
Appendix

A Use of METASIN Beyond Image Prediction

In addition to our main results presented in Section 4 of the paper, we also performed various
exploratory experiments to investigate further application cases of the METASIN activations. The
experiments cover image classification where we show favorable results of using convolutional
METASIN networks over baseline RELU networks, as well as various overfitting experiments to
explore the use of METASIN activations with MLPs. We present our preliminary findings here with
the hope of motivating further investigation in these directions.

In all MLP experiments, we use METASIN with K = 10 sine components, and distribute the
frequencies evenly across the range [1, 35]. The initialization of the remaining parameters follows the
description provided in Section 3.

W
al

l

Target SIREN METASIN

C
ar

B
ic

yc
le

Figure 5: Visualization of selected reconstructed frames of the video. To fully appreciate the details
and visual cues presented in the figure, we recommend visualizing the figures in color and zooming
in for a more comprehensive analysis.

Video Dataset Activation Model Channels Depth MSE # PSNR (dB) "

Cat SIREN MLP 1024 3 2.60 · 10�3 32.26
METASIN MLP 1024 3 1.96 · 10�3 33.32

Bikes SIREN MLP 1024 3 1.69 · 10�3 34.50
METASIN MLP 1024 3 5.58 · 10�4 39.32

Table 7: Results on implicit video representation.

A.1 Video Overfitting using METASIN MLP

In this section, we present the overfitting experiments on videos using an MLP network with 3 hidden
layers and 1024 neurons to overfit a video. The input is a 3 dimensional vector consisting of a frame
ID and pixel coordinate, and the output is the RGB value of the corresponding pixel. The METASIN
network improves the PNSR by 1-4 dB compared to the SIREN baseline as shown in Table 7.

Overall the Cat dataset has more fine details, making it more challenging to accurately represent these
intricate details. Consequently, the PSNR for the Cat dataset is comparatively lower in comparison to
the Bikes dataset. The results are depicted in Figure 5. While RELU networks struggle to represent
the signal, both SIREN network and METASIN can reconstruct the frames. Notably, the METASIN
network reconstructs more details, see Figure 5 (Bicycle) and has less noise, as we see in Figure 5
(Wall and Car). It is worth mentioning that various techniques, such as positional encoding or Fourier

14



Ground Truth NeRF METASIN-10

Figure 6: Zoomed qualitative results on static forward scenes [28]. Comparison between ground-truth,
NeRF and METASIN-10 model.

features [43, 42], as well as utilizing latent codes [31], have shown significant improvements in RELU
networks. However, exploring the impact of these techniques when applied in conjunction with
METASIN activation is a direction we defer to future work.

Method Leaves Orchids Flower T-Rex Horns

NeRF [29] 20.92 20.36 27.40 26.80 27.45
METASIN-10 21.46 20.52 28.20 26.81 27.98

Table 8: Per-scene PSNR" comparison. In this table, we report the results obtained by running NeRF
PyTorch implementation, based on [46] and previously used in [21, 6], and the results of our proposed
METASIN. Our method achieves higher PSNR in all tested scenes.

A.2 Novel View Synthesis using METASIN MLP

Neural Radiance Fields [29] (NeRF) enable synthesizing novel views with only a sparse set of
input views. NeRF methods exploit positional encoding to map the input into high-frequency space,
which is the key to high-quality scene rendering, which we drop in our experiments and replace the
standard RELU with a 10 components METASIN-10 activation. Frequencies and phases are initialized
uniformly over [1, 35] and [0, 2⇡]. The experiment setting is the same as [29], except that we extend
the training process to 250K iterations instead of 200K, in order to make sure that METASIN models
converge well. Our implementation is based on [46], The results are reported in Table 8. We also
provide a comparison of qualitative results in Figure 6.

15



GT RELU (MSE=0.252) METASIN-10 (MSE=0.044)

Figure 7: False-color visualization of the reconstructed density grid where METASIN is configured
with K = 10

A.3 Density Overfitting using METASIN MLP

In this section we present an overfitting experiment on a 3D voxel grid. The smoke scene we used in
this experiment contains 175 ⇥ 232 ⇥ 175 density values within range [0, 1]. Following the MLP
architecture used in [39], we map the 3D coordinates to the corresponding density value using RELU
and METASIN activated networks. Comparisons between the METASIN activated network and the
baseline RELU model are presented in Figure 7.

B Details of Overfitting Experiment with Convolutional Network

Table 9 shows further architectural details of the overfitting experiment we discuss in Section 3 of
the main paper. We perform experiments with two base convolutional architectures, a shallow and a
deep network. M-SIREN refers to the amplitude modulated SIREN [27], which has significantly more
parameters due to the introduction of an additional amplitude modulation network.

Sh
al

lo
w

C
N

N

Input Target RELU SIREN M-SIREN METASIN

29.81 dB 32.55 dB 30.88 dB 35.04 dB

D
ee

p
C

N
N

30.36 dB 12.65 dB 35.70 dB 40.01 dB

Figure 8: Peak Signal-to-Noise Ratio (PSNR) comparison of different activations employed on CNNs
for image up-sampling (with 16x of upsampling factor).

Figure 8 shows a visual comparison of reconstructed images by the different versions of both base
networks. Both the shallow and deep versions of the METASIN network can be trained reliably (unlike
their sin activated counterparts that diverge in the case of the deep architecture). The METASIN
networks come with relatively little parameter overhead (the relative overhead becomes even smaller
with larger networks that have more channels, as discussed in Appendix E), and produce visually
sharper results that also are closer to the reference in terms of PSNR.

16



CNN Size Activation # Param. Depth PSNR (dB) "

Shallow

RELU 75 K (1x) 4 29.81
SIREN [39] 76 K (1x) 4 32.55
M-SIREN [27] 281 K (3.7x) 4 30.88
METASIN (ours) 82 K (1.1x) 4 35.04

Deep

RELU 408 K (1x) 13 30.36
SIREN [39] 408 K (1x) 13 12.65
M-SIREN [27] 651 K (1.6x) 13 35.70
METASIN (ours) 432 K (1.1x) 13 40.01

Table 9: Comparison of different activations employed on CNNs trained for image up-sampling
(16x).

Figure 9: Representing y(t) = sin(10t+ 5 sin(10t))⇥ sin(10 sin(10t)) with 3 layer FC networks

C Sensitivity to Frequency Initialization

Although the sin activation function has promising properties as outlined in the main paper, it is
known that they can be extremely difficult to train [39, 49].

We illustrate this in a toy experiment where we try to reconstruct the signal y(t) = sin(10t +
5 sin(10t))⇥ sin(10 sin(10t)) when the input is x(t) = t. Most of the energy of y(t) is distributed
between frequencies between 10 and 170. We sample t from the normal distribution and train fully
connected networks with 1 input neuron, 3 layers having 20 neurons each, and 1 output neuron. In
one of the networks, we use RELU activation in between fully connected layers except for the last

17



one. In the remaining two networks, we use sin(fx). In one we initialize f = 1, in the other one
we initialize f = 5, and f = 10. We use L1 loss and Adam as the optimizer. The results are shown
in Figure 9. As it is seen, RELU-network can reconstruct part of the signal. The sin-network with
the initialization f = 1 does not learn at all, while the network initialized with f = 5 is able to
match y(t), and with f = 10 the model fits the original signal reasonably well. This suggests the
importance of initialization and the difficulty of training of the sin activation function.

On the other hand, a METASIN network with the frequency parameters from Equation 4 initialized
as f [l]

j = j and K = 10 effectively covers a wide range of frequencies including the one that is
important to represent the signal. Consequently, using a METASIN we are able to lower the loss to
0.013 and eliminate the trial and error process for initializing frequencies.

In Figure 10 we additionally plot the results of an experiment where we sweep through a wide range
of w0 values for a fully-connected SIREN network that was trained to overfit to a single image. The
plot illustrates that only a narrow range among possible initial w0 values results in a plausible training
error, confirming the importance of initialization in SIREN networks.

Figure 10: Sensitivity of SIREN w.r.t. base frequency w0. In this figure, we reported the PSNR and
MSE Loss values across a wide range of SIREN’s base frequency w0 values. For each w0, we trained
a SIREN network and showed that only a restricted set of frequencies (around 102) converges to
sufficiently good local minima. Specifically, in this experiment, we train the networks to up-sample
the image reported in Figure 8, with an up-scale of ⇥16 for 100, 000 iterations using the Adam
optimizer with a learning rate of 10�5.

D Connection to Fourier Series

Well-behaved functions, such as continuous functions can be expressed as a Fourier series with
finitely many terms. Let us define a function � as a Fourier series:

�(x) = a0 +
KX

j=1

✓
aj cos

✓
2⇡j

P
x

◆
+ bj sin

✓
2⇡j

P
x

◆◆
, (5)

where K 2 N+ is finite, and P denotes length of one period. Using the harmonic addition rule, i.e.

a cos↵+ b sin↵ = c cos (↵+ r), where

c = sgn(a)
p

a2 + b2

r = arctan

✓
� b

a

◆
,

(6)

we can rewrite Equation 5 as:

�(x) = a0 +
KX

j=1

cn cos

✓
2⇡j

P
x+ r

◆
. (7)

18



Substituting in the identity cos↵ = sin
�
↵+ ⇡

2

�
we get:

�(x) = a0 +
KX

j=1

cn sin

✓
2⇡j

P
x+

⇡ + 2r

2

◆
. (8)

Dropping the constant term we obtain the following:

�(x) =
KX

j=1

cj sin (fjx+ pj), where

fj =
2⇡j

P
, and

pj = arctan

✓
� bj
aj

◆
+

⇡

2
.

(9)

From Equation 9 we can see that any Fourier Series can be expressed as a METASIN activation

�(x) = c0RELU(x) +
KX

j=1

cj sin (fjx+ pj), (10)

by setting c0 = 0 and the rest of its parameters {cj , fj , pj ; j 2 [1,K]} accordingly.

E METASIN Overhead

METASIN parameter overhead formula for a convolutional layer compared to RELU baseline is as
follows:

overhead =
3⇥K + 1

kernel-size2 ⇥ input-channels
. (11)

For example if we have a layer with kernel-size = 3 with 128 input-channels, then overhead for
K = 10 is 0.026. Which means we have approximately 2.6% more parameters. If input-channels is
32 the overhead becomes 10.08%. On the other hand for kernel-size = 5 and 512 input-channels the
overhead is 0.24%.

F Details on C++/CUDA Implementation

To account for the inefficiency of a native Python API implementation of METASIN we implemented
custom-optimized fused CUDA kernels for both forward and backward functions of the MetaSin
activation in C++. Our implementation can be integrated into the PyTorch and TensorFlow Python
APIs. Throughout the development process we also tested native automatic compilation functionalities
provided by both frameworks (specifically: jit, torch.compile for PyTorch, and jit and XLA in
TensorFlow). While notable improvements over the baseline Python API implementation can be
made through the use of these out-of-the-box facilities, we obtained the best performances in terms
of speed and memory consumption using our custom-designed CUDA functions.

Some of the techniques we utilized in our code are as follows: in order to optimize the memory
footprint and the inference speed of the METASIN, we remove the intermediate quantities that the
autograd engine computes and instead compute the output and gradient tensors directly from the
input and the METASIN parameters. Moreover, we further optimized the computation speed with
improved caching and reduction strategy on warp and block levels. Meanwhile, we have exploited
a 2-level reduction strategy based on pairwise summation in our backward kernel. In this way, we
could avoid numerical errors in gradient tensors and achieve comparable accuracy to autograd in
float32 precision.

The reduction in computational overhead using the aforementioned optimizations enabled running
the compute-intensive experiments we present throughout the paper in a feasible manner, and we
believe demonstrates the viability of METASIN activations for most practical tasks. That being said,
other optimizations that we were not able to explore due to time constraints could help reduce the
overhead even further, which is an interesting direction for future research.

19



Figure 11: Effect of METASIN components to latency.

We also investigated the computational scaling behavior of our implementation with respect to the
number of sin components K. To this end, we ran a benchmark experiment, in which we compared
forward and backward latencies of RELU, METASIN Native, and METASIN CUDA functions on the
same input tensors using different K values. The results can be found in Figure 11.

Figure 12: METASIN activation shape evolution over time and final distribution of frequency param-
eters. In this figure, we report the behavior of three activated neurons (of the same layer) over the
training process.

G Evolution of METASIN Activations during Training

Figure 12 shows illustrative examples of the evolution of METASIN activations during the course
of training in a toy example. In this experiment the weight of the RELU component is set to 1,
whereas the amplitudes of all sin components are set to 0. Thus a METASIN activation starts out
as RELU, but then evolves into various shapes depending on the training of the shape parameters
via backpropagation. It is worth noting that the shape of a METASIN activation tends to not change
after the initial phase of training, which agrees with the observation that weights change very slowly
in overparameterized networks. Moreover, the different rows in the figure show three different
METASIN neurons of the same layer that interestingly converge to a complementary frequency
response that can capture different frequency components of the input signal.

To shed some light on the shapes that METASIN activations take in a more practically relevant setting
with and without KD-Bootstrapping, we additionally produced a visualization of the METASIN shapes
from the resampling network described in Section 4.1. The METASIN shapes are obtained from the

20



first and last blocks of models trained from scratch and with KD Bootstrapping. This visualization
in Figure 13 shows that, while there is significant local variation between individual METASIN
activations, globally the rough RELU shape is still discernible even without any involvement from the
RELU teacher.

With KD Bootstrapping Trained from Scratch (w/o KD-B)

Fi
rs

t B
lo

ck
La

st
 B

lo
ck

Figure 13: Visualization of METASIN shapes with and without KD bootstrapping.

H Comparison with Ensemble Activations

We ran additional experiments using ensemble activations as described in a recent survey [3], namely
Adaptive Blending Units (abu), Variable AFs (vaf), Adaptive AFs (aaf) in the same experimental
setting that we used to generate the first row of Figure 1 in the main paper. We present the best results
we obtained from multiple runs with different initializations in Table 10, also including RELU and
METASIN as references:

abu vaf aaf RELU METASIN

PSNR[db] 29.79 28.98 29.06 29.81 35.04

Table 10: Comparison of various enseble activations in an image overfitting setting.

We also ran two experiments in image resampling setting using abu and aaf versions of the model
from Section 4.1, which we present in Table 11:

21



Reference RELU METASIN

Figure 14: Additional upsampling results comparing the state-of-the-art model with RELU activa-
tions [5] and the corresponding METASIN network.

Activation

Factor abu aaf RELU METASIN w/ KD-B

P⇥2 33.02 32.97 33.03 33.26
P⇥3 29.31 29.28 29.36 29.58
P⇥4 27.09 27.10 27.09 27.29

Table 11: Comparison of various ensemble activations for image resampling

I Effect of Setting K to a high number

We note that further improvements in terms of model accuracy can be made by pushing K beyond
what we present in the paper. We did not go beyond 10-12 as throughout our experiments we observed
that doing so often resulted in diminishing returns. As a more concrete example we provide results
from a resampling experiment in Table 12 (Note that these results are from a preliminary run with
slightly inferior hyperparameters compared to the corresponding experiments we report in the main
paper, and the training was stopped prematurely after 900K iterations instead of the full 2M - hence
the lower PSNRs compared to Table 2). These results suggest that choosing K > 10 would indeed
make sense in cases where the absolute best quality is desired and additional latencies are tolerable,
but overall K ⇡ 10 seems to be the happy medium.

22



Activation/Upsample Factor P⇥2 P⇥3 P⇥4

METASIN-10 33.09 29.42 27.17
METASIN-20 33.14 29.45 27.20

Table 12: The effect of setting K to 10 and 20 on resampling quality

J Classification Experiment with METASIN Model Trained from Scratch

To investigate the effect of KD-Bootstrapping in the classification setting, we trained various Wide-
ResNets with original RELU activations and with METASIN activations entirely from scratch and
without using KD-Bootstrapping. Table 13 presents test accuracy on CIFAR-100.

Model/Activation WRN-16-2 WRN-28-2 WRN-40-2 WRN-40-4

RELU 72.85 74.82 75.95 78.99
METASIN w/o KD-B 71.82 73.88 75.44 78.44

Table 13: Comparison of METASIN and RELU models in image classification with training without
KD-Bootstrapping. In this case METASIN models only become advantageous when train using
KD-Bootstrapping, underlining the importance of the proposed training methodology.

In accordance with the above discussion these results underline the role of KD Bootstrapping for
achieving the best results with METASIN networks. To give a concrete example: as we show above,
when training from scratch WRN-16-2-METASIN at 71.82 accuracy is behind its RELU counterpart
(WRN-16-2-ReLU) with accuracy 72.85. On the other hand, the last column of Table 6 shows that
by distilling from a WRN-40-2 teacher, the accuracy of WRN-16-2-METASIN can be brought up to
74.10, whereas WRN-16-2-RELU achieves 73.65 accuracy using the same procedure.

K Resampler Architecture and Additional Results

Our network architecture is based on the design proposed in [5]. We utilize a ProSR feature
extractor [45], consisting of 3 residual blocks with 4 dense blocks within each residual block and a
growth rate of 40 and 160 channels. The subsequent prediction layer is implemented as an MLP with
4 hidden layers and 256 neurons. In our experiments, this prediction layer remains unchanged. We
apply METASIN activations only to the convolutional feature extractor. We present additional results
in Figure 14 for the resampler experiment presented in Section 4.1.

L DPCN Denoiser Architecture and Additional Results

The design of the U-Net architecture we use in Section 4.2 is detailed in Table 14. We also present

Scale Encoder
ResBlocks

Encoder
Channels

Decoder
ResBlocks

Decoder
Channels

0 2 64 2 64
1 2 128 2 128
2 2 256 2 256
3 2 256 2 256
4 2 256 2 256

Table 14: The Configuration of the Standard DPCN U-Net. Scale 0 is the full-resolution scale. From
one scale to the next one, the image resolution is halved in both dimensions.

additional results in Figure 15 to the results we presented in Section 4.2 in the main paper.

23



Reference (Full) DPCN METASIN-5 w/ KD-B Reference

Figure 15: Additional results to Section 4.2

M KPAL Denoiser Results

In order to factor out the potential effects of kernel prediction to our denoising experiments, we
utilized a direct prediction version of the state-of-the-art Monte-Carlo denoiser presented in [38].
In this section we present results of training a METASIN version of the original kernel prediction
network. The improvement over the baseline RELU network remains significant in this experiment
across all metrics. An interesting observation from this study was the significantly reduced effect of
KD-Bootstrapping, which we eventually decided not to employ to produce the results in Table 15.
We hypothesize that the lesser effect of KD-Bootstrapping in this case can be attributed to kernel
prediction, which however requires further investigation.

Metric KPAL METASIN-10 (Glorot)

SMAPE 3.098 2.966 (-4.26%)
flip_loss 0.934 0.893 (-4.39%)
1-MS_SSIM 2.893 2.622 (-9.37%)
1-SSIM 6.227 5.934 (-4.71%)

Table 15: Comparison of the state-of-the-art kernel predicting denoiser [38] and its significantly
improved METASIN version.

N Failure Cases

While our preliminary experiments on using METASIN activations with MLPs generally resulted
in improvements over corresponding baselines, we also observed some failure cases. A particular

24



experiment where the tested METASIN network did not perform well was on signed distance field
(SDF) overfitting. In this case, the SIREN reproduction of the ground-truth SDF is better at fine
scale details than the corresponding METASIN reproduction. We hypothesize that this discrepancy in
performance is due to the gradient loss that SIREN employs and the METASIN network lacks due to
not being continuously differentiable. We defer further investigation of this limitation to future work.

(a) GT (b) SIREN (c) fj = U(1, 35)

Figure 16: SDF overfitting on Thai Statue [1]. Here the SIREN network produces a better representa-
tion of the underlying 3D shape than a comparable METASIN activated MLP.

25


