 80.9 85.1
ChatGPT 70.4 61.0 64.5 64.8 62.8 65.7 66.3 51.5 63.4 55.7 53.0 61.6 47.9 61.6 62.6 60.9

EMMA-X 91.9 89.2 90.1 89.6 89.5 90.3 88.7 86.7 85.4 88.5 86.7 89.6 87.7 83.6 83.9 88.1

Table 10: XNLI results (accuracy) for each language.

Model aym bzd cni gn hch nah oto quy shp tar Avg.

XLM-R 49.01 50.61 41.72 58.34 42.46 54.63 35.57 59.29 51.62 41.54 48.48
INFOXLM 49.87 51.29 42.41 58.83 43.07 55.25 36.14 59.87 52.20 42.12 49.10
HICTL 49.65 51.22 42.36 58.82 43.09 55.13 36.04 59.61 52.17 42.08 49.02
ChatGPT 42.0 43.6 40.8 40.4 40.0 43.8 41.1 43.1 42.0 40.0 41.7

EMMA-X 51.19 52.50 43.62 59.88 44.31 55.44 39.16 60.14 52.84 43.10 50.21

Table 11: AmericasNLI (ANLI) results (top-1 accuracy) across different input languages.

Model en-ar en-de en-tr en-es en-fr en-it en-nl ar-ar en-en es-es Avg.

XLM-R 50.2 63.7 45.8 59.6 68.0 63.4 69.6 87.7 82.5 68.5 65.9
INFOXLM 81.7 80.3 79.9 79.1 80.6 83.4 81.2 86.7 87.2 81.7 82.2
HICTL 80.4 81.8 78.3 80.6 81.2 80.9 79.3 88.4 86.1 79.6 81.6

EMMA-X 86.6 85.0 87.1 84.4 85.2 89.4 88.3 90.9 92.0 84.5 87.3

Table 12: MultiSTS results (Spearman) across different input languages.

D Baseline Methods

To fairly evaluate the performance of EMMA-X, we choose XLM-R Conneau and Lample [2019]
and its several derivatives as our baselines, which contain: (1) XLM-R, which applies multilingual
MLM tasks as pre-training objectives on CCNet-100 corpus; (2) HICTL Wei et al. [2021], which
continues training on XLM-R using hierarchical contrastive learning; and (3) INFOXLM, which is
initialized with XLM-R and trains with cross-lingual contrast, multilingual MLM and TLM. Also,
we compare EMMA-X to strong sentence models: (1) S-BERT [Reimers and Gurevych, 2020],
which adopts multilingual knowledge distillation to extend monolingual sentence representations to
multilingual. We use the strongest baseline, XLM-R← SBERT-paraphrase, proposed in the original
paper as a baseline. (2) LaBSE [Feng et al., 2022], which systematically combines several best
methods, including masked language modeling, translation language modeling [Conneau and Lample,
2019], dual encoder translation ranking [Guo et al., 2018], and additive margin softmax [Yang et al.,
2019a], to learn cross-lingual sentence representations. It filters 17B monolingual sentences and
6B translation pairs for sentence representation learning. We take the best model, LaBSE with
Customized Vocab as our baseline. We further report the zero-shot results on Large Language Model
(LLM), ChatGPT, which is trained on a wide variety of multilingual sentences and instruction tuning
based on Reinforcement Learning with Human Feedback [Christiano et al., 2017, Ouyang et al.,
2022].

E Prompts for ChatGPT

In this section, we show the input prompts of ChatGPT on each task in Table 13.

F Results of each Language

We show the details for tasks and all languages in Tables 10 (XNLI), 11 (AmericasNLI), 12 (Multi-
STS), 14 (QE), 15 (LAReQA), 16 (Mewsli-X), 17 (XCOPA), 18 (BUCC) and 19 (PAWS-X).
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G Equations and Theoretical Analysis

G.1 Details of Equations

Details of Gaussian FormNr In EMMA-X, GMM classifier is introduced to determine the semantic
rank of sentence pairs. The posterior probability PG(·) of GMM classifier is already discussed in Eq.
5. We show the explicit calculation of Gaussian form Nr(γ

(xi), γ(yk)) as:

Nr(γ
(xi) − γ(yk)|µr, σr) =

πr

(2π)(d/2)|diag(σr)|
· e

(
− 1

2

[
(γ(xi)−γ(yk))−µr

]T
diag(σ−2

r )
[
(γ(xi)−γ(yk))−µr

])
,

(19)

where d is the dimension of hidden states of γ(xi) and γ(yk).

Details of contrastive learning The training objective of cross-lingual encoder in EMMA-X is the
ranking InfoNCE loss. We show the explicit expansion of this loss (Eq. 7) as:

LCTL(X ,Y; ΘM) = −Exi∼X

[

log

∑
yk∼Yc∗G=1

e
s[γ(xi),γ(yk)]
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∑
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e
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e
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τ1 + ...+
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e
s[γ(xi),γ(yt)]

τ1︸ ︷︷ ︸
ℓ1

+ log

∑
yk∼Yc∗G=2

e
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]
,

(20)

where τr represents the temperature term. As small temperature τ tends to be less tolerant to similar
samples, and large τ tends to cluster similar samples together [Wang and Liu, 2021], we empirically
set τ1 < τ2 < τ3 < τ4, which remains the same as Hoffmann et al. [2022].

G.2 Theoretical Analysis

In this section, we provide detailed proof for Eq. 14 and Eq. 15. Next, we prove the feasibility of
our dual supervision. GMM classifier clusters sentence pairs in terms of Euclidean distance, while
cross-lingual encoder minimizes the covariance of each semantic relation rank via cosine distance.
Finally, we prove that these two metrics are actually equivalent to each other in the unit hypersphere
of the embedding space.
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Proof of Eq. 14. We provide the derivation of Eq. 14. With the assumption that P (xi,yk|c∗G =

r,Θ) ∼ Nr

(
xi − yk|µ̃r, σ̃r

)
, we have,∑
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N∑
r=1

Q(r) log
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[
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N∑
r=1

[ ∑
xi∈X

∑
yk∈Y

(xi − yk)
]2 − 2µ̃r

∑
xi∈X

∑
yk∈Y

(xi − yk) + nµ̃2
r

=

N∑
r=1

n2µ̃2
r − nµ̃2

r

= n(n− 1)

N∑
r=1

µ̃2
r,

(21)

with n denoting the number of sentence pairs in semantic rank r. Here, we ignore the impact of σ̃r.

Proof of Eq. 15. As we apply dual supervision, data in the contrastive label space also follows the
distribution Nr

(
xi − yk|µ̃r, σ̃r

)
. Hence, under mild assumptions, we can get:

L+
CTL(X ,Y; ΘM) = Exi∼X

N−1∑
r=1

log
∑

yk∼Yc∗G=r

es[γ
(xi),γ(yk)]

=
∑
xi∈X

∑
yk∈Y

N−1∑
r=1

s(xi,yk)

=
∑
xi∈X

∑
yk∈Y

N−1∑
r=1

(xi − yk)
2 − 2

2

= n2
N−1∑
r=1

µ̃2
r.

(22)

Based on the definition of semantic ranks, we have µ̃1 < µ̃2 < ... < µ̃N . Empirically, the number of
sentence pairs in each rank n is larger than the number of semantic ranks N . Hence, it can be derived
that:

L+
CTL(X ,Y; ΘM) = n2

N−1∑
r=1

µ̃2
r

< n2
N−1∑
r=1

µ̃2
r + n2µ̃2

N − n

N∑
r=1

µ̃2
r

= n(n− 1)

N∑
r=1

µ̃2
r

≤
∑
xi∈X

∑
yk∈Y

N∑
r=1

Q(r) log
P (xi,yk, r|Θ)

Q(r)
.

(23)

Therefore, we prove that minimizing the positive terms L+
CTL(X ,Y; ΘM) in contrastive learning is

equivalent to maximizing a lower bound of the likelihood in Eq. 12.

According to the definition of semantic ranks, the approximated semantic rank c∗G from GMM
classifier should satisfy the following restriction,

Eyk∼Yc∗G=1
||γ(xi) − γ(yk)|| < Eyk∼Yc∗G=2

||γ(xi) − γ(yk)|| < ... < Eyk∼Yc∗G=N
||γ(xi) − γ(yk)||. (24)
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Similarly, the approximated semantic rank c∗M from cross-lingual encoder should satisfy the following
restriction,

Eyk∼Yc∗M=1
s[γ(xi), γ(yk)] > Eyk∼Yc∗M=2

s[γ(xi), γ(yk)] > ... > Eyk∼Yc∗M=N
s[γ(xi), γ(yk)]. (25)

Next, we prove that these two restrictions are interchangeable with each other in a unit hypersphere.
For simplicity, we consider only two ranks, but extending the explanation to more ranks is trivial. As
the Euclidean distance is always larger than 0, we have:

Eyk∼Yc∗G=1
||γ(xi) − γ(yk)|| < Ey∼Yc∗G=2

||γ(xi) − γ(yk)||

⇔ Eyk∼Yc∗G=1
(γ(xi) − γ(yk))2 < Eyk∼Yc∗G=2

(γ(xi) − γ(yk))2

⇔ Eyk∼Yc∗G=1
(2− 2γ(xi)γ(yk)) < Eyk∼Yc∗G=2

(2− 2γ(xi)γ(yk))

⇔ Eyk∼Yc∗G=1
s[γ(xi), γ(yk)] > Eyk∼Yc∗G=2

s[γ(xi), γ(yk)]

⇔ Eyk∼Yc∗M=1
s[γ(xi), γ(yk)] > Eyk∼Yc∗M=2

s[γ(xi), γ(yk)].

(26)

From the above analyses, we can tell that the approximated semantic rank from one module can
provide a reasonable supervision signal to guide the training of the other module. Hence, all sentence
pairs will be uniformly distributed according to a unified ranking semantic similarity in the embedding
space.
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Basic Prompt for XNLI/ANLI

Task Description: Read the following and determine the relationship between Hypothesis and Premise.
Choose relation from “contradiction”, “neutral”, or “entailment”.
Hypothesis: Yo... no puedo pensar por qué deberías hablarme así, dijo ella, con menos de lo que le había

asegurado antes.
Premise: Ella era una buena amiga de él, por esto le dolía que le hablara así.

Basic Prompt for MultiSTS

Task Description: Read the following sentences and measure the real-valued meaning similarity between
these two sentences. You can choose the meaning similarity score, ranging from 0 for no meaning overlap to
5 for meaning equivalence.
Sentence1: A person is on a baseball team.
Sentence2: Eine Person spielt in einem Team Basketball.

Basic Prompt for QE

Task Description: Read the Source sentence and its Translation, and estimate the quality of the Translation.
You can rate the translation from 0-1 according to the perceived translation quality.
Source: În Frant,a a început stagnarea demografică de lungă durată, refacerea durând o generat,ie.
Translation: In France, long-term demographic stagnation has started, restoring a generation.

Basic Prompt for XCOPA

Task Description: Read the Premise and determine which choice is the effect(or cause) of the Premise .
Choose from “Choice1” or “Choice2”.
Premise: Kuki kurukuna wasiman haykurqanku.
Choice1: Kuki kurukunaqa wasimanta chinkarqanku.
Choice2: Kuki kuruqa wasip kurkunta mikhurqanku.

Basic Prompt for MultiEURLEX

Task Description: Read the following sentences and determine the legal topic of the given sentence. The
legal topic should choose from ‘international organisations’, ‘social questions’, ‘production’, ‘technology
and research’, ‘environment’, ‘energy’, ‘transport’, ‘law’, ‘finance’, ‘education and communications’, ‘trade’,
‘agriculture’, ‘forestry and fisheries’, ‘economics’, ‘agri-foodstuffs’, ‘EUROPEAN UNION’, ‘science’,
‘politics’, ‘international relations’, ‘industry’, ‘geography’, ‘business and competition’, ‘employment and
working conditions’.
Sentence: NEUVOSTON ASETUS (EU) N:o 1390/2013, annettu 16 päivänä joulukuuta 2013, Euroopan

unionin ja Komorien liiton kesken näiden välisessä kalastuskumppanuussopimuksessa määrätyjen kalastus-
mahdollisuuksien ja taloudellisen korvauksen vahvistamisesta hyväksytyn pöytäkirjan mukaisten kalastus-
mahdollisuuksien jakamisesta ...

Basic Prompt for MultiARC

Task Description: Read the following review and predict a 5-star scale rating (1 means the poorest
experience and 5 represents excellent or outstanding performance) that can best match the review.
Review: no me llego el articulo me lo mando por correos normal sin seguimiento y nunca me llego tota un

desastre

Basic Prompt for PAWS-X

Task Description: Read the following sentences and determine whether two sentences are paraphrases.
Return yes or no.
Sentence1: La excepción fue entre fines de 2005 y 2009 cuando jugó en Suecia con Carlstad United BK,

Serbia con FK Borac Čačak y el FC Terek Grozny de Rusia.
Sentence2: La excepción se dio entre fines del 2005 y 2009, cuando jugó con Suecia en el Carlstad United

BK, Serbia con el FK Borac Čačak y el FC Terek Grozny de Rusia.

Table 13: Prompts of ChatGPT on each task.
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Model en-de en-zh et-en ne-en ro-en ru-en si-en en-cs en-ja km-en ps-en Avg.

XLM-R 0.412 0.566 0.797 0.812 0.891 0.774 0.578 0.547 0.335 0.612 0.635 0.632
INFOXLM 0.517 0.534 0.775 0.834 0.890 0.788 0.581 0.564 0.325 0.635 0.616 0.641
HICTL 0.495 0.579 0.792 0.835 0.904 0.787 0.575 0.556 0.342 0.625 0.648 0.649

EMMA-X 0.580 0.589 0.809 0.854 0.897 0.829 0.593 0.577 0.370 0.641 0.651 0.672

Table 14: WMT21-QE-Task1 results (Pearson) across different input languages.

Model ar de el en es hi ru th tr vi zh Avg.

XLM-R 34.1 42.4 39.3 44.8 44.0 37.3 41.7 38.6 40.9 40.4 39.5 40.3
INFOXLM 39.7 52.6 39.2 55.1 53.4 36.8 51.0 28.5 41.1 48.9 47.3 44.9
HICTL 40.3 53.2 41.7 56.3 54.3 39.6 51.7 30.1 42.8 48.9 48.5 46.1

EMMA-X 45.1 58.4 45.4 60.6 59.8 41.4 56.3 34.7 47.1 54.6 53.4 50.6

Table 15: LAReQA results (mean average precision@20, mAP@20) across different input languages.

Model ar de en es fa ja pl ro ta tr uk Avg.

XLM-R 34.6 66.0 62.6 64.8 27.1 47.8 64.8 33.7 17.8 62.3 53.2 48.6
INFOXLM 40.8 71.6 66.3 68.7 48.7 61.0 66.7 39.2 42.0 64.6 58.1 57.1
HICTL 41.7 68.5 64.2 65.6 45.6 51.9 67.6 40.4 32.8 65.5 58.9 54.8

EMMA-X 50.2 78.7 69.1 63.7 47.9 59.6 70.0 50.2 43.5 68.0 60.9 59.6

Table 16: Mewsli-X results (mean average precision@20, mAP@20) across different input languages.

Model et ht id it qu sw ta th tr vi zh Avg.

XLM-R 73.8 67.4 77.8 72.2 52.3 70.9 72.1 74.6 73.4 73.2 75.7 71.2
INFOXLM 75.1 73.4 78.3 80.7 65.6 69.1 72.7 73.9 76.9 77.8 77.5 74.6
HICTL 75.9 73.1 77.8 81.2 65.5 73.8 72.6 73.2 76.1 75.4 78.0 74.8
ChatGPT 80.6 64.1 85.6 89.2 47.4 75.9 56.4 67.3 82.2 81.5 85.8 74.2

EMMA-X 76.8 74.0 77.6 79.8 76.2 74.4 77.8 74.2 77.6 82.6 89.6 78.2

Table 17: XCOPA results (accuracy) across different input languages.

Model de fr ru zh Avg.

XLM-R 76.1 72.3 62.3 60.8 67.9
INFOXLM 81.3 78.2 76.0 74.2 77.4
HICTL 80.5 79.2 76.0 74.8 77.6

EMMA-X 85.1 82.8 81.3 78.3 81.9

Table 18: BUCC results (F1) across dif-
ferent languages.

Model en de es fr ja ko zh Avg.

XLM-R 95.7 92.2 92.7 92.5 84.7 85.9 87.1 90.1
INFOXLM 97.7 94.6 95.2 95.1 88.9 89.0 90.2 93.0
HICTL 97.4 94.2 95.0 94.2 89.1 89.5 90.2 92.8
ChatGPT 71.9 67.8 67.9 67.0 58.3 54.7 61.4 64.2

EMMA-X 97.3 95.6 94.7 96.0 92.9 89.8 93.0 94.2

Table 19: PAWS-X results (accuracy) for each
language.
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