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Abstract

Large language models (LLMs) exhibit in-context learning abilities which enable
the same model to perform several tasks without any task-specific training. In
contrast, traditional adaptation approaches, such as fine-tuning, modify the under-
lying models for each specific task. In-context learning, however, consistently
underperforms task-specific tuning approaches even when presented with the same
examples. While most existing approaches (e.g., prompt engineering) focus on the
LLM’s learned representations to patch this performance gap, our experiments ac-
tually reveal that LLM representations contain sufficient information to make good
predictions. As such, we focus on the LLM’s reasoning abilities and demonstrate
that this performance gap exists due to their inability to perform simple proba-
bilistic reasoning tasks. This raises an intriguing question: Are LLMs actually
capable of learning how to reason in a task-agnostic manner? We answer this in the
affirmative and, as a proof of concept, propose TART which generically improves
an LLM’s reasoning abilities using a synthetically trained reasoning module. TART
trains this Transformer-based reasoning module in a task-agnostic manner using
only synthetic logistic regression tasks and composes it with an arbitrary real-world
pre-trained model without any additional training. With a single inference module,
TART improves performance across different model families (GPT-NEO, PYTHIA,
BLOOM), model sizes (100M - 6B), tasks (14 NLP classification tasks), and even
across different modalities (audio and vision). On the RAFT Benchmark, TART
improves GPT-NEO (125M)’s performance such that it outperforms BLOOM
(176B), and is within 4% of GPT-3 (175B). 2

1 Introduction

Large language models (LLMs) show in-context learning capabilities which enable them to perform
a task given only a few examples, without updating the model parameters [9, 7]. This task-agnostic
capability allows for a single model to be applied to a wide range of tasks [1, 41, 28]. In contrast,
traditional task adaptation approaches, such as fine-tuning, update the model parameters for each
specific task.

Despite being task-agnostic, in-context learning is seldom the practitioner’s method of choice since it
consistently underperforms task-specific adaptation approaches [20, 9]. Most existing works attribute
this performance gap to the limited context window of LLMs which can only accommodate a few
task examples [15, 14, 23]. However, we show that this gap between in-context learning and fine-
tuning approaches exists even when presented with the same task examples; in-context learning can
underperform fine-tuning by up to 30 points across binary classification benchmarks (see Figure 5a).

We first investigate why this quality gap exists. We decompose an LLM’s in-context learning capability
into two abilities: learning good representations for the task and performing probabilistic inference,
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Figure 1: Taxonomy of task adaptation strategies. (Left) Comparison of different adaptation strategies
across three desiderata: task-agnostic, quality, scalability. (Right) Demonstration of parameter updates across
adaptations strategies, colored regions represent parameter changes as a result of the adaptation strategy.

or reasoning, over these representations3. Is the gap because the data representations learned by
the models lack task-specific information or is there some deficiency in the the model’s ability to
use this information. We take a first step towards understanding this hypotheses experimentally in
Section 2 by measuring both the reasoning and the representation gaps across a variety of LLM
families (GPT-NEO [6], PYTHIA [5], BLOOM [33]) over a suite of binary classification tasks. Our
results suggest that LLMs indeed have the necessary information in the representations, and that the
majority of the quality gap (up to 79%) can be attributed to their inability to perform simple forms of
reasoning, e.g. linear classification. We further find that adaptation methods (such as fine-tuning)
improve the model along both representation and reasoning, but primarily improve the task-specific
classification (or reasoning) ability which accounts for 72% of the gained performance on the task.

Rather surprisingly, most existing techniques for improving the performance gap, such as prompt
engineering or active example selection, focus entirely on the LLM’s learned representations. With
these methods, the users are effectively searching the language space for a natural language template
that best represents the task. This search enables the users to optimize the representations for their
specific task which makes the LLM more likely to solve it. In contrast, our work explores the
orthogonal direction of improving the LLM’s reasoning abilities.

As a first step towards improving this reasoning ability, we fine-tune LLMs using synthetically
generated binary classification tasks (see Section A.1 for examples). While this approach provides an
improvement over the model’s base in-context learning performance (up to 17%, see Figure 7), this
approach requires fine-tuning each LLM individually and might affect their generative abilities [18].
This brings about a question: can we improve the reasoning capabilities of LLMs without interfering
with it pre-existing capabilities, that is, can we make the process both task and model agnostic?

We show that it is indeed possible to improve the reasoning capabilities in a completely agnostic
manner. Rather than directly fine-tuning, our proposed algorithm TART, Task-Agnostic Reasoning
Transformer (Figure 2), improves an LLM’s reasoning abilities using an independent synthetically
trained module. TART trains this additional Transformer module using only synthetically generated
binary classification tasks from the logistic model independent of the downstream task or the base
LLM. This inference module can be composed, without any additional training, with the embeddings
of an arbitrary pre-trained LLM to improve upon its reasoning abilities.

TART is task, model, and domain agnostic. Using a single inference module trained on synthetic
data, we exhibit that TART not only generalizes across three model families (GPT-NEO, PYTHIA,
BLOOM) over 14 NLP classification tasks, but even across different domains (vision and speech; see
Figure 6). In terms of quality, we show that TART’s performance is 18.4% better than in-context
learning, 3.4% better than task-specific adapters, and is within 3.1% of full task-specific fine-tuning
across a suite of NLP tasks. On the RAFT Benchmark [2], TART improves GPT-NEO (125M)’s
performance such that it outperforms BLOOM (176B), and is within 4% of GPT-3 (175B). TART is

3In Section 2.3, we precisely define the this representation-reasoning decomposition in eq. (1)
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Figure 2: TART. (Left) Inference module training procedure: The inference module is trained on sequences of
synthetically generated logistic regression tasks. (Right) End-to-end framework: TART composes a pre-trained
LLM with the inference module. TART uses the LLM to embed the input text. These embeddings, along with
the train labels, are passed as a sequence to the inference module which generates a final prediction.

data-scalable and overcomes the limited context length bottleneck of in-context learning. While each
example spans multiple tokens in an LLM, often spanning hundreds of tokens, TART’s reasoning
module encodes each example using only two tokens – one for the context and the other for the label.
This data-scalability can lead to improvements of up to 6.8% (see Figure 5c).

From a theoretical standpoint, we show that the generalization abilities of TART depends mainly on
the distribution shift between the natural text embedding distribution produced by the LLM and the
synthetic data distribution, measured in terms of the Wasserstein-1 metric (Theorem 1 in Section 3.4).

To summarize, our main contributions are as follows:
• Study why in-context learning does not perform as well as task-specific fine-tuning despite having

access to the same information, via a representation-reasoning decomposition.
• Propose a new task-agnostic method, TART, which bridges the performance gap to task-specific

methods and is trained using only synthetic classification data.
• Demonstrate that TART works across different NLP tasks for a range of model families. The

same inference module generalizes to vision and speech domains, suggesting that this capability
is somehow uniformly lacking across a range of foundation models.

Related work. Prompt engineering focuses on improving the in-context task adaptation abilities
of LLMs by modifying prompts. A line of work improves performance by carefully designing the
natural language task specifications [4, 42] while others improve performance by optimizing the
examples chosen for the prompt [10, 24], encouraging the models to sequentially reason [16, 42,
45] and aggregating prompts [39, 38]. Unfortunately, prompt-based task adaptation is noisy [26].
Alternatively, prompt tuning improves the in-context abilities of models by training a small amounts
of learnable vectors [21, 20, 25] for specific tasks. While these methods have been shown to improve
in-context learning performance, they require task-specific fine-tuning and are not task-agnostic.

Recent works seek to understand the in-context learning property of LLMs by presenting mecha-
nistic interpretations of in-context learning [36] and performing exploratory analysis of in-context
learning behaviors [43]. Existing literature demonstrates that LLMs can learn simple function classes
in-context [11] and propose that LLMs are performing gradient descent when learning tasks in-
context [36]. Complementary to these, our work provides insights on the mechanisms of in-context
learning and its deficiencies. Furthermore, task transfer strategies adapt LLMs to a pre-specified target
task. Strategies range from parameter efficient finetuning (PEFT) [12, 47] to Low-Rank adaptation
(LoRA) [13] which introduces trainable rank decomposition matrices into each layer.

2 Task adaptation strategies: Taxonomy and evaluation

We begin by describing the problem of adapting pre-trained language models for a collection of
downstream tasks while being task-agnostic, competent in performance, and data-scalable. Given
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these criteria, we evaluate existing task adaptation approaches and propose a representation-reasoning
decomposition to understand their relative performances.

2.1 Problem statement and evaluation criteria

Our focus is on methods for adapting pre-trained large language models (LLMs) for downstream
tasks. Specifically, given an LLM and limited labeled data for a task, how does one adapt the model to
the task? In this work, our focus is on classification tasks. For ease of presentation, we consider binary
classification tasks in the main paper and defer the extension to multi-class setup to Appendix D.
When evaluating a task adaptation strategy, we care about the following properties:
Task-agnostic. Given the general capabilities of pre-trained LLMs, we strive to utilize the same
model across different tasks without requiring any task-specific training. With the increase in model
sizes, the cost of deploying task-specific models increase both during training (expensive hyper-
parameter search) as well as during inference (deploying several models). In general, task-agnostic
methods will scale better with increasing model sizes by side-stepping both these costs.
Performance quality. We would like the adaptation approaches to be competitive in performance
when compared with task-specific approaches across a wide range of tasks. For the binary classifica-
tion tasks, the method should have accuracy comparable with task-specific approaches.
Data-scalable. The task adaptation method should be scalable with the number of labeled task
examples. In particular, the method should be capable of learning from large datasets, and continually
improve its performance quality.

2.2 Taxonomy of task adaptation strategies

We can broadly taxonomize the existing task adaptation strategies for LLMs as in-context learning,
fine-tuning the model, and training task-specific adapters (see Figure 1).
In-context learning. In-context learning allows for adapting the model without updating any model
parameters, by simply providing a few demonstrations of the task in the LLM prompt. In-context
learning is completely task-agnostic since the same model can be used across tasks since no weights
are updated at inference time. However, its performance is usually not on par with task-specific
methods and it does not scale well with data since the number of examples that can be utilized is
bottlenecked by the context length of the model.
Fine-tuning. This traditional class of methods update the model weights to adapt it specifically
for the task, typically by performing gradient descent over the labeled dataset. Fine-tuning methods
are not task-agnostic since they change the underlying model significantly but usually achieve
state-of-the-art performance for any given task and are data scalable.
Adapters. Adapters adapt the underlying LLM to a specific task by composing the LLM base
model with an additional set of parameters which are optimized for the task. In contrast to fine-tuning
which performs updates to the base model, adapters keep the base model frozen and only update the
additional parameters. Performance of adapters is usually competitive with full fine-tuning.

2.3 Understanding performance via Representation-Reasoning decomposition

From the taxonomy of task adaptation approaches, only in-context learning satisfies the task-agnostic
property but it consistently underperforms the task-specific tuning approaches. This section investi-
gates why this performance gap exists. We hypothesize that it is either because (a) the representations
learned by the LLM are insufficient to learn a good predictor for the specific task, or (b) the LLM
lacks the capability to reason over these representations to make good predictions for the task.

To understand whether the representations have sufficient information, we train a task-specific linear
classifier using these representations, also known as linear probing, and evaluate its accuracy (AccLR).
Using this as an intermediate, we decompose the performance gap

∆perf : = AccFT − AccICL = AccFT − AccLR︸ ︷︷ ︸
∆rep

+AccLR − AccICL︸ ︷︷ ︸
∆reas

(1)

where ∆rep represents the gap in performance which can be attributed to insufficient representation
capacity and ∆reas is the performance gap due to insufficient reasoning abilities. Mathematically, we
define the quality of a models representations to be the gap between the fine-tuned model’s accuracy
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(a) (b) (c)

Figure 3: All results for GPT-NEO (125M). (a) Accuracy of in-context learning vs. linear probing on model
embeddings: representations have sufficient information. (b) Fine-tuning majorly improves task-specific
reasoning across datasets. (c) Accuracy (averaged across 6 datasets) of task-specific fine-tuned model vs.
accuracy of model fine-tuned on AGNews and evaluated on task. Fine-tuning hurts task-agnosticity.

and the accuracy of linear probing – the smaller the gap the better the representations. Similarly,
the models reasoning ability, or the ability to perform linear classification, is measured by the gap
between the in-context learning and linear probing accuracies – if this gap is small, that means
the model does not improve by learning any task-specific decision boundary and therefore already
possesses the ability to reason.

Using the above decomposition, we consider the following hypotheses:

H1. LLM representations have enough information to perform the task in-context, but they lack
the reasoning abilities to perform the task well.

H2. Fine-tuning affects both the representations and reasoning but the improvement in reasoning
abilities primarily leads to better performance.

H3. Fine-tuning and adapters are not task-agnostic because the task-specific training hurts their
ability to transfer reasoning.

We now analyze each of the task adaptation approaches through the lens of the above hypotheses.
We perform all experiments with three different classes of language models (GPT-NEO, PYTHIA,
BLOOM) across a collection of 6 binary classification tasks. See Appendix B for further details.

In-context learning: LLMs lack reasoning abilities. We begin by studying the representation
and reasoning gaps, as defined in eq. (1), for in-context learning. In Figure 3a, we plot the average
accuracy across datasets for in-context learning, task-specific fine-tuning, and linear probing. We see
that across models and different numbers of in-context examples, the reasoning gap ∆reas accounts
for up to 79.11% of the performance gap between in-context learning and fine-tuning. This indicates
that the LLM representations have sufficient information but they lack the ability to reason over them.

Fine-tuning: Improves task-specific reasoning. We next investigate how fine-tuning for a specific
task affects the performance of the base model. In Figure 3b, we show a scatter plot of the gains
that can be attributed to improved representations against the reasoning gains. We see that, across
models, reasoning improvements accounts for 73.06% of the improvements. This indicates that while
fine-tuning improves both reasoning and representations of the LLM, the gains are predominantly due
to improvements in task-specific reasoning. Furthermore, this task-specific fine-tuning of the LLM
hurts its performance on other tasks. In Figure 3c, we show that the accuracy of a model fine-tuned on
the AGNews dataset [48], leads to an average decrease of 25.77% on other tasks. Furthermore, this
drop in accuracy can be attributed to the drop in task-specific reasoning capabilities—these account
for 72.58% of the drop (see Appendix B for more details).

Adapters: Impairs task-agnosticity via reasoning. Task-specific adapters do not change the
underlying representation ability of the model. To study their ability to generalize across tasks, we
train an adapter for the AGNews dataset and evaluate it on other tasks. In Appendix B, we show
that the performance drops across tasks by an average of 19.8%, indicating that adapters only learn
task-specific reasoning abilities.
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3 TART: Task-Agnostic Reasoning Transformers

The above analysis showed how it is the effective reasoning capabilities of the LLMs which limits
its performance when compared with task-specific adaptation approaches. Building on this insight,
we propose TART, which learns a general-purpose reasoning module completely agnostic to the
underlying base LLM and when composed with any LLM via its embeddings, generically improves
upon its reasoning abilities. TART is a completely task-agnostic method which works across a suite
of tasks without any task-specific training.

3.1 Overview of algorithm

TART comprises two components: a generic task-agnostic reasoning module, and embeddings from
the base LLM. The reasoning module is trained using only synthetic data (Gaussian logistic regression
problems), agnostic of the auto-regressively trained language model, with the objective of learning to
perform probabilistic inference (Section 3.2). This learned transformer module is then composed with
the base LLM, without any training, by simply aggregating the output embedding and using those
as an input along with the class label (Section 3.3). Together, these components make TART task-
agnostic, boost performance quality by improving reasoning, and make the approach data-scalable by
aggregating input embeddings into a single vector.

3.2 Reasoning module: Can transformers learn to do probabilistic inference?

TART’s reasoning module is a Transformer-based model which is trained to perform probabilistic
inference in-context using only synthetically generated data.

3.2.1 Training the reasoning module

The reasoning module is a Transformer model which is auto-regressively trained on a family of
logistic regression tasks, with each input sequence corresponding to a different logistic regression
problem. We next describe the model architecture and the training procedure.
Model architecture. The reasoning module is based on the standard decoder-only Transformer
architecture from the GPT-2 family. The GPT-2 architecture comprises a causal (unidirectional)
transformer with 12 decoder layers and 8 attention heads per layer for a total of 22 M parameters.
The model has absolute positional encodings for each position. Please see Appendix C.1 for details.
The architecture takes as input a sequence of vectors and is trained to predict the next vector in the
sequence. The input sequence consists of k pairs of labeled examples (x1, y1), (x2, y2), . . . , (xk, yk),
with each example zi = (xi, yi) using only two input positions of the transformer – one for the
covariates x and the other for the label y. This is in contrast to standard LLMs where each example is
spread over multiple tokens which limits how many examples can be put in the context. For example,
with a context window of 2048, our module can support 1024 examples while the base model can
support only 10 examples, assuming each demonstration comprises 200 natural language tokens.
Training procedure. This module is trained using gradient descent to minimize the population loss

ℓ(Tθ) := Ex,y

[
1

k

k∑
i=1

ℓCE(Tθ(z1:i−1, xi), yi)

]
, (2)

where z1:i−1 corresponds to the first i− 1 examples and ℓCE is the cross-entropy loss evaluated on
the transformer prediction and the true yi. Each training sequence st used to update the parameters θ
comprises a different d-dimensional logistic regression problem, sampled as

Sequence st : wt ∼ N (0, Id), xi,t ∼ N (0, Id), yi,t ∼ σ(α⟨xi,t, wt⟩) for i ∈ [k] , (3)

where σ represents the sigmoid function and the multiplier α determines the noise level of the problem.
The above sampling model comprises three components, the regressor wt, the covariates xi,t and the
labels yi,t sampled as
• the regressor wt is sampled from a standard Normal distribution
• the covariates xi,t are sampled from a standard Normal distribution
• the corresponding yi,t are sampled based on the sigmoid of the inner product ⟨xi,t, wt⟩

See Figure 2 (Left) for a demonstration of a 2d dataset sampled from this process. The process
is sampling noisy-linearly separable data in d dimensions. We train our model with d = 16 and
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(a) (b) (c)

Figure 4: Properties of TART’s inference module. (a) Comparison with learned logistic function: inference
module recovers underlying probabilities. (b) Variation in error with different noise levels for model trained on
α = 10. (c) Comparison of TART performance when using LOO embeddings and vanilla embeddings.

k = 256. We describe the model hyper-parameters and the training procedure in more detail in
Appendix C.1. Observe that the embedding dimension of the base LLM and the input dimension
of the reasoning module might not always match. In order to compose these models together, we
perform a dimensionality reduction via PCA to reduce the embedding dimension.

3.2.2 Properties of reasoning module

The task-agnostic reasoning module described above is trained to perform well on a family of logistic
regression tasks. We study some properties of the reasoning module, in particular how well it learns
to perform the task at an instance level and how robust is it to variations in the noise level α.

Accuracy of probabilistic inference. For understanding the instance level performance of our
reasoning module, we evaluate it on a sample of 64 different logistic regression problems, sampled
according to eq. (3). For each problem, we train task-specific linear classifiers using logistic regression
and compare them with our task-agnostic reasoning module. In Figure 4a we plot the deviation
of the predicted probabilities (averaged over the 64 problems) from the true probabilities for our
reasoning module and the task-specific logistic solvers as a function of the number of examples used
for predictions. We observe that the error for our reasoning module decreases as a function of the
number of in-context examples and is within 2% of the task-specific logistic function.

Robustness to noise level. We study the robustness of the learned module to the noise levels, α, of
the logistic regression problem. Recall that we trained our inference module by fixing the noise level
α = 10. At inference time, we vary the noise level to [0.5, 1, 10, 20], where lower values corresponds
to noisier problem. The reasoning module generalizes to easier problem without any drop in accuracy
but as we make the problem harder (α = [0.5, 1]), the error increases progressively (see Figure 4b).

3.3 Role of representations: How to embed training examples?

The reasoning module composes with a base LLM through its final layer embeddings. A natural
way to produce these embeddings is to place all the train examples in-context and then average
the embedding vectors corresponding to the particular example (see Figure 2). At inference time,
we append the test example to the training set, and average the embeddings corresponding to this
example. We call these vanilla embeddings. Our experiments reveal that these embeddings seem to
saturate (or even hurt performance) beyond a certain number of in-context examples (see Figure 4c).
One reason can be that the causal nature of the model causes these embeddings to have asymmetric
information—the embeddings of each example is influenced by its preceding examples.

To counter this asymmetry, we propose leave-one-out (LOO) embeddings where the embeddings for
each training point is formed by placing all the other train examples before it in the prompt such
that all the embedding are formed with the same information content. In Figure 4c, changing the
embedding style from vanilla to LOO consistently improves performance across models and tasks.
The LOO-embeddings help TART be data-scalable by enabling it to embed a much larger number of
points than the context window can support. To do so, we use only a subset of the train examples as
the in-context prompt. The reasoning module, by its architecture design, can already accommodate
many more examples than supported by the context window of the base LLM.
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3.4 Theoretical analysis: Generalization of TART to natural language tasks

We study the generalization properties of the proposed task-agnostic method TART. Note that that
the inference module is trained completely on synthetic data while at evaluation time, our input is
the embeddings from a natural language task. In Theorem 1 we show that its performance on the
natural language task depends on the distribution shift from the synthetic to the true distribution (see
Appendix C.3 for a formal statement and proof).

Theorem 1 (Informal). Let T represent the class of transformer models and TS ∈ T denote
the trained reasoning module on set S of synthetic regression with nsyn sequences sampled from
distribution Psyn in eq. (3). The error of the transformer TS when evaluated on a distribution PNL

over natural language sequences is

errPNL
≲ W1(PNL, Psyn) +

√
Comp(T )

nsyn
+ êrrPsyn(TS) , (4)

where W1 denotes the Wasserstein-1 metric, Comp(T ) represents the complexity of class T , and êrr
represents the error on the empirical distribution.

A few comments are in order: The first term represents the distribution shift error between the true
natural language task and the synthetic task. The second term corresponds to the generalization error
on the logistic regression task, which can be made arbitrarily small because scales with nsyn, the
number of synthetic datapoints which can be generated without any cost. The third term above is the
optimization error indicating how well has the reasoning module TS fit to the synthetic training set.

Observe that for our algorithm TART, the distribution PNL corresponds to the distribution induced on
the embeddings of the natural language data (post the PCA and renormalization) while the distribution
Psyn is the one corresponding to the sampling process in equation (3).

4 Experimental evaluation

We evaluate TART on a wide range of binary classification tasks across three domains: language,
vision and audio. We demonstrate that TART improves base in-context performance and closes the
gap with standard task-specific strategies. We also conduct ablations to demonstrate that TART scales
with model size and can support 10x more samples than in-context learning.

4.1 Experimental setup

Datasets. We briefly describe the datasets used, with details available in Appendix E.1. We
consider 14 different binary classification tasks ranging from sentiment classification, news article
categorization to spam detection. The evaluation datasets include: SST [35], Rotten Tomatoes [29],
SMS Spam [3], IMDB [27], Civil Comments [8], AGNews [48], DBPedia [48], and the Youtube
dataset [46]. Since AGNews and DBPedia14 are multi-class datasets, we construct 4 binary classifi-
cation tasks from each dataset respectively. For each dataset, we truncate the input text to be at most
100 characters to enable us to fit sufficient number of samples in-context.

Model families. We evaluate our method across three different families of models: GPT-NEO [6],
PYTHIA [5], and BLOOM [33]. For our evaluations across 14 datasets, we use GPT-NEO (125M),
PYTHIA (160M) and BLOOM (560M). For ablations on larger models, we evaluate models with 1B
parameters across each of the model families (i.e., GPT-NEO (1.3B), PYTHIA (1.4B) and BLOOM
(1.7B)) and models with 3B parameters (i.e., GPT-NEO (2.7B), PYTHIA (2.8B) and BLOOM (3B)).
We additionally evaluate on GPT-J (6B) [37].

Baselines. We evaluate our models against all types of task-adaptation strategies described in
Section 2.2: 1) in-context learning, 2) full fine-tuning, 3) last layer fine-tuning, 4) LM head fine-tuning,
and 5) adapters. For each baseline, we perform an extensive hyper-parameter search over number
of epochs and learning rate for each dataset in order to optimize performance (see Appendix E.1
for hyperparameter details). For TART, we chose a base default set of parameters and use the same
inference module with the exact same weights for all the experiments in this section.
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(a) (b) (c)

Figure 5: Effects of scale. (a) Effect of number of in-context examples on performance for different task
adaptation strategies. (b) Effect of model size on the performance of different task adaptation strategies. (c)
Beyond context length limitations, performance comparison with respect to number of in-context examples.

4.2 Natual language benchmark evaluations

Performance with respect to baselines. As shown in Appendix E.2, averaged across all tasks and
model families, TART improves upon the base in-context learning performance by an average of 18.4
points, improves upon adapter heads by 3.4 points, and is within 3.1 points of full fine-tuning. We
also observe that TART consistently outperforms the task specific strategies of LM head fine-tuning
and last layer fine-tuning.

Performance on RAFT Benchmark We evaluate TART on all binary classification tasks in the
RAFT Benchmark, following the protocol used in HELM [22]. When applied with GPT-NEO
(125M), TART [0.634] outperforms BLOOM (176B) [0.595], and is within 4% points of GPT-3
(175B) [0.673], both of which are 1000x larger in size.

Performance with number of in-context examples. Our results demonstrate that performance
of TART scales with number of in-context examples (see Figure 5a). Across 14 tasks and 3 model
families, when scaling from 18 to 64 examples, TART improves performance by an average of 4.8%.
Correspondingly, full fine-tuning improves performance by 9.0%.

Scaling with base model size. We analyze how different task-adaptation strategies scale with
respect to model size using the GPT-Neo family: GPT-NEO (125M), GPT-NEO (1.3B) and GPT-J
(6B). Figure 5b shows that when scaling from 100M to 6B parameters, performance of task-specific
methods and TART increases as a function scale. For TART, the performance increases by 9.8% while
using the same inference module across model sizes. Furthermore, the difference in performance
between TART and fine-tuning baseline reduces from 7.5% to 2.2% from the 100M scale to 6B scale.

Beyond context length. We evaluate the data-scaling properties for both in-context learning and
TART (Figure 5c). To demonstrate the scaling property, we do not truncate the input text to 100
characters and utilize the entire text sequences. For TART, we observe that accuracy continues
to improve when scaling from 18 to 256 in-context examples with 6.8% lift in performance. In
comparison, ICL, which is bottlenecked by context length, supports 10x less samples, with the context
window saturating at 24 examples only and lags TART by an average of 19.1%.

Extension to other architectures. We compare the performance of TART by changing the underly-
ing architecture used to train the reasoning module. Specifically, we train a reasoning module that
has the Hyena architecture [30] using the same synthetic logistic regression tasks. In appendix E.3,
we show that the accuracies obtained by swapping the Transformer with the Hyena module maintains
the same accuracy as before. Thus, TART’s performance is robust to the underlying architecture.

Performance in small sample regime. While our focus has been on scaling up number of in-
context examples (ranging from 18-64), in Appendix E.4 we compare the performance of TART with
fine-tuning and in-context learning in the small sample regime. Specifically, we look at few-shot
learning with number of examples varying from 4-10. Across 6 datasets, TART outperforms fine-
tuning by 4.1% (with max. gains up to 20.6%) and in-context learning by 11.6% (with max. gains up
to 35.7%). See Figure 26 for detailed results.

9



(a) MNIST (b) CIFAR-10 (c) Speech Commands

Figure 6: TART can generalize across domains using the same inference module that was used for language
benchmarks: Performance across vision tasks (MNIST, CIFAR-10) and an audio task (Speech Commands).

4.3 Extensions to other modalities

We demonstrate that TART is not only agnostic to models and tasks, but also modalities. We extend
TART to classification tasks on modalities beyond language: vision and audio. For vision tasks, we
use representations from Google’s 307M parameter pretrained Vision Transformer (ViT) model [44]:
VIT-LARGE-PATCH16-224. For audio tasks, we use representations from OpenAI’s 1.5B parameter
pretrained Whisper model [31]: WHISPER-LARGE. In applying TART to the representations from
these models, we provide a way for performing in-context learning in modalities beyond text. We
refer the reader to Appendix E.5 for further details on the experiment setup.
Vision application. We evaluate the performance of TART on binary classification versions of
MNIST [19] (classes 0 and 8) and CIFAR-10 [17] (classes plane and bird). As shown in Figure 6a
and 6b, performance of TART is competitive with task-specific adaptation approaches.
Audio application. We evaluate TART on a binary classification version of the Speech Commands
dataset [40], where the task is to classify “stop” and “go” utterances. As shown in Figure 6c,
performance of TART is competitive with task-adaptation approaches.

4.4 Extension to multi-class classification problems

While we focused on binary classification tasks in this paper, in Appendix D we demonstrate how to
extend TART to multi-class problems. Instead of training a module on synthetic binary classification
problem, we modify the synthetics to sample from a multinomial extension of the logistic model. We
evaluated this multi-class model on 4-class classification tasks (AGNews, Ecommerce) as well as
a 14-class classification problem (DBPedia-14). Our evaluations show that TART can outperform
in-context learning by up to 45.9% on AGNews, 52.6% on Ecommerce and 59.3% on DBPedia-14.

5 Discussion

We look at the problem of task-agnostic learning with LLMs. We show that LLMs lack the ability
to perform simple reasoning over their learned representations and introduce TART, a task, model
and domain agnostic method for improving their reasoning abilities. In this work, we focus on
classification tasks, showing that synthetic, logistic regression task data can be used to train a generic
reasoning module capable of completing this class of tasks. In future work, we seek to understand
whether synthetic tasks exist for training other generic reasoning modules, capable of improving base
LLM performance on tasks such as generation or summarization.
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Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A
176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

[34] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[35] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[36] Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mord-
vintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. arXiv preprint arXiv:2212.07677, 2022.

[37] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[38] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Rationale-
augmented ensembles in language models. arXiv preprint arXiv:2207.00747, 2022.

[39] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

[40] P. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. ArXiv
e-prints, April 2018.

[41] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022. Survey Certification.

[42] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

[43] Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently.
arXiv preprint arXiv:2303.03846, 2023.

[44] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020.

[45] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Processing Systems, 2022.

[46] Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and Alexander Ratner.
WRENCH: A comprehensive benchmark for weak supervision. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2021.

[47] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li,
Peng Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init
attention. arXiv preprint arXiv:2303.16199, 2023.

[48] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

14

https://github.com/kingoflolz/mesh-transformer-jax


(a) (b)

Figure 7: Fine-tuning with NL synthetic task. (Left) Averaged over 6 different tasks, fine-tuning with the NL
synthetic task provides a lift over base in-context learning, and scales with number of examples. (Right) Dataset
level comparisons between task-specific fine-tuning, in-context learning and synthetic fine-tuning: synthetic
fine-tuning outperforms base in-context learning on 4 out of 6 datasets, but lags task-specific tuning.

A Fine-tuning model with NL-based Probabilistic Inference Tasks

As highlighted in Section 1, we describe the details for directly fine-tuning an LLM on syntheti-
cally generated probabilistic inference tasks to improve reasoning capabilities. For the following
experiments, we use GPT-NEO (125M) as the base model.

A.1 Training Task

We fine-tune the base model using a sequence of k pairs of synthetically generated labeled natural
language examples (x, y). Each example x in the sequence s = (x1, y1), . . . , (xk, yk) consists of
a list of strings constructed from a fixed V size of dimension d = 30 . We use the following fixed
vocabulary: [ “sports”, “love”, “hate”, “car”, “school”, “family”, “work”, “sleep”, “water”, “tree”,
“fox”, “train”, “random”, “movie”, “music”, “book”, “play”, “house”, “spell”, “bar”, “jump”, “park”,
“run”, “hill”, “fast”, “slow”, “talk”, “wallet”, “orange”, “apple”, “ball”, “cat” ].

To generate a particular example xi, we sample each coordinate xi,j uniformly from the set {−1,+1}.
If the sampled value is +1, we set the value to be the corresponding word in the vocabulary, that is,
xi,j = Vj . Otherwise, the word xi,j is set to “null”. For a given sequence s, we generate each of the
labels {yi} as:

wt ∼ N (0, Id), yi ∼ σ(α⟨xi, w⟩), for i ∈ [k] , (5)

where we set noise parameter α = 5. If the sampled output is 0, we set the yi to “negative” and
“positive” otherwise.

Finally, the inputs are formatted with following template: “x1 : y1 , x2 : y2 , ... , xk : yk” and the
model is trained using gradient descent on the loss

ℓ(Tθ) := Ex,y

[
1

k

k∑
i=1

ℓCE(Tθ(z1:i−1, xi), yi)

]
, (6)

where z1:i−1 corresponds to the first i− 1 examples and ℓCE is the cross-entropy loss evaluated on
the transformer prediction and the true yi.

More concretely, a sample input sample sequence s to be used for training looks like:

"sports love null car ... cat: positive,
null love null car ... null: negative,
...
sports null hat null ... cat : positive"

15



(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 8: Comparison of linear probing, in-context learning, and fine-tuning. Accuracy of in-context
learning vs. linear probing on model embeddings across three model families: representations have sufficient
information.

A.2 Training Parameters

We train GPT-NEO (125M) on this synthetic task with a learning rate of 0.0001 and a batch size of
4. For each sequence we sampled a total of k = 60 examples and trained the model for 10000 steps.

A.3 Evaluation

We evaluate on 6 datasets: AG News [48], DBPedia [48], SST [35], SMS Spam [3], Youtube [46] and
Rotten Tomatoes [29]. We truncate the input texts to 100 characters to fit more in-context examples.
We evaluate over a range of context sizes (k=[18, 32, 48, 60]). At evaluation time, we use the same
“sentence : label” format that was used to train the model. We evaluate over 3 random seeds. In
Figure 7, we compare the performance of the model fine-tuned on probabilistic inference tasks and
the base in-context learning performance. While the performance of the fine-tuned model is better
than the base in-context learning capabilities, task-specific fine-tuning still outperforms it by an
average of 16.87% (see Figure 7).

B Details for Representation-Reasoning decomposition evaluations

In this section, we provide details for the experimental evaluation and additional results for the
representation-reasoning decomposition introduced in Section 2.3.

B.1 Experimental setup

For these experiments, we evaluate three different language models: GPT-NEO (125M), PYTHIA
(160M), and BLOOM (560M) on a collection of 6 binary classification datasets: AG News [48],
DBPedia [48], SST [35], SMS Spam [3], Youtube [46] and Rotten Tomatoes [29]. For each model,
we run evaluations for three different random seeds, where the randomness was in the set of datapoints
chosen for the training task. For the hyperparameters, we performed an extensive search for all
models across datasets. For details on these hyperparameters and the adapter architecture we evaluate
over, see Appendix E.1.

To conduct linear probing over the embeddings, we perform logistic regression over the output
embeddings of each model and the given labels in the training set using the built-in logistic regression
solver from the scikit-learn python library, utilizing the lbgfs solver.

B.2 Detailed results

For each class of methods in the task-adaptation taxonomy from Section 2.2, we now describe the
details of the experimental evaluation and present additional results.

In-context learning. To understand the representation and reasoning gaps for in-context learning,
we evaluated three accuracies: a) using in-context learning with base models, b) fine-tuning the model
for the task, and c) linear probing the model specifically for the task. The gap due to representation
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(a) GPT-NEO (125M)

(b) PYTHIA (160M)

(c) BLOOM (560M)

Figure 9: Linear probing vs. in-context learning. Scatter plot of accuracy of in-context learning vs. linear
probing on model embeddings across model families and different number of in-context examples: linear
probing consistently outperforms in-context learning indicating that the learned representations have sufficient
information. Each point in the plot represents a dataset.

was taken to be the difference between the fine-tuning and linear probing accuracies while the
reasoning gap was the gap between linear probing and in-context learning, as described in eq. (1).

In Figure 8, we show the average accuracies of in-context learning, linear probing, and fine-tuning
across the 6 tasks. Linear probing closes the gap between in-context learning and fine-tuning, while
being task-specific. In Figure 9, we show a scatter plot of the accuracies of linear probing vs. the
accuracies of base in-context learning. Linear probing consistently out performs in-context learning
showing that the learned representations across these models have sufficient information to complete
the tasks but lack reasoning abilities.

Fine-tuning. For the fine-tuning approach, we are interested in understanding two hypotheses:
a) how does fine-tuning improve the model performance, and b) whether fine-tuning hurts task-
agnosticity of the base model and if yes, what is the underlying reason for it.

For the first hypothesis, we evaluate the proportion of gains that can be attributed to improved
representations of the the underlying model. This is computed as the difference in performance
of linear probing over the base model and over the fine-tuned model — this evaluates how much
the representations have changed specifically for this task. The reasoning gains are then computed
by subtracting the representation gains from the total gain (fine-tuning accuracy minus in-context
accuracy). Figure 10 shows a scatter plot of these representation gains and reasoning gains, plotted
across different datasets and number of examples (k). Most of the gains which are realized by
fine-tuning are because of improved task-specific reasoning capabilities across the model families.
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(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 10: Effects of fine-tuning on reasoning. Across datasets (each point in plot represents a dataset) and
model families, fine-tuning improves task-specific reasoning which improves it performance over base in-context
learning.

(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 11: Effects of fine-tuning on task-agnosticity Accuracy of task-specific fine-tuned model vs. accuracy
of model fine-tuned on AG-News-0 and evaluated on task. Fine-tuning hurts task-agnosticity across all three
model families.

(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 12: Effects of fine-tuning on task-agnosticity (dataset level) Accuracy of task-specific fine-tuned
model vs. accuracy of model fine-tuned on AG-News-0 and evaluated on task. Fine-tuning consistently hurts
task-agnosticity across all three model families and datasets.

For the second hypothesis, we first evaluate whether fine-tuning hurts task-agnosticity. For this we
evaluate two sets of accuracies: accuracy of a model fine-tuned for the specific task and the accuracy
of a model on the task but fine-tuned on the AG News dataset. From Figures 11 and 12, we see that
there is a drop in accuracy—over 25.77% across models and datasets. For the second part, we again
decompose the drop in accuracy into a representation drop and a reasoning drop. The representation
drop is computed by training a linear probe over the two models (task-specific fine-tuned and AG
News fine-tuned) and looking at the difference between them. The reasoning drop, as before, is
computed by subtracting this representation drop from the total drop. Figure 13 shows that most of
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(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 13: Effects of fine-tuning on task agnosticity. Scatter plot of reasoning loss against representation
loss when the base model is trained on AG-News-0 and evaluated on other tasks. Across datasets (each point in
plot represents a dataset), fine-tuning majorly impairs reasoning when transferring to tasks outside the specific
fine-tuned task.

(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 14: Effects of fine-tuning on task-agnosticity of adapters. Accuracy of task-specific fine-tuned adapter
vs. accuracy of adapter fine-tuned on AG-News-0 and evaluated on task. Fine-tuning consistently hurts the
generalization ability of adapters across datasets.

this drop in task-agnosticity can be attributed to over-fitting of the reasoning abilities over the task for
which the models are fine-tuned.

Adapters. Since adapters do not modify the underlying representations of the model, we look at
how a single adapter generalizes across tasks. For this we train an adapter on the AG News dataset
and evaluate it on the other datasets. We compare this set of accuracies with those obtained by
task-specific adapters in Figure 14. The main conclusion is that task-specific adapters are not agnostic
learners and over-fit to the task for which they are fine-tuned.

C Details for TART implementation

This section contains the details on training TART’s reasoning module and extended results on the
choice of embeddings from Section 3.

C.1 TART’s reasoning module

Architecture details. We use the standard GPT-2 architecture [32] for training our reasoning
module. We set the embedding size to 256, number of decoder layers to 12, and number of heads to 8
for a total of 22 million parameters. Since the GPT-2 backbone outputs a sequence of embeddings,
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Figure 15: TART reasoning module architecture. The reasoning module takes as input sequences of (x, y)
pairs of dimension d. A linear layer is used to project d to the hidden dimension size of the GPT-2 backbone.
Finally, a linear layer is applied to the outputs of the backbone to generate predictions for each xk in the input
sequence.

Figure 16: Training loss vs. number of steps. The plot shows the variation in training loss as a function of the
number of steps of gradient descent for TART’s reasoning module.

we additionally add a linear layer in the end to convert the output to scalar values (see Figure 15).
Additionally, the binary labels y are encoded as a one-hot vector to match the input dimension d of
the corresponding covariates x.

Training procedure. We trained TART’s reasoning module with a context length of 258 (allowing
for up to 129 in-context examples). The batch size was set to 64, learning rate to 0.0001 and the
model was trained for a total of 24000 epochs. Each batch of training data consists of sampling a
sequence of 258 examples using eq. (3). In addition to these hyperparameters, we used a curriculum
on the input dimensions and on the number of examples in the sequence to train our module—the
input dimensions started from a value of 4 and were incremented by 4 every 1000 epochs while the
number of examples started from 18 and were incremented by 30 every 1000 epochs.

Combining reasoning module with base LLM. We trained the reasoning module with input
dimension set to 16. However, most base models produce representations which are much higher
dimensional (ranging from 784 to 2048). In order to reduce the dimensionality of these representations,
we perform PCA on the output embeddings of the base model, learning the components using only
the training points available for that specific task. The test examples are then projected onto these
principal components to produce 16 dimensional input representations.

C.2 Choice of representations

As discussed in Section 3.3 there are two possible options for forming the representations, the vanilla
embeddings and the leave-one-out (LOO) embeddings. Figure 18 shows the schematic differences
between the two style of embedding. In Figure 17, we plot the average accuracies across different
datasets for both vanilla and LOO embeddings, observing that the LOO embeddings consistently
perform better across the different model families.
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(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 17: LOO embeddings vs. Vanilla Embeddings. Comparison of TART performance when using LOO
embeddings and vanilla embeddings. Vanilla embeddings see a performance collapse, but LOO embeddings do
not.

(a) Vanilla embeddings

(b) LOO embeddings

Figure 18: TART Embedding Protocols. (a) For the vanilla embeddings, the test example is appended to the
training set and the sequence is passed to the base model. The representation for each train example in this
sequence is taken as the average embedding across all its tokens. (b) For the LOO embeddings, we generate
embeddings for each train example separately by placing all the other train examples before it in the prompt and
averaging the embeddings over the final example’s tokens.
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C.3 Proof of Theorem 1

In this section, we provide a formal statement of Theorem 1 from Section 3.4. Our theorem quantifies
the expected error of the Transformer, trained on synthetic data, on natural language tasks in terms of
the change in the two input distributions.

We begin by introducing some notation. We denote the class of Transformer family by

TΘ : = {Tθ : R(2k+1)×d 7→ R | θ ∈ Θ} , (7)

where k represents the maximum number of in-context examples the Transformer can support, d
represents the input dimensions, and Θ represents the corresponding parameter class over which the
Transformer family is defined.

Observe that the Transformer family TΘ takes as input a sequence of k train examples, each corre-
sponding to two tokens of hidden dimension d: a covariate x ∈ Rd and a binary label, encoded as a
one-hot vector in d dimension. This sequence of train examples is followed by a test example, for
which we only have the features xk+1.

Given this background, let Psyn denote the synthetic distribution over sequences
{(x1, y1), . . . , (xk, yx), (xk+1)}. Similarly, let PNL denote the corresponding distribution
over sequences derived from natural language tasks where xi denotes the LLM embeddings of the
example. Recall from Section 3.2.1, the synthetic training distribution Psyn is given by

Sequence st : wt ∼ N (0, Id), xi,t ∼ N (0, Id), yi,t ∼ σ(α⟨xi,t, wt⟩) for i ∈ [k] , (8)

for each training point (xi,t, yi,t). The test point is also sampled similarly from an independent
standard normal distribution. Let ℓ : R × R 7→ R be the loss function used for evaluating the
performance of the reasoning module. Further, let use denote the expected loss under a distribution P

errP (T ) := E(s,y)∼P [ℓ(T (s), y)] , (9)

and the corresponding empirical distribution over samples S by êrrP , where the dependence on the
samples is implicit. Given these samples, we denote the empirical risk minimizer

TS = arg min
T∈TΘ

1

|S|
∑
s∈S

ℓ(T (s), y) . (10)

In addition to these notation, we make the following Lipschitz assumption on the the loss function ℓ
and the Transformer model T .
Assumption 1. [Lipschitz loss.] For any two output labels y, y′, the loss function ℓ is Lipschitz with
constant c1, that is,

|ℓ(Tr(s), y)− ℓ(Tr(s), y′)| ≤ c1|y − y′| . (11)
Assumption 2. [Lipschitz models.] For any two input sequences s, s′, each any model T ∈ TΘ is
Lipschitz with constant L, that is,

|T (s)− T (s′)| ≤ L∥s− s′∥. (12)

Given this setup, we are now ready to state a formal version of Theorem 1.
Theorem 2 (Formal version of Theorem 1). Let TS ∈ TΘ denote the trained reasoning module on set
S of synthetic logistic regression tasks with nsyn sequences sampled from distribution Psyn in eq. (3).
Let the loss function ℓ satisfy Assumption 1 and the model class TΘ satisfy Assumption 2. Then, with
probability at least 1− δ, we have

errPNL(TS) ≤ c1 max(1, L) ·W1(PNL, Psyn) + c1 ·

√
2VC(TΘ) lnm

nsyn
+ 4

√
2 ln(4/δ)

nsyn
+ êrrPsyn(TS) , (13)

where W1 denotes the Wasserstein-1 metric and VC(TΘ) represents the VC dimension of class TΘ

Proof. We begin by decomposing the error errPNL
(TS) into three components as

errPNL
(TS) = errPNL

(TS)− errPsyn(TS)︸ ︷︷ ︸
(I)

+ errPsyn(TS)− êrrPsyn(TS)︸ ︷︷ ︸
(II)

+êrrPsyn(TS) . (14)

We now upper bound each of the terms (I) and (II) separately.
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Bound on Term (I). Let γ denote an arbitrary joint distribution over the distributions Psyn and PNL.
Then, we can bound the first term as

errPNL
(TS)− errPsyn(TS) = EPNL

[ℓ(T (s), y)]− EPsyn [ℓ(T (s
′), y′)]

(i)
= Eγ [ℓ(T (s), y)− ℓ(T (s′), y′)]

(ii)

≤ inf
γ

Eγ |ℓ(T (s), y)− ℓ(T (s′), y′)| , (15)

where (i) follows from the independence of the two expectations and (ii) follows from that (i) holds
for any arbitrary joint distribution γ. The final bound on this term now follows:

inf
γ

Eγ |ℓ(T (s), y)− ℓ(T (s′), y′)| = inf
γ

∫
|ℓ(T (s), y)− ℓ(T (s), y′) + ℓ(T (s), y′)− ℓ(T (s′), y′)| dγ

(i)

≤ c1 inf
γ

∫
|y − y′| − ∥T (s′)− T (s)∥dγ

(ii)

≤ c1 max(1, L) · inf
γ

∫
|y − y′| − ∥s′ − s∥dγ

= c1 max(1, L) ·W1(PNL, Psyn) , (16)

where the inequalities (i) follows from Assumption 1 and (ii) follows from Assumption 2. This
completes the bound on Term (I).

Bound on Term (II). Using a standard generalization bound [34, see Theorem 26.5], we have with
probability at least 1− δ

errPsyn(TS)− êrrPsyn(TS) ≤ R(ℓ ◦ TΘ) + 4

√
2 ln(4/δ)

nsyn

≤ c1 · R(TΘ) + 4

√
2 ln(4/δ)

nsyn

(i)

≤ c1 ·

√
2VC(TΘ) lnm

nsyn
+ 4

√
2 ln(4/δ)

nsyn
(17)

where R(ℓ◦TΘ) denotes the Rademacher complexity of the class TΘ composed with the loss function
ℓ and inequality (i) follows from Sauer’s Lemma.

Combining the bounds in equations (16) and (17) completes the proof of the theorem.

D Extension to multi-class classification

In this section, we present an extension of TART to the multi-class classification setup. Recall from
Section 3.2 that the module was trained on synthetic binary tasks sampled from the logistic model as

Sequence st : wt ∼ N (0, Id), xi,t ∼ N (0, Id), yi,t ∼ σ(α⟨xi,t, wt⟩) for i ∈ [k] . (18)

Observe that each sequence corresponded to a single hyperplane wt which defined the binary
classification problem. For the multi-class extension, suppose that there are L labels. For each
sequence st, we sample one hyperplane per class in d-dimensional space:

wt,l ∼ N (0, Id) for l ∈ [L] . (19)

Each covariate xi,t is sampled again from the standard Normal distribution as before. The label yi,t
is sampled from the multinomial distribution over [L] given by:

P(yi,t = l) ∝ exp(⟨xi,t, wt,l⟩). (20)

Given this distribution over sequences st, we train the TART module as before, but with the linear
layer with output dimension L instead of 1 as with the binary classification setup. We evaluate our
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Dataset Num Labels Test Size Max char Max token Avg. char Avg. token
length length length length

AGNews 4 2000 814 238 236.97 52.31
Ecommerce 4 2000 50328 10544 678.768 158.02
DBPedia-14 14 1988 691 240 284.08 67.52

Table 1: Dataset (test) statistics for multi-class datasets.

Dataset Method k = 18 k = 32 k = 48 k = 64

AGNews TART 63.55 (+38.5) 64.45 (+39.6) 71.15 (+45.9) 72.35 (+45.4)
ICL 25.1 24.9 25.3 27.0

Ecommerce TART 78.2 (+52.3) 79.4 (+52.6) 75.4 (+47.1) 79.3 (+50.8)
ICL 25.1 24.9 25.3 27.0

DBPedia-14 TART 52.4 (+45.1) 63.8 (+52.8) 63.1 (+49.5) 68.4 (+59.3)
ICL 7.3 11.0 13.6 9.1

Table 2: TART vs. Base ICL Performance on multi-class classification tasks. Evaluations of GPT-Neo-125M
model in the multi-class setup. k = Number of in-context examples.

multi-class variant of TART on AGNews-4, Ecommerce-4 and the DBPedia-14 datasets (see Table 1
for dataset statistics).

Table 2 shows the evaluation our proposed multi-class extension of TART on the above three datasets.
While the in-context learning performance of the base model (GPT-Neo-125M) is close to random,
we see that the TART substantially improves upon this performance. It provides improvement of up
to 45.9% on AGNews, 52.6% on Ecommerce, and 59.3% on DBPedia-14 datasets.

E Details for experimental evaluation

We describe supplementary experimental details from Section 4 as well as additional results for the
natural language benchmark evaluations (Section E.2) and results for other modalities (vision and
audio) (Section E.5).

E.1 Experimental setup

We begin by providing dataset statistics and details of the baselines.

E.1.1 Dataset construction and statistics

Table 4 and 3 provides a detailed breakdown of dataset statistics. For each dataset, we use the
original test sets with the exception of Civil Comments [8], AG News [48] and DBPedia [48]. For the
multi-class datasets—AG News [48] and DBPedia [48] — we construct 4 binary classification tasks
for each datasets. More concretely, AG News labels news articles into four categories: World, Sports,
Business, and Science/Technology. We create a separate binary classification task for each category,
sampling negatives from the remaining classes. DBPedia is a 14-way ontology classification dataset.
We create 4 separate binary classification tasks for the educational institution, company, artist, and
athlete ontologies, sampling negatives from the remaining classes. For the train set, we sample a
class-balanced set of 64 examples from the original dataset. For each dataset, we sample 5 separate
training sets, using 5 different random seeds. In evaluations, we evaluate TART and the baseline
methods across each of these 5 different training sets.
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Dataset Test size Max char Max token Avg. char Avg. token
length length length length

AG-News-0 3800 732 259 237.07 51.36
AG-News-1 3800 814 213 232.01 51.46
AG-News-2 3800 814 225 236.10 52.25
AG-News-3 3800 892 259 234.86 51.38

Civil Comments 11576 1000 634 272.72 61.73
DBPedia-0 10000 2081 629 300.94 65.83
DBPedia-1 10000 2081 629 298.81 66.91
DBPedia-2 10000 2081 883 286.85 66.53
DBPedia-3 10000 2081 629 275.81 63.88

IMDB 25000 12988 2972 1293.79 292.82
Rotten Tomatoes 1066 261 63 115.52 25.36

SMS Spam 4181 612 258 81.46 23.76
SST 2210 256 60 102.40 22.34

Youtube 250 1125 292 112.50 31.84

Table 3: Dataset (test) statistics for all NLP datasets.

Dataset Max char Max token Avg. char Avg. token
length length length length

AG-News-0 701 256 236.15 51.53
AG-News-1 749 180 232.48 51.61
AG-News-2 735 256 241.70 53.91
AG-News-3 1002 258 241.21 53.21

Civil Comments 1000 347 280.97 63.44
DBPedia-0 707 207 300.48 65.79
DBPedia-1 1023 280 299.89 66.57
DBPedia-2 628 203 288.21 66.22
DBPedia-3 758 203 279.45 64.24

IMDB 7068 1630 1284.20 290.00
Rotten Tomatoes 260 62 112.46 24.82

SMS Spam 911 217 106.90 31.87
SST 248 56 101.97 22.34

Youtube 1089 767 90.12 29.98

Table 4: Dataset (train) statistics for all NLP datasets.

(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 19: Comparison of all methods. TART significantly improves base in-context learning performance and
is competitive with full-finetuning across model families.

E.1.2 Baseline methods

For each dataset, we compare TART to 4 baseline task-adaptation methods: 1) in-context learning, 2)
full fine-tuning, 3) last layer fine-tuning, and 4) adapters. The last layer fine-tuning and the adapters
are trained as follows:
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(a) Number of examples = 18

(b) Number of examples = 32

(c) Number of examples = 48

(d) Number of examples = 64

Figure 20: Comparison of TART and task-adaptation approaches (GPT-NEO (125M)). We see that for
GPT-NEO (125M), TART outperforms in-context learning and is competitive with full fine-tuning and adapters
across all k.

• Last layer fine-tuning: Freeze all layers of transformer but the final transformer block and the
language modeling head.
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(a) Number of examples = 18

(b) Number of examples = 32

(c) Number of examples = 48

(d) Number of examples = 64

Figure 21: Comparison of TART and task-adaptation approaches (PYTHIA (160M)). We see that for
PYTHIA (160M), TART outperforms in-context learning and adapters and is competitive with full fine-tuning
across all k.

• Adapter: Combine a frozen LLM base transformer model with a trainable adapter head—an MLP
composed of a single linear layer followed by non-linearity.
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(a) Number of examples = 18

(b) Number of examples = 32

(c) Number of examples = 48

(d) Number of examples = 64

Figure 22: Comparison of TART and task-adaptation approaches (BLOOM (560M)). We see that for BLOOM
(560M), TART outperforms in-context learning and adapters and is competitive with full fine-tuning across all k.

Hyperparameter search. For each baseline, we perform an extensive hyperparameter search over
number of epochs and learning rate for each dataset in order to optimize performance. We search over
a range of learning rates (1e-3, 1e-4, 3e-5, 1e-5, 8e-6), and range of epochs (5, 10, 15, 20, 50). For all
models < 1B parameters, we use a batch size of 1. For all models > 1B parameters, we use a batch
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Model TART GPT-J (6B) OPT (175B) BLOOM (176B) GPT-3 (175B)
Accuracy 0.634 0.608 0.637 0.595 0.673

Table 5: RAFT (HELM) Binary Classification Performance (Average Accuracy). TART is used with GPT-
NEO (125M) model which is 1000x smaller than the corresponding 175B parameter models. TART outperforms
BLOOM (176B) and is competitive with OPT (175B) and GPT-3 (175B).

(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 23: Beyond context window constraints. Performance comparison with respect to number of in-context
examples. Base in-context learning is bound with respect to total numbers of examples and performance saturates.
TART is not bound by context length, and performance continues to scale as number of examples increases.

size of 8. We use these same batch sizes at evaluation time. We perform our hyperparameter searches
with a fixed number of train samples (64). We run our hyperparameter searches over 3 random seeds.

E.2 NL benchmarks

In this section, we provide additional results deferred from Section 4 on the NLP benchmark
evaluations, RAFT evaluations and demonstration of TART’s data-scalability.

E.2.1 Performance on benchmark datasets

Figure 19 shows the performance of the baseline methods with TART averaged across the suite of
14 datasets. TART, while being task-agnostic, shows similar performance quality to task-specific
approaches across the different model families, and consistently outperforms in-context learning.

Figures 20, 21, and 22 show the scatter plots of the accuracies of TART with the baseline methods
across datasets and different values of in-context examples k. An interesting observation is that as the
number of examples k increases from 18 to 64, the performance of fine-tuning improves at a better
rate than that of TART.

E.2.2 Real-world Annotated Few-shot Tasks (RAFT) evaluation

For our evaluations on the RAFT benchmark [2], we follow the protocol (same train and test sets)
used in HELM benchmark. The HELM benchmark [22] contains the evaluation results for many open
and closed models enabling us to accurately compare the performance of TART with other models.
We evaluate TART on all RAFT binary classification datasets (twitter-complaints, neurips-impact-
statement-risks, overulling, ade-corpusv2, tweet-eval-hate, terms-of-service, tai-safety-research) with
the exception of systematic-review-inclusion which contains zero positive samples in the train set.
TART requires at least one example of each class in the training set. Table 5 contains a detailed
performance comparison of TART with respect to other models. TART when combined with GPT-
NEO (125M) is able to outperform BLOOM (176B) and is competitive with OPT (175B) and
GPT-3 (175B), all of which have 1000x more parameters.

E.2.3 Beyond context length: TART is data-scalable

Setup. For these evaluations, we use the a subset of 6 datasets: AG-News-0, DBPedia-0, SST, SMS
Spam, Youtube and Rotten Tomatoes. We evaluate the performance of TART over k=[18, 32, 48, 64,
128, 192, 256] where k is the number of in-context examples. When evaluating our base models, we
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Figure 24: Stream embeddings. Another protocol for generating representations for in-context examples where
each example is embedded by the base model separately.

evaluate over k=[8, 24]—values of k that maximize the context window. We use a lower-bound of 8
given that the maximum input sequence length in the training set for AG News is 256. With such a
sequence length, the maximum number of in-context examples that fit in the context-window is 8,
hence the lower bound.

Embeddings. For these evaluations, we use what we call “streaming” embeddings (see Figure 24).
In this setup, we use the context window of the LLM to encode a single example at a time. The final
embeddings are then averaged and used in-context with TART’s reasoning module. This is in contrast
to the vanilla and LOO embeddings which use multiple examples in-context with the base LLM to
obtain the embeddings.

Evaluation. Figure 23 shows the performance of base in-context learning with TART across the
three different model families. Observe that while in-context learning is bottlenecked by the context
window of the base LLM, TART is able to learn from 10x more examples and exhibits an increasing
trend in accuracy with number of examples across models.

E.3 Generalization across architectures

In this section, we demonstrate that it is possible to train TART reasoning modules on architectures be-
yond transformers. More concretely, we train a reasoning module that has the Hyena architecture [30]
using the same synthetic logistic regression tasks.

E.3.1 Setup and Hyper-parameters

We instantiate a reasoning module with 12 Hyena blocks, a hidden dimension size of 256, and a
sequence length of 2050. We train with a batch size of 16, using a learning rate of 5e-05. We sample
data with a noise parameter (α) equal to 1. We train the model for 5000 steps. For our evaluations,
we use the final checkpoint (i.e., 5000) of the reasoning module.

E.3.2 Evaluation

We evaluate the Hyena-based reasoning module applied to GPT-NEO (125M) on 6 datasets: SMS
Spam, SST, AG-News-0, DBpedia-14-0, Youtube, and Rotten Tomatoes. As seen in Figure 25, the
Hyena-based reasoning module transfers to natural language tasks and performs competitively with
the transformer-based reasoning module

E.4 Performance in low sample regime

In Figure 26, we evaluate our models in the low-sample regime where the number of in-context
examples range from k = 4 − 10. TART outperforms both in-context learning and task-specific
fine-tuning baselines.
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(a) k = 18 (b) k = 32

(c) k = 48 (d) k = 64

Figure 25: Comparing TART with a Hyena version of TART. Instead of using a Transformer module, we use
a Hyena model to learn the probabilistic reasoning task. Hyena-TART is comparable to TART across datasets
and achieves better performance for larger value of k (= 64).

E.5 Extension to other modalities: TART is domain-agnostic!

We begin by providng a description of the datasets we used to evaluate TART on audio and vision
tasks, and then provide additional results comparing our algorithm with baselines.

E.5.1 Dataset details

For audio classification, we use the Speech Commands (Version 0.01) dataset [40]. Speech Commands
is a multi-class classification task where the task is to detect preregistered keywords by classifying
utterances into a predefined set of words. We construct a 3 binary classification task over the keywords
“stop” and “go”, “up” and “down”, and “yes” and “no” (see Table 6 for more details).

For image classification, we use CIFAR-10 [17] and MNIST [19]. Both tasks are multi-class
classification tasks. We create 3 binary classification tasks for each of the datasets. For CIFAR-10 the
tasks are: airplane vs. bird, bird vs. horse, and ship vs. automobile. For MNIST the tasks are: 0 vs. 8,
1 vs. 6 and 2 vs. 4. See Table 6 for more details.

For both the audio and image datasets, we sample a class-balanced set of 256 samples from the
training set. For the test sets, we filter the original test sets to only include samples of the two classes
we are learning to predict for (i.e., airplane and bird for CIFAR10 and 0 and 8 for MNIST).
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(a) k = 4 (b) k = 6

(c) k = 8 (d) k = 10

Figure 26: TART in low sample regime

Dataset Modality Train size Test size

MNIST (0 vs. 8) image 256 1954
MNIST (1 vs. 6) image 256 1940
MNIST (2 vs. 4) image 256 2014
Speech Commands (stop vs. go) audio 256 500
Speech Commands (up vs. down) audio 256 508
Speech Commands (yes vs. no) audio 256 525
CIFAR-10 (airplane vs. bird) image 256 2000
CIFAR-10 (bird vs. horse) image 256 2000
CIFAR-10 (ship vs. automobile) image 256 2000

Table 6: Dataset statistics for all audio and image evaluation datasets.

E.5.2 Algorithms for comparison

For these evaluations, we use the “streaming embeddings” described in Figure 24 to obtain the
embedding for TART. We evaluate over k=[18, 32, 48, 64, 128, 256].

We compare against two baseline task-adaptation methods: 1) full fine-tuning and 2) adapters. We
use the same architectures as described in Appendix E.1.2. For vision tasks, we use Google’s 307M
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(a) MNIST (1 vs. 6) (b) MNIST (2 vs. 4)

Figure 27: Additional MNIST binary classification tasks. TART is competitive with task-specific full fine-
tuning and adapters.

(a) CIFAR-10 (ship vs. automobile) (b) CIFAR-10 (bird vs. horse)

Figure 28: Additional CIFAR-10 binary classification tasks. TART is competitive with task-specific full
fine-tuning and adapters.

parameter pretrained Vision Transformer (ViT) model [44]: VIT-LARGE-PATCH16-224. For audio
tasks, we use OpenAI’s 1.5B parameter pretrained Whisper model [31]: WHISPER-LARGE.

Hyperparameter search For each baseline, we perform an extensive hyperparameter search over
number of epochs and learning rate for each dataset in order to optimize performance. We search
over a range of learning rates (1e-3, 5e-04, 1e-4, 5e-5, 1e-5, and 8e-6) and a range of epochs (5, 10,
15 and 20). For all models we use a batch size of 1. We perform our hyperparameter searches for a
fixed number of train samples (128) and run our hyperparameter searches over 3 random seeds.

E.5.3 Evaluation

We plot the accuracy as a function of the number of examples for TART, fine-tuning and adapter in
Figure 27 (MNIST), Figure 28 (CIFAR-10), and Figure 29 (Speech Commands). TART is competitive
with both these baselines, showing how task-agnostic methods can compete with task-specific
adaptation methods across different modalities.

F Broader Impact

Our submission focuses on understanding in-context learning and how it compares to task-specific
fine-tuning approaches. We view our work as a general understanding paper and, to the best of our
knowledge, see no negative consequences of our work. We hope that our work furthers the state of
understanding of large language models (LLMs). Furthermore, because TART is a plug-and-play
solution that doesn’t require any fine-tuning, we hope that our method can help domain experts
(e.g., lawyers, scientists) incorporate LLMs into their workflows. In this sense, we view TART as a
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(a) Speech Commands (yes vs. no) (b) Speech Commands (up vs. down)

Figure 29: Additional Speech Commands binary classification tasks. TART is competitive with task-specific
full fine-tuning and adapters.

contribution that is democratizing ML by making them more accessible and usable to experts in a
variety of domains.

G Compute Resource Estimates

Resources for training TART We use a single NVIDIA RTX A6000 GPU ( $2/hr) for 6 hours to
train our TART inference head, costing a total of $18 to train.

Resources for training task-specific baselines We use 4 NVIDIA A100 GPU’s ( $3.5 per GPU/hr)
for 100 hours for hyperparamter tuning, costing a total of $1,400. We use 8 NVIDIA A100 GPU’s
( $3.5 per GPU/hr) for 50 hours to fine-tune all task-adaptation baseline models. Total cost for
fine-tuning amounted to $1,440.

Resources for inference We use 8 NVIDIA A100 GPU’s ( $3.5 per GPU/hr) for 480 hours for all
inference runs costing a total of $13,440.

34



Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.790 ± 0.036 0.552 ± 0.049 0.724 ± 0.070 0.852 ± 0.019 0.824 ± 0.031
AG-News-1 0.828 ± 0.021 0.541 ± 0.037 0.779 ± 0.137 0.903 ± 0.021 0.868 ± 0.020
AG-News-2 0.751 ± 0.023 0.513 ± 0.014 0.626 ± 0.057 0.765 ± 0.025 0.755 ± 0.012
AG-News-3 0.743 ± 0.031 0.502 ± 0.017 0.736 ± 0.035 0.786 ± 0.025 0.727 ± 0.066
Civil Comments 0.559 ± 0.027 0.499 ± 0.002 0.520 ± 0.033 0.515 ± 0.019 0.555 ± 0.036
DBPedia-0 0.866 ± 0.030 0.611 ± 0.091 0.802 ± 0.020 0.825 ± 0.012 0.837 ± 0.022
DBPedia-1 0.778 ± 0.036 0.579 ± 0.100 0.766 ± 0.056 0.740 ± 0.041 0.778 ± 0.044
DBPedia-2 0.798 ± 0.042 0.609 ± 0.136 0.862 ± 0.041 0.908 ± 0.011 0.832 ± 0.048
DBPedia-3 0.812 ± 0.032 0.611 ± 0.135 0.817 ± 0.034 0.859 ± 0.025 0.848 ± 0.028
IMDB 0.537 ± 0.022 0.507 ± 0.007 0.625 ± 0.013 0.560 ± 0.021 0.556 ± 0.014
Rotten Tomatoes 0.535 ± 0.030 0.550 ± 0.043 0.689 ± 0.019 0.541 ± 0.037 0.524 ± 0.018
SMS Spam 0.869 ± 0.063 0.736 ± 0.099 0.925 ± 0.011 0.833 ± 0.015 0.886 ± 0.023
SST 0.544 ± 0.021 0.542 ± 0.024 0.715 ± 0.009 0.555 ± 0.026 0.547 ± 0.009
Youtube 0.784 ± 0.047 0.658 ± 0.089 0.833 ± 0.089 0.768 ± 0.100 0.715 ± 0.136

Table 7: Standard deviation of accuracy, number of examples = 18, GPT-NEO (125M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.805 ± 0.029 0.498 ± 0.002 0.758 ± 0.127 0.601 ± 0.072 0.669 ± 0.044
AG-News-1 0.825 ± 0.023 0.517 ± 0.019 0.916 ± 0.015 0.702 ± 0.097 0.690 ± 0.034
AG-News-2 0.758 ± 0.027 0.500 ± 0.000 0.596 ± 0.031 0.500 ± 0.001 0.588 ± 0.026
AG-News-3 0.754 ± 0.033 0.501 ± 0.003 0.661 ± 0.093 0.552 ± 0.041 0.613 ± 0.022
Civil Comments 0.575 ± 0.019 0.500 ± 0.003 0.525 ± 0.049 0.500 ± 0.000 0.515 ± 0.008
DBPedia-0 0.861 ± 0.018 0.508 ± 0.016 0.786 ± 0.054 0.638 ± 0.109 0.704 ± 0.038
DBPedia-1 0.813 ± 0.020 0.499 ± 0.010 0.787 ± 0.067 0.599 ± 0.078 0.710 ± 0.059
DBPedia-2 0.870 ± 0.035 0.502 ± 0.025 0.878 ± 0.071 0.701 ± 0.113 0.767 ± 0.052
DBPedia-3 0.850 ± 0.050 0.502 ± 0.003 0.864 ± 0.034 0.603 ± 0.114 0.734 ± 0.030
IMDB 0.550 ± 0.027 0.507 ± 0.005 0.590 ± 0.046 0.500 ± 0.000 0.526 ± 0.012
Rotten Tomatoes 0.544 ± 0.027 0.491 ± 0.013 0.589 ± 0.074 0.500 ± 0.000 0.522 ± 0.023
SMS Spam 0.901 ± 0.038 0.867 ± 0.030 0.892 ± 0.052 0.867 ± 0.004 0.851 ± 0.042
SST 0.572 ± 0.016 0.517 ± 0.002 0.617 ± 0.074 0.517 ± 0.000 0.539 ± 0.007
Youtube 0.847 ± 0.047 0.611 ± 0.084 0.810 ± 0.060 0.528 ± 0.000 0.598 ± 0.103

Table 8: Standard deviation of accuracy, number of examples = 18, PYTHIA (160M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.813 ± 0.021 0.511 ± 0.013 0.702 ± 0.102 0.790 ± 0.033 0.689 ± 0.060
AG-News-1 0.851 ± 0.020 0.511 ± 0.014 0.801 ± 0.086 0.891 ± 0.037 0.752 ± 0.032
AG-News-2 0.744 ± 0.034 0.509 ± 0.009 0.622 ± 0.083 0.711 ± 0.070 0.652 ± 0.047
AG-News-3 0.763 ± 0.026 0.508 ± 0.014 0.626 ± 0.016 0.775 ± 0.035 0.706 ± 0.027
Civil Comments 0.561 ± 0.029 0.489 ± 0.009 0.491 ± 0.032 0.540 ± 0.029 0.533 ± 0.030
DBPedia-0 0.851 ± 0.009 0.531 ± 0.044 0.811 ± 0.116 0.813 ± 0.057 0.812 ± 0.043
DBPedia-1 0.760 ± 0.037 0.546 ± 0.088 0.750 ± 0.129 0.718 ± 0.067 0.754 ± 0.041
DBPedia-2 0.800 ± 0.032 0.567 ± 0.110 0.850 ± 0.086 0.904 ± 0.018 0.851 ± 0.055
DBPedia-3 0.848 ± 0.025 0.528 ± 0.046 0.739 ± 0.133 0.785 ± 0.132 0.849 ± 0.011
IMDB 0.552 ± 0.031 0.550 ± 0.044 0.630 ± 0.016 0.608 ± 0.014 0.526 ± 0.025
Rotten Tomatoes 0.574 ± 0.029 0.539 ± 0.031 0.638 ± 0.037 0.618 ± 0.049 0.507 ± 0.010
SMS Spam 0.830 ± 0.112 0.613 ± 0.261 0.883 ± 0.130 0.911 ± 0.035 0.885 ± 0.045
SST 0.574 ± 0.019 0.561 ± 0.062 0.707 ± 0.024 0.636 ± 0.025 0.531 ± 0.015
Youtube 0.762 ± 0.116 0.584 ± 0.144 0.753 ± 0.140 0.726 ± 0.052 0.769 ± 0.084

Table 9: Standard deviation of accuracy, number of examples = 18, BLOOM (560M)
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Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.808 ± 0.030 0.551 ± 0.041 0.795 ± 0.049 0.874 ± 0.022 0.830 ± 0.034
AG-News-1 0.883 ± 0.014 0.577 ± 0.055 0.852 ± 0.070 0.911 ± 0.021 0.902 ± 0.011
AG-News-2 0.764 ± 0.019 0.540 ± 0.027 0.705 ± 0.063 0.812 ± 0.019 0.782 ± 0.019
AG-News-3 0.798 ± 0.025 0.521 ± 0.039 0.762 ± 0.046 0.813 ± 0.012 0.806 ± 0.028
Civil Comments 0.575 ± 0.054 0.498 ± 0.002 0.554 ± 0.029 0.543 ± 0.022 0.579 ± 0.044
DBPedia-0 0.886 ± 0.021 0.632 ± 0.096 0.884 ± 0.019 0.866 ± 0.013 0.859 ± 0.020
DBPedia-1 0.809 ± 0.031 0.593 ± 0.062 0.802 ± 0.030 0.783 ± 0.022 0.813 ± 0.023
DBPedia-2 0.886 ± 0.011 0.586 ± 0.078 0.916 ± 0.029 0.932 ± 0.013 0.899 ± 0.017
DBPedia-3 0.868 ± 0.022 0.565 ± 0.041 0.902 ± 0.016 0.908 ± 0.012 0.868 ± 0.023
IMDB 0.537 ± 0.040 0.543 ± 0.029 0.609 ± 0.029 0.556 ± 0.024 0.551 ± 0.036
Rotten Tomatoes 0.549 ± 0.035 0.554 ± 0.036 0.667 ± 0.036 0.550 ± 0.045 0.528 ± 0.020
SMS Spam 0.903 ± 0.027 0.768 ± 0.105 0.931 ± 0.014 0.861 ± 0.027 0.920 ± 0.011
SST 0.573 ± 0.009 0.564 ± 0.045 0.711 ± 0.022 0.594 ± 0.022 0.551 ± 0.022
Youtube 0.810 ± 0.072 0.759 ± 0.074 0.854 ± 0.044 0.773 ± 0.052 0.722 ± 0.113

Table 10: Standard deviation of accuracy, number of examples = 32, GPT-NEO (125M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.835 ± 0.020 0.499 ± 0.002 0.791 ± 0.100 0.855 ± 0.017 0.712 ± 0.028
AG-News-1 0.900 ± 0.012 0.504 ± 0.004 0.911 ± 0.022 0.926 ± 0.009 0.738 ± 0.028
AG-News-2 0.773 ± 0.012 0.510 ± 0.006 0.687 ± 0.034 0.742 ± 0.044 0.683 ± 0.025
AG-News-3 0.823 ± 0.024 0.514 ± 0.017 0.792 ± 0.022 0.833 ± 0.011 0.697 ± 0.023
Civil Comments 0.596 ± 0.024 0.499 ± 0.007 0.588 ± 0.052 0.536 ± 0.020 0.542 ± 0.016
DBPedia-0 0.890 ± 0.016 0.514 ± 0.026 0.880 ± 0.049 0.777 ± 0.055 0.782 ± 0.044
DBPedia-1 0.833 ± 0.018 0.522 ± 0.023 0.834 ± 0.061 0.768 ± 0.024 0.760 ± 0.022
DBPedia-2 0.912 ± 0.010 0.522 ± 0.031 0.916 ± 0.033 0.903 ± 0.012 0.859 ± 0.019
DBPedia-3 0.879 ± 0.021 0.520 ± 0.026 0.900 ± 0.019 0.863 ± 0.018 0.812 ± 0.022
IMDB 0.541 ± 0.041 0.510 ± 0.008 0.630 ± 0.017 0.575 ± 0.024 0.540 ± 0.018
Rotten Tomatoes 0.576 ± 0.042 0.495 ± 0.007 0.659 ± 0.064 0.568 ± 0.027 0.542 ± 0.019
SMS Spam 0.937 ± 0.017 0.856 ± 0.080 0.913 ± 0.044 0.953 ± 0.014 0.877 ± 0.036
SST 0.602 ± 0.015 0.509 ± 0.013 0.705 ± 0.021 0.605 ± 0.043 0.542 ± 0.003
Youtube 0.862 ± 0.045 0.626 ± 0.081 0.874 ± 0.046 0.762 ± 0.052 0.654 ± 0.050

Table 11: Standard deviation of accuracy, number of examples = 32, PYTHIA (160M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.825 ± 0.031 0.503 ± 0.003 0.802 ± 0.041 0.818 ± 0.014 0.739 ± 0.049
AG-News-1 0.880 ± 0.012 0.516 ± 0.026 0.898 ± 0.043 0.912 ± 0.034 0.829 ± 0.010
AG-News-2 0.771 ± 0.009 0.519 ± 0.025 0.736 ± 0.071 0.773 ± 0.039 0.684 ± 0.040
AG-News-3 0.810 ± 0.016 0.509 ± 0.013 0.753 ± 0.058 0.805 ± 0.031 0.742 ± 0.030
Civil Comments 0.587 ± 0.025 0.500 ± 0.011 0.549 ± 0.016 0.564 ± 0.062 0.555 ± 0.009
DBPedia-0 0.857 ± 0.035 0.592 ± 0.083 0.801 ± 0.125 0.822 ± 0.043 0.834 ± 0.038
DBPedia-1 0.802 ± 0.031 0.558 ± 0.047 0.870 ± 0.037 0.800 ± 0.041 0.813 ± 0.034
DBPedia-2 0.879 ± 0.018 0.609 ± 0.025 0.938 ± 0.018 0.920 ± 0.031 0.903 ± 0.021
DBPedia-3 0.866 ± 0.035 0.634 ± 0.110 0.812 ± 0.163 0.911 ± 0.004 0.876 ± 0.037
IMDB 0.553 ± 0.046 0.541 ± 0.024 0.636 ± 0.016 0.600 ± 0.018 0.536 ± 0.024
Rotten Tomatoes 0.589 ± 0.037 0.575 ± 0.039 0.713 ± 0.029 0.630 ± 0.026 0.527 ± 0.015
SMS Spam 0.933 ± 0.017 0.762 ± 0.033 0.956 ± 0.026 0.905 ± 0.056 0.917 ± 0.017
SST 0.579 ± 0.032 0.502 ± 0.020 0.739 ± 0.013 0.638 ± 0.035 0.562 ± 0.017
Youtube 0.799 ± 0.117 0.710 ± 0.182 0.887 ± 0.033 0.756 ± 0.115 0.850 ± 0.024

Table 12: Standard deviation of accuracy, number of examples = 32, BLOOM (560M)
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Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.812 ± 0.021 0.560 ± 0.046 0.832 ± 0.023 0.876 ± 0.012 0.833 ± 0.016
AG-News-1 0.904 ± 0.009 0.623 ± 0.051 0.924 ± 0.026 0.932 ± 0.007 0.923 ± 0.009
AG-News-2 0.786 ± 0.008 0.566 ± 0.023 0.791 ± 0.016 0.824 ± 0.010 0.797 ± 0.010
AG-News-3 0.822 ± 0.030 0.533 ± 0.029 0.800 ± 0.042 0.840 ± 0.015 0.825 ± 0.034
Civil Comments 0.591 ± 0.029 0.497 ± 0.003 0.568 ± 0.038 0.554 ± 0.029 0.614 ± 0.028
DBPedia-0 0.911 ± 0.011 0.676 ± 0.097 0.892 ± 0.017 0.898 ± 0.012 0.894 ± 0.023
DBPedia-1 0.823 ± 0.025 0.644 ± 0.115 0.838 ± 0.058 0.819 ± 0.018 0.833 ± 0.026
DBPedia-2 0.902 ± 0.015 0.622 ± 0.114 0.931 ± 0.032 0.940 ± 0.005 0.913 ± 0.007
DBPedia-3 0.883 ± 0.023 0.620 ± 0.129 0.891 ± 0.015 0.911 ± 0.006 0.889 ± 0.021
IMDB 0.557 ± 0.033 0.522 ± 0.025 0.641 ± 0.008 0.564 ± 0.017 0.577 ± 0.020
Rotten Tomatoes 0.572 ± 0.014 0.548 ± 0.045 0.710 ± 0.010 0.575 ± 0.048 0.572 ± 0.029
SMS Spam 0.882 ± 0.044 0.860 ± 0.036 0.946 ± 0.019 0.881 ± 0.013 0.925 ± 0.010
SST 0.570 ± 0.019 0.563 ± 0.032 0.705 ± 0.019 0.575 ± 0.028 0.542 ± 0.035
Youtube 0.810 ± 0.039 0.792 ± 0.081 0.923 ± 0.014 0.874 ± 0.029 0.832 ± 0.053

Table 13: Standard deviation of accuracy, number of examples = 48, GPT-NEO (125M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.846 ± 0.018 0.496 ± 0.007 0.871 ± 0.015 0.871 ± 0.005 0.732 ± 0.036
AG-News-1 0.923 ± 0.005 0.528 ± 0.044 0.942 ± 0.004 0.935 ± 0.009 0.780 ± 0.040
AG-News-2 0.798 ± 0.009 0.509 ± 0.004 0.731 ± 0.040 0.782 ± 0.018 0.722 ± 0.019
AG-News-3 0.845 ± 0.012 0.515 ± 0.014 0.787 ± 0.046 0.852 ± 0.011 0.718 ± 0.026
Civil Comments 0.605 ± 0.037 0.512 ± 0.009 0.607 ± 0.039 0.556 ± 0.014 0.556 ± 0.018
DBPedia-0 0.905 ± 0.020 0.549 ± 0.057 0.924 ± 0.020 0.830 ± 0.034 0.798 ± 0.021
DBPedia-1 0.840 ± 0.021 0.592 ± 0.062 0.867 ± 0.024 0.808 ± 0.031 0.780 ± 0.011
DBPedia-2 0.916 ± 0.009 0.636 ± 0.081 0.937 ± 0.017 0.923 ± 0.013 0.870 ± 0.022
DBPedia-3 0.888 ± 0.022 0.618 ± 0.096 0.927 ± 0.011 0.885 ± 0.007 0.827 ± 0.026
IMDB 0.557 ± 0.034 0.503 ± 0.008 0.632 ± 0.013 0.566 ± 0.030 0.545 ± 0.008
Rotten Tomatoes 0.601 ± 0.026 0.480 ± 0.014 0.683 ± 0.033 0.556 ± 0.033 0.562 ± 0.018
SMS Spam 0.956 ± 0.008 0.869 ± 0.044 0.966 ± 0.011 0.960 ± 0.008 0.891 ± 0.035
SST 0.612 ± 0.024 0.500 ± 0.025 0.702 ± 0.046 0.594 ± 0.042 0.560 ± 0.023
Youtube 0.872 ± 0.019 0.654 ± 0.063 0.904 ± 0.033 0.826 ± 0.046 0.666 ± 0.027

Table 14: Standard deviation of accuracy, number of examples = 48, PYTHIA (160M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.829 ± 0.029 0.507 ± 0.005 0.829 ± 0.071 0.847 ± 0.022 0.788 ± 0.028
AG-News-1 0.909 ± 0.010 0.543 ± 0.052 0.940 ± 0.011 0.935 ± 0.004 0.856 ± 0.014
AG-News-2 0.789 ± 0.016 0.511 ± 0.012 0.715 ± 0.057 0.793 ± 0.027 0.708 ± 0.011
AG-News-3 0.832 ± 0.018 0.530 ± 0.038 0.834 ± 0.029 0.843 ± 0.014 0.763 ± 0.015
Civil Comments 0.602 ± 0.030 0.506 ± 0.011 0.605 ± 0.044 0.592 ± 0.039 0.566 ± 0.008
DBPedia-0 0.889 ± 0.022 0.703 ± 0.085 0.933 ± 0.021 0.888 ± 0.024 0.873 ± 0.027
DBPedia-1 0.817 ± 0.023 0.734 ± 0.076 0.891 ± 0.028 0.836 ± 0.036 0.834 ± 0.024
DBPedia-2 0.900 ± 0.011 0.847 ± 0.037 0.949 ± 0.013 0.940 ± 0.009 0.914 ± 0.013
DBPedia-3 0.884 ± 0.020 0.815 ± 0.105 0.928 ± 0.024 0.917 ± 0.015 0.891 ± 0.037
IMDB 0.565 ± 0.033 0.545 ± 0.033 0.641 ± 0.020 0.604 ± 0.022 0.542 ± 0.015
Rotten Tomatoes 0.605 ± 0.015 0.505 ± 0.005 0.704 ± 0.025 0.672 ± 0.042 0.531 ± 0.018
SMS Spam 0.933 ± 0.009 0.636 ± 0.130 0.929 ± 0.058 0.919 ± 0.032 0.914 ± 0.027
SST 0.610 ± 0.030 0.489 ± 0.004 0.695 ± 0.020 0.673 ± 0.029 0.538 ± 0.011
Youtube 0.834 ± 0.049 0.797 ± 0.090 0.805 ± 0.095 0.851 ± 0.020 0.865 ± 0.012

Table 15: Standard deviation of accuracy, number of examples = 48, BLOOM (560M)
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Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.817 ± 0.024 0.539 ± 0.044 0.855 ± 0.030 0.877 ± 0.013 0.830 ± 0.023
AG-News-1 0.904 ± 0.007 0.561 ± 0.048 0.923 ± 0.027 0.939 ± 0.003 0.922 ± 0.010
AG-News-2 0.790 ± 0.026 0.576 ± 0.022 0.814 ± 0.009 0.839 ± 0.009 0.816 ± 0.014
AG-News-3 0.833 ± 0.015 0.550 ± 0.035 0.803 ± 0.017 0.852 ± 0.013 0.842 ± 0.018
Civil Comments 0.581 ± 0.039 0.499 ± 0.002 0.587 ± 0.018 0.576 ± 0.039 0.605 ± 0.036
DBPedia-0 0.915 ± 0.005 0.652 ± 0.095 0.917 ± 0.011 0.908 ± 0.019 0.909 ± 0.025
DBPedia-1 0.825 ± 0.037 0.633 ± 0.104 0.838 ± 0.032 0.829 ± 0.012 0.852 ± 0.011
DBPedia-2 0.887 ± 0.020 0.606 ± 0.088 0.950 ± 0.007 0.952 ± 0.011 0.916 ± 0.014
DBPedia-3 0.873 ± 0.033 0.611 ± 0.136 0.898 ± 0.034 0.927 ± 0.007 0.909 ± 0.008
IMDB 0.558 ± 0.029 0.515 ± 0.024 0.646 ± 0.010 0.563 ± 0.021 0.566 ± 0.035
Rotten Tomatoes 0.601 ± 0.020 0.533 ± 0.053 0.708 ± 0.015 0.579 ± 0.049 0.556 ± 0.033
SMS Spam 0.869 ± 0.023 0.825 ± 0.074 0.934 ± 0.016 0.898 ± 0.008 0.927 ± 0.004
SST 0.570 ± 0.038 0.554 ± 0.041 0.712 ± 0.033 0.609 ± 0.021 0.567 ± 0.016
Youtube 0.790 ± 0.050 0.819 ± 0.050 0.926 ± 0.014 0.891 ± 0.031 0.837 ± 0.055

Table 16: Standard deviation of accuracy, number of examples = 64, GPT-NEO (125M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.851 ± 0.024 0.502 ± 0.003 0.858 ± 0.009 0.869 ± 0.010 0.764 ± 0.030
AG-News-1 0.925 ± 0.002 0.529 ± 0.030 0.937 ± 0.011 0.938 ± 0.004 0.820 ± 0.021
AG-News-2 0.812 ± 0.007 0.513 ± 0.013 0.752 ± 0.051 0.795 ± 0.010 0.738 ± 0.008
AG-News-3 0.851 ± 0.007 0.503 ± 0.004 0.820 ± 0.020 0.855 ± 0.009 0.741 ± 0.019
Civil Comments 0.606 ± 0.029 0.500 ± 0.001 0.659 ± 0.032 0.566 ± 0.023 0.566 ± 0.018
DBPedia-0 0.910 ± 0.013 0.518 ± 0.020 0.912 ± 0.027 0.858 ± 0.019 0.825 ± 0.015
DBPedia-1 0.839 ± 0.027 0.542 ± 0.028 0.897 ± 0.016 0.824 ± 0.031 0.788 ± 0.018
DBPedia-2 0.916 ± 0.011 0.609 ± 0.106 0.953 ± 0.013 0.922 ± 0.012 0.882 ± 0.019
DBPedia-3 0.887 ± 0.028 0.527 ± 0.022 0.940 ± 0.013 0.904 ± 0.007 0.857 ± 0.020
IMDB 0.556 ± 0.024 0.506 ± 0.005 0.619 ± 0.030 0.574 ± 0.017 0.552 ± 0.009
Rotten Tomatoes 0.624 ± 0.024 0.485 ± 0.020 0.686 ± 0.040 0.577 ± 0.033 0.568 ± 0.019
SMS Spam 0.937 ± 0.018 0.905 ± 0.017 0.960 ± 0.021 0.961 ± 0.006 0.899 ± 0.014
SST 0.606 ± 0.022 0.508 ± 0.022 0.688 ± 0.047 0.602 ± 0.036 0.567 ± 0.017
Youtube 0.888 ± 0.028 0.715 ± 0.097 0.897 ± 0.046 0.878 ± 0.050 0.675 ± 0.019

Table 17: Standard deviation of accuracy, number of examples = 64, PYTHIA (160M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.836 ± 0.018 0.509 ± 0.008 0.850 ± 0.027 0.856 ± 0.008 0.799 ± 0.029
AG-News-1 0.918 ± 0.007 0.543 ± 0.033 0.900 ± 0.024 0.933 ± 0.008 0.875 ± 0.015
AG-News-2 0.799 ± 0.012 0.515 ± 0.019 0.784 ± 0.018 0.831 ± 0.022 0.732 ± 0.017
AG-News-3 0.836 ± 0.011 0.504 ± 0.003 0.811 ± 0.034 0.853 ± 0.011 0.784 ± 0.022
Civil Comments 0.602 ± 0.030 0.510 ± 0.012 0.573 ± 0.035 0.611 ± 0.025 0.572 ± 0.013
DBPedia-0 0.905 ± 0.015 0.667 ± 0.052 0.936 ± 0.018 0.902 ± 0.022 0.882 ± 0.020
DBPedia-1 0.809 ± 0.022 0.687 ± 0.117 0.887 ± 0.039 0.852 ± 0.032 0.853 ± 0.008
DBPedia-2 0.881 ± 0.026 0.799 ± 0.075 0.955 ± 0.022 0.947 ± 0.009 0.922 ± 0.014
DBPedia-3 0.877 ± 0.014 0.793 ± 0.106 0.906 ± 0.027 0.921 ± 0.017 0.899 ± 0.024
IMDB 0.571 ± 0.033 0.539 ± 0.020 0.621 ± 0.039 0.618 ± 0.013 0.542 ± 0.012
Rotten Tomatoes 0.597 ± 0.025 0.536 ± 0.047 0.684 ± 0.053 0.672 ± 0.041 0.543 ± 0.024
SMS Spam 0.907 ± 0.045 0.659 ± 0.133 0.942 ± 0.024 0.931 ± 0.030 0.909 ± 0.033
SST 0.620 ± 0.039 0.495 ± 0.015 0.672 ± 0.039 0.716 ± 0.032 0.554 ± 0.020
Youtube 0.844 ± 0.059 0.765 ± 0.137 0.879 ± 0.058 0.865 ± 0.033 0.883 ± 0.016

Table 18: Standard deviation of accuracy, number of examples = 64, BLOOM (560M)
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