
Three Iterations of (d− 1)-WL Test Distinguish Non
Isometric Clouds of d-dimensional Points

Valentino Delle Rose1,2, Alexander Kozachinskiy1,3, Cristóbal Rojas1,2

Mircea Petrache1,2,4, Pablo Barceló1,2,3

1 Centro Nacional de Inteligencia Artificial, Chile
2 Instituto de Ingeniería Matemática y Computacional, Universidad Católica de Chile

3 Instituto Milenio Fundamentos de los Datos, Chile
4 Departamento de Matemática, Universidad Católica de Chile

valentino.dellerose@cenia.cl, alexander.kozachinskyi@cenia.cl
cristobal.rojas@mat.uc.cl, mpetrache@mat.uc.cl, pbarcelo@uc.cl

Abstract

The Weisfeiler–Lehman (WL) test is a fundamental iterative algorithm for checking
the isomorphism of graphs. It has also been observed that it underlies the design of
several graph neural network architectures, whose capabilities and performance
can be understood in terms of the expressive power of this test. Motivated by
recent developments in machine learning applications to datasets involving three-
dimensional objects, we study when the WL test is complete for clouds of Euclidean
points represented by complete distance graphs, i.e., when it can distinguish, up
to isometry, any arbitrary such cloud. Our main result states that the (d − 1)-
dimensional WL test is complete for point clouds in d-dimensional Euclidean
space, for any d ≥ 2, and only three iterations of the test suffice. Our result is tight
for d = 2, 3. We also observe that the d-dimensional WL test only requires one
iteration to achieve completeness.

1 Introduction

Context. Recent work in machine learning has raised the need to develop effective and efficient
tests for checking if two three-dimensional point clouds, i.e., finite sets of points in R3, are isometric
[15, 9, 2, 12]. Recall that, given two such point clouds P and Q, an isometry is a distance-preserving
bijection between the points in P and Q. The importance of these tests is that they provide the
foundations for designing neural network architectures on point clouds that are capable of fully
exploiting the structure of the data [18, 14]. It has been observed that the incompleteness of any such
an architecture, i.e., the inability to recognize a point cloud up to isometry, can affect its learning
performance [16]. Understanding which is the simplest test that allows detecting isometries in this
scenario is thus essential not only for developing “complete" architectures but also to make them as
efficient as possible in terms of the computational resources they need to use.

Point clouds can be represented as complete graphs in which each edge is labeled with the distance
between the corresponding points. Under this representation, detecting the isometry of two point
clouds is reduced to detecting an isomorphism between their graph representation. Not surprisingly,
then, much of the work on developing so-called geometric tests for detecting isometries over point
clouds is inspired by the literature on isomorphism tests from graph theory. Of particular importance

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

in this context has been the use of geometric versions of the well-known Weisfeiler-Lehman test (WL
test) for graph isomorphism [17].

Intuitively, the ℓ-dimensional geometric WL test (ℓ-WL test), for ℓ ≥ 1, iteratively colors each tuple
v̄ of ℓ points in a point cloud. The color of v̄ in round 0 is a complete description of the mutual
distances between the points that belong to the tuple. In round t + 1, for t ≥ 0, the color of v̄ is
updated by combining in a suitable manner its color in iteration t with the color of each one of its
neighbors, i.e., the tuples v̄′ that are obtained from v̄ by exchanging exactly one component of v̄
with another point in the cloud. The dimensionality of the WL test is therefore a measure of its
computational cost: the higher the ℓ, the more costly it is to implement the ℓ-dimensional WL test.

For checking if two point clouds are isometric, the geometric WL test compares the resulting color
patterns. If they differ, then we can be sure the point clouds are not isometric (that is, the test is
sound). An important question, therefore, is what is the minimal ℓ ≥ 1 for which the geometric ℓ-WL
test is complete, i.e., the fact that the color patterns obtained in two point clouds are the same implies
that they are isometric.

There has been important progress on this problem recently: (a) Pozdnyakov and Ceriotti have shown
that the geometric 1-WL test is incomplete for point clouds in 3D; that is, there exist isometric point
clouds in three dimensions that cannot be distinguished by the geometric 1-WL test [15]; (b) Hordan
et al. have proved that 3-WL test is complete in 3D after 1 iteration when initialized with Gram
matrices of the triples of points instead of the mutual distances in these triples. A similar result has
recently been obtained in [12]. Hordan et al. also gave a complete “2-WL-like” test, but this test
explicitly uses coordinates of the points.

As further related results, in [10], geometric WL tests have been compared to the expressivity of
invariant and equivariant graph neural networks. Non-geometric related results include e.g. [5], where
for explicit graphs on n vertices it is shown that ℓ-WL requires O(n) iterations for distinguishing
them, whereas 2ℓ-WL requires O(

√
n) and (3ℓ−1)-WL requires O(log n) iterations, and [19], which

has a promising proposal for generalized distances on non-geometric graphs, based on biconnectivity.

Main theoretical results. Our previous observation show an evident gap in our understanding of the
problem: What is the minimum ℓ, where ℓ = 2, 3, for which the geometric ℓ-dimensional WL test is
complete over three-dimensional point clouds? Our main contributions are the following:

• We show that for any d > 1 the geometric (d − 1)-WL test is complete for detecting
isometries over point clouds in Rd. This is the positive counterpart of the result in [14]
(namely, that geometric 1-WL test is incomplete in dimension d = 3), by showing that
geometric 1-WL is complete for d = 2 and that geometric 2-WL test is complete for
d = 3. Further, only three rounds of the geometric (d − 1)-WL test suffice to obtain this
completeness result.

• We provide a simple proof that a single round of the geometric d-WL test is sufficient
for identifying point clouds in Rd up to isometry, for each d ≥ 1. This can be seen as a
refinement of the result in [9], with the difference that our test is initialized with the mutual
distances inside d-tuples of points (as in the classical setting) while theirs is initialized with
Gram matrices of d-tuples of points. In other words, the initial coloring of [9], for each
d-tuple of points, in addition to their pairwise distances, includes their distances to the origin,
while in our result we do not require this additional information.

These results, as well as previously mentioned results obtained in the literature, are all based on the
standard folklore version of the ℓ-WL test (as defined, e.g., in [3]). This is important because another
version of the test, known as the oblivious ℓ-WL test, has also been studied in the machine learning
literature [14, 13]. It is known that, for each ℓ ≥ 1, the folklore ℓ-WL test has the same discriminating
power as the oblivious (ℓ+ 1)-WL test [7].

Table 1 summarizes the state of the art concerning the distinguishing power of the geometric ℓ-WL
test; note that it is not known whether the (d− 2)-WL test is incomplete for d ≥ 4.

Relationship with graph neural networks. Graph Neural Networks (GNNs) are specialized neural
networks designed to process data structured as graphs [8, 11]. Among GNNs, Message Passing
GNNs (MPGNNs) use a message-passing algorithm to disseminate information between nodes in a
graph [6]. The relationship between the 1-WL test and MPGNNs is now a fundamental subject in

2

Is ℓ-WL complete for Rd?
1-WL 2-WL 3-WL

Complete Complete
R2 in 3 iterations in 1 iteration

Theorem 2.1 Theorem 5.1
Incomplete Complete Complete

R3 in 3 iterations in 1 iteration
[14] Theorem 2.1 Theorem 5.1

Complete
R4 Open in 3 iterations

Theorem 2.1
(d− 2)-WL (d− 1)-WL d-WL

Complete Complete
Rd Open in 3 iterations in 1 iteration

Theorem 2.1 Theorem 5.1
Table 1: What is known about the distinguish power of geometric ℓ-WL.

this field. Seminal research has shown that these two approaches are essentially equivalent in their
ability to distinguish non-isomorphic graph pairs [14, 18]. Additionally, Morris et al. [14] proposed
higher-dimensional ℓ-MPGNNs that have the same discriminating power as the oblivious ℓ-WL test,
and hence as the folklore (ℓ− 1)-WL test, for ℓ > 1.

The geometric WL test studied here corresponds to a particular case of the relational WL test, i.e.,
a suitable version of the WL test that is tailored for edge-labeled graphs. Connections between
the relational WL test and so-called relational MPGNNs have recently been established by [1]. In
particular, relational ℓ-MPGNNs have the same discriminating power as the (folklore) geometric
(ℓ−1)-WL test, for ℓ > 1. Our main result implies then that there is no need to create specialized GNN
architectures for distinguishing non-isometric point clouds in Rd. Instead, relational d-MPGNNs are
sufficient for this task.

Experimental evaluation of MPGNNs, based on the folklore 2-WL test, on data sets from molecular
physics, and their comparison with state-of-art models, was recently performed in [12].

2 Formal Statement of the Main Result
Consider a cloud of n points S = {p1, . . . , pn} in Rd. We are interested in the problem of finding
representations of such clouds that completely characterize them up to isometries, while at the same
time being efficient from an algorithmic point of view. Our main motivation is to understand the
expressiveness of the WL algorithm when applied to point clouds in euclidean space seen as complete
distance graphs. Let us briefly recall how this algorithm works.

A function whose domain is Sℓ will be called an ℓ-coloring of S. The ℓ-WL algorithm is an iterative
procedure which acts on S by assigning, at iteration i, an ℓ-coloring χ

(i)
ℓ,S of S.

Initial coloring. The initial coloring, χ(0)
ℓ,S , assigns to each ℓ-tuple x = (x1, . . . , xℓ) ∈ Sℓ the color

χ
(0)
ℓ,S(x) given by the ℓ× ℓ matrix

χ
(0)
ℓ,S(x)ij = d(xi, xj) i, j = 1, . . . , ℓ

of the relative distances inside the ℓ-tuple (for ℓ = 1 we have a trivial coloring by the 0 matrix).

Iterative coloring. At each iteration, the ℓ-WL algorithm updates the current coloring χ
(i)
ℓ,S to obtain

a refined coloring χ
(i+1)
ℓ,S . The update operation is defined slightly differently depending on whether

ℓ = 1 or ℓ ≥ 2.

• For ℓ = 1, we have:

χ
(i+1)
1,S (x) =

(
χ
(i)
1,S(x), {{(d(x, y), χ

(i)
1,S(y)) | y ∈ S}}

)
.

That is, first, χi+1(x) remembers the coloring of x from the previous step. Then it goes
through all points y ∈ S. For each y, it stores the distance from x to y and also the coloring

3

of y from the previous step, and it remembers the multiset of these pairs. Note that one can
determine which of these pairs comes from y = x itself since this is the only point with
d(x, y) = 0. We also note that χ(1)

1,S(x) corresponds to the multiset of distances from x to
the points of S.

• To define the update operation for ℓ ≥ 2, we first introduce additional notation. Let
x = (x1, . . . , xℓ) ∈ Sℓ and y ∈ S. By x[y/i] we mean the tuple obtained from x by
replacing its ith coordinate by y. Then the update operation can be defined as follows:

χ
(i+1)
ℓ,S (x) =

(
χ
(i)
ℓ,S(x), {{

(
χ
(i)
ℓ,S(x[y/1]), . . . , χ

(i)
ℓ,S(x[y/ℓ])

)
| y ∈ S}}

)
. (1)

In other words, first, χ(i+1)
ℓ,S (x) remembers the coloring of x from the previous step, as

before. Then, it goes through all y ∈ S and considers the ℓ tuples x[y/1], . . . ,x[y/ℓ]. It
then takes the colorings of these tuples from the previous step and puts them into a tuple.
The new coloring now remembers the multiset of these tuples.

In this paper we show that the coloring obtained after 3 iterations of (d − 1)-WL is a complete
isometry invariant for point clouds in Rd. More precisely, we show:
Theorem 2.1 (Main Theorem). For any d ≥ 2 and for any finite set S ⊆ Rd, the following holds.
Let χ(3)

d−1,S be the coloring of Sd−1 obtained after 3 iterations of the (d− 1)-WL algorithm on the
distance graph of S. Then, knowing the multiset

M(3)
d−1(S) = {{χ(3)

d−1,S(s) | s ∈ Sd−1}},

one can determine S up to an isometry.

Our proof is constructive in the sense that we exhibit an algorithm which, upon input M(3)
d−1(S),

computes the coordinates of a point cloud S′ which is isometric to S. In particular, if S̃ ⊂ Rd is
another point cloud such that M(3)

d−1(S̃) = M(3)
d−1(S), then S and S̃ are isometric.

Our result is also true for point clouds that are multisets S ⊆ Rd (for which distance graphs can have
edges, labeled by 0, connecting two nodes, representing the same point in space), but for simplicity,
we now present the argument for sets (although no significant changes are needed).

Organization of the paper. We start in Section 3 with the proof of the two-dimensional case, which
while somewhat simpler, will allow us to introduce the general strategy. In Section 4 we explain how
to implement this strategy in general for d > 2. Then, in Section 5, we discuss the completeness of
one round of d-WL. Finally, in Section 6 we present open problems and limitations. Due to space
constraints, some proofs have been relegated to the appendix.

3 Three iterations of 1-WL distinguish clouds in the plane

Let S ⊆ R2 be a cloud of n points in the plane. Our task is to reconstruct S up to an isometry, using
as input the information contained in χ

(3)
1,S . This means to find a point cloud S′ in the plane which is

an image of S under some isometry. Our proof has two main steps: Initialization and Reconstruction.
In the Initialization Step we show how to extract from χ

(3)
1,S the relevant information we need, which

we call initialization data. In the Reconstruction step, we describe an algorithm that, given some
initialization data, computes the coordinates of the desired isometric cloud.

In our reconstruction algorithm, we employ the notion of the barycenter of a point cloud (also known
as the center of mass), which we denote by b, and is defined by:

b =
1

n

∑
w∈S

w.

For simplicity, we translate S by −b so that the new barycenter sits at b = 0. Notice that since our
reconstruction is up to isometries, this assumption does not affect the gerenality of our result. For
each w ∈ S, let ∥w∥ denote its norm (its distance to b = 0).

We say that two points u, v ∈ S satisfy the cone condition if u ̸= 0, v ̸= 0, and, moreover,

4

• if 0, u, v lie on the same line, then all points of S lie on this line;

• if 0, u, v do not lie on the same line, then the interior of
Cone(u, v) = {αu + βv : α, β ∈ [0,+∞)} does not contain points from S (see the first
picture on Figure 1, the red area between (0, u) and (0, v) is disjoint from S).

In order to initialize our reconstruction algorithm, we need the following information about S. We
assume that S has more than 1 point (otherwise there is nothing to do).

Initialization Data: the initialization data consists of a real number d0 ≥ 0 and two multisets M,M ′

such that for some u, v ∈ S, satisfying the cone condition, it holds that d0 = d(u, v) and

M = Mu =
{{
(d(u, y), ∥y∥) : y ∈ S

}}
; M ′ = Mv =

{{
(d(v, y), ∥y∥) : y ∈ S

}}
.

We will start by describing the Reconstruction Algorithm, assuming that the initialization data is
given. We will then show how to extract this data from χ

(3)
1,S in the Initialization Step bellow.

Reconstruction algorithm. Assume that initialization data (d0,M,M ′) is given. Our task is to
determine S up to isometry. Note that from M we can determine ∥u∥. Indeed, in M there exists
exactly one element whose first coordinate is 0, and this element is (0, ∥u∥). Likewise, from M ′ we
can determine ∥v∥. We are also given d0 = d(u, v). Overall, we have all the distances between 0, u,
and v. Up to a rotation of S, there is only one way to put u, it has to be somewhere on the circle of
radius ∥u∥, centered at the origin. We fix any point of this circle as u. After that, there are at most
two points where we can have v. More specifically, v belongs to the intersection of two circles: one
of radius ∥v∥ centered at the origin, and the other of radius d(u, v) centered at u. These two circles
are different (remember that the cone condition includes a requirement that u ̸= 0). Hence, they
intersect by at most two points. These points are symmetric w.r.t. the line that connects the centers of
the two circles, i.e., 0 and u. Thus, up to a reflection through this line (which preserves the origin and
u), we know where to put v.

Henceforth, we can assume the coordinates of u and v are known to us. Note that so far, we have
applied to S a translation (to put the barycenter at the origin), a rotation (to fix u), and a reflection (to
fix v). We claim that, up to this isometry, S can be determined uniquely.

Let Reflu and Reflv denote the reflections through the lines (0, u) and (0, v), respectively. We first
observe that from M we can restore each point of S up to a reflection through the line (0, u). Likewise,
from M ′ we can do the same with respect to the line (0, v). More precisely, we can compute the
following multisets:

Lu =
{{
{y,Refluy} | y ∈ S

}}
, Lv =

{{
{y,Reflvy} | y ∈ S

}}
.

Indeed, consider any (d(u, y), ∥y∥) ∈ M . What can we learn about y ∈ S from this pair of numbers?
These numbers are distances from y to u and to 0. Thus, y must belong to the intersection of two
circles: one with the center at u and radius d(u, y) and the other with the center at 0 and radius
∥y∥. Again, since u ̸= 0, these two circles are different. Thus, we obtain at most two points z1, z2
where one can put y. We will refer to these points as candidate locations for y w.r.t. u. They can
be obtained one from the other by the reflection Reflu through the line connecting 0 and u. Hence,
{z1, z2} = {y,Refluy}. To compute Lu, we go through (d(u, y), ∥y∥) ∈ M , compute candidate
locations z1, z2 for y, and put {z1, z2} into Lu. In a similar fashion, one can compute Lv from M ′.

Let us remark that elements of Lu and Lv are sets of size 2 or 1. A set of size 2 appears as an element
of Lu when some y has two distinct candidate locations w.r.t. u, that is when y does not lie on the line
(0, u). In turn, when y does lie on this line, we have z1 = z2 = y for two of its candidate locations,
giving us an element {y} ∈ Lu, determining y uniquely. The same thing happens with respect to Lv

for points that lie on the line (0, v),

The idea of our reconstruction algorithm is to gradually exclude some candidate locations so that
more and more points get a unique possible location. What allows us to start is that u and v satisfy
the cone condition; this condition gives us some area that is free of points from S (thus, one can
exclude candidates belonging to this area).

5

The easy case is when 0, u, and v belong to the same line. Then, by the cone condition, all points
of S belong to this line. In this case, every point of S has just one candidate location. Hence, both
multisets Lu and Lv uniquely determine S.

Assume now that 0, u, and v do not belong to the same line. As in the previous case, we can uniquely
restore all points that belong to the line connecting 0 and u, or to the line connecting 0 and v (although
now these are two different lines). Indeed, these are points that have exactly one candidate location
w.r.t. u or w.r.t. v. They can be identified by going through Lu and Lv (we are interested in points z
with {z} ∈ Lu ∪ Lv).

The pseudocode for our reconstruction algorithm is given in Algorithm 1. We now give its verbal
description. Let us make a general remark about our algorithm. Once we find a unique location for
some y ∈ S, we remove it from our set in order to reduce everything to the smaller set S \ {y}. This
is implemented by updating the multisets Lu and Lv so that y is not taken into account in them. For
that, we just remove {y,Refluy} from Lu and {y,Reflvy} from Lv (more precisely, decrease their
multiplicities by 1).

From now on, we assume that these two lines (connecting 0 and u, and 0 and v, respectively) are
free of the points of S. These lines contain the border of the cone Cone(u, v). At the same time, the
interior of this cone is disjoint from S due to the cone condition. Thus, in fact, the whole Cone(u, v)
is disjoint from S.

We now go through Lu and Lv in search of points for which one of the candidate locations (either
w.r.t. u or w.r.t. v) falls into the “forbidden area”, that is, into Cone(u, v). After restoring these
points and deleting them, we notice that the “forbidden area” becomes larger. Indeed, now in S
there are no points that fall into Cone(u, v) under one of the reflections Reflu or Reflv. In other
words, the updated “forbidden area” is F = Cone(u, v) ∪ RefluCone(u, v) ∪ ReflvCone(u, v). If the
absolute angle between u and v is αuv , then, F has total amplitude 3αuv . We now iterate this process,
updating F successively. At each step, we know that after all removals made so far, S does not have
points in F . Thus, points of S that fall into F under Reflu or under Reflv can be restored uniquely.
After deleting them, we repeat the same operation with F ∪ RefluF ∪ ReflvF in place of F .

Algorithm 1: Reconstruction algorithm
1 S := ∅;
2 for {z} ∈ Lu ∪ Lv do

// Restoring points from the lines (0, u) and (0, v)
3 Put z into S;
4 Remove {z} from Lu ∪ Lv;
5 end for

6 F := Cone(u, v);
7 while F ̸= R2 do
8 for {z1, z2} ∈ Lu ∪ Lv do

// Restoring points that have one candidate location in the forbidden area
9 if z1 ∈ F or z2 ∈ F then

10 Set y = z1 if z2 ∈ F and y = z2 if z1 ∈ F ;
11 Put y into S;
12 Remove {y,Refluy} from Lu and {y,Reflvy} from Lv;
13 end for

// Updating forbidden area
14 F = F ∪ RefluF ∪ ReflvF ;
15 end while

16 Output S;

After k such “updates”, F will consist of 2k + 1 adjacent angles, each of size αuv, with Cone(u, v)
being in the center. In each update, we replace F with F ∪ RefluF ∪ ReflvF . This results in adding
two angles of size αuv to both sides of F . Indeed, if we look at the ray (0, u), it splits our current F
into two angles, one of size (k + 1)αuv and the other of size kαuv . Under Reflu, the part whose size

6

0 u

v

(a)

0 u

v

(b)

0 u

v

(c)

Figure 1: Growth of the “forbidden” area.

is (k + 1)αuv adds an angle of size αuv to the other part. Analogously, Reflv adds an angle of size
αuv from the opposite side of F . See Figure 1 for the illustration of this process.

Within at most 1+ π
αuv

such steps, F covers all angular directions, thus completing the reconstruction
of S.

Initialization step. We explain how to obtain the Initialization Data about S from M(3)
1 (S).

We start by observing that from the first iteration of 1-WL, we can compute ∥x∥ for all x ∈ S. As the
following lemma shows, this holds in any dimension, with the same proof. We temporarily omit the
current hypothesis b = 0, in order to use the lemma later without this hypothesis.
Lemma 3.1 (The Barycenter Lemma). Take any n-point cloud S ⊆ Rd and let

Dx = {{d(x, y) | y ∈ S}}.
Then for every x ∈ S, knowing Dx and the multiset {{Dy | y ∈ S}}, one can determine the distance
from x to the barycenter of S.

Proof. Consider the function f : Rd → [0,+∞) defined as f(x) =
∑

y∈S ∥x− y∥2, namely f(x)

is the sum of the squares of all elements of Dx (with multiplicities). It follows that
∑

y∈S f(y) is
determined by {{Dy | y ∈ S}}. The lemma is thus proved if we prove the following equality

∥x− b∥2 =
1

n

f(x)− 1

2n

∑
y∈S

f(y)

 . (2)

To prove the above, we first write:

f(x) =
∑
y∈S

∥x− y∥2 =
∑
y∈S

∥(x− b) + (b− y)∥2

=
∑
y∈S

(
∥x− b∥2 + 2⟨x− b, b− y⟩+ ∥b− y∥2

)
= n · ∥x− b∥2 + 2⟨x− b, n · b−

∑
y∈S

y⟩+
∑
y∈S

∥b− y∥2

= n · ∥x− b∥2 +
∑
y∈S

∥b− y∥2 (by definition of barycenter).

7

Denote Γ =
∑

y∈S ∥b − y∥2. Substituting the expression for f(x) and f(y) from above into the
right-hand side of (2), we get:

1

n

f(x)− 1

2n

∑
y∈S

f(y)

 =
1

n

n · ∥x− b∥2 + Γ− 1

2n

∑
y∈S

(
n · ∥y − b∥2 + Γ

)
=

1

n

(
n · ∥x− b∥2 + Γ− 1

2n
(nΓ + nΓ)

)
= ∥x− b∥2,

as required.

By definition, χ(1)
1,S(x) determines the multiset Dx =

{{
d(x, y) | y ∈ S

}}
of distances from x

to points of S. Since we are given the multiset M(3)
1 (S), we also know the multset M(1)

1 (S) ={{
χ
(1)
1,S(x) | x ∈ S

}}
(labels after the third iterations determine labels from previous iterations). In

particular, this gives us the multiset
{{
Dx | x ∈ S

}}
. Overall, due to the Barycenter lemma, we

conclude that χ(1)
1,S(x) can be converted into ∥x∥.

Now, remember that

χ
(2)
1,S(x) =

(
χ
(1)
1,S(x), {{(d(x, y), χ

(1)
1,S(y)) | y ∈ S}}

)
.

By converting χ
(1)
1,S(y) into ∥y∥ for all y ∈ S here, one can convert χ(2)

1,S(x) into the multiset

Mx =
{{
(d(x, y), ∥y∥) | y ∈ S

}}
.

We need one more iteration to find d(u, v),Mu,Mv for some u, v ∈ S satisfying the cone condition.
In fact, we only need

χ
(3)
1,S(u) =

(
χ
(2)
1,S(u),

{{(
d(u, y), χ

(2)
1,S(y)

)
: y ∈ S

}})
for arbitrary u ∈ S with u ̸= 0. Since χ

(3)
1,S(u) determines ∥u∥, such χ

(3)
1,S(u) can indeed be selected

from M(3)
1 (S) (and since we assume that S has more than one point, we know that there are points

in S that are different from 0).

Due to the fact that χ(2)
1,S(y) can be converted to My , we can in turn convert χ(3)

1,S(u) into the multiset
A =

{{(
d(u, y),My

)
: y ∈ S

}}
. In particular, since y = u is the only point for which d(u, y) = 0,

we can compute Mu from A. Once we have Mu, the rest of the initialization goes as follows. First
note that for a given element (d(u, y),My) in A with d(u, y) > 0 (so that y ̸= u), we can look
in My for the only element with 0 as the first entry, whose second entry is then ∥y∥. So we can
obtain (d(u, y), ∥y∥). As in the Reconstruction Algorithm, we then have only two possibilities for the
location of y relative to u, say y1 and y2 = Reflu(y1). It follows that the absolute value of the angle
αuy between u and y is uniquely determined (if ∥y∥ = 0, we set αuy = 0), and we can compute
it from A. In order to select v, we go though A and look for v such that αuv is the smallest angle
among {αuy | y ∈ S, 0 < αuy < π}. If such a v does not exist, all points of S must lie on the line
connecting 0 and u. In this case, the cone condition is satisfied, for example, for u and v = u. Thus,
we can initialize with d0 = 0,M = M ′ = Mu. If v as above exists, there can be no point in the
interior of Cone(u, v), since otherwise there would be y with 0 < αuy < αuv < π, contradicting
the minimality of αuv. Thus, the cone condition is satisfied for u, v. We can then set d0 = d(u, v),
M = Mu and M ′ = Mv .

4 Proof of Main Theorem for d > 2

We now present the proof for the case d > 2. The strategy of the proof has the same structure as for
d = 2. Since the objects involved now are more general, it will be convenient to introduce some
terminology. Let x = (x1, . . . , xk) ∈ (Rd)k be a k-tuple of points in Rd. The distance matrix of x
is the k × k matrix A given by Aij = d(xi, xj), i, j = 1, . . . , k.

8

Now, let S ⊆ Rd be a finite set. Then the distance profile of x w.r.t. S is the multiset

Dx = {{
(
d(x1, y), . . . , d(xk, y)

)
| y ∈ S}}.

As before, we let b = 1
|S|

∑
y∈S y denote the barycenter of S. For a finite set G ⊂ Rd, we denote by

LinearSpan(G) the linear space spanned by G, and by AffineSpan(G) the corresponding affine one.
Their respective dimensions will be denoted by LinearDim(G) and AffineDim(G).

As for the case d = 2, we start by distilling the Initialization Data required for the reconstruction,
which is described relative to the barycenter b of S. For convenience, we have decided not to assume
at this stage that S has been translated first to put b at the origin, as we did for the sake of the
exposition in the case d = 2. This is now the task of the isometry we apply to S when choosing
locations for its points, which we now completely relegate to the reconstruction phase.
Definition 1. Let S ∈ Rd be a finite set and let b be its barycenter. A d-tuple x = (x1, . . . , xd) ∈ Sd

satisfies the cone condition if

• AffineDim(b, x1, . . . , xd) = AffineDim(S);

• if AffineDim(S) = d, then there is no x ∈ S such that x − b belongs to the interior of
Cone(x1 − b, . . . , xd − b).

Definition 2. For a tuple x = (x1, . . . , xd) ∈ Sd, we define its enhanced profile as

EP (x1, . . . , xd) = (A,M1, . . . ,Md),

where A is the distance matrix of the tuple (b, x1, . . . , xd) and Mi = Dx[b/i] is the distance profile
of the tuple (x1, . . . , xi−1, b, xi+1, . . . , xd) with respect to S.

Definition 3. Let S ∈ Rd be a finite set and let b be its barycenter. An initialization data for
S is a tuple (A,M1, . . . ,Md) such that (A,M1, . . . ,Md) = EP (x1, . . . , xd) for some d-tuple
x = (x1, . . . , xd) ∈ Sd satisfying the cone condition.
Remark 4.1. The interested reader can verify that the Initialization Data condition extends the
definition for d = 2. Note that the first bullet of the Cone Condition is automatically verified for
d = 2, but is nontrivial for d > 2.

The fact that an initialization data (A,M1, . . . ,Md) can be recovered from Md−1(S) is ensured by
the following proposition.

Proposition 4.2 (Initialization Lemma). Take any S ⊆ Rd. Then, knowing the multiset {{χ(3)
d−1,S(s) |

s ∈ Sd−1}}, one can determine an initialization data for S.

We now proceed with the reconstruction phase.

4.1 Reconstruction Algorithm

Assume an Initialization Data (A,M1, . . . ,Md) for a finite S ⊂ Rd is given. Our first task is to
choose, up to isometry, positions for the points in the (d+ 1)-tuple (b, x1, . . . , xd) corresponding to
the matrix A. We use the following classical lemma, whose proof is given e.g. in [4, Sec. 2.2.1].
Lemma 4.3 (Anchor Lemma). If (u1, . . . , uk) ∈ Rd and (v1, . . . , vk) ∈ Rd have the same distance
matrix, then there exists an isometry f : Rd → Rd such that f(ui) = vi for all i = 1, . . . , k.

As for d = 2, we put the barycenter of the cloud at the origin. Then, we simply apply the Anchor
Lemma to any collection of points z1, . . . , zd ∈ Rd such that our given A is also the distance
matrix of the tuple (0, z1, . . . , zd). The Lemma then gives us an isometry f : Rd → Rd such that
f(b) = 0, f(x1) = z1, . . . , f(xd) = zd. As distance profiles are invariant under isometries, our
given Mi is also the distance profile of the tuple (z1, . . . , zi−1, 0, zi+1, . . . , zd) w.r.t. f(S). Our task
now is, from M1, . . . ,Md, to uniquely determine the locations of all points in f(S). This would give
us S up to an isometry. Since now we have locations for (z1, . . . , zd), we can in fact compute:

AffineDim(S) = AffineDim(b, x1, . . . , xd) = AffineDim(0, z1, . . . , zd) = LinearDim(z1, . . . , zd),

where the first equality is guaranteed by the cone condition. The reconstruction algorithm depends on
whether AffineDim(S) = d or not.

9

Consider first the case when AffineDim(S) = LinearDim(z1, . . . , zd) < d. Then there exists
i ∈ {1, . . . , d} such that LinearDim(z1, . . . , zd) = LinearDim(z1, . . . , zi−1, zi+1, . . . , zd). This
means that f(S) ⊂ AffineSpan(z1, . . . , zi−1, 0, zi+1, . . . , zd), since otherwise f(S) would have
larger affine dimension. We claim that, in this case, from Mi we can restore the location of all
points in f(S). Indeed, from Mi we know, for each z ∈ f(S), a tuple with the distances from z
to z1, . . . , zi−1, 0, zi+1, . . . , zd. As the next lemma shows, this information is enough to uniquely
determine the location of z.
Lemma 4.4. Take any x1, . . . , xm ∈ Rd. Assume that a, b ∈ AffineSpan(x1, . . . , xm) are such that
d(a, xi) = d(b, xi) for all i = 1, . . . ,m. Then a = b.

It remains to reconstruct f(S) when AffineDim(S) = d, in which case our pivot points z1, . . . , zd are
linearly independent. Recall that Mi is the distance profile of the tuple (z1, . . . , zi−1, 0, zi+1, . . . , zd)
w.r.t. f(S). Moreover, since no x in S is such that x−b lies in the interior of Cone(x1−b, . . . , xd−b),
we know that f(S) must be disjoint from the interior of Cone(z1, . . . , zd). As the next proposition
shows, this information is enough to reconstruct f(S) in this case as well, which finishes the proof of
Theorem 2.1 for d > 2.
Proposition 4.5 (The Reconstruction Lemma). Assume that z1, . . . , zd ∈ Rd are linearly independent.
Let T ⊆ Rd be finite and disjoint from the interior of Cone(z1, . . . , zd). If, for every i = 1, . . . , d, we
are given zi and also the distance profile of the tuple (z1, . . . , zi−1, 0, zi+1, . . . , zd) w.r.t. T , then we
can uniquely determine T .

5 On the distinguishing power of one iteration of d-WL
In this section, we discuss a somewhat different strategy to reconstruct S. It is clear that if for a point
z ∈ Rd we are given the distances from it to d+ 1 points in general position with known coordinates,
then the position of z is uniquely determined (see e.g. Lemma 4.4). Since d-WL colors d-tuples of
points in S, a natural strategy to recover S is to use the barycenter as an additional point. By Lemma
3.1, we know that distances to the barycenter from points of S can be obtained after one iteration
of d-WL. However, the information that allows us to match d(z, b) to the distances from this z to a
d-tuple, is readily available only after two iterations of d-WL. It follows that this simple strategy can
be used to directly reconstruct S from the second iteration of d-WL. We remark that this strategy
is similar to the one used in [9] to uniquely determine S up to isometries when the coloring we are
initially given corresponds to certain Gram Matrices for d-tuples of points. Essentially, after one
interaction of d-WL over this initial data, we obtain enough information to directly determine the
location of each z relative to a collection of d+ 1 points. In fact, it is not hard to show that from the
first iteration of d-WL, applied to the distance graph of S, one can compute these Gram Matrices,
thus providing an alternative proof that two iterations suffice for distinguishing geometric graphs.

We show instead that only one iteration suffices. Our approach differs and depends on certain
geometric principles that allow us to simplify the problem by conducting an exhaustive search across
an exponentially large range of possibilities.

Theorem 5.1. For any d ≥ 1 and for any finite set S ⊆ Rd, knowing the multiset {{χ(1)
d,S(s)|s ∈ Sd}},

one can determine S up to an isometry.

6 Final remarks

Open problems. An interesting open question about our work is what is the minimum number of
rounds needed for the (d− 1)-WL test to be complete with respect to point clouds in Rd. Our result
shows that three rounds suffice, but we do not know the completeness status of the test when only
one or two rounds are allowed. Another open problem is the completeness status of the (d− 2)-WL
test for d-dimensional point clouds when d > 3.

Limitations. A consequence of our main result and is that distance-based d-MPGNNs possess
sufficient expressive capability to learn d-dimensional point clouds up to isometry. However, the
computational complexity of implementing d-MPGNNs is a major concern, as it involves O(nd)
operations per iteration, where n denotes the number of nodes in the graph. This computational cost
can quickly become unmanageable, even for relatively small values of d, such as d = 3. It remains
to be studied which kind of optimizations on higher-order GNNs can be implemented for improved
performance without much sacrifice on their expressive power.

10

7 Acknowledgements

Barceló and Kozachinskiy are funded by ANID–Millennium Science Initiative Program - ICN17002.
All authors are funded by the National Center for Artificial Intelligence CENIA FB210017, Basal
ANID. Delle Rose is funded by ANID Fondecyt Postdoctorado 3230263. Petrache is funded by
ANID Fondecyt Regular 1210462.

References
[1] Pablo Barceló, Mikhail Galkin, Christopher Morris, and Miguel A. Romero Orth. Weisfeiler

and leman go relational. In LOG, volume 198, page 46. PMLR, 2022.

[2] Ilyes Batatia, Dávid Péter Kovács, Gregor N. C. Simm, Christoph Ortner, and Gábor Csányi.
Mace: Higher order equivariant message passing neural networks for fast and accurate force
fields, 2022.

[3] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Comb., 12(4):389–410, 1992.

[4] Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling (2nd edition). Chapman and
Hall / CRC, 2001.

[5] Martin Fürer. Weisfeiler-lehman refinement requires at least a linear number of iterations. In
Automata, Languages and Programming: 28th International Colloquium, ICALP 2001 Crete,
Greece, July 8–12, 2001 Proceedings 28, pages 322–333. Springer, 2001.

[6] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

[7] Martin Grohe. The logic of graph neural networks. In LICS, pages 1–17. IEEE, 2021.

[8] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In NeurIPS, pages 1024–1034, 2017.

[9] Snir Hordan, Tal Amir, Steven J. Gortler, and Nadav Dym. Complete neural networks for
euclidean graphs, 2023.

[10] Chaitanya K Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the
expressive power of geometric graph neural networks. arXiv preprint arXiv:2301.09308, 2023.

[11] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[12] Zian Li, Xiyuan Wang, Yinan Huang, and Muhan Zhang. Is distance matrix enough for
geometric deep learning?, 2023.

[13] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin
Grohe, Matthias Fey, and Karsten M. Borgwardt. Weisfeiler and leman go machine learning:
The story so far. CoRR, abs/2112.09992, 2021.

[14] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In AAAI, pages 4602–4609, 2019.

[15] Sergey N. Pozdnyakov and Michele Ceriotti. Incompleteness of graph convolutional neural
networks for points clouds in three dimensions. CoRR, abs/2201.07136, 2022.

[16] Sergey N. Pozdnyakov, Michael J. Willatt, Albert P. Bartók, Christoph Ortner, Gábor Csányi,
and Michele Ceriotti. Incompleteness of atomic structure representations. Phys. Rev. Lett.,
125:166001, Oct 2020.

[17] Boris Weisfeiler and A.A. Leman. The reduction of a graph to canonical form and the algebra
which appears therein, 1968.

11

[18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[19] Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of
gnns via graph biconnectivity. arXiv preprint arXiv:2301.09505, 2023.

12

A Appendix

A.1 Proofs for Initialization

Here we provide the proof of Proposition 4.2. We will need the following extension of the Barycenter
Lemma.
Lemma A.1. Let b be the barycenter of S ⊂ Rd, d > 2. For any x = (x1, . . . , xd−1) ∈ Sd−1,
knowing χ

(1)
d−1,S(x) and the multiset {{χ(1)

d−1,S(y) | y ∈ Sd−1}}, one can determine the tuple of
distances (d(x1, b), . . . , d(xd−1, b)).

Proof. Let Dx be as in Lemma 3.1. We claim that we can determine (Dx1
, . . . , Dxd−1

) and {{Dy|y ∈
S}} from the information given in the lemma statement. By Lemma 3.1, this allows to determine
(d(x1, b), . . . , d(xd−1, b)).

We have

χ
(1)
d−1,S(x) =

(
χ
(0)
d−1,S(x), {{

(
χ
(0)
d−1,S(x[y/1]), . . . , χ

(0)
d−1,S(x[y/(d− 1)])

)
| y ∈ S}}

)
.

By definition, from χ
(0)
d−1,S(x[y/1]) one can determine the tuple of distances

(d(x2, y), . . . , d(xd−1, y)). Hence, from the multiset {{χ(0)
d−1,S(x[y/1]) | y ∈ S}} one can

determine (Dx2 , . . . , Dxd−1
). In turn, Dx1 can be determined from, say, {{χ(0)

d−1,S(x[y/2]) | y ∈ S}}.

We have just shown that χ
(1)
d−1,S(x) uniquely determines Dx1 . Hence, from the multiset

{{χ(1)
d−1,S(y) | y ∈ Sd−1}}, one can compute the multiset {{Dy1 | y = (y1, . . . , yd−1) ∈ Sd−1}}. But

this multiset coincides with the multiset {{Dy | y ∈ S}} except that all multiplicities are |S|d−2 times
larger.

Now, we show that after the second iteration, we can restore the distance profile of (b, x1, . . . , xd−1)
for all (x1, . . . , xd−1) ∈ Sd−1.

Lemma A.2. For any x = (x1, . . . , xd−1) ∈ Sd−1, knowing χ
(2)
d−1,S(x) and the multiset

{{χ(1)
d−1,S(y) | y ∈ Sd−1}}, one can determine the distance profile of (b, x1, . . . , xd−1) w.r.t. S.

Proof. Since d > 2, we have

χ
(2)
d−1,S(x) =

(
χ
(1)
k,S(x), {{

(
χ
(1)
d−1,S(x[y/1]), . . . , χ

(1)
d−1,S(x[y/k])

)
| y ∈ S}}

)
.

From the tuple
(
χ
(0)
d−1,S(x[y/1]), . . . , χ

(0)
d−1,S(x[y/k])

)
we can restore the tuple of distances

(d(y, x1), . . . , d(y, xd−1)).

In turn, by Lemma A.1, from χ
(1)
d−1,S(x[y/1]) and {{χ(1)

d−1,S(y) | y ∈ Sd−1}}, we can restore d(y, b).
Hence, we can restore the whole distance profile of (b, x1, . . . , xd−1).

Finally, we show that knowing χ
(3)
d−1,S(x) for x = (x1, . . . , xd−1) and the multiset {{χ(1)

d−1,S(y) |
y ∈ Sd−1}}, we can compute

{EP (x1, . . . , xd−1, y) | y ∈ S}.

Since d > 2, we have

χ
(3)
d−1,S(x) =

(
χ
(2)
d−1,S(x), {{

(
χ
(2)
d−1,S(x[y/1]), . . . , χ

(2)
d−1,S(x[y/k])

)
| y ∈ S}}

)
.

For every y ∈ S, knowing χ
(2)
d−1,S(x) and

(
χ
(2)
d−1,S(x[y/1]), . . . , χ

(2)
d−1,S(x[y/k])

)
, we have to

compute EP (x1, . . . , xd−1, y), that is, the distance matrix of (b, x1, . . . , xd−1, y) and the distance
profiles of the tuples

(b, x2, . . . , xd−1, y), . . . , (x1, . . . , xd−2, b, y), (x1, . . . , xd−1, b).

13

Distance profiles can be computed by Lemma A.2. The distances amongst el-
ements of {x1, . . . , xd−1, y} can be computed by definition from χ

(0)
d−1,S(x) and(

χ
(0)
d−1,S(x[y/1]), . . . , χ

(0)
d−1,S(x[y/k])

)
. Distances to b from these points can be computed

by Lemma A.1 from χ
(1)
d−1,S(x) and

(
χ
(1)
d−1,S(x[y/1]), . . . , χ

(1)
d−1,S(x[y/k])

)
.

Now that we have the enhanced profiles, we have to select one for which (x1, . . . , xd) satisfies the
cone condition. We first observe that, knowing EP (x1, . . . , xd), we can reconstruct (b, x1, . . . , xd)
up to an isometry by Lemma 4.3 (because inside EP (x1, . . . , xd) we are given the distance matrix of
(b, x1, . . . , xd)). This means that from EP (x1, . . . , xd) we can compute any function of b, x1, . . . , xd

which is invariant under isometries. In particular, we can compute AffineDim(b, x1, . . . , xd). We will
refer to AffineDim(b, x1, . . . , xd) as the dimension of the corresponding enhanced profile.

We show that AffineDim(S) is equal to the maximal dimension of an enhanced profile. Indeed,
first notice that AffineDim(S) = AffineDim({b} ∪ S) because b is a convex combination of points
of S. In turn, AffineDim({b} ∪ S) is equal to the maximal k for which one can choose k points
x1, . . . , xk ∈ S such that x1− b, . . . , xk− b are linearly independent. Obviously, k is bounded by the
dimension of the space. Hence, there will be an enhanced profile with the same maximal dimension
k.

If AffineDim(S) < d, any enhanced profile with maximal dimension satisfies the initialization
requirement, and we are done. Assume therefore that AffineDim(S) = d. Our task is to output some
EP (x1, . . . , xd) such that

1. AffineDim(b, x1, . . . , xd) = d, and
2. there is no x ∈ S such that x− b belongs to the interior of Cone(x1 − b, . . . , xd − b).

For that, among all d-dimensional enhanced profiles, we output one which minimizes the solid angle
at the origin, defined as

Angle(x1 − b, . . . , xd − b) =
1

d
Vol {x ∈ Cone(x1 − b, . . . , xd − b) : ∥x∥ ≤ 1} (3)

(the solid angle is invariant under isometries, and hence can be computed from EP (x1, . . . , xd)).

We have to show that for all x ∈ S we have that x − b lies outside the interior of Cone(x1 −
b, . . . , xd − b). To prove this, we need an extra lemma. We will say that a cone C is simple if C =
Cone(u1, . . . , ud), for some linearly independent u1, . . . , ud. Observe that if C = Cone(u1, . . . , ud)
is a simple cone, then the interior of C is the set

int(C) = {λ1u1 + . . .+ λdud | λ1, . . . , λd ∈ (0,+∞)}.
Note also that the boundary of C consists of d faces

Fi = C ∩ LinearSpan(u1, . . . , ui−1, ui+1, . . . , ud), i = 1, . . . , d.

Lemma A.3. Let C = Cone(u) ⊆ Rd for u = (u1, . . . , ud) be a simple cone and let y belong to
the interior of C. Then Cone(u[y/1]) is a simple cone and Angle(u[y/1]) < Angle(u).

Proof. Since y belongs to the interior of Cone(u), we have that

y = λ1u1 + . . .+ λdud,

for some λ1 > 0, . . . , λd > 0. The fact that λ1 > 0 implies that y, u2, . . . , ud are linearly
independent, and hence Cone(u[y/1]) is a simple cone. Since y ∈ Cone(u), we have that
Cone(u[y/1]) ⊆ Cone(u). Thus, to show that Angle(u[y/1]) < Angle(u), it suffices to show
that the volume of

{x ∈ Cone(u) : ∥x∥ ≤ 1} \ {x ∈ Cone(u[y/1]) : ∥x∥ ≤ 1}
is positive. We claim that for any point x = µ1u1 + . . . + µdud ∈ Cone(u[y/1]) we have µ1 >
0 =⇒ µ2/µ1 ≥ λ2/λ1. This is because x can be written as a non-negative linear combination of
y, u2, . . . , ud. Since µ1 > 0, the coefficient in front of y in this linear combination must be positive.
Now, if the coefficient in front of u2 is 0, then the ratio between µ2 and µ1 is exactly as the ratio
between λ2 and λ1, and if the coefficient before u2 is positive, µ2 can only increase.

14

This means that no point of the form

x = µ1u1 + . . .+ µdud, 0 < µ1, µ2/µ1 < λ2/λ1 (4)

belongs to Cone(u[y/1]). It remains to show that the set of points that satisfy (4) and lie in {x ∈
Cone(u) : ∥x∥ ≤ 1} has positive volume.

Indeed, for any ε > 0 and δ > 0, consider a d-dimensional parallelepiped:

P = {µ1x1 + . . .+ µdxd | µ1 ∈ [ε/2, ε], µ2, . . . , µd ∈ [δ/2, δ]}.
Regardless of ε and δ, we have that P is a subset of Cone(u) and its volume is positive. For all
sufficiently small ε, δ, we have that P is a subset of the unit ball {x ∈ Rd | ∥x∥ ≤ 1}. In turn, by
choosing ε to be sufficiently big compared to δ, we ensure that all points of P satisfy (4).

Now we can finish the proof of Proposition 4.2. Let x ∈ Sd minimize Angle(x1 − b, . . . , xd − b)
amongst x ∈ Sd such that AffineDim(b, x1, . . . , xd) = d. Assume that x does not satisfy the cone
condition, and let x ∈ S be such that x−b ∈ Int(Cone(x1−b, . . . , xd−b)) holds. Then, by Lemma
A.3, Angle(x− b, x2 − b . . . , xd − b) is strictly smaller than Angle(x1 − b, x2 − b . . . , xd − b). As
Cone(x− b, x2 − b . . . , xd − b) is a simple cone, x− b, x2 − b, . . . , xd − b are linearly independent,
and thus AffineDim(b, x, x2, . . . , xd) = d, contradicting the minimality hypothesis on x, as desired.

A.2 Proofs for Reconstruction

Proof of Lemma 4.4. We claim that for every i = 2, . . . ,m we have ⟨a − x1, xi − x1⟩ = ⟨b −
x1, xi − x1⟩. This is because a− x1 and b− x1 have the same distance to xi − x1 (which is equal
to d(a, xi) = d(b, xi)) and, moreover, the norms of a − x1 and b − x1 coincide (and are equal to
d(a, x1) = d(b, x1)). Hence, both a− x1 and b− x1 are solutions to the following linear system of
equations:

⟨x, xi − x1⟩ = ⟨a− x1, xi − x1⟩, i = 2, . . . ,m.

This system has at most 1 solution over x ∈ LinearSpan(x2 − x1, . . . , xm − x1). Moreover, a− x1

and b−x1 are both from LinearSpan(x2−x1, . . . , xm−x1) because a, b ∈ AffineSpan(x1, . . . , xm).
Hence, a− x1 = b− x1, and a = b.

Proof of Proposition 4.5. Let Pi = AffineSpan(z1, . . . , zi−1, 0, zi+1, . . . , zd). As the following
lemma shows, knowing the distances from s ∈ T to z1, . . . , zi−1, 0, zi+1, zd, we can determine the
position of s uniquely up to the reflection through Pi.

Lemma A.4 (The Symmetric Lemma). Let x1, . . . , xm ∈ Rd be such that AffineSpan(x1, . . . , xm)
has dimension d− 1. Assume that a, b ∈ Rd are such that d(a, xi) = d(b, xi) for all i = 1, . . . ,m.
Then either a = b or a and b are symmetric w.r.t. AffineSpan(x1, . . . , xm).

Proof. As in the proof of Lemma 4.4, we have that ⟨a−x1, xi−x1⟩ = ⟨b−x1, xi−x1⟩ for every i =
2, . . . ,m. Consider orthogonal projections of a−x1 and b−x1 to LinearSpan(x2−x1, . . . , xm−x1).
Both these projections are solutions to the system

⟨x, xi − x1⟩ = ⟨a− x1, xi − x1⟩, i = 2, . . . ,m.

This system has at most one solution over x ∈ LinearSpan(x2−x1, . . . , xm−x1). Hence, projections
of a− x1 and b− x1 coincide. We also have that ∥a− x1∥ = ∥b− x1∥, which implies that a− x1

and b − x1 have the same distance to LinearSpan(x2 − x1, . . . , xm − x1). Since the dimension
of LinearSpan(x2 − x1, . . . , xm − x1) is d − 1, we get that either a − x1 = b − x1 or they can
be obtained from each other by the reflection through LinearSpan(x2 − x1, . . . , xm − x1). After
translating everything by x1, we obtain the claim of the lemma.

In fact, if s belongs to Pi, then there is just one possibility for s. Thus, we can restore all the points in
T that belong to the union

⋃d
i=1 Pi. Let us remove these points from T and update distance profiles

by deleting the tuples of distances that correspond to the points that we have removed.

From now on, we may assume that T is disjoint from
⋃d

i=1 Pi. Hence, T is also disjoint from the
boundary of C = Cone(x1, . . . , xd), not only from its interior (every face of this cone lies on Pi for
some i).

15

For x ∈ Rd, we define ρ(x) = mini=1,...,d dist(x, Pi). Since T is disjoint from
⋃d

i=1 Pi, we have
that ρ(s) > 0 for every s ∈ T . Moreover, from, say, the distance profile of (0, z2, . . . , zd), we can
compute some ε > 0 such that ρ(s) ≥ ε for all s ∈ T . Indeed, recall that from the distance profile of
(0, z2, . . . , zd), we get at most 2 potential positions for each point of T . This gives us a finite set T ′

(at most 2 times larger than T) which is a superset of T . Moreover, as T is disjoint from
⋃d

i=1 Pi, we
have that T ′ \

⋃d
i=1 Pi ⊇ T Thus, we can define ε as the minimum of ρ(x) over T ′ \

⋃d
i=1 Pi ⊇ T .

We conclude that T is disjoint from

A0 = C ∪ {x ∈ Rd | ρ(x) < ε}
(moreover, the set A0 is known to us).

Our reconstruction procedure starts as follows. We go through all distance profiles, and through all
tuples of distances in them. Each tuple gives 2 candidates for a point in T (that can be obtained from
each other by the reflection through Pi). If one of the candidates lies in A0, we know that we should
take the other candidate. In this way, we may possibly uniquely determine some points in T . If so,
we remove them from T and update our distance profiles.

Which points of T will be found in this way? Those that, for some i, fall into A0 under the reflection
through Pi. Indeed, these are precisely the points that give 2 candidates (when we go through the
ith distance profile) one of which is in A0. In other words, we will determine all the points that lie
in

⋃d
i=1 Refli(A0), where Refli denotes the reflection through Pi. After we remove these points, we

know that the remaining T is disjoint from A1 = A0 ∪
⋃d

i=1 Refli(A0).

We then continue in exactly the same way, but with A1 instead of A0, and then with A2 = A1 ∪⋃d
i=1 Refli(A1), and so on. It remains to show that all the points of T will be recovered in this way.

In other words, we have to argue that each point of T belongs to some Ai, where

A0 = C ∪ {x ∈ Rd | ρ(x) < ε}, Ai+1 = Ai ∪
d⋃

i=1

Refli(Ai).

We will show this not only for points in T but for all points in Rd. Equivalently, we have to show that
for every x ∈ Rd there exists a finite sequence of reflections τ1, . . . , τk ∈ {Refl1, . . . ,Refld} which
brings x inside A0, that is, τk ◦ . . . ◦ τ1(x) ∈ A0.

We construct this sequence of reflections as follows. Let x be outside A0. In particular, x is outside
the cone C = Cone(z1, . . . , zd). Then there exists a face of this cone such that C is from one
side of this face and x is from the other side. Assume that this face belongs to the hyperplane
Pi. We then reflect x through Pi, and repeat this operation until we get inside A0. We next show
that the above process stops within a finite number of steps. For that, we introduce the quantity
γ(x) = ⟨x, z1⟩+ . . .+ ⟨x, zd⟩. We claim that with each step, γ(x) increases by at least c · ε, where

c = 2 min
1≤i≤d

dist(zi, Pi).

Note that c > 0 because, for every i = 1, . . . , d, we have that zi /∈ Pi, by the linear independency
of z1, . . . , zd. Also observe that γ(x) ≤ |x|

∑
i |zi| and reflections across the subspaces Pi do not

change |x|. Hence, γ(x) cannot increase infinitely many times by some fixed positive amount.

It remains to show that γ(x) increases by at least c · ε at each step, as claimed. Note that reflection of
x across some Pi does not change the scalar product of x with those vectors among z1, . . . , zd that
belong to Pi. The only scalar product that changes is ⟨x, zi⟩, and the only direction which contributes
to the change is the one orthogonal to Pi. Before the reflection, the contribution of this direction to
the scalar product was −d(x, Pi) · d(zi, Pi) (remember that x and zi were from different sides of Pi

because zi ∈ C). After the reflection, the contribution is the same, but with a positive sign. Thus, the
scalar product increases by 2d(x, Pi) · d(zi, Pi). Now, we have d(zi, Pi) ≥ c/2 by definition of c
and d(x, Pi) ≥ ε if x is not yet in A0.

B Proofs for Theorem 5.1

Proof of Theorem 5.1. From χ
(1)
d,S(s), we can determine the tuple s = (s1, . . . , sd) up to an isometry,

since χ(1)
d,S(s) gives us χ(0)

d,S(s), which is the distance matrix of s. In order to determine S, we consider
two cases:

16

Case 1: For all s ∈ Sd it holds AffineDim(s) < d−1. Then take χ(1)
d,S(s) with maximal AffineDim(s),

and fix locations of points from s compatible with the distance specification, according to Lemma 4.3.
All points of S belong to AffineSpan(s), otherwise we could increase AffineDim(s). Indeed, since
AffineDim(s) < d− 1, we could throw away one of the points from the tuple without decreasing the
dimension and replace it with a point outside AffineSpan(s). We now can reconstruct the rest of S
uniquely up to an isometry. Indeed, in χ

(1)
d,S(s) we are given the multiset of d-tuples of distances to

s = (s1, . . . , sd) from the points of S, and it remains to use Lemma 4.4.

Case 2: There are tuples with AffineSpan(s) = d − 1. We first observe that from the multiset
{{χ(0)

d,S(s) | s ∈ Sd}} we can compute the pairwise sum of distances between the points in S, i.e.,

DS =
∑
x∈S

∑
y∈S

d(x, y).

Indeed, from χ
(0)
d,S((s1, . . . , sd)), we determine d(s1, s2). Hence, we can compute the sum:∑

(s1,...,sd)∈Sd

d(s1, s2) = DS · |S|d−2.

In our reconstruction of S, we go through all χ(1)
d,S(s) with AffineDim(s) = d− 1. For each of them,

we fix positions of the points of the tuple s in any way that agrees with the distance matrix of this
tuple. As before, χ(1)

d,S(s) gives us the multiset of d-tuples of distances to s from the points of S. We
call “candidates for S given s" the set of point clouds S′ which have one point associated with each
such d-tuple of distances, and realizing these distances to points in s. We aim to find s for which,
exactly one of these candidates can be isometric to S. We start with the following lemma:

Lemma B.1. For any finite set S ⊆ Rd with AffineDim(S) ≥ d− 1 there exist x1, . . . , xd ∈ S with
AffineDim(x1, . . . , xd) = d− 1 such that all points of S belong to the same half-space with respect
to the hyperplane AffineSpan(x1, . . . , xd).

Proof. The general idea of the proof is the following. If AffineDim(S) = d − 1 then the extreme
points of the convex hull of S contain an affinely independent set of cardinality d, which then
gives the desired s. The half-space condition in the lemma is automatically verified in this case. If
AffineDim(S) = d then to find s we can proceed by moving a (d− 1)-plane from infinity towards
S until it touches S in at least one point, then iteratively we rotate the plane around the subspace
containing the already touched points of S, until a new point in S prohibits to continue that rotation.
We stop within at most d iterations, when no further rotation is allowed, in which case the plane has
an affinely independent subset in common with S.

Formally, we need to find a hyperplane H such that, first, all points of S belong to the same half-space
w.r.t. H , and second, AffineDim(H ∩ S) = d− 1.

To start, we need to find a hyperplane H such that, first, all points of S belong to the same half-
space w.r.t. H , and second, H ∩ S ̸= ∅. For instance, take any non-zero vector α ∈ Rd, consider
m = maxx∈S⟨α, x⟩ and define H by the equation ⟨α, x⟩ = m. Now, take any x1 ∈ H ∩ S. After
translating S by −x1, we may assume that x1 = 0.

Now, among all hyperplanes H that contain x1 = 0 and satisfy the condition that all points of
S lie in the same half-space w.r.t. H , we take one that contains most points of S. We claim that
AffineDim(H ∩ S) = d− 1 for this H . Assume for contradiction that AffineDim(H ∩ S) < d− 1.
Define U = AffineSpan(H ∩ S). Since H ∩ S contains x1 = 0, we have that U ⊆ H is a linear
subspace, and its dimension is less than d − 1. Hence, since AffineDim(S) ≥ d − 1, there exists
x2 ∈ S \ U . Note that x2 /∈ H because otherwise x2 belongs to H ∩ S ⊆ U .

Let α be the normal vector to H . Since all points of S lie in the same half-space w.r.t. H , w.l.o.g. we
may assume that ⟨α, s⟩ ≥ 0 for all s ∈ S. In particular, ⟨α, x2⟩ > 0 because x2 /∈ H .

Let U⊥ denote the orthogonal complement to U . Since α is the normal vector to H ⊇ U , we have
that α ∈ U⊥. We need to find some β ∈ U⊥ which is not a multiple of α but satisfies ⟨β, x2⟩ > 0.
Indeed, the dimension of U is at most d− 2, and hence the dimension of U⊥ is at least 2. Now, since
⟨α, x2⟩ > 0, we can take any β ∈ U⊥ which is sufficiently close to α.

17

For any λ ≥ 0, let Hλ be the hyperplane, defined by ⟨α− λβ, x⟩ = 0 (this is a hyperplane and not
the whole space because β is not a multiple of α). We claim that for some λ > 0, we have that Hλ

has more points of S than H while still all points of S lie in the same half-space w.r.t. Hλ. This
would be a contradiction.

Indeed, define Sβ = {s ∈ S | ⟨s, β⟩ > 0}. Note that Sβ , by definition of β, contains x2 and hence is
non-empty. Moreover, Sβ is disjoint from H ∩ S. This is because H ∩ S ⊆ U and β ∈ U⊥.

Define

λ = min
s∈Sβ

⟨α, s⟩
⟨β, s⟩

First, Hλ ⊇ U ⊇ H ∩ S because α − λβ ∈ U⊥. Moreover, Hλ contains at least one point of S
which is not in H . Namely, it Hλ contains any s ∈ Sβ , establishing the minimum in the definition
of λ (and recall that Sβ is disjoint from H ∩ S). Indeed, for this s we have λ = ⟨α,s⟩

⟨β,s⟩ . Hence,
⟨α, s⟩ − λ⟨β, s⟩ = 0 = ⟨α− λb, s⟩ =⇒ s ∈ Hλ.

It remains to show that all points of S lie in the same half-space w.r.t. Hλ. More specifically, we
will show that ⟨α − λβ, s⟩ ≥ 0 for all s ∈ S. First, assume that ⟨s, β⟩ = 0. Then ⟨α − λβ, s⟩ =
⟨α, s⟩ ≥ 0 because all points of S lie in the “non-negative” half-space w.r.t. α. Second, assume
that ⟨s, β⟩ > 0. Then s ∈ Sβ . Hence, by definition of λ, we have λ ≤ ⟨α,s⟩

⟨β,s⟩ . This means that
⟨α− λβ, s⟩ = ⟨α, s⟩ − λ⟨β, s⟩ ≥ 0, as required.

Next, consider the following simple geometric observation:

Lemma B.2. Let P ∈ Rd be a hyperplane and consider two points a, b ∈ Rd \ P that lie in same
half-space w.r.t. P . Let a′, b′ be the reflections of a, b through P . Then d(a′, b′) = d(a, b) < d(a, b′).

Proof. It suffices to restrict to the plane AffineSpan({a, b, a′}), and thus we take d = 2 and up to
isometry we may fix P to be the x-axis, a = (0, y), b = (x, y′), b′ = (x,−y′), with y, y′ > 0. Then
it follows that d(a, b)2 = x2 + (y− y′)2 < x2 + (y+ y′)2 = d(a, b′)2. As reflections are isometries,
d(a, b) = d(a′, b′).

Claim: If s is as in Lemma B.1, then we have the following:

• Exactly one of the candidates for S given s, up to reflection across AffineSpan(s), is
completely contained in one of the half-spaces determined by AffineSpan(s).

• A candidate S′ as in the previous point is the only one of the candidates for S given s, up to
reflection across AffineSpan(s), for which DS′ = DS .

To prove the first item, we use only the property that AffineDim(s) = d− 1, with which by Lemma
A.4, each point of a candidate for S given s, has either two possible locations (related by a reflection
across AffineSpan(s)) or a single possible location if it belongs to AffineSpan(s). For the second
item, let S′ be as above and let S′′ be a candidate for S given s, which is not completely contained
in one of the halfspaces determined by AffineSpan(s). We now consider each term d(x′, y′) in the
sum defining DS′ , comparing the corresponding term d(x′′, y′′) from DS′′ , where x′′ = x′ or is a
reflection across s of x′ and similarly for y′′ and y′. By Lemma B.2, either d(x′′, y′′) = d(x′, y′)
in case x′′, y′′ are in the same half-space determined by AffineSpan(s), or d(x′′, y′′) > d(x′, y′)
otherwise. Summing all terms, by the property of S′, S′′ we find DS′ < DS′′ . By the same reasoning
with S instead of S′′, since we are assuming that s satisfies Lemma B.2, we have DS = DS′ ,
completing the proof of the second item and of the claim.

The reconstruction of S in Case 2, can therefore be done as follows: we run through all s such that
AffineDim(s) = d− 1, and for each such s we construct all candidates S̃ for S given s, and calculate
DS̃ for each of them. Lemma B.1 guarantees that we run into some s for which, up to isometry, only
one such S̃ realizes DS̃ = DS . This is our unique reconstruction of S.

18

	Introduction
	Formal Statement of the Main Result
	Three iterations of 1-WL distinguish clouds in the plane
	Proof of Main Theorem for d>2
	Reconstruction Algorithm

	On the distinguishing power of one iteration of d-WL
	Final remarks
	Acknowledgements
	Appendix
	Proofs for Initialization
	Proofs for Reconstruction

	Proofs for Theorem 5.1

