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To Reviewer cWrw1

Q1: Include state-of-the-art generative models like diffusion models.2

Reply: Thanks. Following your valuable suggestion, we further include more state-of-the-3

art generative models on the ImageNet dataset for synthesis evaluation, namely GigaGAN4

(CVPR’2023) [7], MDT (ICCV’2023) [4], and DG-Diffusion (ICML’2023) [8]. Specifically, we5

either gather their official models for inference or download the pre-generated images released by6

the authors for evaluation. Similarly, 50K generated images and the entire training set (i.e., 1.28M7

images) are used as the synthesized and real distributions, respectively. All details are consistent with8

the experiments conducted in our main paper. Tab. 1 presents the quantitative comparison results.9

Akin to the results in our main paper, our evaluation system provides consistent ranks with FID and10

human visual evaluation, demonstrating the reliability of our metric. These results will be added in11

the next version of our paper.12

Table 1: Quantitative comparison results of Centered Kernel Alignment (CKA↑) on ImageNet
dataset. † scores are quoted from the original paper and others are tested three times.

Model FID† ConvNeXt RepVGG SWAV ViT MoCo-ViT CLIP-ViT Overall User study
GigaGAN [7] 3.45 68.01 79.93 90.15 98.34 82.40 96.52 85.89 65%
DG-Diffusion [8] 3.18 68.22 80.06 90.56 98.46 82.51 96.88 86.12 66%
MDT [4] 1.79 69.64 81.68 91.78 99.43 83.43 98.19 87.36 69%

Q2: Provide the evaluation on more MLP-based models like mlp-mixer.13

Reply: Thanks. As suggested, two MLP-based models are leveraged as the feature extractor for14

synthesis evaluation, namely gMLP [12] and MLP-mixer [20]. Following the experimental settings15

in our main paper, we identify the reliability and robustness of these MLP-based models via 1)16

visualizing the highlighted regions that contribute most significantly to the measurement results, and17

2) attacking the feature extractor with histogram matching attack. Fig. 1 and Tab. 2 respectively18

present the qualitative and quantitative results. On one hand, the heatmap visualization results indicate19

that both gMLP and mixer-MLP capture limited semantics. Considering that more visual semantics20

should be considered for a more comprehensive evaluation, gMLP and MLP-mixer might not be21

adequate for synthesis comparison. On the other hand, the quantitative results demonstrate that22

their FD scores could be altered by the histogram matching attack, without actually improving the23

synthesis quality. That is, gMLP and MLP-mixer are susceptible to the histogram attack. Together24

with the finding that the FD scores of ResMLP could be manipulated without any improvement to the25

generative models in Tab.2 of our main paper, we do not integrate MLP-based feature extractors into26

our measurement system. These results will be added in the next version of our paper.27

Q3: 100 Human Judgment may not enough to fully capture the complexities of evaluating28

generative models objectively.29
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Figure 1: Heatmaps from MLP-based extractors, namely Mixer-MLP [20] and gMLP [12].

Table 2: Quantitative comparison results of MLP-based extractors’ Fréchet Distance (FD↓) on
the ImageNet dataset. † scores are quoted from the original paper and others are tested three times.

Extractor Random ChosenI

gMLP 2.93±0.004 2.89±0.004↓
mixer-MLP 5.51±0.01 5.35±0.01↓

Reply: Thanks. We agree that involving thousands of persons for human visual evaluation can30

provide more consistent and reliable results. However, this is too expensive for us as including31

thousands of participants requires massive human and time resources. Therefore, two strategies32

of human perceptual judgment are designed for different investigations in our main experiments,33

namely benchmaking the synthesis quality of one specific generative model and comparing two34

paired models. In particular, 100 participants are asked to vote the synthesis quality and their final35

scores are averaged to avoid overly subjective individual outcomes. Moreover, in order to ensure that36

our human evaluation is reliable and consistent, we repeat the same images several times (i.e., 4)37

randomly for human visual comparison. In this way, if one user vote photorealistic and unrealistic38

two times each for the same images, the results would be considered as indistinguishable. This39

operation further filters overly subjective individual judgment and ensure the rationality of our user40

study. Additionally, we notice that common choice for human evaluation in the community is to41

include about 50 participants for perceptual comparison [18, 23, 14, 22, 16, 11, 10]. For instance,42

[23], [18] and [10] asked 50 workers to pick the unrealistic images, ProjectedGAN [16] conducted43

a human preference study with only 28 participants, and the most recent work [14] included only44

15 graders to compare the synthesis quality. By contrast, 100 persons are involved in our human45

judgment, thus we believe that our perceptual comparison results are reliable. Furthermore, we view46

large-scale human evaluation as our future work to perform more extensive investigations.47

Hope that the above discussions could address your concerns, please let us know if you have any48

further questions. Thanks for your effort and constructive suggestions again.49

To Reviewer Z9sB50

Q1: Only the mean values of metrics are reported, no stds.51

Reply: Thanks. As suggested, we add the std values of our experiments to better illustrate the52

numerical fluctuation of various extractors towards the histogram attack. 3 presents the quantitative53
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Table 3: Quantitative comparison results of Fréchet Distance (FD↓) on FFHQ dataset. “Random,
ChosenI" respectively represent the synthesized distribution of randomly generated and matching
the class prediction of Inception-V3. Moreover, “v" and “v" respectively denote the architecture of
ResNet and ViT. (↓) indicates the results are hacked by the histogram matching mechanism. Notably,
the values across different rows are not comparable and the results are tested three times.
Model Inception ConvNeXt SWAV MoCor RepVGG CLIPr Swin ViT DeiT CLIPv MoCov ResMLP
Random 2.81±0.01 78.03±0.10 0.13±0.002 0.24±0.003 129.61±0.41 10.34±0.06 142.87±0.12 15.11±0.09 437.80±0.14 1.06±0.01 7.32±0.03 99.11±0.06
ChosenI 2.65±0.01↓ 78.19±0.11 0.13±0.002 0.24±0.003 129.67±0.39 10.36±0.08 140.01±0.12↓ 15.11±0.10 430.81±0.16↓ 1.06±0.01 7.40±0.03 95.36±0.06↓

results. We could tell that the FD scores of extractors that are vulnerable to the attack can be improved54

by matching the histogram, and the improvement of FD scores is greater than stds. For instance,55

the improvement of FD scores from the Inception model is 0.16 and the computation std is only56

0.01, there is an order of magnitude difference between them. Moreover, the improvement of FD57

scores from the Swin-Transformer model is 2.86 and the computation std is only 0.12. That is, the58

improvement is actually caused by the histogram attack rather than the variance of attempts. Note59

that the generator is unchanged but the FD scores are improved by the attack, which is unacceptable60

for synthesis evaluation. Accordingly, extractors that are vulnerable to the histogram matching attack61

are not reliable for evaluation.62

Q2: The authors provide many tables with the results but it is not trivial to parse them.63

Specifically, checking whether this or that metric correlates with the human evaluation ahowld64

be done manually. It would be great if this could be somehow quantified or visualized (e.g.,65

FID/other metrics as functions of the user score, 2D plots).66

Reply: Thanks. Following your valuable suggestion, we visualize the correlation between different67

metrics and the human evaluation results. Specifically, we plot the correlation of the averaged68

ranks of various models given by human judgment, CKA, and FID. Fig. 2 and Fig. 3 respectively69

present the visualization results of the ImageNet, FFHQ, and LSUN-Church datasets. Obviously, the70

averaged ranks given by CKA are more consistent with that of the human evaluation, demonstrating71

the accuracy of CKA. Moreover, we plot the comparison between the stds and the improvements72

obtained by the histogram attack for better illustration. Fig. 4 presents the results. Similarly, we73

could observe that the improvement is actually caused by the histogram attack rather than the variance74

of attempts.75

Ranks of Human judgment, CKA and FID on ImageNet  

FID

CKA

Human judgment
DiT
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Figure 2: The correlation of the averaged ranks of various models on ImageNet given by human
judgment, CKA, and FID.

Q3: May be it is more fair to emphasize other advantages of CKA (such as the sample efficiency)76

rather than consistency and reliability.77

Reply: Thanks. On one hand, our results demonstrate that CKA provides a consistent ranking with78

the FID scores in most cases, demonstrating that CKA can deliver the similarity between different79

data distributions. One the other hand, CKA agrees with human visual judgment whereas FID fails in80
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Figure 3: The correlation of the averaged ranks of various models on FFHQ and LSUN-Church
given by human judgment, CKA, and FID.
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Figure 4: The quantitative comparison between the stds and the improvements obtained by the
histogram attack.

some circumstances. That is, CKA can measure the synthesis performance more reliable than FID.81

Additionally, CKA shows better sample efficiency than both FID and KID. Thus we integrate CKA82

as the distributional distance to evaluate the synthesis performance in our system. Together with83

several robust feature extractors, our new measurement system is more consistent and reliable than84

exiting alternatives. In the main paper, we emphasize the reliability and consistency of our entire85

system rather than only the distributional distance (i.e., CKA) as both the extractors and distances are86

important. We will proofread our presentation and emphasize the advantages of our overall system87

following your valuable suggestions.88

Q4: Include at least some evaluation/comparison/comment with this KID (both in terms of89

correlation with human evaluation and sample efficiency).90

Reply: Thanks. Following your valuable suggestion, we further involve Kernel Inception Distance91

(KID) [1], precision, and recall [15] into our comparison. Note that the original KID employs92

Inception-V3 as the feature extractor, and there is a large “perceptual null space" in Inception-V3.93

Therefore, we first investigate whether KID scores can be altered by attacking the feature extractor94

with the histogram matching mechanism. The experimental details are consistent with computing95

Fréchet Distance (FD↓) in Tab.2 of the main paper. Tab. 6 presents the quantitative results. Still,96

some extractors, such as Inception, Swin-Transformer, and ResMLP, are susceptible to the histogram97

matching attack. For instance, the KID score of Swin-Transformer is improved by 5.31% when the98

chosen set is used. These observations agree with our findings in our main paper, suggesting that99

certain extractors can be hacked when KID is employed as the distributional distance. Then, we100

investigate the sample efficiency of KID, Precision, and Recall to probe the impacts of the amount101
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of generated samples. Fig. 5 presents the curves of KID, Precision, and Recall scores computed102

under different data regimes. Similarly, we could observe that the KID scores can be improved by103

synthesizing more images. Interestingly, the recall scores decrease as the generated sample size104

increases whereas the precision is stable. This is caused by the definition of recall: recall measures105

the proportion of the real distribution that is covered by the synthesized distribution. In practical106

computation, the denominator increases as the synthesized samples increases, while the numerator107

(i.e., images from the real distribution) remain unchanged. In this way, the recall scores decrease108

as the generated sample size increases and vice versa. By contrast, CKA scores are stable under109

different data regimes, (please see Fig. 2 in the main paper). Moreover, CKA can provide reliable110

synthesis evaluation that agrees with human visual judgment. Accordingly, CKA is a proper choice111

for building a consistent and reliable measurement system.112

Q5: The authors should better explain CKA metric in the main text.113

Reply: Thanks. Following your valuable suggestion, we add more details of the CKA metric as114

follows:115

Centered Kernel Alignment (CKA) as a widely used similarity index for quantifying neural network116

representations [2, 9, 3], could also serve as a metric of similarity between two given distributions. To117

be specific, CKA is normalized from Hilbert-Schmidt Independence Criterion (HSIC) [5] to ensure118

invariant to isotropic scaling and is calculated by119

CKA(X,Y) =
HSIC(x, y)√

HSIC(x, x)HSIC(y, y)
. (1)

Here, HSIC determines whether two distributions are independent. Formally, let Kij = k (xi, xj)120

and Lij = l (yi, yj), where k and l are two kernels. HSIC is defined as121

HSIC(K,L) =
1

(n− 1)2
Tr(KHLH), (2)

where H denotes the centering matrix (i.e., Hn = In − 1
n11

T ). For kernel selections of k and l, we122

find that different kernels (RBF, polynomial, and linear) give similar results and rankings, and the RBF123

kernel contributes to the distinguishability of quantitative results. Therefore, RBF kernel is used for124

all experiments, and the bandwidth is set as a fraction of the median distance between examples [9].125

These metrics are compared in a consistent setting for fair comparison, more implementation details126

are given in Supplementary Material.127

Q6: Provide a more explanatory discussion of what is CKA (beside the formulas) and some128

intuition what it measure and why it is a good metric?129

Reply: Thanks. As a widely used similarity index for measuring the correspondence between130

representations in neural networks, CKA has been identified to have several advantages: 1) CKA is131

invariant to orthogonal transformation and isotropic scaling, making is stable under various image132

transformations; 2) CKA can capture the non-linear correspondence between representations due133

to its kernel mapping; and 3) CKA can determine the correspondence across different features and134

with different widths, whereas previous metrics fail [9]. Additionally, through extensive experiments,135

we demonstrate that CKA can provide a accurate evaluation for synthesis comparison and is sample-136

efficient. Accordingly, CKA is a good metric for delivering the distributional discrepancy.137

Q7: What is the "null space" of this metric?138

Reply: Thanks. In fact, it is the feature extractor that might have a “perceptual null space". For139

instance, the Inception model has been identified to have a large “perceptual null space", leading140

it vulnerable to the histogram matching attack. Moreover, CKA measures the similarity between141

different distributions, and CKA(X,Y) = 1 if and only if the two sets coincide.142

Q8: What is the computational complexity of CKA compared to FID? How it scales with the143

feature dimension and sample size?144

Reply: Thanks. Assume N samples from the evaluated distributions are used for calculating CKA,145

the main computational complexity of CKA comes from: 1) centering the kernel matrix with the146

pre-defined centering matrix with the complexity of O(N2); and 2) computing HSIC scores with147
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the complexity of O(N3). Therefore, the overall computational complexity of CKA is O(N3). By148

contrast, the computational complexity of FID mainly comes from calculating the mean and variance149

of the sample features (N×d, where d denotes the feature dimension). The computational complexity150

is O(N × d)3. The computational complexity of both CKA and FID increases linearly with the cubic151

power of sample size. Moreover, as suggested, we provide the clock time of FID and CKA in the152

following table. Concretely, we use the full FFHQ dataset (70K images) as the reference distribution153

and generate 50K images for evaluation, the clock time is tested on a single 3090 24G GPU. We154

could tell that CKA takes shorter time than FID when the same amount of samples are calculated.

Extractor Inception ViT
FID 3426 (s) 3630 (s)
CKA 3225 (s) 3328 (s)

155

Q9: What is the theoretical sample complexity of CKA? Are there any known results here?156

Reply: Thanks. To the best of our knowledge, there are no known results of the theoretical sample157

complexity of CKA. CKA measures the distributional discrepancies between different distributions158

with a considerable samples from each distribution. Accordingly, involving sufficient samples for159

evaluation ensures more accurate results in practice. However, through evaluating the CKA scores160

under various data regimes, we observe that CKA shows satisfactory sample-efficiency and stability161

under different number of samples. Therefore, we can synthesize subsets with fixed number of images162

(e.g., 50 K) for evaluation. By contrast, the FID and KID scores could be improved by producing163

more samples, which is unacceptable for a reliable evaluation.164

Q10: Is centered kernel alignment somehow related to the kernel maximum mean discrepancy165

(KID/MMD)?166

Reply: Thanks. Centered Kernel Alignment (CKA) is normalized from Hilbert-Schmidt167

Independence Criterion (HSIC) [5] to ensure it is invariant to isotropic scaling and is formally168

defined by169

CKA(X,Y) =
HSIC(x, y)√

HSIC(x, x)HSIC(y, y)
. (3)

HSIC is equivalent to maximum mean discrepancy (MMD) between the joint distribution and the170

product of the marginal distributions, and HSIC with a specific kernel family is equivalent to distance171

covariance [17]. HSIC determines whether two distributions are independent, and HSIC = 0 implies172

independence. However, HSIC is not invariant to isotropic scaling, making it sensitive to isotropic173

transformation of images when used for synthesis evaluation.174

Hope that the above discussions could address your concerns, please let us know if you have any175

further questions. Thanks for your effort and constructive suggestions again.176

To Reviewer 95Dj177

Q1: There are no ablation studies to separately prove the effectiveness of six extractors and178

CKA.179

Reply: Thanks. In this work, we seek to develop a new measurement system that could provide180

reliable and consistent synthesis comparisons. In particular, two key components are crucial181

for the measurement system, i.e., the feature extractor that defines representation space and the182

distributional distance that deliver similarities. Accordingly, we make in-depth analyses on the183

reliability and robustness of various feature extractors and different distributional distances. For the184

feature extractors, we gather multiple models that are pre-trained with different objectives (fully-185

supervised/self-supervised) and various architectures (CNN/ViT/MLP). Notably, these models are186

chosen for a systematic investigation to comprehensively understand the intrinsic properties of various187

extractors, rather than based on existing findings. Then, we testify their performance on 1) how many188

semantic features they can capture for evaluation, 2) how robust they are when being attacked by the189

histogram matching mechanism, and 3) how distinct the representation space they can define. These190

investigations provide several new findings to the community, including 1) one specific extractor191

can only capture limited semantics and provide ons-side results, 2) extractors that are vulnerable192
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Table 4: Quantitative comparison results of Fréchet Distance (FD↓) on ImageNet dataset.
“Random, ChosenI" respectively represent the synthesized distribution of randomly generated and
matching the class prediction of Inception-V3. Moreover, “v" and “v" respectively denote the
architecture of ResNet and ViT. (↓) indicates the results are hacked by the histogram matching
mechanism. Notably, the values across different rows are not comparable and the results are tested
three times.
Model Inception ConvNeXt SWAV MoCor RepVGG CLIPr Swin ViT DeiT CLIPv MoCov ResMLP
Random 34.29±0.09 78.02±0.16 0.13±0.003 0.32±0.002 54.98±0.22 27.64±0.15 323.12±0.88 50.97±0.20 621.98±1.02 5.46±0.09 50.01±0.21 145.32±1.02
ChosenI 33.05±0.08↓ 78.10±0.14 0.13±0.002 0.32±0.002 54.30±0.24 27.66±0.17 301.91±0.92↓ 50.96±0.18 597.32±1.11↓ 5.46±0.07 50.00±0.19 133.06±1.09↓

to the histogram matching attack are not reliable, and 3) different feature extractors might define193

similar representation spaces. For the distributional distances, we investigate the numerical stability194

of different distances across various representation spaces and the sample efficiency of different195

distances. Through extensive comparisons, we find that Centered Kernel Alignment (CKA) provides a196

better comparison across various extractors and hierarchical layers with its bounded score. Moreover,197

CKA is more sample-efficiency and exhibits better agreement with human visual judgment. Together198

with these findings, we build a new measurement system that can accurately reflect the synthesis199

performance. Following this line, the effectiveness of each feature extractors and CKA is identified200

in our main experiments. In particular, Fig. 1 of the main paper indicates that the chosen six feature201

extractors can incorporate more visual semantics for evaluation in a complementary manner. And Tab.202

2 of the main paper demonstrates that each of the chosen extractors is robust towards the histogram203

attack. Furthermore, in Tab.4 of the main paper and Tab.4, 5, 6, 7, 8 of the supplementary material,204

we provide qualitative and quantitative results of each extractor from various semantic levels. These205

results also demonstrate the reliability of each extractor when used for synthesis evaluation. In206

addition to evaluating the robustness of these extractors on the FFHQ dataset, we further perform the207

same experiment on the ImageNet dataset. Tab. 4 presents the quantitative results. We can tell from208

these results that the chosen feature extractors are robust to the attack, further demonstrating their209

reliability.210

Q2: It is important to research how to improve the speed of evaluation without affecting the211

evaluation accuracy.212

Reply: Thanks. We agree. Both evaluation speed and accuracy are very important in practice. This213

work focuses on developing a measurement system that could reliably and consistently reflect the214

synthesis performance. Based on the findings that one certain feature extractor might capture only215

limited semantics for evaluation, we integrate multiple extractors to alleviate this. Therefore, the216

evaluation time is relatively longer than using one extractor for evaluation. However, the inference217

time of these feature extractors is much shorter than the inference time of diffusion models. For218

instance, the evaluation time of our measurement system on 50K images is about 5 hours on a single219

3090 24G GPU, but it takes about several days to generate 50K images with diffusion models (about220

4 days for MDT and 2.5 days for DG-Diffusion). Consequently, improving both the speed of our221

evaluation and the inference speed of diffusion models is also important. In the future, we plan to222

integrate various accelerate techniques to improve our evaluation speed without compromising the223

evaluation accuracy, such as optimizing the model architecture, model pruning and distillation, etc.224

Q3: The layers of Section 2.3, 3.1 and 3.2 are not prominent and the organization of them is not225

clear. Specifically, the summary sentences are not emphasized and paragraph are not strictly226

parallel.227

Reply: Thanks. Our presentation is organized for following reasons: In Section 2.3, we present the228

details of generative models, evaluated datasets, and analysis approaches (including our visualization229

tool, histogram matching attack, and human evaluation). They are independent of each other, thus230

we discuss them in parallel in the main paper. In Section 3.1, we investigate the feature extractors231

by first identifying their attention on visual semantics, followed by investigating their robustness to232

the histogram matching attack. Finally, we filter extractors that define similar representation spaces.233

These studies are gradually deepening, thus they are organized in a progressive manner. In Section234

3.2, we first study the numerical scales of CKA and FID across various extractors and hierarchical235

layers of one certain extractor. After that, we investigate the sample efficiency of CKA and KID. In236

7



the last paragraph of Section 3.2, we summarize our findings about the feature extractors and the237

distributional distances. Moreover, the summary sentences of each paragraph provide our primary238

findings of this paragraph. Following your valuable suggestions, we will carefully proofread and239

revise the corresponding presentation to make our paper more logical.240

Hope that the above discussions could address your concerns, please let us know if you have any241

further questions. Thanks for your effort and constructive suggestions again.242

To Reviewer y8MJ243

Q1: The novelty is limited. CKA is a well-known metric for evaluating the similarity between244

distributions.245

Reply: Thanks. In this work, we seek to develop a new measurement system that could provide246

reliable and consistent synthesis comparisons. In particular, two key components are crucial247

for the measurement system, i.e., the feature extractor that defines representation space and the248

distributional distance that deliver similarities. Accordingly, we make in-depth analyses on the249

reliability and robustness of various feature extractors and different distributional distances. For250

the feature extractors, we gather multiple models that are pre-trained with different objectives251

(fully-supervised/self-supervised) and various architectures (CNN/ViT/MLP). Then, we testify their252

performance on 1) how many semantic features they can capture for evaluation, 2) how robust253

they are when being attacked by the histogram matching mechanism, and 3) how distinct the254

representation space they can define. These investigations provide several new findings to the255

community, including 1) one specific extractor can only capture limited semantics and provide256

ons-side results, 2) extractors that are vulnerable to the histogram matching attack are not reliable,257

and 3) different feature extractors might define similar representation spaces. For the distributional258

distances, we investigate the numerical stability of different distances across various representation259

spaces and the sample efficiency of different distances. Through extensive comparisons, we find260

that Centered Kernel Alignment (CKA) provides a better comparison across various extractors261

and hierarchical layers with its bounded score. Moreover, CKA is more sample-efficiency and262

exhibits better agreement with human visual judgment. Together with these findings, we build a263

new measurement system that can accurately reflect the synthesis performance. To the best of our264

knowledge, this paper is the first work to present these findings about feature extractors and to265

incorporate CKA for synthesis measurement in the community. We believe that these findings can266

provide potential insights to further works that develop new evaluation protocols.267

Q2: Lacks discussion of some state-of-the-art methods, such as stable diffusion and midjourney.268

Reply: Thanks. Following your valuable suggestion, we further include more state-of-the-269

art generative models on the ImageNet dataset for synthesis evaluation, namely GigaGAN270

(CVPR’2023) [7], MDT (ICCV’2023) [4], and DG-Diffusion (ICML’2023) [8]. Specifically, we271

either gather their official models for inference or download the pre-generated images released by272

the authors for evaluation. Similarly, 50K generated images and the entire training set (i.e., 1.28M273

images) are used as the synthesized and real distributions, respectively. All details are consistent with274

the experiments conducted in our main paper. Tab. 5 presents the quantitative comparison results.275

Akin to the results in our main paper, our evaluation system provides consistent ranks with FID and276

human visual evaluation, demonstrating the reliability of our metric. Notably, this paper focuses on277

evaluating the performance of various generative models trained on single modality (i.e., images).278

Therefore, evaluating generative models that are trained on multiple modality synthesis tasks (e.g.,279

text-to-image generation) is slightly out of our scope. However, multiple modality tasks such as text-280

to-image/video have made remarkable progress recently, and evaluating their performance accurately281

is a very important and promising topic. Accordingly, we plan to investigate the performance of our282

measurement system under multiple modality synthesis tasks in our future work.283

Q3: This paper only compares CKA with FID and lacks a comparison with the other metrics.284

A discussion of these related metrics is needed.285

Reply: Thanks. Following your valuable suggestion, we further involve Kernel Inception Distance286

(KID) [1], precision, and recall [15] into our comparison. Note that the original KID employs287

Inception-V3 as the feature extractor, and there is a large “perceptual null space" in Inception-V3.288
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Table 5: Quantitative comparison results of Centered Kernel Alignment (CKA↑) on ImageNet
dataset. † scores are quoted from the original paper and others are tested three times.

Model FID† ConvNeXt RepVGG SWAV ViT MoCo-ViT CLIP-ViT Overall User study
GigaGAN [7] 3.45 68.01 79.93 90.15 98.34 82.40 96.52 85.89 65%
DG-Diffusion [8] 3.18 68.22 80.06 90.56 98.46 82.51 96.88 86.12 66%
MDT [4] 1.79 69.64 81.68 91.78 99.43 83.43 98.19 87.36 69%

Table 6: Quantitative comparison results of Kernel Inception Distance (KID↓, ×e−3) on
FFHQ dataset. “Random, ChosenI" respectively represent the synthesized distribution of randomly
generated and matching the class prediction of Inception-V3. Moreover, “v" and “v" respectively
denote the architecture of ResNet and ViT. (↓) indicates the results are hacked by the histogram
matching mechanism. Notably, the values across different rows are not comparable and the results
are tested three times.
Model Inception ConvNeXt SWAV MoCor RepVGG CLIPr Swin ViT DeiT CLIPv MoCov ResMLP
Random 1.88±0.02 34.81±0.11 9.61±0.06 5.31±0.06 33.88±0.29 2.85±0.05 21.64±0.10 16.74±0.10 18.01±0.19 38.06±0.20 15.41±0.09 4.86±0.02
ChosenI 1.71±0.02↓ 34.82±0.10 9.61±0.06 5.31±0.05 33.89±0.27 2.85±0.05 20.49±0.09↓ 16.74±0.12 19.39±0.22 38.09±0.19 15.40±0.07 4.70±0.02↓

Therefore, we first investigate whether KID scores can be altered by attacking the feature extractor289

with the histogram matching mechanism. The experimental details are consistent with computing290

Fréchet Distance (FD↓) in Tab.2 of the main paper. Tab. 6 presents the quantitative results. Still,291

some extractors, such as Inception, Swin-Transformer, and ResMLP, are susceptible to the histogram292

matching attack. For instance, the KID score of Swin-Transformer is improved by 5.31% when the293

chosen set is used. These observations agree with our findings in our main paper, suggesting that294

certain extractors can be hacked when KID is employed as the distributional distance. Then, we295

investigate the sample efficiency of KID, Precision, and Recall to probe the impacts of the amount296

of generated samples. Fig. 5 presents the curves of KID, Precision, and Recall scores computed297

under different data regimes. Similarly, we could observe that the KID scores can be improved by298

synthesizing more images. Interestingly, the recall scores decrease as the generated sample size299

increases whereas the precision is stable. This is caused by the definition of recall: recall measures300

the proportion of the real distribution that is covered by the synthesized distribution. In practical301

computation, the denominator increases as the synthesized samples increases, while the numerator302

(i.e., images from the real distribution) remain unchanged. In this way, the recall scores decrease303

as the generated sample size increases and vice versa. By contrast, CKA scores are stable under304

different data regimes, (please see Fig. 2 in the main paper). Moreover, CKA can provide reliable305

synthesis evaluation that agrees with human visual judgment. Accordingly, CKA is a proper choice306

for building a consistent and reliable measurement system. These results will be added in the next307

version of our paper.308

5K 10K 50K 100K 250K 500K

#Synthesized Samples for Evaluation

KID

Recall

Precision

55.0

60.0

65.0

70.0

75.0

%

↓5.25%

Figure 5: Kernel Inception Distance (KID), Precision, and Recall scores evaluated under various
data regimes on FFHQ dataset. The scores are scaled for better visualization. ↓ denotes the results
fluctuate downward. The percentages represent the magnitude of the numerical variation.

Q4: It will be good if the reviewer can see the dataset during the review process.309

Reply: Thanks. All evaluated datasets and generative models are publicly available thanks to310

the original authors’ generous release. For synthesized images, we either gather the pre-computed311

datasets from the official repositories or use public models with the official settings to generate new312
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images for evaluation. We will make our code and evaluation scripts publicly available, making it313

easier to evaluate synthesis performance.314

Hope that the above discussions could address your concerns, please let us know if you have any315

further questions. Thanks for your effort and constructive suggestions again.316

To Reviewer xEcW317

Q1: It would be beneficial to have a proposed metric for evaluating the performance of image318

translation.319

Reply: Thanks. Following your valuable suggestion, we employ our measurement system to320

evaluate the performance of image-to-image translation. We collect publicly available image-to-321

image translation models that are officially released to translate images from one domain to another322

domain for evaluation. Specifically, three translation benchmarks are involved here, namely Horse-to-323

Zebra [19, 23, 13], Cat-to-Dog [21, 13], and Dog-to-Cat [21, 6]. For each benchmark, we translate324

the tested images to the target domain following the original experimental settings. Then we compute325

the distributional discrepancies between the translated images and the real target images. Tab. 7,326

8, and Tab. 9 respectively present the quantitative results of the evaluated three image-to-image327

translation benchmarks. It can be seen from these results that CKA provides consistent ranks with328

FID among various extractors, and the averaged score can reflect the performance of different image329

translation models. For instance, the performance of CUT [13] on Horse-to-Zebra is identified better330

than that of CycleGAN [23] by both FID and our proposed metric. And the qualitative results in the331

original paper of CUT [13] also suggest that the performance of CUT surpasses CycleGAN. That is,332

our measurement system can provide a reliable evaluation under such settings. This indicates that333

our measurement system can also be used for evaluating the performance of image translation tasks.334

These results will be added in the next version of our paper, and we plan involve more state-of-the-art335

image translation models for evaluation for future work.336

Table 7: Quantitative comparison results of Centered Kernel Alignment (CKA↑) on Horse-to-
Zebra dataset.

Model FID ConvNeXt RepVGG SWAV ViT MoCo-ViT CLIP-ViT Overall
CycleGAN [23] 83.32 73.55 88.67 85.82 83.96 74.72 73.74 80.08
AttentionGAN [19] 76.05 75.59 91.73 86.37 85.16 76.65 75.49 81.83
CUT [13] 51.29 78.48 93.22 88.83 87.84 78.75 77.36 84.08

Table 8: Quantitative comparison results of Centered Kernel Alignment (CKA↑) on Cat-to-Dog
dataset.

Model FID ConvNeXt RepVGG SWAV ViT MoCo-ViT CLIP-ViT Overall
CUT [13] 74.95 84.93 78.75 88.83 84.31 93.56 70.91 83.55
GP-UNIT [21] 60.96 90.45 87.79 94.05 90.12 95.91 75.32 88.94

Table 9: Quantitative comparison results of Centered Kernel Alignment (CKA↑) on Dog-to-Cat
dataset.

Model FID ConvNeXt RepVGG SWAV ViT MoCo-ViT CLIP-ViT Overall
GP-UNIT [21] 31.66 79.58 78.18 96.79 86.93 93.92 77.42 85.47
MUNIT [6] 18.88 84.87 84.11 98.51 88.11 95.95 86.10 89.61

Q2: Although a large amount of experiments has been conducted, this work seems to simply337

exploited existing findings such as advantages of CNN-transformer networks.338

Reply: Thanks. In this work, we seek to develop a new measurement system that could provide339

reliable and consistent synthesis comparisons. In particular, two key components are crucial340

for the measurement system, i.e., the feature extractor that defines representation space and the341

distributional distance that deliver similarities. Accordingly, we make in-depth analyses on the342

reliability and robustness of various feature extractors and different distributional distances. For the343

feature extractors, we gather multiple models that are pre-trained with different objectives (fully-344

supervised/self-supervised) and various architectures (CNN/ViT/MLP). Notably, these models are345
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chosen for a systematic investigation to comprehensively understand the intrinsic properties of various346

extractors, rather than based on existing findings. Then, we testify their performance on 1) how many347

semantic features they can capture for evaluation, 2) how robust they are when being attacked by the348

histogram matching mechanism, and 3) how distinct the representation space they can define. These349

investigations provide several new findings to the community, including 1) one specific extractor350

can only capture limited semantics and provide ons-side results, 2) extractors that are vulnerable351

to the histogram matching attack are not reliable, and 3) different feature extractors might define352

similar representation spaces. For the distributional distances, we investigate the numerical stability353

of different distances across various representation spaces and the sample efficiency of different354

distances. Through extensive comparisons, we find that Centered Kernel Alignment (CKA) provides a355

better comparison across various extractors and hierarchical layers with its bounded score. Moreover,356

CKA is more sample-efficiency and exhibits better agreement with human visual judgment. Together357

with these findings, we build a new measurement system that can accurately reflect the synthesis358

performance. To the best of our knowledge, this paper is the first work to present these findings in the359

community of generative models. We believe that these findings can provide potential insights to360

further works that develop new evaluation protocols.361

Q3: In addition to quality, this study should extend the metric to assess the diversity and novelty362

of generated samples.363

Reply: Thanks. The target of generative models is to reproduce the observed data distribution,364

thus a good metric should accurately deliver the distributional discrepancy between the synthesized365

distribution and the real distribution to reflect the synthesis performance. Accordingly, our proposed366

evaluation system focuses on capturing the similarity between different data distributions instead of367

one certain aspect of the synthesized images, e.g., quality and fidelity. By comparing the distributional368

distances between the original distribution and the synthesized distribution produced by various369

generative models, we can capture their actual improvement . We agree that assessing the diversity370

and novelty of generated samples is crucial to understand the intrinsic properties of the synthesized371

distributions, but this is slightly out of scope in this paper. We plan to investigate the performance372

of our evaluation system in assessing the synthesis diversity and novelty in our future studies as373

suggested.374

Hope that the above discussions could address your concerns, please let us know if you have any375

further questions. Thanks for your effort and constructive suggestions again.376
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This Supplementary Material is organized as follows: appendix A discusses the limitations of1

our paper and appendix B provides the implementation details of our experiments, appendix C2

demonstrates how human visual judgment is performed, and appendix D presents more quantitative3

and qualitative results.4

A Limitations5

Despite a comprehensive investigation, our study could still be extended in several aspects. For6

instance, the impacts of different low-level image processing techniques (e.g., resizing) could be7

identified since they also play an important role in synthesis evaluation [11]. Besides, comparing8

datasets with various resolutions could be further studied. Nonetheless, our study could be considered9

an empirical revisiting towards the paradigm of evaluating generative models. We hope this work10

could inspire more fascinating works of synthesis evaluation and provide potential insight to develop11

more comprehensive evaluation protocols. We will also conduct more investigation on the unexplored12

factors and compare more generative models with our system.13

B Implementation Details14

B.1 Datasets15

FFHQ [14] contains unique 70, 000 human-face images with large variations in terms of age, ethnicity,16

and facial expressions. We employ the resolution of 256× 256× 3 for our experiments.17

ImageNet [4] includes 1, 280, 000 images with 1, 000 classes of different objects such as goldfish,18

bow tie, etc. All experiments on ImageNet are performed with the resolution of 256× 256× 3 unless19

otherwise specified.20

LSUN Church [17] consists of 126, 227 images of the church, varies in the background, perspectives,21

etc. We employ the resolution of 256× 256× 3 for our experiments.22

B.2 Experimental Settings and Hyperparameters23

Kernel selection. We consistently employ the RBF kernel

K(xi,xj) = exp(−∥xi − xj∥2

2σ2
)

for calculating the CKA. The bandwidth σ is set as a fraction of the median distance between24

examples. In practice, three commonly used kernels could be employed for calculation, namely25

linear, polynomial, and RBF kernels. In order to investigate their difference, three publicly available26

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets
and Benchmarks. Do not distribute.



Table 1: CKA results with different kernels. The publicly available models are gathered for
comparison. † results are quoted from the original paper.

Kernel InsGen-2k InsGen-10k InsGen-140k
FID† 11.92 4.90 3.31

Linear 99.83 99.93 99.98
Poly 99.58 99.87 99.92
RBF 95.72 98.65 99.10

Table 2: CKA results with different features for calculation.

Metrics InsGen-2k InsGen-10k InsGen-140k
Local Features 96.62 97.42 97.38
Global Token 97.46 97.88 97.93

models with clear performance margins are collected for evaluation. Concretely, we gather models of27

InsGen [16] trained on FFHQ with different data regimes (i.e., 2K, 10K, 140K), the ranking of their28

synthesis quality is clear and reasonable.29

Tab. 1 demonstrates the quantitative results of CKA with different kernels. Obviously, these kernels30

give similar results and rankings. However, the RBF kernel contributes to the distinguishability of31

quantitative results, making the results more comparable. Consequently, the RBF kernel is employed32

in our experiments.33

ViT features calculation. The feature maps of ViT-based extractors are three-dimensional tensors34

(N, W, C), where W contains the global token and local features. The global token captures the same35

semantic information as the local features. Thus the global taken features are used for computation in36

implementation. Tab. 2 shows the comparison results of using local features and the global token.37

Consistently, they give similar results and rankings, so we use the global token for calculation in our38

experiments.39

Feature normalization. In practice, the activations of features play an essential role in computing the40

similarity index. Namely, the quantitative results would be dominated by a few activations with large41

peaks, neglecting other correlation patterns [15]. To investigate the activations of our self-supervised42

extractors, we visualize the activations of different samples and their statistics.43

Fig. 1 and Fig. 2 respectively illustrate the activation of different samples and their statistics.44

Obviously, there are several peaks in the activations. And these peaks may dominate the similarity45

index as they are substantially larger than other activations. To mitigate the peaks and create a more46

uniform distribution, we employ the softmax transformation [15] to normalize the features. Such47

operation smooths the activations while maintaining the original distributional information of features.48

Thus the similarity index remains consistent to deliver the distribution discrepancy. Besides the49

softmax transformation, we also compare the behavior of different normalization techniques (i.e., L150

and L2 normalization).51

Tab. 3 demonstrate the quantitative results with different normalization techniques. They consistently52

provide similar results and rankings, and the softmax transformation ameliorates the peaks more53

significantly, providing more comparable results. Consequently, we adopt Softmax normalization in54

our experiments.55

Histogram matching. In order to investigate the robustness of the measurement system, we56

employ the histogram matching [8] to attack the system. To be specific, a subset with a considerable57

number (e.g., 50K) of images is chosen as the referenced distribution, and the corresponding class58

distribution is predicted by a given classifier (i.e., Inception-V3 [13]. With the guidance of the59

classifier, the generator is encouraged to produce a synthesis distribution that matches the predicted60

class distribution of real images. Recall that the generator used to produce these synthesized61

distributions stays unchanged, thus a robust measurement system should give consistent similarities62

between the randomly generated and the matched distribution.63
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Table 3: CKA scores with different normalization techniques.

Metrics InsGen-2k InsGen-10k InsGen-140k
CKANo 97.46 97.88 97.93
CKAL1 96.62 98.91 99.33
CKAL2 96.62 98.91 99.32

CKASoftmax 95.72 98.65 99.10

Fig. 3 provides the class distribution of real and synthesized FFHQ images predicted by Inception-V3.64

Obviously, the class distribution of the matched distribution is well-aligned with the predicted real65

distribution.66

Sample-efficiency. In order to investigate the impacts of the number of synthesized samples, we67

compute the distributional distances between the real distribution with synthesized distributions with68

various numbers of generated images. Concretely, FFHQ (with 70K images) and ImageNet (with69

1.28 million images) are investigated for universal conclusions. For both datasets, we synthesis 500K70

images as candidate, and randomly choose 5K, 10K, 50K, 100K, 250K, and 500K images as the71

synthesized distribution for computing the metrics. The entire training data is utilized as the real72

distribution, and the publicly accessible models on FFHQ1 and ImageNet2 are employed.73

The curve of FD and CKA under various data regimes on ImageNet dataset is shown in Fig. 4.74

Consistent with the aforementioned results in the main paper, CKA could measure the distributional75

distances precisely with only 5K samples, whereas FID fails to deliver the actual measurement76

until sufficient samples are used. That is, CKA could give reliable results even when limited data is77

given, suggesting impressive sample efficiency. Equipped with the bounded quantitative results and78

consistency under different data regimes, as well as the robustness to the histogram matching attack,79

CKA outperforms FID as a reliable distance for delivering the distributional discrepancy.80

C User Preference Study81

Here we present more details about our human perceptual judgment. Recall that two strategies are82

designed for different investigations, namely benchmarking the synthesis quality of one specific83

generative model and comparing two paired generative models. Fig. 5 shows the user interface for84

benchmarking the synthesis quality of one specific generative model (i.e., BigGAN on ImageNet85

here). To be more specific, considerable randomly generated images are shown to the user, and the86

user is required to determine the fidelity of synthesized images. We then obtain the final scores by87

averaging the judgments of the participants (i.e., 100 individuals).88

Fig. 6 and Fig. 7 show the human evaluation results on FFHQ and ImageNet dataset, respectively.89

The percentages denote how many samples of the selected images are considered photo-realistic.90

Together with the quantitative results in our main paper, we could tell that the proposed metric shows91

a better correlation with human visual comparison.92

Recall that in our main paper, we find that our evaluation system gives the opposite ranking to the93

existing metric (i.e., FID) in some circumstances. For instance, the synthesis quality of ICGAN94

is determined basically the same as that of the class-conditional ICGAN (C-ICGAN) under our95

evaluation, whereas the FID votes C-ICGAN for the much better one. We thus conduct the other user96

study to compare two paired generative models. Concretely, we prepare groups of paired images of97

different generative models and ask 100 individuals to assess which model could produce high-quality98

images. The same groups are repeated several times by changing the order of images, ensuring the99

human evaluation is reliable and consistent.100

Fig. 8 provides the interface of comparing two paired generative models, users are asked to choose101

which set of images looks more plausible. Additionally, Fig. 9 shows the pipeline of analyzing the102

1https://github.com/NVlabs/stylegan3
2https://github.com/autonomousvision/stylegan-xl
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Figure 1: Visualization of different samples’ activations. The large peaks may dominate the
similarity index as their numerical values substantially surpass smaller values.

Figure 2: Statistics of different samples’ activations. There are clear margins between different
statistics (e.g., Max and Min) of each sample, suggesting that the activation distribution is very peaky.

paired comparison results. Specifically, the same groups of images are repeated for 4 times in random103

order and users are shown 16 images from two models to determine the more photorealistic one. In104

this way, the results of choosing both Projected-GAN and StyleGAN2 two times are identified as105

indistinguishable for enduring the consistency. Namely, the users choose different rankings between106

the two sets when the order of images is changed, which does not meet the consistency. Consequently,107

the final scores for paired comparison are obtained by quantifying the percentage of the human108

preferences that correlate the consistency.109

D More Quantitative and Qualitative Results110

In this section, we further provide more results of different semantic levels from various extractors111

and the curve of different distances evaluated on various data regimes.112

Similarities between various representation spaces. Recall that we filtered out extractors that113

define similar representation spaces to avoid redundancy in the main paper. The correlation between114

representations of high dimension in different feature extractors is calculated following [7]. In115

particular, a considerable number of images (i.e., 10K images from ImageNet) are fed into these116
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Figure 3: The class distribution of randomly generated images (left) and histogram matched
images (right), predicted by the fully-supervised Inception-V3 [13].
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Figure 4: Fréchet Distance (FD) and Centered Kernel Alignment (CKA) scores evaluated under
various data regimes on ImageNet dataset. FID scores are scaled for better visualization. ↓ denotes
the results fluctuate downward. The percentages represent the magnitude of the numerical variation.

extractors for computing their correspondence. Fig. 10 shows the similarity of their representations.117

Obviously, the representations of CLIP-ResNet and MoCo-ResNet have higher similarity with118

other extractors. Considering these two extractors are both CNN-based and they capture similar119

semantics with other CNN-based extractors, we remove the CLIP-ResNet and MoCo-ResNet to avoid120

redundancy. Accordingly, we obtain a set of feature extractors that 1) capture rich semantics in a121

complementary way, 2) are robust toward the histogram matching attack, and 3) define meaningful122

and distinctive representation spaces for synthesis comparison. The following table presents these123

feature extractors. These extractors, including both CNN-based and ViT-based architectures,

CNN-based ConvNeXt [9], SWAV [2], RepVGG [5]
ViT-based CLIP-ViT [12], MoCo-ViT [3], ViT [6]

124

have demonstrated strong performance in pre-defined and downstream tasks, facilitating more125

comprehensive and reliable evaluation. Notably, the inclusion of self-supervised extractors SWAV,126

CLIP-V, and MoCo-V aligns with previous findings [10, 8, 1]. This selection of feature extractors127

provides a diverse and complementary set of representations, enabling a more comprehensive and128

reliable evaluation of synthesis quality in generative models.129
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Here’s an image produced by a generative model. Please select whether you 
believe it to be photorealistic by clicking the button below.

1 2 3 4 5 6 7 8 9 10 11 …

·  Please check the image carefully and keep your consistency of your requirements for the 
photo realism. Thank you so much! 

1.

NoYes

Figure 5: User interface for benchmarking the synthesis quality.
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Figure 6: Human judgment results of various generative models on FFHQ. 2K images randomly
generated by different models are selected for comparison.

More results of hierarchical levels from various extractors. Tab. 4, Tab. 5, Tab. 6, Tab. 7,130

and Tab. 8 respectively present the heatmaps and quantitative results of various semantic levels. We131

could tell that despite the Fréchet Distance (FD) scores consistently reflect synthesis quality, their132

numerical values fluctuate dramatically. On the contrary, CKA provides normalized distances w.r.t133

the numerical scale across various levels. Also, the heatmaps from various semantic levels reveal that134

hierarchical features encode different semantics. Such observation provides interesting insights that135

feature hierarchy should be also considered for synthesis comparison. Notably, benefiting from the136

bounded quantitative results, CKA demonstrates great potentials for comparison across hierarchical137

layers.138

6



Table 4: Heatmaps from various semantic levels on FFHQ dataset (left) and quantitative results
of Fréchet Distance (FD ↓) and Centered Kernel Alignment (CKA ↑) on ImageNet dataset
(right) . ConvNext [9] serves as the feature extractor for hierarchical evaluation here.

Shallow Deep

Model BigGAN BigGAN-deep StyleGAN-XL
Layer FD↓ CKA↑ FD↓ CKA↑ FD↓ CKA↑

Layer1 2.64 96.08 2.56 96.35 0.58 98.24
Layer2 40.20 - 32.32 - 11.84 -
Layer3 687.40 58.76 364.95 60.25 264.87 62.53
Layer4 140.04 68.86 102.26 69.27 19.22 70.52
Overall N/A 74.57 N/A 75.29 N/A 77.10

Table 5: Heatmaps from various semantic levels on FFHQ dataset (left) and quantitative results
of Fréchet Distance (FD ↓) and Centered Kernel Alignment (CKA ↑) on ImageNet dataset
(right) . RepVGG [5] serves as the feature extractor for hierarchical evaluation here.

Shallow Deep

Model BigGAN BigGAN-deep StyleGAN-XL
Layer FD↓ CKA↑ FD↓ CKA↑ FD↓ CKA↑

Layer1 0.35 96.92 0.32 97.51 0.04 98.79
Layer2 0.35 96.19 0.33 96.32 0.03 98.32
Layer3 0.23 90.05 0.18 91.15 0.04 93.51
Layer4 67.53 74.40 58.85 76.68 15.93 80.28
Overall N/A 89.39 N/A 90.42 N/A 92.73

Table 6: Heatmaps from various semantic levels on FFHQ dataset (left) and quantitative results
of Fréchet Distance (FD ↓) and Centered Kernel Alignment (CKA ↑) on ImageNet dataset
(right) . SWAV [2] serves as the feature extractor for hierarchical evaluation here.

Shallow Deep

Model BigGAN BigGAN-deep StyleGAN-XL
Layer FD↓ CKA↑ FD↓ CKA↑ FD↓ CKA↑

Layer1 0.67 99.90 0.46 99.91 0.07 99.99
Layer2 0.87 97.89 0.60 98.87 0.31 99.51
Layer3 16.15 95.60 12.02 96.21 1.90 98.15
Layer4 11.18 86.10 8.69 87.71 1.85 92.54
Overall N/A 94.87 N/A 95.68 N/A 97.55

Table 7: Heatmaps from various semantic levels on FFHQ dataset (left) and quantitative results
of Fréchet Distance (FD ↓) and Centered Kernel Alignment (CKA ↑) on ImageNet dataset
(right) . ViT [6] serves as the feature extractor for hierarchical evaluation here.

Shallow Deep
Model BigGAN BigGAN-deep StyleGAN-XL
Layer FD↓ CKA↑ FD↓ CKA↑ FD↓ CKA↑

Layer1 0.20 99.62 0.19 99.67 0.01 99.97
Layer2 1.31 97.75 1.19 97.92 0.18 99.76
Layer3 6.93 97.53 6.06 97.63 1.22 99.67
Layer4 29.95 96.49 23.98 97.20 8.51 98.72
Overall N/A 97.85 N/A 98.11 N/A 99.53
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Figure 7: Human judgment results of various generative models on ImageNet. 2K images
randomly generated by different models are selected for comparison.

Table 8: Heatmaps from various semantic levels on FFHQ dataset (left) and quantitative results
of Fréchet Distance (FD ↓) and Centered Kernel Alignment (CKA ↑) on ImageNet dataset
(right) . MoCo-ViT [3] serves as the feature extractor for hierarchical evaluation here.

Shallow Deep
Model BigGAN BigGAN-deep StyleGAN-XL
Layer FD↓ CKA↑ FD↓ CKA↑ FD↓ CKA↑

Layer1 0.10 98.62 0.05 99.04 0.04 99.97
Layer2 1.01 97.15 0.68 97.30 0.43 99.64
Layer3 9.18 96.07 9.01 96.77 4.30 99.11
Layer4 3.35 97.25 3.22 97.82 1.85 99.00
Overall N/A 97.27 N/A 97.73 N/A 99.43
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