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Abstract

It is well-known that modern computer vision systems often exhibit behaviors mis-
aligned with those of humans: from adversarial attacks to image corruptions, deep
learning vision models suffer in a variety of settings that humans capably handle. In
light of these phenomena, here we introduce another, orthogonal perspective study-
ing the human-machine vision gap. We revisit the task of recovering images under
degradation, first introduced over 30 years ago in the Recognition-by-Components
theory of human vision. Specifically, we study the performance and behavior of
neural networks on the seemingly simple task of classifying regular polygons at
varying orders of degradation along their perimeters. To this end, we implement the
Automated Shape Recoverability Test1 for rapidly generating large-scale datasets
of perimeter-degraded regular polygons, modernizing the historically manual cre-
ation of image recoverability experiments. We then investigate the capacity of
neural networks to recognize and recover such degraded shapes when initialized
with different priors. Ultimately, we find that neural networks’ behavior on this
simple task conflicts with human behavior, raising a fundamental question of the
robustness and learning capabilities of modern computer vision models.

1 Introduction

Since the advent of adversarial attacks (Goodfellow et al., 2015), researchers have grown increasingly
wary of machine learning models’ susceptibility to learning irrelevant patterns (Yuan et al., 2019).
Oftentimes, neural networks rely on spurious features that humans know to avoid (Khani and Liang,
2021). A poignant example of such unorthodox behavior comes in the form of machine vision’s
over-dependency on object textures rather than object shapes (Geirhos et al., 2019). This often leads
to dangerous consequences in practice (Hendrycks et al., 2021a). Similarly, the fragility of vision
models in response to minor image transformations such as shifts or rotations (Azulay and Weiss,
2019), raises concerns over how well these models truly learn, especially when considering these
small geometric transformations are commonplace in natural vision scenarios. The specifics of when
or how vision models might be expected to generalize well remains a mystery (Zhang et al., 2017).

Beyond being unreliable in real-world settings, current vision models are decidely unhuman in nature.
They tend to learn undesirable features that are fundamentally misaligned with how humans perceive
the world. Given the unexpected nature of such models, we study if models are also capable of
correctly identifying recoverable images, a concept first presented in the Recognition-by-Components
theory of human vision (Biederman, 1987). Similarly, we investigate whether or not these models’
performance is marred by non-recoverable images.

1https://github.com/leonardtang/Degraded-Polygons-RBC
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Figure 1: Specific instance of the Automated Shape Recoverablility Test generation pipeline for an
example pentagon with 50% degradation proportion. Whole shapes are generated and subsequently
edited with corner degradation (top), and edge degradation (bottom). Our experiments indicate that,
unlike time-constrained humans performing sketch recovery (Biederman, 1987), neural networks rely
heavily on edges rather than corners to recover degraded shapes.

To make progress in understanding the behavior of computer vision models, we introduce the
Automated Shape Recoverablility Test pipeline for evaluating vision models across a spectrum of
image degradation in regular polygons. The intrinsic difficulty in classifying a generated image is
directly controlled by the proportion of the image we delete, subject to the constraint of where the
image deletion is allowed to occur. We operate on the domain of black-and-white sketches, since
they most closely resemble the distribution of images presented in Biederman (1987), which consist
of simple sketches of common objects. Moreover, our ultimate results on this simple task setting
suggest a fundamental misalignment in the way humans and machine approach image classification.

Using our pipeline, we produce 1,260,000 sketches of regular polygons evenly distributed across
7 shape categories, 9 levels of image degradation, and 2 forms of degradation (corner and edge
degradation). Though seemingly simple, these images measure model performance against a canonical
human vision task, yielding surprising discrepancies. We release the editing pipeline and final dataset
of 1,260,000 images in the hopes of encouraging further research in this direction.

In image classification experiments on a subset of the data, we observe that common vision archi-
tectures poorly recover (i.e. correctly classify) heavily edge-degraded and corner-degraded shapes,
both of which humans are capable of recognizing. Surprisingly, neural networks also rely primarily
on edges rather than corners for shape recovery – the exact opposite of human behavior. Moreover,
our results also indicate that models pretrained entirely on non-accidental properties generated by
Iterated Function Systems (Barnsley and Vince, 2010) display much stronger performance patterns
on the same corner-removed class. Overall, our contributions are summarized as follows:

• We introduce the Automated Shape Recoverability Test, a pipeline for generating datasets
with parameterized degradation of regular polygons. We publicly release the pipeline and
the accompanying dataset of 1,260,000 images, which span across seven categories and
include varying degrees and forms of image degradation.

• Through a comprehensive analysis of various neural network architectures on the task
of shape recovery across varying levels of image degradation, we demonstrate a striking
discrepancy in how machine learning models and humans perceive images. Unlike humans,
neural networks consistently rely more on edges than corners for image recovery, pointing
to a fundamental difference in image processing between machines and humans.

• Our exploration of pretraining dataset choice reveals that models pretrained on fractals,
unlike those pretrained on ImageNet, retain greater accuracy on edge-degraded shapes, while
continuing to perform poorly on corner-degraded shapes, further misaligning human and
machine vision. Through Grad-CAM visualizations, we reveal differences in how ImageNet
and fractal pretrained models learn features and process degraded shapes.
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2 Related Work

2.1 Sketch Classification

Though sketch classification is not as common a task as natural image classification, much existing
research attempts to tackle the problem. The TUBerlin Sketch Benchmark was the first large-scale
sketch classification dataset for machine learning, consisting of 20,000 unique sketches distributed
over 250 object categories that exhaustively cover most objects that are commonly encountered in
everyday life Eitz et al. (2012). 1,350 unique Amazon Mechanical Turk (MTurk) workers were
recruited to sketch these images, with each worker only being able to sketch a limited number of
sketches per category so as to preserve diversity within each sketch class. Eitz et al. (2012) also
develop a bag-of-features sketch representation alongside multi-class support vector machines trained
on the dataset, which classifies unseen sketches with 56% accuracy.

Since the introduction of this dataset, significant work has been done to build more accurate models
of sketch classification using deep-learning architectures, particularly Convolutional Neural Networks
and Recurrent Neural Networks, as well as solving challenges including partial sketch classification
and sketch progression incorporation (Tran, 2017; Seddati et al., 2015, 2016; Yang and Hospedales,
2015; Ha and Eck, 2018). As a result of these efforts, the competitive accuracy on the TUBerlin
Sketch Benchmark is now 77.69%, a significant improvement over the original paper.

2.2 Image Recovery from a Cognitive Science Perspective

Recognition-by-Components The task of image recovery was first introduced in the landmark
Recognition-by-Components theory from cognitive science, which explains how humans recognize
and categorize objects based on their basic geometric structures, called geons, and their spatial
relationships (Biederman, 1987; Cooper and Biederman, 1993). A critical component of Recognition-
by-Components theory states that object recognition of two-dimensional black-and-white sketches is
impaired when feature-relation information – the information about the relationships between geons –
is degraded. In the limit of feature-relation information degradation, it is ambiguous what the original
object was supposed to be; contextual inference of the original object is no longer possible. We
define such a degraded image to be non-recoverable. Otherwise, a degraded image that can still be
recognized is recoverable.

Recognition-by-Components also posits that parsing of an object into components is performed
at vertex regions of sharp concavity, with multiple curves terminating at a common point. To
verify this claim, Biederman (1987) tested humans’ ability to classify sketches of objects in a timed
setting after object contours had undergone heavy degradation. Expectedly, heavier degradation –
greater proportions of the sketch being deleted – led to lower classification accuracy. Additionally,
corroborating the original claim, degradation centered at object corners induced much lower accuracy
in subjects compared to degradation along curves between corners (Biederman, 1987; Guez et al.,
1994).

While our proposed dataset and task do not exactly match the setting of Biederman’s (1987) experi-
ments in the sense that we focus on a distinct set of sketch shapes and do not consider time-constrained
recognition, our results indicate that this task is sufficiently challenging for modern deep learning
models. Moreover, the simple structure of our data, being merely regular polygons, indicates a
fundamental misalignment of deep learning vision models with respect to human vision. We view
our dataset as a minimum viable task that highlights this misalignment: the fact that deep learning
models exhibit pathologies even on this simple shape classification task suggests that neural network
perception may be even less robust than we know. To contextualize our findings, we compare
Biederman’s (1987) human subject performance to those of common vision architectures in §4.1.

Gollin Figures Test Closely related to image recovery is the Gollin figures test for assessing human
visual perception. Subjects are shown variations of a common object in quick secession, with five
consecutive incomplete line drawings of a picture, from least to most complete, displayed to each
subject (Gollin, 1960). The subject needs to mentally complete the underlying drawing in order to
identify the original object drawn, similar to testing for Gestalt closure phenomena (Rock and Palmer,
1990; Kim et al., 2021). Notably, unlike in Recognition-by-Components theory, the Gollin figures
test makes no distinction between image degradations that yield recoverable images and degradations
that yield non-recoverable images.
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Figure 2: The five classes of nonaccidental properties (NAPs) for object recognition in the visual
cortex are 1) collinearity, the presence of straight lines; 2) curvilinearity, the presence of smoothly
curved elements; 3) symmetry across arbitrary axes; 4) parallel curves; and 5) vertices, junctions
of two or more contours (Lowe, 1985). Critically, cognitive scientists suggest that NAPs form a
perceptual basis for the set of components that enable object recognition.

Historically, the Gollin figures test has been automated in order to provide more fine-grained control
over the proportion of an image that is degraded. That is, rather than having five discrete variants of
degradation as in the original test, software was introduced to construct infinitely many variants of
degradation on a continuous spectrum (Foreman and Hemmings, 1987). Motivated by this precedent,
we automate the generation of recoverable and non-recoverable image degradations at scale.

Non-Accidental Properties Non-accidental properties (NAPs) are image properties that are in-
variant over orientation and depth (Amir et al., 2012). The human visual system processes NAPs
in a two-dimensional drawing as feasibly occurring in three dimensions (Witkin and Tenenbaum,
1983). For example, if there is a straight line, a manifesation of collinearity, in a two-dimensional
drawing, the visual system infers that the edge producing that line in the three-dimensional world is
also straight. In other words, NAPs are dimension-invariant. Another perspective for understanding
NAPs is the non-accidentalness principle, which states that spatiotemporal coherence and regularity
is so unlikely to arise by the random interaction of independent components, that such structure,
when observed, almost certainly denotes an underlying unified process (Blusseau et al., 2016). NAPs
precisely capture these unlikely coherences, providing useful cues for human object recognition.
Figure 2 displays the five canonical NAPs and examples of each property (Lowe, 1985).

NAPs and image recoverability are intimately related notions. Specifically, NAP location and type
directly parameterizes regions of non-recoverable image degradations. If NAPs are removed from any
image region, it becomes more difficult to recover the object component that the deleted NAP belongs
too. Under certain NAP removals, it becomes more difficult to recover the relationship between
object components, and thus the overall image. For instance, Biederman (1987) demonstrated that
deletion of vertices adversely affected object recognition more than deletion of midsegments. Inspired
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by this result, here we focus on producing degradation of regions surrounding vertices as well as
midsegments in order to generate non-recoverable and recoverable images, respectively.

Fractals as Partial Non-Accidental Properties While there are not any known ways of specifying
the generation of NAPs directly, we draw inspiration from Barnsley and Vince (2010) to automatically
generate fractals. Due to their intrinsic collinearity, curvilinearity, symmetry, parallel nature, multi-
tude of junctions, and occurrence in natural objects and scenes, fractals may be regarded as a proxy
form of NAPs. To that end, we investigate the performance of models pretrained via fractal-guided
Formula-driven Supervised Learning (FSDL) on our benchmark. In FSDL, fractals are generated by
mathematical formulae, then binned into categories based on the range of formula parameters. The
learning task is thus to classify fractals within the correct parameter range (Kataoka et al., 2020).

Recent results in the deep learning literature also motivate the use of fractal pretraining. In particular,
Hendrycks et al. (2021b) showed that a simple data augmentation technique mixing fractals with
natural images comprehensively improves model robustness and safety metrics. Contemporaneously,
Kataoka et al. (2020) also demonstrate that pretraining neural networks entirely on synthetically
generated fractals achieves the same level of performance on downstream tasks as pretraining on
natural images. For our experiments, we use models pretrained on synthetic fractals with 10,000
fractal classes, which we refer to as FractalDB models.

3 Automating Shape Recoverability Experiments

We implement the Automated Shape Recoverablility Test, an automatic image editing pipeline
for creating degraded regular polygons at varying severities. Figure 1 displays an example of our
generation pipeline. In total, our pipeline requires less than 30 seconds of compute time to serially
generate 6,000 diverse images across 7 shape categories – triangles, squares, pentagons, hexagons,
heptagons, and octagons – with 1,000 images each2. Moreover, this procedure can be trivially
scaled up to any arbitrary number of polygon classes and images per class. Our approach broadly
consists of generating regular polygons, then degrading their perimeters to produce recoverable (edge
degradation) and non-recoverable (corner degradation) images.

Regular Polygon Generation Our shape generation pipeline begins by constructing regular poly-
gons. We generate polygons by first implicitly defining a circle, then placing an appropriate number of
points, matching the desired number of sides, on its circumference. For example, to draw a pentagon,
we place five points equally spaced on the circumference of the circle, then use line segments to
connect them. To promote image diversity, the center of the circle c is chosen randomly within a 224
× 224 grid, subject to a minimum acceptable radius size rmin. Subsequently, the circle’s radius r is
chosen uniformly at random between the minimum accepted radius size and the maximum radius
size allowed by the sampled circle center. Furthermore, shapes are rotated uniformly at random by
an angle θ between 0◦ and 360◦. The border of each polygon is fixed to be two pixels thick. All
generated shapes have black borders overlaid on top of a white background.

Producing Degraded Shapes In order to produce recoverable and non-recoverable versions of
our shapes, we parametrically and evenly degrade the perimeter of each polygon. To do so, we
first specify the proportion pd of the shape’s perimeter to degrade. Naturally, a larger degradation
proportion yields more occluded shapes that are more difficult to recognize, and a smaller degradation
proportion yields shapes closer to the original polygon, which are more easily recognized. To produce
non-recoverable shapes, we degrade perimeter regions surrounding each corner, and to produce
recoverable shapes, we degrade perimeter regions from the midsegment of each edge.

Corner Degradation To degrade corners from an initial regular polygon generation, we overlay
white circles at each corner, effectively erasing the perimeter of the corresponding local neighborhood
around the corner. Given a desired global degradation proportion pd, each individual white circle is
then defined with the following radius, where Ns is the number of sides of the regular polygon and P
is the total perimeter:

r =
pd

2 ·Ns
· P

2Benchmarked on an 8-core Apple M1 Pro chip.
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Figure 3: Top-1 test accuracy (%) within ±1 SD (across 10 training trials) of ImageNet-pretrained
and whole-polygon finetuned models on the shape recovery task. Accuracy decreases as degradation
proportion, pd, increases. Moreover, ResNet-15, ResNet-50, and MLP-Mixer all exhibit worse
performance on edge-degraded compared to corner-degraded shapes, the opposite of human behavior.

Under this construction, the circle at each corner will erase 2r = (P · pd)/Ns pixels from the
shape’s perimeter, and in aggregate Ns circles will erase P · pd pixels, thus precisely degrading a
(P · pd)/P = pd proportion of the original image, as desired.

Edge Degrading We adopt a similar procedure for edge degradation. However, instead of overlay-
ing circles at shape corners, we overlay circles at midpoints between corners. Critically, defining r
exactly as above, observe that no circle drawn at a midpoint can erase a corner so long as pd < 1,
which is true for all of our experiments and in all meaningful degradation cases. In the limiting cases,
pr = 1 erases the entire perimeter of the shape, and pr = 0 retains the shape in full. Notably, this
procedure performs a single removal at the middle of each edge, not a dashed-line edit.

4 Experiments

Our experiments evaluate neural networks’ ability to classify degraded shapes at 10%, 15%, 20%,
25%, 30%, 40%, 50%, 60%, and 70% perimeter degradation proportions. For our architectures, we
benchmark ResNet-18, ResNet-50 (He et al., 2016), MLP-Mixer (Tolstikhin et al., 2021), and ViT
(Dosovitskiy et al., 2021). We consider the ResNet family due to its universality in vision experiments
and relative simplicity. We also test MLP-Mixer and ViT due to their qualitatively different learning
procedure and behavior. MLP-Mixer uses simple multi-layer perceptrons (MLPs) to mix features
locally and globally, contrasting the explicit weight sharing seen in convolutional and transformer
models. ViT adapts the transformer architecture from natural language processing to handle images,
learning global dependencies by treating image patches as a sequence.

We initialize our models using pretrained weights derived from ImageNet (Deng et al., 2009) and
FractalDB-10k, a database without any natural images (Kataoka et al., 2020). All models are then fine-
tuned on whole, non-degraded regular polygons according to a 60%/20%/20% training/validation/test
split. Subsequently, they are directly tested on corner-degraded and edge-degraded polygons at vary-
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Figure 4: Confusion matrices at 30%, 50%, and 70% removal proportions for corner-degraded
shapes (top) and edge-degraded shapes (bottom) using ImageNet-pretrained ResNet-18, ResNet-50,
MLP-Mixer, and ViT. As removal proportion increases, models default to predicting a single class.

ing degradation strengths. While our models obtain high test accuracy on whole shape classification,
we are chiefly interested in their performance on degraded shapes.

Training Setup We finetune ResNet-18 and ResNet-50 on whole polgyons for 20 epochs using
SGD with a learning rate of 0.01, a momentum term of 0.9, no weight decay, and a batch size of 64.
The learning rate follows a Reduce-Learning-Rate-on-Plateau scheduler with a patience of 3 epochs
and a learning rate reduction factor of 0.1. For ViT, we use SGD with a learning rate of 0.001, weight
decay of 0.001, momentum of 0.9, and a batch size of 32. Across all experiments, standard data
augmentation and preprocessing techniques are used, namely random cropping, random rotations,
random horizontal flipping, and normalization over the whole-polygon dataset.

At every epoch, we compute top-1 and top-5 validation accuracy on the whole-polygon dataset,
and the weights of the network are saved. After training, the set of weights with the highest top-1
validation accuracy is used to compute test accuracy on whole polygons. We then evaluate this best
model on corner-degraded and edge-degraded shapes. Critically, our models achieve 100% validation
accuracy within 10 epochs, and also consistently achieve greater than 99.7% accuracy on randomly
held out test sets of whole shapes. More interestingly, they perform much worse on degraded shapes.

Comparison Across Architectures The top-1 test accuracies on corner-degraded and edge-
degraded shapes for ImageNet-pretrained models are shown in Figure 3. Unsurprisingly, as degra-
dation proportion increases, all architectures perform worse, both in the corner-degraded and edge-
degraded settings. While ViT performs similarly on all degraded shapes at each degradation propor-
tion, ResNet-18, ResNet-50, and MLP-Mixer consistently perform worse on edge-degraded shapes
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Figure 5: Top-1 test accuracy (%) within ±1 SD (across 10 training trials) of FractalDB-pretrained
and whole-polygon finetuned models on the shape recovery task. Again, accuracy decreases across the
board as degradation proportion, pd, increases. Compared to their ImageNet-pretrained counterparts,
however, ResNet-18 and ResNet-50 both retain better performance on corner-degraded shapes. We
also note the discrepancy compared to edge-degraded shapes, the opposite of human behavior.

versus corner-degraded shapes. Notably, this is the opposite of how time-constrained humans perform
on Biederman’s (1987) degraded sketch recognition task.

Figure 4 also presents confusion matrices for ImageNet-pretrained ResNet-18, ResNet-50, MLP-
Mixer, and ViT at 30%, 50%, and 70% degradation. As degradation proportion increases, we note
that models tend to default to predicting a single class, for example to defaulting to triangles for
ResNet-18 and hexagons for Resnet-50 at 70% degradation.

4.1 Results

Figure 6: Differential (Edge − Corner) in
edge-degradation accuracy relative to corner-
degradation accuracy on the shape and im-
age recovery tasks. As pd increases, humans
retain high accuracy on edge-degraded im-
ages but perform worse on corner-degraded
images. On the other hand, MLP-Mixer
quickly experiences decreasing accuracy on
edge-degraded images, while retaining high
accuracy on corner-degraded images. Over-
all, MLP-Mixer and human subjects exhibit
starkly contrasting behavior.

Human Comparison To contextualize the behav-
ior of neural networks on our shape recovery task,
we compare the performance of MLP-Mixer against
human subjects from Biederman’s (1987) original
image recovery experiments. There, image degra-
dation at corners and edges was performed for 18
objects at degradation proportions of 25%, 45%, and
65%. Degraded objects were then exposed to subjects
for 100msec, 200msec, and 750msec. Figure 6 com-
pares MLP-Mixer performance against these human
subjects in the 100msec setting. Specifically, we com-
pute the percentage difference in accuracy on edge-
degraded shapes relative to corner-degraded shapes
for both humans and MLP-Mixer. As degradation
proportion increases, human subjects show greater
accuracy preservation on edge-degraded shapes com-
pared to corner-degraded shapes. Conversely, MLP-
Mixer retains increasingly higher accuracy on corner-
degraded shapes relative to edge-degraded shapes.

Dataset Priors We also investigate the effect of pre-
training dataset choice on our models’ performance.
Besides ImageNet, we also pretrain ResNet-18 and
ResNet-50 on FractalDB before finetuning them on
our whole-polygon dataset. Figure 5 displays the
performance of these models on the shape recovery
task. Tables 1 and 2 show the analogous per class
performance for ResNet-18. While the general trend of these models is the same as their ImageNet
counterparts, these models retain greater accuracy on corner-degraded shapes and fail more rapidly
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pd and Type Triangle Square Pentagon Hexagon Heptagon Octagon

0.3 Edge Degradation 100.0 67.7 92.2 0.2 0.9 100.0
0.4 Edge Degradation 100.0 27.6 0.0 0.0 0.0 94.7
0.5 Edge Degradation 100.0 39.0 0.0 0.0 0.1 92.9
0.6 Edge Degradation 100.0 32.7 0.0 0.0 0.0 0.1
0.7 Edge Degradation 6.6 98.9 0.0 0.0 0.0 0.0

0.3 Corner Degradation 100.0 96.0 88.9 87.0 93.7 82.3
0.4 Corner Degradation 100.0 79.2 55.9 66.3 42.4 60.5
0.5 Corner Degradation 100.0 69.8 0.1 14.4 16.3 55.6
0.6 Corner Degradation 100.0 16.1 0.0 0.0 0.0 0.0
0.7 Corner Degradation 60.4 95.2 0.0 0.0 0.0 0.0

Table 1: Per-class accuracy of ImageNet-pretrained ResNet-18 at varying degradation proportions.

pd and Type Triangle Square Pentagon Hexagon Heptagon Octagon

0.3 Edge Degradation 100.0 99.3 98.6 30.1 9.4 100.0
0.4 Edge Degradation 97.5 98.3 89.5 1.7 0.0 100.0
0.5 Edge Degradation 58.0 57.0 2.4 0.2 0.2 99.9
0.6 Edge Degradation 2.4 27.0 0.4 0.0 0.1 100.0
0.7 Edge Degradation 0.0 12.0 0.0 0.1 69.7 26.5

0.3 Corner Degradation 100.0 100.0 100.0 100.0 11.4 0.0
0.4 Corner Degradation 100.0 100.0 100.0 100.0 99.1 0.0
0.5 Corner Degradation 100.0 100.0 100.0 100.0 32.3 0.1
0.6 Corner Degradation 100.0 98.5 100.0 62.5 100.0 84.0
0.7 Corner Degradation 99.9 89.9 53.5 99.8 84.6 0.0

Table 2: Per-class accuracy of FractalDB-pretrained ResNet-18 at varying degradation proportions.

on edge-degraded shapes as degradation proportion increases, diverging even further from human
behavior.

For fractals generated by linear Iterated Function Systems (IFS), such as those in FractalDB, the
resulting images primarily exhibit the NAPs of collinearity and symmetry, and not so much structurally
complex vertices. Therefore, it is not surprising that these fractal-pretrained models are more
amenable to processing edges, thus performing even better on corner-degraded shapes. In that sense,
fractal pretraining further misaligns neural network behavior from humans, raising the question
of if standard fractal pretraining can indeed be a suitable substitute for natural image pretraining.
However, we note that extensions to the traditional IFS generative process exist that enable emphasis
on different NAPs. For example, the Fractal Flame algorithm (Spotworks and Berthoud, 2008)
produces curved fractals, thus emphasizing curvilinearity. We leave the investigation of such fractal
generation procedures’ effects on neural network behavior and alignment for future work.

Visualizing Network Internals To gain further intuition for neural network behavior, we study our
learned ResNet-18 models by analyzing their corresponding Grad-CAM visualizations (Selvaraju
et al., 2017). Figure 7 shows an illustrative example of the difference in gradients for the true
target concept flowing into the final convolutional layer between ImageNet-pretrained ResNet-18
and FractalDB-pretrained ResNet-18. On two randomly selected pentagons from our dataset and
their corresponding 50% edge-degraded and 50% corner-degraded variants, the highlighted regions
of the ImageNet model are less concentrated within the shape’s radius than the highlighted regions
of the FractalDB model, suggesting that fractal pretraining endowed ResNet-18 with a somewhat
more robust ability to classify degraded shapes. Though not a full explanation for model behavior,
we see such discrepancies as a potential indication that fractal pretraining enables models to learn
and leverage more robust geometric features, though not necessarily human-like vertex features.
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(a) ImageNet; Corner-degraded (b) ImageNet; Edge-degraded

(c) FractalDB; Corner-degraded (d) FractalDB; Edge-degraded

Figure 7: Grad-CAM visualizations with respect to the true pentagon class for ResNet-18 on (a) 50%
corner-degraded pentagon with an ImageNet-pretrained model, (b) 50% edge-degraded pentagon
with an ImageNet-pretrained model, (c) 50% corner-degraded pentagon with a FractalDB-pretrained
model, and (d) 50% edge-degraded pentagon with a FractalDB-pretrained model.

5 Conclusion

Inspired by cognitive science and the theory of Recognition-by-Components, we introduce a new
perspective on the human-machine vision gap and investigate the notion of image recovery in
degraded regular polygons. To do so, we develop the Automated Shape Recoverablility Test pipeline
for generating regular polygon sketches at scale with varying orders of degradation, which we open-
source to the machine learning community. We then train common deep learning vision models
for this simple task and find that their behavior fundamentally conflicts with how humans perceive
images. Furthermore, we show that fractal pretraining further misaligns neural network and human
behavior. Based on these results, we encourage further investigation into this fundamental conflict
between human and machine vision.
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