
A Technical Proofs

Theorem 1. For the variables Z and D as defined in (3), under Assumptions 2, αd

αz
can be determined

uniquely if ∃n ∈ N such that:

E [ϵ̂nu] ̸= (n− 1)E
[
ϵ̂n−2
u

]
E
[
ϵ̂2u
]
, (8)

where ϵ̂u =
√
αdαzϵu.

Proof. Let α :=
√

αd

αz
. Please note that α can be a complex number. Then, D and Z in (3) can be

rewritten as:

D = αϵ̂u + ϵd,

Z =
1

α
ϵ̂u + ϵz.

We prove by induction that:

E [ϵ̂nu] = (n− 1)E
[
ϵ̂n−2
u

]
E
[
ϵ̂2u
]
, (9)

holds for any n ∈ N or αd

αz
(α2 equivalently) can be identified uniquely from D and Z.

Base of induction. It is easy to verify that for n = 2, (9) holds.

Induction step. Assume that n ≥ 2 and (9) holds for all k < n. Then we prove either it also holds for
n or αd/αz can be identified uniquely. We have

E[Dn−1Z] = E[(αϵ̂u + ϵd)
n−1)

1

α
ϵ̂u] = (10)

E[αn−2ϵ̂nu +

(
n− 1

1

)
αn−3ϵ̂n−1

u ϵd + · · ·+
(
n− 1

n− 2

)
ϵ̂2uϵ

n−2
d ].

By the induction hypothesis, we know that for all k < n:

E[ϵ̂ku] = (k − 1)E[ϵ̂k−2
u ]E[ϵ̂2u].

Then, (
n− 1

k

)
αn−k−2E[ϵ̂n−k

u ]E[ϵkd] =
(
n− 1

k

)
αn−k−2E[ϵ̂n−k−2

u ]E[ϵ̂2u]E[ϵkd](n− k − 1).

Note that:(
n− 1

k

)
(n− k − 1) =

(n− 1)!(n− k − 1)

(k)!(n− k − 1)!
=

(n− 2)!(n− 1)

(k)!(n− k − 2)!
=

(
n− 2

n− k − 2

)
(n− 1).

Therefore,(
n− 1

k

)
αn−k−2E[ϵ̂n−k

u ]E[ϵkd] = (n− 1)E[ϵ̂2u]
(

n− 2

n− k − 2

)
E[ϵ̂n−k−2

u ]E[ϵkd]. (11)

Substituting all the terms except the first one in (10) using (11), we have:

E[Dn−1Z] = E[αn−2ϵ̂nu] + (n− 1)E[ϵ̂2u]E

[
n−2∑
k=0

(
n− 2

k

)
(αϵ̂u)

kϵn−2−k
d

]
− (n− 1)αn−2E[ϵ̂n−2

u ]E[ϵ̂2u] = αn−2E[ϵ̂nu] + (n− 1)E[ϵ̂2u]E[Dn−2]− (n− 1)αn−2E[ϵ̂n−2
u ]E[ϵ̂2u]

Consequently,

E[Dn−1Z]− (n− 1)E[ϵ̂2u]E[Dn−2] = αn−2
(
E[ϵ̂nu]− (n− 1)E[ϵ̂n−2

u ]E[ϵ̂2u]
)
. (12)

Similarly, we can get

E[Zn−1D]− (n− 1)E[ϵ̂2u]E[Zn−2] =
1

αn−2

(
E[ϵ̂nu]− (n− 1)E[ϵ̂n−2

u ]E[ϵ̂2u]
)
. (13)
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Note that the right hand sides of (12) and (13) should be equal to zero. Otherwise one can divide (12)
by (13) and get the value of α2n−4. This is because we can obtain E[Zn−1D] and E[Dn−2] from the
observational distribution. The other term in the expression, E[ϵ̂2], can also be computed from the
observation distribution as it equals E[DZ]. To see this, note that

E[DZ] = E
[
ϵ̂2u + ϵ̂u(αϵz +

1

α
ϵd) + ϵdϵz

]
= E

[
ϵ̂2u
]
.

Therefore, we can identify α2 uniquely up to its sign since α2 is a real-valued number. Furthermore
the sign of αd

αz
is the same as the sign of the αzαdE[ϵ2u] which is equal to the E[DZ]. Thus, αd

αz
will

be determined uniquely if (9) is not satisfied for n and the proof is complete.

Corollary 1. Under Assumptions 1, 2 and 3, the causal effect β can be recovered uniquely if ϵu is
non-Gaussian.

Proof. Based on [Bro83][Chapter 30, Theorem 30.1], under Assumption 3, the condition E [ϵ̂nu] =
(n − 1)E

[
ϵ̂n−2
u

]
E
[
ϵ̂2u
]

is satisfied for any n ∈ N if and only if ϵ̂u is Gaussian. Thus, based on
Theorem 1, the causal effect β is identified if ϵu is non-Gaussian.

Theorem 2. Suppose that the linear SEM given by (3) with the causal graph in Figure 2 is extended
with covariates X, non-Gaussian latent confounders U and proxy varialbes Z such that

• none of the observed covariate is a descendant of any latent variable;

• no latent confounder U ∈ U of variables D and Y is an ancestor of any other latent
confounder;

• for each latent confounder U ∈ U there exists a unique proxy variable Z ∈ Z which is not
an ancestor of Y ;

• each latent confounder and its unique proxy variable satisfy the Assumptions 1, 2 and 3.

Then the causal effect β from D to Y can be computed uniquely from the observational distribution.

Proof. Let X = {X1, X2, . . . , Xk} be the covariates. Since any of them is not a descendant of
a latent confounder, then at least one of them should have no parents. Without loss of generality,
suppose that X1 has no parents and therefore we can write:

X1 = ϵx1 .

Let us consider any descendant Xi of X1. Then we have:

Xi = aϵx1
+Rxi

,

where Rxi is independent of ϵx1 and a is some constant. Regressing Xi on X1 we can recover a.
Moreover, we can consider X ′

i := Xi − aX1 instead of Xi, where X1 has no causal effect on X ′
i . By

applying this operation for all descendants of X1, we reduce the problem to the one, with the same
conditions as in the theorem but with a fewer set of covariates, that is {X2, . . . , Xk}. Continuing
this procedure, we can eliminate all the covariates one by one and get the model in which we only
have latent confounders.

Suppose that U0, U1, . . . , Ut are latent confounders specified in the theorem and Z0, Z1, . . . , Zt are
their corresponding unique proxies. Then we can write:

Ui = ϵui
i ∈ {0, 1, . . . , t},

Zi = αziϵui
+ ϵzi i ∈ {0, 1, . . . , t},

D = ϵd +

t∑
i=0

αd,ui
ϵui

,

Y = ϵy +

t∑
i=0

αγ,ui
Ui + βD = ϵy + βϵd +

t∑
i=0

αγ,ui
ϵui

+ β

t∑
i=0

αd,ui
ϵui

.
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Since the Assumptions 1, 2 and 3 for the variables Zi, Ui and D hold for each i ∈ {0, 1, . . . , t} and
Ui is non-Gaussian, we can apply Theorem 1. Using the Theorem 1 for Zi, Ui and D, we recover
αd,ui

αzi
. Moreover, we know that the following set of equalities are satisfied:

Cov(D,Y ) = βE[ϵ2d] +
t∑

i=0

αd,ui
(αγ,ui

+ βαd,ui
)E[ϵ2ui

],

t∑
i=0

αd,ui

αzi

Cov(Y, Zi) =

t∑
i=0

αd,ui
(αγ,ui

+ βαd,ui
)E[ϵ2ui

],

Var(D) = E[ϵ2d] +
t∑

i=0

α2
d,ui

E[ϵ2ui
],

t∑
i=0

αd,ui

αzi

Cov(D,Zi) =

t∑
i=0

α2
d,ui

E[ϵ2ui
].

Using above equalities, it can easily be seen that β is identified from following equation given the
ratios {αd,ui

αzi
}:

β =
Cov(D,Y )−

∑t
i=0

αd,ui

αzi
Cov(Y,Zi)

Var(D)−
∑t

i=0

αd,ui

αzi
Cov(D,Zi)

,

and the proof is complete.

Theorem 3. Suppose that the observed variables in linear SCM in (3) have jointly Gaussian
distribution. Under Assumptions 1, 2 and 4, the total causal effect β cannot be identified uniquely.

Proof. Without loss of generality, we assume that Z, D and Y have zero mean and are generated by
a model M1 as follows:

M1 :

U = ϵu,

Z = αzU + ϵz,

D = αdU + ϵd,

Y = βD + γU + ϵy,

and αd = 1. Otherwise, instead of U = ϵu, one can write U = αdϵu and rescale other coefficients
respectively. Further, we construct a model M2 as follows:

M2 :

U = ϵu,

Z =
1

k
αzU + ϵ′z,

D = kU + ϵ′d,

Y = β′D + γ′U + ϵ′y,

where β ̸= β′ and all the exogenous noises are Gaussian with a mean equal to 0 such that:

Var(Z)M1 = Var(Z)M1 , Var(D)M1 = Var(D)M2 , Var(Y )M1 = Var(Y )M2 ,

Cov(Z,D)M1 = Cov(Z,D)M2 , Cov(Z, Y )M1 = Cov(Z, Y )M2 , Cov(D,Y )M1 = Cov(D,Y )M2 .
(14)

Since in both cases Z, D and Y are jointly Gaussian then both model agree on the distribution of
observed variables. The latter means that total causal effect β is not identifiable since β ̸= β′ and it is
impossible to distinguish between them having only observations of Z, D and Y .
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More specifically, we define k = 1− δ, where δ some real number such that:

0 < δ < 1−

√
α2
zVar(ϵu)

α2
zVar(ϵu) + Var(ϵz)

, (15)

Var(ϵd)

Var(ϵu)
≥ (1− k2). (16)

Accordingly, we define random variables ϵ′z , ϵ′d, ϵ′y as Gaussian random variables with mean zero
having the variances as follows:

Var(ϵ′z) := σ′
z = α2

zVar(ϵu) + Var(ϵz)−
1

k2
α2
zVar(ϵu)

Var(ϵ′d) := σ′
d = Var(ϵu) + Var(ϵd)− k2Var(ϵu) > Var(ϵd)

Var(ϵ′y) := σ′
y = (β + γ)2Var(ϵu) + β2Var(ϵd) + Var(ϵy)− (kβ′ + γ′)2Var(ϵu)− β′2σ′

d,

where

β′ := β + γVar(ϵu)

(
1− k2

σ′
d

)
,

γ′ := kγ
Var(ϵd)

σ′
d

.

Further we will show that σ′
z > 0, σ′

y > 0 and such that the conditions in (14) hold, which completes
the proof.

1. Here we will prove that σ′
z > 0 and

Var(Z)M1 = Var(Z)M2 , Cov(Z,D)M1 = Cov(Z,D)M2 .

From the inequality (15), we have:

k >

√
α2
zVar(ϵu)

α2
zVar(ϵu) + Var(ϵz)

=⇒ k2 >
α2
zVar(ϵu)

α2
zVar(ϵu) + Var(ϵz)

=⇒

α2
zVar(ϵu) + Var(ϵz) >

α2
z

k2
Var(ϵu) =⇒ σ′

z = α2
zVar(ϵu) + Var(ϵz)−

α2
z

k2
Var(ϵu) > 0.

By the definition,

Var(Z)M2 =
α2
z

k2
Var(ϵu) + Var(ϵ′z) =

α2
z

k2
Var(ϵu) + α2

zVar(ϵu) + Var(ϵz)−
α2
z

k2
Var(ϵu) =

α2
zVar(ϵu) + Var(ϵz) = Var(Z)M1 ,

and
Cov(Z,D)M1 = αzVar(ϵu) = Cov(Z,D)M2 .

2. Here we will prove that Var(D)M1 = Var(D)M2 .

By the definition,

Var(D)M2 =k2Var(ϵu) + Var(ϵ′d) = k2Var(ϵu) + Var(ϵu) + Var(ϵd)− k2Var(ϵu) =

Var(ϵu) + Var(ϵd) = Var(D)M1 .
(17)

3. Here we will prove that:

Cov(Z, Y )M1 = Cov(Z, Y )M2 , Cov(D,Y )M1 = Cov(D,Y )M2 .

By the definition,

Cov(Z, Y )M2 =
1

k
αz(β

′k + γ′)Var(ϵu) = αz

(
β + γVar(ϵu)

(
1− k2

σ′
d

)
+ γ

Var(ϵd)

σ′
d

)
Var(ϵu) =

αz

(
β + γ

Var(ϵu) + Var(ϵd)− k2Var(ϵu)

σ′
d

)
Var(ϵu) = αz(β + γ)Var(ϵu) = Cov(Z, Y )M1
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and

Cov(D,Y )M2 = β′Var(D) + kγ′Var(ϵu) =

(
β + γVar(ϵu)

(
1− k2

σ′
d

))
Var(D) + k2γ

Var(ϵd)

σ′
d

Var(ϵu) =

βVar(D) + γVar(ϵu)

(
1− k2

σ′
d

)
(Var(ϵu) + Var(ϵd)) + k2γ

Var(ϵd)

σ′
d

Var(ϵu) =

βVar(D) + γVar(ϵu)
(1− k2)Var(ϵu) + Var(ϵd)

σ′
d

= βVar(D) + γVar(ϵu) = Cov(D,Y )M1

4. Here we will proof that σ′
y ≥ 0 and Var(Y )M1 = Var(Y )M2 .

To get inequality σ′
y ≥ 0 it is enough to show that

(β + γ)2Var(ϵu) + β2Var(ϵd) ≥ (kβ′ + γ′)2Var(ϵu) + β′2σ′
d.

Therefore

(β + γ)2Var(ϵu) + β2Var(ϵd) ≥ (kβ′ + γ′)2Var(ϵu) + β′2σ′
d ⇐⇒

(β + γ)2Var(ϵu) + β2Var(ϵd) ≥ k2
(
β + γVar(ϵu)

(
1− k2

σ′
d

)
+ γ

Var(ϵd)

σ′
d

)2

Var(ϵu) + β′2σ′
d ⇐⇒

(β + γ)2Var(ϵu) + β2Var(ϵd) ≥ k2(β + γ)2 +

(
β + γVar(ϵu)

(
1− k2

σ′
d

))2

σ′
d ⇐⇒

(1− k2)(β + γ)2Var(ϵu) + β2Var(ϵd) ≥ β2Var(ϵ′d) + 2βγVar(ϵu)(1− k2) + (1− k2)2C,

where C = γ2 Var(ϵu)
2

σ′
d

. From (17), we can get

(1− k2)(β + γ)2Var(ϵu) + β2Var(ϵd) ≥ β2Var(ϵ′d) + 2βγVar(ϵu)(1− k2) + (1− k2)2C ⇐⇒
(1− k2)(β + γ)2Var(ϵu) ≥ (1− k2)β2Var(ϵu) + 2βγVar(ϵu)(1− k2) + (1− k2)2C ⇐⇒
γ2Var(ϵu) ≥ (1− k2)C.

From the inequality (16) we have

γ2Var(ϵu) ≥ γ2(1− k2)
Var(ϵu)

2

Var(ϵd)
≥ γ2(1− k2)

Var(ϵu)
2

σ′
d

= (1− k2)C.

The last inequality follows from the fact that σ′
d ≥ Var(ϵd) (the definition of σ′

d). Therefore in our
construction for the second model, we have σ′

y ≥ 0.

Finally,

Var(Y )M2 = (β′k + γ′)2Var(ϵu) + β′2σ′
d +Var(ϵ′y) =

(β′k + γ′)2Var(ϵu) + β′2σ′
d+

(β + γ)2Var(ϵu) + β2Var(ϵd) + Var(ϵy)− (kβ′ + γ′)2Var(ϵu)− β′2σ′
d =

(β + γ)2Var(ϵu) + β2Var(ϵd) + Var(ϵy) = Var(Y )M1 .

The above claims show that the two models are indistinguishable from the observational distribution
and they have different causal effects of D on Y and thus the proof is complete.
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Figure 5: The considered causal graph for the experiments with linear assignments in the SCM
framework.

B Experiments

B.1 Synthetic data

For the experiments with synthetic data we assume that the samples are generated according to the
following linear SCM:

U := ϵu,

W := αwU + ϵw,

Z := αzU + ϵz,

D := αdU + ϵd,

Y := βD + γU + ϵy.

(18)

Given the observational data, we estimate the value of β using the following methods and report the
performances against the number of observed samples.

1. Cross-Moment algorithm proposed in this work.
2. DiD method according to (6).

3. A simple linear regression model based on the following equation: Ŷ = αZ + β̂D.

4. The “two-proxy” method in [KP14].
5. The algorithm proposed in [TYC+20].
6. Experiment under misspecification.

For each value of sample size, we ran an experiment 10 times and reported the average relative error:

err = E

[∣∣∣∣∣β − β̂

β

∣∣∣∣∣
]
,

and the standard deviation with the colored regions on the plots. Before each run, we randomly
generate parameters αd, αz , αw, β, γ as follows:

• αd is randomly sampled from the interval (−2,−0.2) ∪ (0.2, 2),
• αz , β, γ are randomly sampled such that the absolute value of the ratios between αd and

each of the variables αz , β, γ are in the interval (0.2, 2),
• We set αw = αz to have a consistent setting for measuring the effect of noise in proxy

variables on the Cross-Moment method and the two-proxy method proposed by [KP14].

In our experiments, the variances of ϵz , ϵd, ϵy are 10 time less than the variance of ϵu. We also set the
variance of ϵw to be 10 time bigger than the variance of ϵu. Thus, proxy W is much noisier compared
with Z.

In the case of having two proxy variables W,Z, we combine the results of the Cross-Moment method
applied for each proxy separately and called these overall procedure as “Cross-Moment: W − Z”
method. More precisely ”Cross-Moment: W − Z“ method works as follows:

1. For i in [1 : t], randomly sample with replacement some portion of all observational data
(Z,W,D,Y) that we denote by (Zi,Wi,Di,Yi).
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(a) (b)

Figure 6: The performance measure err against Var(ϵw)/Var(ϵu).

2. Using Cross-Moment method over proxy variables W and Z separately, we estimate the
causal effect β from the data (Zi,Wi,Di,Yi). Let us denote these estimates as β(i)

W and
β
(i)
Z accordingly.

3. Having {β(i)
W }ti=1 and {β(i)

Z }ti=1,we approximate the variances of the estimates made from
proxies Z and W . We denote σ2

βW
and σ2

βZ
, respectively

4. Compute the final estimation of β as follows:

β̂ :=
σ−2
βW

σ−2
βW

+ σ−2
βZ

∑t
i=1 β

(i)
W

t
+

σ−2
βZ

σ−2
βW

+ σ−2
βZ

∑t
i=1 β

(i)
Z

t
.

All the experiments were performed using 16 GB RAM and 12th Gen Intel(R) Core(TM) i7-12700H
2.30 GHz.

B.1.1 Exponential distribution

Here we assume that all exogenous noises ϵu, ϵz , ϵw, ϵd, ϵy are from the class of exponential
distributions. At the beginning of each run, we randomly choose the variance for the exogenous noise
ϵu from the interval (1, 10) and set all other exogenous noise distributions as we discussed in the
previous section.

In addition to the experiments presented in the Section 5.1 on Exponetial distributions we also
illustrate the performance of methods against the ratio between Var(ϵw) to Var(ϵu) in Figure 6a. To
sum up we observe that two-proxy method suffers much more from the noise in the proxies and is
much less stable than our “Cross-Moment W-Z” method.

In Figure 7, we compare “Cross-Moment” with the algorithm introduced by [TYC+20] in a similar
setting as we did for the “two-proxy” method. Here, we conclude again that our method is more
stable against the noise in the given proxies.

B.1.2 Uniform distribution

Here we assume that all the exogenous noises ϵu, ϵz , ϵw, ϵd, ϵy have uniform distribution. In this
scenario, we considered the same setting as for the exponential distributions. At the beginning of each
run, we consider the exogenous noise ϵu to be a uniform distribution on the interval [−a, a], where a
is a random real number picked from the interval (1, 10). In Figure 7a, we compare “Cross-Moment”
method with the algorithm introduced by [TYC+20].

Figure 8 illustrates the performance of the Cross-Moment and Two-Proxy methods with respect to the
number of observed samples. Again, we observe that “Cross-Moment W-Z” method more stable than
Two-Proxy method. Additionally, in Figure 6b, we show the dependence of the performance of the
methods on the ratio between Var(ϵw)/Var(ϵu). Although, for the uniform distribution two-proxy
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(a) The average relative error of three variants
of Cross-Moment algorithm and the method in
[TYC+20].

(b) The performance measure err against
Var(ϵw)/Var(ϵu) for three variants of Cross-
Moment algorithm and the method in [TYC+20].

Figure 7: Comparison with the method proposed by [TYC+20]

Figure 8: The performance measure err against the number of samples. Colored regions represent
the standard deviation of err.

method is more stable but “Cross-Moment W-Z” algorithm still performs better for high values of
Var(ϵw)/Var(ϵu).

B.1.3 Experiments under model misspecification

In this scenario, we run experiments under model misspecification, i.e., the data generation mechanism
does not follow the equations in (18). Instead, the data for the experiments is generated according to
the following equations:

U = ϵu,

Z = 10 tanh (αzU/a) + ϵz,

D = 10 tanh (αdU/a) + ϵd,

Y = βD + 10 tanh (γU/a) + ϵy,

(19)

where a is some constant from the interval [2, 10]. All the exogenous noises are coming from the
uniform distributions specified as in the previous experiments. Note that here we kept the linear
relation from D to Y as it is challenging to quantify the causal effect with a single value if the relation
is non-linear. In fact, in the non-linear case, the causal effect depends on the value of the treatment.
For instance, one possible candidate to capture the causal effect is ∂E[Y |do(D := d)]/∂d, which is a
function of d. The average relative error against the parameter a is depicted in Figure 9. The relations
from the latent confounder to the observed variables become more non-linear for lower values of a.
Cross-Moment method still has a decent performance compared with the baselines.
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Figure 9: The performance measure err against the parameter a with the non-linear transformation
10 tanh(x/a). Colored regions represent the standard deviation of err.

C Derivations of DiD Estimator in Linear SCMs

Without loss of generality, we assumed that all the variables in the system are mean zero. Thus, there
is no intercept term in the linear regression model: Ŷ = β̂1T + β̂2D + β̂DT . Let zi be the outcome
of the individual i before assigning treatment. The mean of squared residual over the population
before treatment is

∑
i(zi − β̂2di)/n where n is the size of the population and di ∈ {0, 1} is equal

to one if the treatment is assigned to individual i. Otherwise, di is zero. For the post-treatment phase,
let yi(di) be the outcome of individual i. Hence, the mean of squared residual over the population in
the post-treatment phase is:

∑
i(yi(di)− β̂1 − (β̂2 + β̂)di)

2/n. By performing a linear regression on
the whole samples observed in pre-treatment and post-treatment phases over the population, we are
minimizing the following risk:

∑
i(zi−β̂2di)/n+

∑
i(yi(di)−β̂1−(β̂2+β̂)di)

2/n. Considering the
uniform distribution among the individuals, the objective function in the minimization is equivalent
to: minβ̂1,β̂2,β̂

E[(Z− β̂2D)2]+E[(Y − β̂1− (β̂+ β̂2)D)2]. By taking partial derivative with respect

to β̂1, β̂2, and β̂ and setting them to zero, we can imply that β̂1 = 0, β̂2 = E[ZD]/E[D2], and
β̂ = (E[Y D] − E[ZD])/E[D2], respectively. According to linear SCM in (3), we have E[Y D] =
αd(αdβ+γ)Var(ϵu)+βVar(ϵd), E[ZD] = αdαzVar(ϵu), and E[D2] = α2

dVar(ϵu)+Var(ϵd). By
plugging these terms in the equation for β̂, we get the equation in (7).

U = ϵu
Z = 10 tanh (αzU/a) + ϵz
D = 10 tanh (αdU/a) + ϵd
Y = βD + 10 tanh (γU/a) + ϵy

(20)
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