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Abstract
In this paper, we contend that the objective of representation learning is to compress1

and transform the distribution of the data, say sets of tokens, towards a mixture of2

low-dimensional Gaussian distributions supported on incoherent subspaces. The3

quality of the final representation can be measured by a unified objective function4

called sparse rate reduction. From this perspective, popular deep networks such5

as transformers can be naturally viewed as realizing iterative schemes to optimize6

this objective incrementally. Particularly, we show that the standard transformer7

block can be derived from alternating optimization on complementary parts of8

this objective: the multi-head self-attention operator can be viewed as a gradient9

descent step to compress the token sets by minimizing their lossy coding rate, and10

the subsequent multi-layer perceptron can be viewed as attempting to sparsify the11

representation of the tokens. This leads to a family of white-box transformer-like12

deep network architectures which are mathematically fully interpretable. Despite13

their simplicity, experiments show that these networks indeed learn to optimize14

the designed objective: they compress and sparsify representations of large-scale15

real-world vision datasets such as ImageNet, and achieve performance very close16

to thoroughly engineered transformers such as ViT.17

1 Introduction18

In recent years, deep learning has been extremely successful in processing massive amounts of19

high-dimensional and multi-modal data. Much of this success is owed to effective learning of the data20

distribution and then transforming the distribution to a parsimonious, i.e. structured and compact,21

representation [39, 49, 51, 61], which facilitates many downstream tasks (e.g., in vision, classification22

[23, 40], recognition and segmentation [25, 38, 73], and generation [31, 64, 65]). To this end, many23

models and methods have been proposed and practiced, each with its own strengths and limitations.24

Here, we give several popular methods a brief accounting as context for a complete understanding25

and unification that we seek in this work.26

Transformer models and self-attention. Transformers [28] are one of the latest popular models27

for learning a representation for high-dimensional structured data, such as text [28, 30, 37], images28

[40, 72], and other types of signals [48, 56]. After the first block, which converts each data point29

(such as a text corpus or image) into a set or sequence of tokens, further processing is performed30

on the token sets, in a medium-agnostic manner [28, 40]. A cornerstone of the transformer model31

is the so-called self-attention layer, which exploits the statistical correlations among the sequence32

of tokens to refine the token representation. Transformers have been highly successful in learning33

compact representations that perform well on many downstream tasks. Yet the transformer network34

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the35

output of the attention layer itself has several competing interpretations [67, 74]. As a result, the36

statistical and geometric relationship between the data distribution and the final representation learned37

by a transformer largely remains a mysterious black box.38

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become39

a popular method for learning the data distribution, particularly for generative tasks and natural40

image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core41

concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or42
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Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Zℓ+1/2, and sparsification against a global dictionary, generating Zℓ+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

some other standard template) and iteratively denoise and deform the feature distribution until it43

converges to the original data distribution. This process is computationally intractable if modeled in44

just one step [60], so it is typically broken into multiple incremental steps. The key to each step is45

the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;46

in practice this function is modeled using a generic black-box deep network. Diffusion models47

have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,48

despite some recent efforts [77], they generally do not establish any clear correspondence between49

the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious50

or interpretable representation of the data distribution.51

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-52

tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification53

or generation/sampling) using deep networks. However, one can also explicitly learn a representation54

of the data distribution as a task in and of itself; this is most commonly done by trying to identify and55

represent low-dimensional structures in the input data. Classical examples of this paradigm include56

model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of57

which grew early attempts at designing and interpreting deep network architectures [18, 32]. More58

recent approaches build instead from a model-free perspective, where one learns a representation59

through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar60

data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal61

coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both62

model-based and model-free representation learning schemes have the advantage of being more63

interpretable: they allow users to explicitly design desired properties of the learned representation [46,64

54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network65

architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning66

objective, such that each layer of the constructed network implements an iteration of the optimization67

algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,68

it may be difficult to achieve good practical performance on large real-world datasets.69

Our contributions, and outline of this work. In this work, we aim to remedy the limitations70

of these existing methods with a more unified framework for designing transformer-like network71

architectures that leads to both mathematical interpretability and good practical performance. To72

this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and73

sparse representation for the input data (or their token sets) that optimizes a unified objective function74

known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated75

in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and76

show that transformer-like deep network layers can be naturally derived from unrolling iterative77

optimization schemes to incrementally optimize the sparse rate reduction objective. In particular, our78

contributions and outline of the paper are as follows:79

• In Section 2.2 we show, using an idealized model for the token distribution, that if one iteratively80

denoises the tokens towards a family of low-dimensional subspaces, the associated score function81

assumes an explicit form similar to a self-attention operator seen in transformers.82

• In Section 2.3 we derive the multi-head self-attention layer as an unrolled gradient descent step to83

minimize the lossy coding rate part of the rate reduction, showing another interpretation of the84

self-attention layer as compressing the token representation.85

• In Section 2.4 we show that the multi-layer perceptron which immediately follows the multi-86

head self-attention in transformer blocks can be interpreted as (and replaced by) a layer which87
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incrementally optimizes the remaining part of the sparse rate reduction objective by constructing88

a sparse coding of the token representations.89

• In Section 2.5 we use this understanding to create a new white-box (fully mathematically in-90

terpretable) transformer architecture called CRATE (i.e., Coding RAte reduction TransformEr),91

where each layer performs a single step of an alternating minimization algorithm to optimize the92

sparse rate reduction objective.93

Hence, within our framework, the learning objective function, the deep learning architecture, and94

the final learned representation all become white boxes that are fully mathematically interpretable.95

As the experiments in Section 3 show, the CRATE networks, despite being simple, can already learn96

the desired compressed and sparse representations on large-scale real-world datasets and achieve97

performance on par with much more heavily engineered transformer networks (such as ViT) on a98

wide variety of tasks (e.g., classification and transfer learning).99

2 Technical Approach and Justification100

2.1 Objective and Approach101

We consider a general learning setup associated with real-world signals. We have some random102

variable X = [x1, . . . ,xN ] ∈ RD×N which is our data source; each xi ∈ RD is interpreted as a103

token1, and the xi’s may have arbitrary correlation structures. We use Z = [z1, . . . ,zN ] ∈ Rd×N to104

denote the random variable which defines our representations. Each zi ∈ Rd is the representation of105

the corresponding token xi. We are given B ≥ 1 i.i.d. samples X1, . . . ,XB ∼ X , whose tokens are106

xi,b. The representations of our samples are denoted Z1, . . . ,ZB ∼ Z, and those of our tokens are107

zi,b. Finally, for a given network, we use Zℓ to denote the output of the first ℓ layers when given X108

as input. Correspondingly, the sample outputs are Zℓ
i and the token outputs are zℓ

i,b.109

Objective for learning a structured and compact representation. Following the framework of110

rate reduction [54], we contend that the goal of representation learning is to find a feature mapping111

f : X ∈ RD×N → Z ∈ Rd×N which transforms input data X ∈ RD×N with a potentially112

nonlinear and multi-modal distribution to a (piecewise) linearized and compact feature representation113

Z ∈ Rd×N . While the joint distribution of tokens (zi)
N
i=1 in Z may be sophisticated (and task-114

specific), we further contend that it is reasonable and practical to require that the target marginal115

distribution of individual tokens zi should be highly compressed and structured, amenable for compact116

coding. Particularly, we require the distribution to be a mixture of low-dimensional (say K) Gaussian117

distributions, such that the kth Gaussian has mean 0 ∈ Rd, covariance Σk ⪰ 0 ∈ Rd×d, and support118

spanned by the orthonormal basis Uk ∈ Rd×p. We denote U[K] = (Uk)
K
k=1 to be the set of bases119

of all Gaussians. Hence to maximize the information gain [61] for the final token representation,120

we wish to maximize the rate reduction [6, 46] of the tokens, i.e., maxZ ∆R(Z;U[K]) = R(Z)−121

Rc(Z;U[K]), where R and Rc are estimates of lossy coding rates to be formally defined in (7)122

and (8). This also promotes token representations zi from different Gaussians to be incoherent [46].123

Since rate reduction is an intrinsic measure of goodness for the representation, it is invariant to124

arbitrary rotations of the representations. Therefore, to ensure the final representations are amenable125

to more compact coding, we would like to transform the representations (and their supporting126

subspaces) so that they become sparse with respect to the standard coordinates of the resulting127

representation space.2 The combined rate reduction and sparsification process is illustrated in Figure 1.128

Computationally, we may combine the above two goals into a unified objective for optimization:129

max
f∈F

EZ

[
∆R(Z;U[K])−λ∥Z∥0

]
= max

f∈F
EZ

[
R(Z)−Rc(Z;U[K])−λ∥Z∥0

]
s.t. Z = f(X), (1)

130 where the ℓ0 norm ∥Z∥0 promotes the sparsity of the final token representations Z = f(X).3 We131

call this objective “sparse rate reduction.”132

White-box deep architecture as unrolled incremental optimization. Although easy to state, each133

term of the above objective can be computationally very challenging to optimize [54, 69]. Hence it is134

natural to take an approximation approach that realizes the global transformation f optimizing (1)135

through a concatenation of multiple, say L, simple incremental and local operations f ℓ that push the136

representation distribution towards the desired parsimonious model distribution:137

1For language transformers, tokens roughly correspond to words [28], while for vision transformers, tokens
correspond to image patches [40].

2That is, having the fewest nonzero entries.
3To simplify the notation, we will discuss the objective for one sample X at a time with the understanding

that we always mean to optimize the expectation.
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f : X
f0

−−→ Z0 → · · · → Zℓ fℓ

−−→ Zℓ+1 → · · · → ZL = Z, (2)

where f0 : RD → Rd is the pre-processing mapping that transforms input tokens xi ∈ RD to their138

token representations z1
i ∈ Rd. Each incremental forward mapping Zℓ+1 = f ℓ(Zℓ), or a “layer”,139

transforms the token distribution to optimize the above sparse rate reduction objective (1), conditioned140

on the distribution of its input tokens Zℓ. The distribution of Zℓ can be explicitly modeled or141

approximated, say as a mixture of linear subspaces or sparsely generated from a dictionary, with142

parameters learned from data (say via backward propagation with end-to-end training).4143

We show that we can derive these incremental, local operations through an unrolled optimization144

perspective to achieve (1) through Sections 2.3 to 2.5. Once we decide on using an incremental145

approach to optimizing (1), there are a variety of possible choices to achieve the optimization. Given146

a model for Zℓ, say a mixture of subspaces U[K], we opt for a two-step alternating minimization147

process with a strong conceptual basis: first in Section 2.3, we compress the tokens Zℓ via a gradient148

step to minimize the coding rate term minZ Rc(Z;U[K]); second, in Section 2.4, we sparsify the149

compressed tokens, with a suitably-relaxed proximal gradient step on the difference of the sparsity150

penalty and the expansion term, i.e., minZ [λ∥Z∥0 −R(Z)]. Both actions are applied incrementally151

and repeatedly, as each f ℓ in (2) is instantiated with these two steps.152

2.2 Self-Attention via Denoising Tokens Towards Multiple Subspaces153

There are many different ways to optimize the objective (1) incrementally. In this work, we propose154

arguably the most basic scheme. To help clarify the intuition behind our derivation and approximation,155

in this section (and Appendix A.1) we study a largely idealized model which nevertheless captures156

the essence of nearly the whole process and particularly reveals the reason why self-attention-like157

operators arise in many contexts. Assume that N = 1, and the single token x is drawn i.i.d. from158

an unknown mixture of Gaussians (N (0,Σk))
K
k=1 supported on low-dimensional subspaces with159

orthonormal bases U[K] = (Uk)
K
k=1 and corrupted with additive Gaussian noise w ∼ N (0, I), i.e.,160

x = z + σw, (3)

where z is distributed according to the mixture. Our goal is simply to transform the distribution of161

the noisy token x to the mixture of low-dimensional Gaussians z. Towards incremental construction162

of a representation f for this model following (2), we reason inductively: if zℓ is a noisy token (3) at163

noise level σℓ, it is natural to produce zℓ+1 by denoising at the level σℓ. In the mean-square sense,164

the optimal estimate is E[z | zℓ], which has a variational characterization (e.g. [12]):165

E[z | · ] = argmin
f

E
z,w

[∥∥f(z + σℓw)− z
∥∥2
2

]
. (4)

Setting zℓ+1 = E[z | zℓ], (4) thus characterizes the next stage of (2) in terms of an optimization166

objective based on a local signal model for zℓ. Moreover, letting x 7→ qℓ(x) denote the density of zℓ,167

Tweedie’s formula [13] allows us to express the optimal representation solving (4) in closed-form:168

zℓ+1 = zℓ + (σℓ)2∇x log qℓ(zℓ). (5)
Tweedie’s formula expresses the optimal representation in terms of an additive correction (in general169

a nonlinear function of zℓ) to the noisy observations by the gradient of the log-likelihood of the170

distribution of the noisy observations, giving the optimal representation a clear interpretation as an171

incremental perturbation to the current noisy distribution qℓ. This connection is well-known in the172

areas of estimation theory and inverse problems [1, 13, 14, 19, 20, 27, 42], and more recently has173

found powerful applications in the training of generative models for natural images [4, 15, 22, 43,174

44]. Here, we can calculate a closed-form expression for this score function ∇x log qℓ, which, when175

combined with (5) and some technical assumptions5, gives the following approximation (shown in176

Appendix A.1). Let ⊗ denote the Kronecker product; then we have177

zℓ+1 ≈
[
U1, . . . ,UK

] diag
softmax

 1

2(σℓ)2

∥U∗
1 z

ℓ∥22
...

∥U∗
Kzℓ∥22



⊗ Ip


U∗

1 z
ℓ

...
U∗

Kzℓ

 , (6)

4This separation of forward “optimization” and backward “learning” clarifies the mathematical role of each
layer as an operator transforming the distribution of its input, whereas the input distribution is in turn modeled
by the parameters of the layer.

5Such as σ being smaller than the nonzero eigenvalues of Σk and the normalization assumption πi det(Σi +

σ2I)−1/2 = πj det(Σj +σ2I)−1/2 for all i, j ∈ [K], where πk is the mixture proportion for the kth Gaussian.

4



This operation resembles a self-attention layer in a standard transformer architecture with K heads,178

sequence length N = 1, the “query-key-value” constructs being replaced by a single linear projection179

U∗
kz

ℓ of the token zℓ, and the aggregation of head outputs (conventionally modeled by an MLP)180

done with the two leftmost matrices in (6). We thus derive the following useful interpretation, which181

we will exploit in the sequel: Gaussian denoising against a mixture of subspaces model leads to182

self-attention-type layers in the transformation f . Given an initial sample x following the model183

(3), we can repeatedly apply local transformations to the distribution with (6) in order to realize the184

incremental mapping f : x → z in (2).6 These insights will guide us in the design of our white-box185

transformer architecture in the upcoming subsections.186

2.3 Self-Attention via Compressing Token Sets through Optimizing Rate Reduction187

In the last subsection, we have seen that the multi-head attention in a transformer resembles the score-188

matching operator that aims to transform a token zℓ towards a mixture of subspaces (or degenerate189

Gaussians). Nevertheless, to carry out such an operation on any data, one needs to first learn or190

estimate, typically from finite samples, the parameters of the mixture of (degenerate) Gaussians,191

which is known to be a challenging task [6, 24]. This challenge is made even harder because in a192

typical learning setting, the given set of tokens are not i.i.d. samples from the mixture of subspaces.193

The joint distribution among these tokens can encode rich information about the data—for example,194

co-occurrences between words or object parts in language and image data (resp.)—which we should195

also learn. Thus, we should compress / denoise / transform such a set of tokens together. To this end,196

we need a measure of quality, i.e., compactness, for the resulting representation of the set of tokens.197

A natural measure of the compactness of such a set of tokens is the (lossy) coding rate to encode198

them up to a certain precision ϵ > 0 [6, 46]. For a zero-mean Gaussian, this measure takes a closed199

form. If we view the tokens in Z ∈ Rd×N as drawn from a single zero-mean Gaussian, an estimate200

of their (lossy) coding rate, subject to quantization precision ϵ > 0, is given in [6] as:201

R(Z)
.
=

1

2
logdet

(
I +

d

Nϵ2
Z∗Z

)
=

1

2
logdet

(
I +

d

Nϵ2
ZZ∗

)
. (7)

In practice, the data distribution is typically multi-modal, say an image set consisting of many classes202

or a collection of image patches as in Figure 1. It is more appropriate to require that the set of203

tokens map to a mixture of, say K, subspaces (degenerate Gaussians) [54]. As before we denote204

the (to be learned) bases of these subspaces as U[K] = (Uk)
K
k=1, where Uk ∈ Rd×p. Although the205

joint distribution of the tokens Z is unknown, the desired marginal distribution of each token zi is a206

mixture of subspaces. So we may obtain an upper bound of the coding rate for the token set Z by207

projecting its tokens onto these subspaces and summing up the respective coding rates:208

Rc(Z;U[K]) =

K∑
k=1

R(U∗
kZ) =

1

2

K∑
k=1

logdet
(
I +

p

Nϵ2
(U∗

kZ)∗(U∗
kZ)

)
. (8)

We would like to compress (or denoise) the set of tokens against these subspaces by minimizing the209

coding rate. The gradient of Rc(Z;U[K]) is210

∇ZRc(Z;U[K]) =
p

Nϵ2

K∑
k=1

UkU
∗
kZ

(
I +

p

Nϵ2
(U∗

kZ)∗(U∗
kZ)

)−1

. (9)

The above expression approximates the residual of each projected token U∗
kzi regressed by other211

tokens U∗
kzj [54]. But, differnently from [54], not all tokens in Z are from the same subspace. Hence,212

to denoise each token with tokens from its own group, we can compute their similarity through an213

auto-correlation among the projected tokens as (U∗
kZ)∗(U∗

kZ) and convert it to a distribution of214

membership with a softmax, namely softmax((U∗
kZ)∗(U∗

kZ)). Then, as we show in Appendix A.2,215

if we only use similar tokens to regress and denoise each other, then a gradient step on the coding216

rate with learning rate κ can be naturally approximated as follows:217

Zℓ+1/2 = Zℓ − κ∇ZR
c(Zℓ;U[K]) ≈

(
1− κ · p

Nϵ2

)
Zℓ + κ · p

Nϵ2
· MSSA(Zℓ | U[K]), (10)

where MSSA is defined through an SSA operator as:218

SSA(Z | Uk)
.
= (U∗

kZ) softmax((U∗
kZ)∗(U∗

kZ)), k ∈ [K], (11)

6This statement can be made mathematically rigorous by exploiting a deep connection between neural ODEs
and diffusion models, following ideas in Song et al. [44] and Chen et al. [70].
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MSSA(Z | U[K])
.
=

p

Nϵ2
·
[
U1, . . . ,UK

]  SSA(Z | U1)
...

SSA(Z | UK)

 . (12)

Here the SSA operator in (11) resembles the attention operator in a typical transformer [28], except219

that here the linear operators of value, key, and query are all set to be the same as the subspace220

basis, i.e., V = K = Q = U∗
k .7 Hence, we name SSA( · |Uk) : Rd×N → Rp×N the Subspace221

Self-Attention (SSA) operator (more details and justification can be found in (71) in Appendix A.2).222

Then, the whole MSSA operator in (12), formally defined as MSSA( · |U[K]) : Rd×N → Rd×N and223

called the Multi-Head Subspace Self-Attention (MSSA) operator, aggregates the attention head224

outputs by averaging using model-dependent weights, similar in concept to the popular multi-head225

self-attention operator in existing transformer networks. The overall gradient step (10) resembles the226

multi-head self-attention implemented with a skip connection in transformers.227

Notice that if we have N = 1 tokens as well as take an aggressive gradient step (κ = 1) and tune the228

quantization error (ϵ =
√
p/N ), the multi-head subspace self-attention operator in (12) becomes the229

ideal denoiser defined in (6), with the one minor difference that the aggregation of the heads is done230

by a linear function here, while in (6) it is done by a nonlinear mixture-of-experts type function.8231

This provides two very related interpretations of the multi-head self-attention operator, as denoising232

and compression against a mixture of low-dimensional subspaces.233

2.4 MLP via Iterative Shrinkage-Thresholding Algorithms (ISTA) for Sparse Coding234

In the previous subsection, we focused on how to compress a set of tokens against a set of (learned)235

low-dimensional subspaces. Optimizing the remaining terms in the sparse rate reduction objective236

(1), including the non-smooth term, serves to sparsify the compressed tokens, hence leading to a237

more compact and structured (i.e., parsimonious) representation. From (1) and (7), this term is238

max
Z

[R(Z)− λ∥Z∥0] = min
Z

[
λ∥Z∥0 −

1

2
logdet

(
I +

d

Nϵ2
Z∗Z

)]
, (13)

where R(Z) denotes the coding rate of the whole token set, as defined in (7). In addition to239

sparsification via the ∥Z∥0 term, the expansion term R(Z) in (13) promotes diversity and non-240

collapse of the representation, a highly desirable property. However, prior work has struggled to241

realize this benefit on large-scale datasets due to poor scalability of the gradient ∇ZR(Z), which242

requires a matrix inverse [54].243

To simplify things, we therefore take a different approach to trading off between representational244

diversity and sparsification: we posit a (complete) incoherent or orthogonal dictionary D ∈ Rd×d, and245

ask to sparsify the intermediate iterates Zℓ+1/2 with respect to D. That is, Zℓ+1/2 = DZℓ+1 where246

Zℓ+1 is more sparse. The dictionary D is global, i.e., is used to sparsify all tokens simultaneously.247

By the incoherence assumption, we have D∗D ≈ Id; thus from (7) we have R(Zℓ+1) ≈248

R(DZℓ+1) = R(Zℓ+1/2). Thus we approximately solve (13) with the following program:249

min
Zℓ+1

∥Zℓ+1∥0 subject to Zℓ+1/2 = DZℓ+1. (14)

The above sparse representation program is usually solved by relaxing it to an unconstrained convex250

program, known as LASSO: minZℓ+1 [λ∥Zℓ+1∥1 + ∥Zℓ+1/2 −DZℓ+1∥2F ]. In our implementation,251

motivated by Sun et al. [33] and Zarka et al. [35], we also add a non-negative constraint to Zℓ+1,252

Zℓ+1 = argmin
Z≥0

[λ∥Z∥1 + ∥Zℓ+1/2 −DZ∥2F ], (15)

which we then incrementally optimize by performing an unrolled proximal gradient descent step,253

known as an ISTA step [8], to give the update:254

Zℓ+1 = ReLU(Zℓ+1/2 + ηD∗(Zℓ+1/2 −DZℓ+1/2)− ηλ1)
.
= ISTA(Zℓ+1/2 | D). (16)

In Appendix A.3, we will show one can arrive at a similar operator to the above ISTA-like update for255

optimizing (13) by properly linearizing and approximating the rate term R(Z).256

2.5 The Overall White-Box CRATE Architecture257

By combining the above two steps:258

7We note a recent suggestion of Hinton [50] that it is more sensible to set the “value, key, and query”
projection matrices in a transformer to be equal. Our derivation in this section confirms this mathematically.

8This suggests that we could also consider such a mixture of expert type aggregation of the multiple attention
heads. In this work, we use linear aggregation, and leave evaluation of more variants for future work.
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Figure 2: One layer of the CRATE architecture. The full architecture is simply a concatenation of such layers,
with some initial tokenizer and final task-specific architecture (i.e., a classification head).

1. (Sections 2.2 and 2.3) Local denoising and compression of tokens within a sample towards a259

mixture-of-subspace structure, leading to the multi-head subspace self-attention block – MSSA;260

2. (Section 2.4) Global compression and sparsification of token sets across all samples through261

sparse coding, leading to the sparsification block – ISTA;262

we can get the following rate-reduction-based transformer layer, illustrated in Figure 2,263

Zℓ+1/2 .
= Zℓ + MSSA(Zℓ | U ℓ

[K]), Zℓ+1 .
= ISTA(Zℓ+1/2 | Dℓ). (17)

Composing multiple such layers following the incremental construction of our representation in (2),264

we obtain a white-box transformer architecture that transforms the data tokens towards a compact265

and sparse union of incoherent subspaces.266

This model has the parameters (U ℓ
[K])

L
ℓ=1 and (Dℓ)Lℓ=1, which are learned from data via back-267

propagation. Notably, in each layer ℓ, the learned U ℓ
[K] retain their interpretation as incoherent bases268

for supporting subspaces for the mixture-of-Gaussians model at layer ℓ, and the learned Dℓ retains its269

interpretation as a sparsifying dictionary at layer ℓ. The parameters depend on the layer ℓ so as to adapt270

to local properties of the data distribution at each layer of the network. Our interpretation clarifies the271

roles of the network forward pass (given local signal models at each layer, denoise/compress/sparsify272

the input) and the backward pass (learn the local signal models from data).273

We note that at each stage of our construction, we have chosen the simplest possible construction274

to use. We can substitute each part of this construction, so long as the new part maintains the same275

conceptual role, and obtain another white-box architecture. Nevertheless, our such-constructed276

architecture, called CRATE (i.e., Coding RAte TransformEr), connects to existing transformer models,277

obtains competitive results on real-world datasets, and is fully mathematically interpretable.278

3 Experiments279

In this section, we conduct experiments to study the performance of our proposed white-box trans-280

former CRATE on real-world datasets and tasks. As the analysis in Section 2 suggests, either the281

compression or the sparsification step can be achieved through various alternative design choices or282

strategies. CRATE arguably adopts the most basic choices and so our goal with the experiments is not283

simply to compete with other heavily engineered transformers while using such a rudimentary design.284

Rather, our goals are twofold. First, unlike any empirically designed black-box networks that are285

usually evaluated only on end-to-end performance, the white-box design of our network allows us286

to look inside the deep architecture and verify if layers of the learned network indeed perform their287

design objective—say performing incremental optimization for the objective (1). Second, despite their288

simplicity, our experiments will actually reveal the vast practical potential of our so-derived CRATE289

architectures since, as we will show, they already achieve very strong performance on large-scale290

real-world datasets and tasks. In the remainder of this section we highlight a selection of results;291

additional experimental details and results can be found in Appendix B.292
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Figure 3: Left: The compression term Rc(Zℓ+1/2) of the MSSA outputs at different layers. Right: the sparsity
of the ISTA output block, ∥Zℓ+1∥0/(d ·N), at different layers. (Model: CRATE-Small).

Model architecture. We implement the architecture that is described in Section 2.5, with minor293

modifications that are described in Appendix B.1. We consider different model sizes of CRATE by294

varying the token dimension d, number of heads K, and the number of layers L. We consider four295

model sizes in this work: CRATE-Tiny, CRATE-Small, CRATE-Base, and CRATE-Large. A PyTorch-296

style pseudocode can be found in Appendix B.1, which contains more implementation details. For297

training using supervised classification, we first take the CLS token zb = zL+1
1,b of for each sample,298

then apply a linear layer; the output of this linear layer ub
.
= Wzb is used as input to the standard299

cross-entropy loss. The overall loss averages over all samples b ∈ [B].300

Datasets and optimization. We mainly consider ImageNet-1K [9] as the testbed for our architecture.301

Specifically, we apply the Lion optimizer [71] to train CRATE models with different model sizes.302

Meanwhile, we also evaluate the transfer learning performance of CRATE: by considering the models303

trained on ImageNet-1K as pre-trained models, we fine-tune CRATE on several commonly used304

downstream datasets (CIFAR10/100, Oxford Flowers, Oxford-IIT-Pets). More details about the305

training and datasets can be found in Appendix B.1.306

3.1 In-depth Layer-wise Analysis of CRATE307

Do layers of CRATE achieve their design goals? As described in Section 2.3 and Section 2.4, the308

MSSA block is designed to optimize the compression term Rc(Z) and the ISTA block to sparsify the309

token representations (corresponding to the sparsification term ∥Z∥0). To understand whether CRATE310

indeed optimizes these terms, for each layer ℓ, we measure (i) the compression term Rc(Zℓ+1/2)311

on the MSSA block outputs Zℓ+1/2; and (ii) sparsity ∥Zℓ+1∥0 on the ISTA block outputs Zℓ+1.312

Specifically, we evaluate these two terms by using training/validation samples from ImageNet-1K.313

Both terms are evaluated at the per-sample level and averaged over B = 103 samples.314

Figure 3 shows the plots of these two key measures at all layers for the learned CRATE-small model.315

We find that as the layer index ℓ increases, both the compression and the sparsification terms improve316

in most cases. The increase in the sparsity measure of the last layer is caused by the extra linear317

layer for classification. These results suggest that CRATE aligns well with the original design goals:318

once learned, it essentially learns to gradually compress and sparsity the representations through319

its layers. In addition, we also measure the compression and sparsification terms on CRATE models320

with different model sizes as well as intermediate model checkpoints and the results are shown by321

plots in Figure 5 of Appendix B.2. The observations are very consistent across all different model322

sizes—both the compression and sparsification terms improve in most scenarios. Models with more323

layers tend to optimize the objectives more effectively, confirming our understanding of each layer’s324

roles.325

To see the effect of learning, we present the evaluations on CRATE-Small trained with different number326

of epochs in Figure 4. When the model is not trained enough (e.g. untrained), the architecture does327

not optimize the objectives effectively. However, during training—learning better subspaces U ℓ
[K]328

and dictionaries Dℓ—the designed blocks start to optimize the objectives much more effectively.329

Visualizing layer-wise token representations. To gain a better understanding of the token represen-330

tations of CRATE, we visualize the output of each ISTA block at layer ℓ in Figure 6 of Appendix B.2.331

Specifically, we visualize the Zℓ+1 via heatmap plots. We observe that the output Zℓ+1 becomes332

more sparse as the layer increases. Moreover, besides the sparsity, we also find that Zℓ+1 becomes333

more structured (i.e., low-rank), which indicates that the set of token representations become closer334

to linear subspaces, confirming our mental picture of the geometry of each layer (as in Figure 1).335
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Figure 4: The compression term Rc(Z) (left) and sparsification term ∥Z∥0/(d · N) (right) across models
trained with different numbers of epochs. (Model: CRATE-Base).

Table 1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on ImageNet.
For ImageNet/ImageNetReaL, we directly evaluate the top-1 accuracy. For other datasets, we use models that
are pre-trained on ImageNet as initialization and the evaluate the transfer learning performance via fine-tuning.

Datasets CRATE-T CRATE-S CRATE-B CRATE-L ViT-T ViT-S

# parameters 6.09M 13.12M 22.80M 77.64M 5.72M 22.05M

ImageNet 66.7 69.2 70.8 71.3 71.5 72.4
ImageNet ReaL 74.0 76.0 76.5 77.4 78.3 78.4

CIFAR10 95.5 96.0 96.8 97.2 96.6 97.2
CIFAR100 78.9 81.0 82.7 83.6 81.8 83.2
Oxford Flowers-102 84.6 87.1 88.7 88.3 85.1 88.5
Oxford-IIIT-Pets 81.4 84.9 85.3 87.4 88.5 88.6

Visualizing layer-wise subspaces in multi-head self-attention. We now visualize the U ℓ
[K] matrices336

used in the MSSA block. In Section 2.3, we assumed that U ℓ
[K] were incoherent to capture different337

“views” of the set of tokens. In Fig. 7 of Appendix B.2, we first normalize the columns in each338

U ℓ
k, then we visualize the [U ℓ

1 , . . . ,U
ℓ
K ]

∗
[U ℓ

1 , . . . ,U
ℓ
K ] ∈ RpK×pK . The (i, j)-th block in each sub-339

figure corresponds to (U ℓ
i )

∗U ℓ
j for i, j ∈ [K] at a particular layer ℓ. We find that the learned U ℓ

[K]340

are approximately incoherent, which aligns well with our assumptions. One interesting observation is341

that the U ℓ
[K] becomes more incoherent when the layer index ℓ is larger, which suggests that the token342

representations are more separable. This mirrors the situation in other popular deep networks [57].343

3.2 Evalutions of CRATE on Large Real-World Datasets and Tasks344

We now study the empirical performance of the proposed networks by measuring their top-1 accuracy345

on ImageNet-1K as well as transfer learning performance on several widely used downstream datasets.346

We summarize the results in Table 1. As our designed architecture leverages parameter sharing in347

both the attention block (MSSA) and the MLP block (ISTA), our CRATE-Base model (22.08 million)348

has a similar number of parameters to the ViT-Small (22.05 million).349

From Table 1, we find that with a similar number of model parameters, our proposed network350

achieves similar ImageNet-1K and transfer learning performance as ViT, despite the simplicity and351

interpretability of our design. Moreover, with the same set of training hyperparameters, we observe352

promising scaling behavior in CRATE—we consistently improve the performance by scaling up the353

model size. For comparison, directly scaling ViT on ImageNet-1K does not always lead to consistent354

performance improvement measured by top-1 accuracy [40]. To summarize, we achieve promising355

performance on real-world large-scale datasets by directly implementing our principled architecture.356

4 Conclusion357

In this paper, we propose a new theoretical framework that allows us to derive deep transformer-358

like network architectures as incremental optimization schemes to learn compressed and sparse359

representation of the input data (or token sets). The so derived and learned deep architectures are not360

only fully mathematically interpretable, but also consistent on a layer-by-layer level with their design361

objective. Despite being arguably the simplest among all possible designs, these networks already362

demonstrate performance on large-scale real-world datasets and tasks close to seasoned transformers.363

We believe this work truly helps bridge the gap between theory and practice of deep neural networks364

as well as help unify seemingly separate approaches to learning and representing data distributions.365

Probably more importantly for practitioners, our framework provides theoretical guidelines to design366

and justify new, potentially more powerful, deep architectures for representation learning.367
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A Technical Details from Section 2573

A.1 Companion to Section 2.2574

We first wish to re-iterate the core contributions of our approach in Section 2.2 at a slightly more575

technical level. Connections between denoising and score matching are well-understood [59], and576

computing the optimal denoising function (i.e., the conditional expectation) against a mixture-of-577

Gaussians model is a rather simple computation giving existing tools such as Tweedie’s formula [13].578

These are not our main contributions. Instead, the main contributions of Section 2.2 are two-fold:579

• First, we demonstrate a mechanism to learn representations via denoising within a idealized580

mixture of Gaussian data model for a single token (i.e., with sequence length N = 1).581

• Second, we illustrate the similarities between a such-derived representation learning scheme582

and existing self-attention layers within the transformer (with sequence length 1), thus583

demonstrating an interpretation of the self-attention layer as a generalized mechanism to584

denoise against a mixture-of-Gaussian-marginal model for a set of tokens.585

Now we produce the proofs alluded to in Section 2.2, which mostly form the technical aspects of586

the first listed contribution. To simplify the proofs, we use the following notation correspondences:587

x 7→ zℓ, z 7→ zℓ+1, and σ 7→ σℓ.588

Proposition 1. Let u1, . . . ,uK ∈ Rd be independent and have distribution uk ∼ N (0,Σk) for589

Σk ⪰ 0, and let z take value uk with probability πk > 0. Let w ∼ N (0, Id) be independent of z.590

Let x .
= z + σw. Let x 7→ q(x) be the density of x. We define591

Mk
.
= (Σk + σ2Id)

−1/2 (18)

and assume that πi det(Mi) = πj det(Mj) for all 1 ≤ i ≤ j ≤ K. Then we have592

∇x log q(x) (19)

= − [M1, · · · ,MK ]

diag
softmax

−1

2

∥M
∗
1x∥22
...

∥M∗
Kx∥22



⊗ Id


M

∗
1x
...

M∗
Kx

 , (20)

where ⊗ denotes the Kronecker product, i.e., the block matrix defined by593

A⊗B =

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 (21)

Proof. Let u be the multinomial random variable such that z = zu, so that u has probability mass594

function π. Then by the law of total probability, we have595

∇x log q(x) = ∇x log

K∑
k=1

q(x | k)πk (22)

=

∑K
k=1 πk∇xq(x | k)∑K
k=1 q(x | k)πk

(23)

where q(x | k) is the conditional density of x given the event {u = k}. To compute this quantity,596

note that conditional on the value of u, we have597

x = zu + σw ∼ N (0,Σu + σ2Id). (24)

Thus we have598

q(x | k) = 1√
(2π)d det(Σk + σ2Id)

exp

(
−1

2
x∗(Σk + σ2Id)

−1x

)
, (25)

This gives599

∇xq(x | k) = −q(x | k) · (Σk + σ2Id)
−1x. (26)

Putting this all together, we get600

∇x log q(x) (27)
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= −
∑K

k=1 q(x | k)πk · (Σk + σ2Id)
−1x∑K

k=1 q(x | k)πk

(28)

= −
∑K

k=1 πk det(Σk + σ2Id)
−1/2 exp

(
− 1

2x
∗(Σk + σ2Id)

−1x
)
· (Σk + σ2Id)

−1x∑K
k=1 πk det(Σk + σ2Id)−1/2 exp

(
− 1

2x
∗(Σk + σ2Id)−1x

) . (29)

Now define Mk
.
= (Σk + σ2Id)

−1/2. With this notation, we have601

∇x log q(x) = −
∑K

k=1 πk det(Mk) exp
(
− 1

2x
∗MkM

∗
kx
)
·MkM

∗
kx∑K

k=1 πk det(Mk) exp
(
− 1

2x
∗MkM∗

kx
) (30)

= −
∑K

k=1 πk det(Mk) exp
(
− 1

2∥M
∗
kx∥22

)
·MkM

∗
kx∑K

k=1 πk det(Mk) exp
(
− 1

2x
∗MkM∗

kx
) . (31)

Given our assumption that each πk det(Mk) is the same, we have602

∇x log q(x) (32)

= −
∑K

k=1 πk det(Mk) exp
(
− 1

2∥M
∗
kx∥22

)
·MkM

∗
kx∑K

k=1 πk det(Mk) exp
(
− 1

2∥M
∗
kx∥22

) (33)

= −
∑K

k=1 exp
(
− 1

2∥M
∗
kx∥22

)
·MkM

∗
kx∑K

k=1 exp
(
− 1

2∥M
∗
kx∥22

) (34)

= −
K∑

k=1

e∗k softmax

−1

2

∥M
∗
1x∥22
...

∥M∗
Kx∥22


MkM

∗
kx (35)

= − [M1, . . . ,MK ]

diag
softmax

−1

2

∥M
∗
1x∥22
...

∥M∗
Kx∥22



⊗ Id


M

∗
1x
...

M∗
Kx

 . (36)

603

Now we provide a final justification for the result cited in Section 2.2.604

Approximation 2. In the setting of Proposition 1, diagonalize Σk = UkΛkU
∗
k where Uk ∈ Rd×p605

is orthogonal and Λk ≻ 0 ∈ Rp×p is diagonal.9 Then we have the approximation606

E[z | x] ≈ [U1, . . . ,UK ]

diag
softmax

 1

2σ2

∥U
∗
1x∥22
...

∥U∗
Kx∥22



⊗ Ip


U

∗
1x
...

U∗
Kx

 . (37)

Proof. We have607

∇x log q(x) = −
K∑

k=1

e∗k softmax

−1

2

∥M
∗
1x∥22
...

∥M∗
Kx∥22


MkM

∗
kx (38)

= −
K∑

k=1

e∗k softmax

− 1

2σ2

∥σM
∗
1x∥22
...

∥σM∗
Kx∥22


MkM

∗
kx (39)

= −
K∑

k=1

e∗k softmax

 1

2σ2

∥x∥
2
2 − ∥σM∗

1x∥22
...

∥x∥22 − ∥σM∗
Kx∥22


MkM

∗
kx. (40)

9This assumption can be easily relaxed to Λk ⪰ 0 for all k, but requires some more notation to handle, and
the form of the solution does not change. Thus we handle the case where all matrices are full rank for simplicity.
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Now define Pk
.
= Id − σMk, and let U⊥

k ∈ Rd×(d−p) be an orthogonal complement of Uk. Then608

we have609

Pk = Id − σMk (41)

= Id − σ
(
Σk + σ2Id

)−1/2
(42)

= Id − σ

([
Uk U⊥

k

] [Λk 0
0 0

] [
U∗

k

(U⊥
k )∗

]
+ σ2Id

)−1/2

(43)

= Id − σ

([
Uk U⊥

k

] [Λk + σ2Ip 0
0 σ2Id−p

] [
U∗

k

(U⊥
k )∗

])−1/2

(44)

= Id −
[
Uk U⊥

k

] [σ(Λk + σ2Ip)
−1/2 0

0 σ · (σ2)−1/2Id−p

] [
U∗

k

(U⊥
k )∗

]
(45)

= Id −
[
Uk U⊥

k

] [(σ−2Λk + Ip)
−1/2 0

0 Id−p

] [
U∗

k

(U⊥
k )∗

]
(46)

=
[
Uk U⊥

k

] [Ip − (σ−2Λk + Ip)
−1/2 0

0 0

] [
U∗

k

(U⊥
k )∗

]
(47)

≈
[
Uk U⊥

k

] [Ip 0
0 0

] [
U∗

k

(U⊥
k )∗

]
(48)

= UkU
∗
k . (49)

Thus Pk is approximately a projection when σ is small. Under this algebraic relation, we have610

∇x log q(x) (50)

= −
K∑

k=1

e∗k softmax

 1

2σ2

∥x∥
2
2 − ∥σM∗

1x∥22
...

∥x∥22 − ∥σM∗
Kx∥22


MkM

∗
kx (51)

= − 1

σ2

K∑
k=1

e∗k softmax

 1

2σ2

 ∥x∥22 − ∥(Id − P1)
∗x∥22

...
∥x∥22 − ∥(Id − PK)∗x∥22


(Id − Pk)(Id − Pk)

∗x (52)

≈ − 1

σ2

K∑
k=1

e∗k softmax

 1

2σ2

∥P
∗
1 x∥22
...

∥P ∗
Kx∥22


(Id − Pk)(Id − Pk)

∗x (53)

≈ − 1

σ2

K∑
k=1

e∗k softmax

 1

2σ2

∥P
∗
1 x∥22
...

∥P ∗
Kx∥22


(Id − Pk)

∗x (54)

= − x

σ2

K∑
k=1

e∗k softmax

 1

2σ2

∥P
∗
1 x∥22
...

∥P ∗
Kx∥22


+

1

σ2

K∑
k=1

e∗k softmax

 1

2σ2

∥P
∗
1 x∥22
...

∥P ∗
Kx∥22


P ∗

kx

(55)

= − 1

σ2
x+

1

σ2

K∑
k=1

e∗k softmax

 1

2σ2

∥P
∗
1 x∥22
...

∥P ∗
Kx∥22


P ∗

kx (56)

≈ − 1

σ2
x+

1

σ2

K∑
k=1

e∗k softmax

 1

2σ2

∥U
∗
1x∥22
...

∥U∗
Kx∥22


UkU

∗
kx (57)

= − 1

σ2
x+

1

σ2
[U1, · · · ,UK ]

diag
softmax

 1

2σ2

∥U
∗
1x∥22
...

∥U∗
Kx∥22



⊗ Ip


U

∗
1x
...

U∗
Kx

 . (58)
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Plugging this into Tweedie’s formula, we have611

E[z | x] ≈ [U1, · · · ,UK ]

diag
softmax

 1

2σ2

∥U
∗
1x∥22
...

∥U∗
Kx∥22



⊗ Ip


U

∗
1x
...

U∗
Kx

 . (59)

612

Remark 3. Although Approximation 2 is stated as an approximation rather than as a proposition, we613

believe it should be possible without too much extra work to convert it into a statement of asymptotic614

equivalence as σ → 0 (in particular, holding for σ below the smallest (nonzero) eigenvalue of any615

Σk. Most approximations taken in the derivation of Approximation 2 can immediately be turned into616

asymptotic claims; the only slightly delicate point is treating the softmax, which can be accomplished617

using standard “high temperature” convergence behavior of the softmax function (in particular, as618

σ → 0 in our expressions, the softmax concentrates on the “best head”).619

A.2 Companion to Section 2.3620

We again wish to re-iterate the core contribution of our approach in Section 2.3. The application of a621

compression perspective to representation learning has been discussed before, for example in the line622

of maximal coding rate reduction works [46]. In Section 2.3, we provide the following contributions623

and developments to this perspective:624

• We propose a generalized coding rate function Rc(·;U[K]) which measures the coding rate625

with respect to a set of subspaces U[K] as opposed to a set of classes (as in [46, 54]), making626

the underlying formulation unsupervised.627

• We then show how if we adopt the framework of alternating minimization of the sparse rate628

reduction objective, then unrolling the first alternating step — gradient descent on this coding629

rate objective — nearly exactly recovers the common multi-head attention mechanism found630

in transformer networks (except that the query/key/value operators are all the same operation631

U∗
k now, which we interpret as projection onto a single subspace).632

In the process of the second contribution, and in the following proofs, we make some simple633

approximations and technical assumptions. The validity of these assumptions may be explored, and634

the approximations refined, altogether providing a more complex (and possibly more performant)635

resulting self-attention like operator. For the sake of technical clarity and simplicity in this work, we636

make perhaps the simplest possible choices. As a result, we do not claim that our network is optimally637

designed, but rather that the principles we develop in this work (compression, denoising, sparsification,638

unrolled optimization) can provide the backbone for far superior and more interpretable network639

architectures in the future on sundry tasks. As it is, with our straightforward, simple, and interpretable640

design, we still obtain meaningful conceptual results and very solid empirical performance.641

We now give the derivation of the approximation alluded to in Section 2.3.642

Approximation 4. Let Z ∈ Rd×N have unit-norm columns, and U[K] = (U1, . . . ,UK) such that643

each Uk ∈ Rd×p is an orthogonal matrix, the (Uk)
K
k=1 are incoherent, and the columns of Z644

approximately lie on
⋃K

k=1 Span(Uk). Let γ = p
Nϵ2 . Let κ > 0. Then645

Z − κ∇ZR
c(Z | U[K]) ≈ (1− κγ)Z + κγ MSSA(Z|U[K]), (60)

where as in Section 2.3 we have646

SSA(Z|Uk) = (U∗
kZ) softmax((U∗

kZ)∗(U∗
kZ)), (61)

MSSA(Z|U[K]) = γ [U1, . . . ,UK ]

 SSA(Z|U1)
...

SSA(Z|UK)

 , (62)

where softmax(·) is the softmax operator (applied to each column of an input matrix), i.e.,647

softmax(v) =
1∑n

i=1 e
vi

e
v1

...
evn

 , (63)

softmax([v1, . . . ,vK ]) = [softmax(v1), . . . , softmax(vK)] . (64)
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Proof. According to (9), the gradient ∇ZR
c(Z;U[K]) is648

∇ZR
c(Z;U[K]) = γ

K∑
k=1

UkU
∗
kZ (I + γ(U∗

kZ)∗(U∗
kZ))

−1
. (65)

Notice that according to [54], the gradient is precisely the residual of a ridge regression for each649

(projected) token U∗
kzi using other projected tokens U∗

kzj as the regressors, hence being the residual650

of an auto-regression.651

However, as we have seen in the work of ReduNet [54], computing the inverse652

(I + γ(U∗
kZ)∗(U∗

kZ))
−1 can be expensive. Hence for computational efficiency, we may approxi-653

mate it with the first order term of its von Neumann expansion:654

∇ZR
c(Z;U[K]) = γ

K∑
k=1

UkU
∗
kZ
(
I + γ(U∗

kZ)∗(U∗
kZ)

)−1

(66)

≈ γ

K∑
k=1

UkU
∗
kZ
(
I − γ(U∗

kZ)∗(U∗
kZ)

)
(67)

= γ

K∑
k=1

Uk

(
U∗

kZ − γU∗
kZ[(U∗

kZ)∗(U∗
kZ)]

)
(68)

Notice that the term (U∗
kZ)∗(U∗

kZ) is the auto-correlation among the projected tokens. As the655

tokens Z may be from different subspaces, we would prefer to use only tokens that belong to the656

same subspace to regress and compress themselves. Hence we may convert the above correlation657

term into a subspace-membership indicator with a softmax operation, whence (68) becomes658

∇ZR
c(Z;U[K]) ≈ γ

K∑
k=1

Uk

(
U∗

kZ − γU∗
kZ[(U∗

kZ)∗(U∗
kZ)]

)
(69)

≈ γ

K∑
k=1

UkU
∗
kZ − γ2

K∑
k=1

Uk

(
U∗

kZ softmax((U∗
kZ)∗(U∗

kZ))
)

(70)

Then, we can rewrite the above approximation to the gradient of Rc as:659

∇ZR
c(Z;U[K]) ≈ γ

K∑
k=1

UkU
∗
kZ − γ2

K∑
k=1

Uk (U
∗
kZ softmax((U∗

kZ)∗(U∗
kZ))) (71)

= γ

K∑
k=1

UkU
∗
kZ − γ2

K∑
k=1

Uk SSA(Z | Uk) (72)

=

(
γ

K∑
k=1

UkU
∗
k

)
Z︸ ︷︷ ︸

≈γZ

−γ2 [U1, · · · ,UK ]

 SSA(Z | U1)
...

SSA(Z | UK)

 (73)

≈ γZ − γ2 [U1, · · · ,UK ]

 SSA(Z | U1)
...

SSA(Z | UK)

 . (74)

Thus the gradient descent step with learning rate κ > 0 gives660

Z − κ∇ZR
c(Z | U[K]) ≈ (1− κγ)Z + κγ2 [U1, . . . ,UK ]

 SSA(Z|U1)
...

SSA(Z|UK)

 . (75)

661
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A.3 Companion to Section 2.4662

We again wish to re-iterate the core contribution of our approach in Section 2.4.663

• Within the framework of alternating minimization of the sparse rate reduction objective, we664

show that the second alternating step — gradient descent on the overall coding rate plus a665

sparse regularization term — has heuristic connections to a particular LASSO optimization.666

• We show that the unrolling of the proximal gradient step to solve this LASSO optimization667

resembles the MLP which immediately follows the self-attention layer within transformer668

blocks.669

In the main text, our connection between the second step of the alternating minimization and the670

LASSO optimization was high-level and heuristic. In some sense, the choice to pose the minimization671

step as a LASSO was a simple, reliable, and interpretable choice which works well in practice, but672

is nonetheless not backed up by rigorous theoretical justification. In the following subsection, we673

provide a mathematical justification for a reformulation of the minimization step using a majorization-674

minimization framework. We further show that the associated unrolled optimization step bears a675

strong resemblance to the ISTA step. This confirms our earlier discussion — we took the simplest676

possible choice in designing CRATE, but by more rigorous derivation we can uncover alternative677

operators which nonetheless have the same conceptual function and may perform better in practice.678

Assumptions. In this section, we present a rigorous optimization analysis of an incremental679

minimization approach to the objective (13). We will show that under two simplifying assumptions,680

namely681

1. The columns of Zℓ+1/2 are normalized, in the sense that diag((Zℓ+1/2)∗Zℓ+1/2) = 1;10682

2. We have d ≥ N ,11 and the columns of Zℓ+1/2 are orthogonal, so that (Zℓ+1/2)∗Zℓ+1/2 =683

I .12684

the approach leads to an update iteration that is equal to a slightly simplified version of the ISTA685

block (16). We see this as a justification for our derivation in Section 2.4, which obtained the ISTA686

block by introducing an additional simplifying assumption on the distribution of the data at layer ℓ.687

Analysis. Following (15), we will consider the natural relaxation of the ℓ0 “norm” to the ℓ1 norm,688

and incorporate a nonnegativity constraint. Consider the objective689

φ(Z) = λ∥Z∥1 + χ{Z≥0}(Z)− 1

2
log det (I + αZ∗Z)︸ ︷︷ ︸

R(Z)

, (76)

where Z ∈ Rd×N and α = d/Nε2, and χ{Z≥0} denotes the characteristic function for the set of690

elementwise-nonnegative matrices Z. As in Appendix A.2, we calculate691

∇ZR(Z) = αZ (I + αZ∗Z)
−1

. (77)

We consider an incremental optimization scheme for the highly nonlinear and nonconvex objective φ.692

Following Section 2.3, we optimize locally at a “post-compression” iterate Zℓ+1/2. We follow the693

standard proximal majorize-minimize framework [69] for incremental/local optimization: this begins694

with the second-order Taylor expansion for the smooth part of φ in a neighborhood of the current695

10This is a natural assumption in transformer-type architectures such as CRATE due to the use of LayerNorm
blocks—although these blocks (indeed, as we use them in CRATE) include trainable mean and scale offsets as
well as an additional mean subtraction operation [63], they are initialized to have zero mean and unit norm,
hence this assumption corresponds to an analysis of the network at its initialization.

11This assumption is without loss of generality, as we will see in the analysis below. The reason is that Z∗Z
and Z∗Z have the same nonzero eigenvalues regardless of the shape of Z, which implies that log det(I +
αZ∗Z) = log det(I + αZZ∗). In particular, interpreting the norms appropriately (with a slight abuse of
notation), we have φ(Z) = φ(Z∗), so for the purposes of analysis we can always proceed as though Z is a tall
matrix (as long as we do not use any special properties of α in our derivation).

12This assumption is strictly stronger than the previous one, and strictly stronger than an assumption of
incoherence on the columns. It corresponds to the representation Zℓ+1/2 being non-collapsed, which we expect
to hold at initialization due to the projections U[K] being random.
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iterate Zℓ+1/2:696

R(Z) = R(Zℓ+1/2) +
〈
∇ZR(Zℓ+1/2),Z −Zℓ+1/2

〉
+

∫ 1

0

(1− t)
〈
Z −Zℓ+1/2,∇2R(Zt)

(
Z −Zℓ+1/2

)〉
dt,

(78)

where for any Z ∈ Rd×N , Zt = tZℓ+1/2 + (1 − t)Z. The proximal majorization-minimization697

approach alternates two steps to minimize φ:698

1. First, use assumptions on Zℓ+1/2 to derive an upper bound on the operator norm of the699

Hessian ∇2R(Z) over the effective domain of the optimization problem. We will write L700

for this (uniform) upper bound. This yields a quadratic upper bound for the smooth part of701

the objective φ.702

2. Then, alternately minimize the smooth part of the quadratic upper bound as a function of Z,703

and take a proximal step on the nonsmooth part. It can be shown [69] that corresponds to704

the iteration705

Z+ = prox λ
L (∥ · ∥1+χ{Z≥0})

(
Z +

1

L
∇ZR(Z)

)
(79)

In the alternating minimization setting of this paper for optimizing (1), we only take one706

such step, starting at Zℓ+1/2.707

We will instantiate this program below, showing quantitative error bounds related to our assumptions708

above as necessary. Rather than directly applying the iteration (79), we will derive it below under our709

aforementioned assumptions.710

Starting at (78), our first task is to upper bound the quadratic residual. This corresponds to estimating711 〈
Z −Zℓ+1/2,∇2R(Zt)

(
Z −Zℓ+1/2

)〉
(80)

≤ sup
t∈[0,1]

∥∥∇2R(Zt)
∥∥
ℓ2→ℓ2

∥∥∥Z −Zℓ+1/2
∥∥∥2
F

(81)

with Cauchy-Schwarz. Using Lemma 5, we can estimate the operator norm term in the previous712

bound in terms of properties of Zℓ+1/2. We need to bound713

α sup
∥∆∥F≤1

∥∥(∆− αZt(I + αZ∗
t Zt)

−1(Z∗
t ∆+∆∗Zt)

)
(I + αZ∗

t Zt)
−1
∥∥
F
, (82)

and Lemma 6 gives that this term is no larger than 9α/4 for any Z and any t. With this estimate and714

(78), we have a quadratic upper bound for −R(Z):715

−R(Z) ≤ −R(Zℓ+1/2) +
〈
−∇ZR(Zℓ+1/2),Z −Zℓ+1/2

〉
+

9α

8

∥∥∥Z −Zℓ+1/2
∥∥∥2
F
. (83)

Meanwhile, by our assumptions above, we have716

−∇ZR(Zℓ+1/2) = −αZℓ+1/2 (I + αI)
−1

= − α

1 + α
Zℓ+1/2. (84)

We now minimize the preceding quadratic upper bound as a function of Z. Differentiating, the717

minimizer Zopt is calculated as718

Zopt =

(
1 +

4

9(1 + α)

)
Zℓ+1/2, (85)

and it is well-known that the proximal operator of the sum of χ{Z≥0} and λ∥ · ∥1 is simply the719

one-sided soft-thresholding operator [69]720

proxχ{Z≥0}+λ∥ · ∥1
(Z) = max{Z − λ1,0}, (86)

where the maximum is applied elementwise. As in Section 2.4, we may write this elementwise721

maximum simply as ReLU. Thus, one step of proximal majorization-minimization under our722

simplifying assumptions takes the form723

Zℓ+1 = ReLU

((
1 +

4

9(1 + α)

)
Zℓ+1/2 − 4λ

9α
1

)
. (87)

20



Finally, we point out one additional elaboration which introduces the dictionary D that appears in the724

ISTA block in Section 2.4. Notice that for any orthogonal D, one has R(DZ) = R(Z) for every Z.725

This symmetry implies equivariance properties of ∇ZR(Z) and ∇2
ZR(Z): for every Z and every ∆726

and every orthogonal D,727

D∇ZR(Z) = ∇ZR(DZ), (88)

⟨D∆,∇2
ZR(Z) (D∆)⟩ = ⟨∆,∇2

ZR(DZ) (∆)⟩. (89)

Hence the quadratic Taylor expansion (78) can be written equivalently as728

R(Z) = R(D∗Zℓ+1/2) +
〈
∇ZR(D∗Zℓ+1/2),Z −Zℓ+1/2

〉
+

∫ 1

0

(1− t)
〈
Z −Zℓ+1/2,∇2R(D∗Zt)

(
Z −Zℓ+1/2

)〉
dt,

(90)

for any orthogonal D. The significance of this is that we have obtained an expression equivalent729

to (78), but with Zℓ+1/2 replaced by D∗Zℓ+1/2; moreover, because our approximation arguments730

above are not affected by left-multiplication of Zℓ+1/2 by an orthogonal matrix (this operation731

does not change the norms of the columns of Zℓ+1/2, or their correlations, and hence the matrix’s732

incoherence), we can apply exactly the same line of reasoning above to obtain that an equivalent733

proximal majorization-minimization iteration is given by734

Zℓ+1 = ReLU

((
1 +

4

9(1 + α)

)
D∗Zℓ+1/2 − 4λ

9α
1

)
, (91)

for any orthogonal dictionary D. This gives an update quite similar to the ISTA block (16) in the735

case where the dictionary used in Section 2.4 is orthogonal, but without a skip connection.736

We thus obtain a natural white-box version of this part of the architecture, along with the natural737

interpretation that its purpose is to sparsify the compressed tokens Zℓ+1/2 in a (learnable) dictionary,738

which accords with recent empirical studies [75].739

Other architectures? As we mentioned at the start of this section, the preceding derivation740

is performed in the most elementary possible setting in order to demonstrate the majorization-741

minimization approach for layer design. More precise approximations or assumptions may lead to742

superior layer designs that better optimize the target objective (1) (and in particular (13)). We mention743

two here:744

1. Beyond exactly-incoherent features: our derivations above assumed that the incoming745

representations Zℓ+1/2 were already maximal for the expansion term R in (13). It is746

desirable to obtain a ‘perturbative’ derivation, which applies in cases where Zℓ+1/2 is not747

fully orthogonal, but instead near-orthogonal, in particular incoherent [69]. The derivations748

above can be adapted to this setting; the perturbation bounds become slightly more delicate,749

and the ultimate layer (91) changes to involve additional normalization.750

2. Beyond orthogonal dictionaries: The symmetries of the expansion term R in (13) may be751

followed to lead to a pair of dictionaries D and D′ and an objective that sparsifies DZD′.752

This type of transformation is suggestive of popular architectures that mix over tokens [53,753

66], however we consider the simpler form DZ in this work. In addition, we have focused754

for simplicity on orthogonal dictionaries D; as in the previous bullet, one may consider755

in a similar way dictionaries D which are complete and near-orthogonal. Adapting the756

derivation to overcomplete dictionaries is an interesting future direction that we expect to757

improve the scalability of CRATE; one avenue to achieve this could be increasing the number758

of projections U[K] and their embedding dimensions.759

A.3.1 Auxiliary Lemmas760

Lemma 5. Consider the function761

R(Z) =
1

2
log det (I + αZ∗Z) , (92)

where α > 0 is a constant. Then we have762

∇ZR(Z) = αZ (I + αZ∗Z)
−1

, (93)
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and the Hessian operator ∇2
ZR(Z) : Rd×N → Rd×N satisfies that for any ∆ ∈ Rd×N ,763

∇2
ZR(Z) (∆) (94)

= α∆ (I + αZ∗Z)
−1 − α2Z (I + αZ∗Z)

−1
(Z∗∆+∆∗Z) (I + αZ∗Z)

−1
. (95)

Proof. The gradient calculation follows from [46], for example. For the Hessian, we use the usual764

approach to calculating derivatives: if ∆ is any matrix with the same shape as Z and t > 0,765

∇2
ZR(Z) (∆) =

∂

∂t

∣∣∣∣
t=0

[t 7→ ∇ZR(Z + t∆)] , (96)

valid since R is smooth. We have766

∇ZR(Z + t∆)

=α(Z + t∆) (I + α(Z + t∆)∗(Z + t∆))
−1

=α(Z + t∆) (I + αZ∗Z + αt [Z∗∆+∆∗Z + t∆∗∆])
−1

=α(Z + t∆)
(
I + αt (I + αZ∗Z)

−1
[Z∗∆+∆∗Z + t∆∗∆]

)−1

(I + αZ∗Z)
−1

=α(Z + t∆)

( ∞∑
k=0

(−αt)k
(
(I + αZ∗Z)

−1
[Z∗∆+∆∗Z + t∆∗∆]

)k)
(I + αZ∗Z)

−1
,

where in the fourth line we require that t is sufficiently close to 0 in order to invoke the Neumann767

series. First, notice that the term involving ∆∗∆ does not play a role in the final expression: after768

we differentiate with respect to t and take a limit t → 0, terms arising due to differentiation of769

t 7→ t∆∗∆ go to zero, because whenever the summation index k > 0 we have a term (−αt)k that770

goes to zero as t → 0. We thus obtain with the product rule771

∂

∂t

∣∣∣∣
t=0

[t 7→ ∇ZR(Z + t∆)] (97)

= α∆ (I + αZ∗Z)
−1 − α2Z (I + αZ∗Z)

−1
(Z∗∆+∆∗Z) (I + αZ∗Z)

−1
. (98)

772

Lemma 6. One has773

sup
∥∆∥F≤1

∥∥(∆− αZt(I + αZ∗
t Zt)

−1(Z∗
t ∆+∆∗Zt)

)
(I + αZ∗

t Zt)
−1
∥∥
F
≤ 9

4
. (99)

Proof. Fix ∆ satisfying ∥∆∥F ≤ 1. By the triangle inequality,774 ∥∥(∆− αZt(I + αZ∗
t Zt)

−1(Z∗
t ∆+∆∗Zt)

)
(I + αZ∗

t Zt)
−1
∥∥
F

(100)

≤
∥∥∆(I + αZ∗

t Zt)
−1
∥∥
F
+ α

∥∥Zt(I + αZ∗
t Zt)

−1(Z∗
t ∆+∆∗Zt)(I + αZ∗

t Zt)
−1
∥∥
F
. (101)

For the first term, we note that775 ∥∥∆(I + αZ∗
t Zt)

−1
∥∥
F
=
∥∥((I + αZ∗

t Zt)
−1 ⊗ I

)
vec(∆)

∥∥
F
, (102)

and since (I + αZ∗
t Zt)

−1 ⪯ I , we obtain from Cauchy-Schwarz13776 ∥∥∆(I + αZ∗
t Zt)

−1
∥∥
F
≤ ∥∆∥F. (103)

We can use a similar idea to control the second term. We have from the triangle inequality777 ∥∥Zt(I + αZ∗
t Zt)

−1(Z∗
t ∆+∆∗Zt)(I + αZ∗

t Zt)
−1
∥∥
F

(104)

≤
∥∥Zt(I + αZ∗

t Zt)
−1Z∗

t ∆(I + αZ∗
t Zt)

−1
∥∥
F

(105)

+
∥∥(I + αZ∗

t Zt)
−1Z∗

t ∆(I + αZ∗
t Zt)

−1Z∗
t

∥∥
F
. (106)

13Recall that the eigenvalues of a Kronecker product of symmetric matrices are the tensor product of the
eigenvalues (with multiplicity).
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For the first term, we have778 ∥∥Zt(I + αZ∗
t Zt)

−1Z∗
t ∆(I + αZ∗

t Zt)
−1
∥∥
F

(107)

=
∥∥((I + αZ∗

t Zt)
−1 ⊗Zt(I + αZ∗

t Zt)
−1Z∗

t

)
vec(∆)

∥∥
F

(108)

≤ σmax

(
(I + αZ∗

t Zt)
−1
)
σmax

(
Zt(I + αZ∗

t Zt)
−1Z∗

t

)
∥∆∥F (109)

≤ 1

α
∥∆∥F. (110)

The last estimate follows from a computation using the SVD of Zt. Meanwhile, we have for the779

second term by a similar argument (using the fact that the singular values of A and A∗ are identical780

for any matrix A)781 ∥∥(I + αZ∗
t Zt)

−1Z∗
t ∆(I + αZ∗

t Zt)
−1Z∗

t

∥∥
F
≤ σmax

(
(I + αZ∗

t Zt)
−1Z∗

t

)2 ∥∆∥F (111)

≤ 1

4α
∥∆∥F, (112)

where once again the estimate follows from a computation involving the SVD of Zt (together with782

the fact that the function σ 7→ σ/(1 + ασ2) is bounded on σ ≥ 0 by 1/(2
√
α)). Putting it together,783

we have obtained784 ∥∥(∆− αZt(I + αZ∗
t Zt)

−1(Z∗
t ∆+∆∗Zt)

)
(I + αZ∗

t Zt)
−1
∥∥
F
≤ 9

4
∥∆∥F, (113)

which gives the claim after taking suprema.785

786

23



B Additional Experiments and Details787

In this section, we provide details about our experiments, and report the results of additional experi-788

ments that were not covered in the main text. CRATE takes arguably the most basic design choices789

possible, and so we do not attempt to directly compete with state-of-the-art performance from heavily790

engineered and empirically designed transformers. The results of our experiments are meant to791

convey a few core messages:792

• Despite not being engineered to compete with the state-of-the-art, CRATE performs strongly793

on large-scale real-world datasets, including classification on ImageNet-1K. CRATE also794

achieves strong transfer learning performance.795

• Because our model is designed through unrolled optimization of a well-understood objective,796

each layer is interpretable. In particular, we can analyze the performance of CRATE, as well797

as design network modifications, on a layer-wise basis. This is powered by an arguably798

unparalleled level of insight into the role of each operator in our network.799

• We make the simplest possible choices during the design of CRATE, but these can be changed800

easily while keeping the same framework. We study a few modifications later in this section801

(Appendix B.4) and show that they do not significantly hurt empirical performance, but802

emphasize here that there is significant potential for improvement with different architecture803

choices (and in particular a different theoretical analysis).804

B.1 Implementation details805

In this subsection, we provide more details for implementing CRATE on vision tasks.806

B.1.1 Architecture of CRATE807

Architectural modifications. Compared to the conceptual architecture proposed in Sections 2.5808

and 3, we make the following change for the sake of implementation simplicity:809

• In the compression step, replace the term p
Nϵ2 [U1, . . . ,UK ] in the MSSA operator with810

another trainable parameter W ∈ Rd×pK . Thus the MSSA block becomes811

MSSA(Z | U[K],W )
.
= W

 SSA(Z | U1)
...

SSA(Z | UK)

 . (114)

PyTorch code for CRATE. We provide PyTorch-style code for implementing our proposed network812

architecture. Algorithm 1 defines the overall architecture, Algorithm 2 and Algorithm 3 contain813

details for the transformer block, self-attention block (MSSA-block), and MLP block (ISTA-block).814

B.1.2 Training Setup815

Pre-training on ImageNet-1K. We apply the Lion optimizer [71] for pre-training both CRATE and816

ViT models. We configure the learning rate as 2.4 × 10−4, weight decay as 0.5, and batch size as817

2,048. We incorporate a warm-up strategy with a linear increase over 5 epochs, followed by training818

the models for a total of 150 epochs with cosine decay. For data augmentation, we only apply the819

standard techniques, random cropping and random horizontal flipping, on the ImageNet-1K dataset.820

We apply label smoothing with smoothing parameter 0.1. One training epoch of CRATE−Base takes821

around 240 seconds using 16 A100 40GB GPUs.822

Fine-tuning. We fine-tune our pre-trained CRATE and ViT models on the following target datasets:823

CIFAR10/CIFAR100 [10], Oxford Flowers-102 [7], Oxford-IIIT-Pets [16]. We also evaluate our824

pre-trained models on the commonly used ImageNet Real [36] benchmark. For each fine-tuning825

task, we use the AdamW optimizer [26]. We configure the learning rate as 5× 10−5, weight decay826

as 0.01, and batch size to be 512. To allow transfer learning, we first resize our input data to827

224. For data augmentations, we also adopt several standard techniques: random cropping, random828

horizontal flipping, and random augmentation (with number of transformations n = 2 and magnitude829

of transformations m = 14).14830

14https://github.com/huggingface/pytorch-image-models/blob/main/timm/data/auto_
augment.py
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Algorithm 1: PyTorch-style pseudocode for CRATENetwork
# Class ViT_dictionary definition
CRATE:

# initialization
def init(self, image_size, patch_size, num_classes, dim, depth, heads,
mlp_dim, pool = ’cls’, channels = 3, dim_head = 64, dropout = 0.,
emb_dropout = 0.):

# define patch, image dimensions and number of patches
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
num_patches = (image_height // patch_height) * (image_width //
patch_width)

patch_dim = channels * patch_height * patch_width

# define patch embedding, positional embedding, dropout, and transformer
self.to_patch_embedding = Sequential(Rearrange, LayerNorm(patch_dim),
Linear(patch_dim, dim), LayerNorm(dim))

self.pos_embedding = Parameter(random(1, num_patches + 1, dim))
self.cls_token = Parameter(random(1, 1, dim))
self.dropout = Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim,
dropout)

# define pooling, latent layer, and MLP head
self.pool = pool
self.to_latent = Identity()
self.mlp_head = Sequential(LayerNorm(dim), Linear(dim, num_classes))

# forward pass
def forward(self, img):

x = self.to_patch_embedding(img)
b, n, _ = shape(x)
cls_tokens = repeat(self.cls_token, ’1 1 d -> b 1 d’, b = b)
x = concatenate((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = mean(x, dim = 1) if self.pool == ’mean’ else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)

Algorithm 2: Pytorch Style Pseudocode for Transformer Block in CRATE

# Class Transformer definition
class Transformer:

# initialization
def init(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):

# define layers
self.layers = []
self.depth = depth
for _ in range(depth):

self.layers.append([LayerNorm(dim, Attention(dim, heads, dim_head,
dropout))])

self.layers.append([LayerNorm(dim, FeedForward(dim, mlp_dim,
dropout))])

# forward pass
def forward(self, x):

for attn, ff in self.layers:
x_ = attn(x) + x
x = ff(x_)

return x
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Algorithm 3: Pseudocode for Attention and FeedForward
# Class FeedForward definition
class FeedForward:

# initialization
def init(self, dim, hidden_dim, dropout = 0., step_size=0.1, lambd=0.1):

self.weight = Parameter(Tensor(dim, dim))
init.kaiming_uniform_(self.weight)
self.step_size = step_size
self.lambd = lambd

# forward pass
def forward(self, x):

x1 = linear(x, self.weight, bias=None)
grad_1 = linear(x1, self.weight.t(), bias=None)
grad_2 = linear(x, self.weight.t(), bias=None)
grad_update = self.step_size * (grad_2 - grad_1) - self.step_size *
self.lambd

output = relu(x + grad_update)
return output

# Class Attention definition
class Attention:

# initialization
def init(self, dim, heads = 8, dim_head = 64, dropout = 0.):

inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = Softmax(dim = -1)
self.dropout = Dropout(dropout)
self.qkv = Linear(dim, inner_dim, bias=False)

self.to_out = Sequential(Linear(inner_dim, dim), Dropout(dropout)) if
project_out else nn.Identity()

# forward pass
def forward(self, x):

w = rearrange(self.qkv(x), ’b n (h d) -> b h n d’, h = self.heads)
dots = matmul(w, w.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = matmul(attn, w)
out = rearrange(out, ’b h n d -> b n (h d)’)
return self.to_out(out)
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B.2 Experimental Results831

In this subsection, we provide additional experimental results on CRATE, including layer-wise832

measurements, visualizations, as well as ablation studies.833

B.2.1 Layer-wise Evaluation and Visualization834

Layer-wise evaluation of compression and sparsity. Similar to Figure 3, we conduct the layer-835

wise evaluation of compression term and sparsity for CRATE-Tiny, CRATE-Base, and CRATE-Large.836

We observe similar behavior as mentioned in Section 3.1: both the compression term and the sparsity837

term improves as the layer index increases.838
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Figure 5: Left: The compression term Rc(Zℓ+1/2) of the MSSA outputs at different layers. Right: the sparsity
of the ISTA output block, ∥Zℓ+1∥0/(d ·N), at different layers.
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Visualizing layer-wise token representations. In Figure 6, we visualize the token representations839

Zℓ at different layers ℓ ∈ {1, . . . , 12}. We provide more results evaluated on other samples in840

Appendix B.2.2.841

Visualizing layer-wise subspaces in multi-head self-attention. We provide the visualization of842

U ℓ
[K] in Figure 7.843
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Figure 6: Visualizing layer-wise token Zℓ representations at each layer ℓ. To enhance the visual clarity, we
randomly extract a 50×50 sub-matrix from Zℓ for display purposes. (Model: CRATE-Tiny)
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Figure 7: We visualize the [U ℓ
1 , . . . ,U

ℓ
K ]

∗
[U ℓ

1 , . . . ,U
ℓ
K ] ∈ RpK×pK at different layers. The (i, j)-th block in

each sub-figure corresponds to (U ℓ
i )

∗U ℓ
j for i, j ∈ [K] at a particular layer ℓ. To enhance the visual clarity, for

each subspace Ui, we randomly pick 4 directions for display purposes. (Model: CRATE-Tiny)
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B.2.2 Additional Layer-wise Visualization844

We provide more results of the layer-wise token representation visualization on other samples in845

Figure 8, Figure 9, Figure 10, and Figure 11 (Model: CRATE-Base).846
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Figure 8: Visualizing layer-wise token Zℓ representations at each layer ℓ. To enhance the visual clarity, we
randomly extract a 50×50 sub-matrix from Zℓ for display purposes. (Sample 1)
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Figure 9: Visualizing layer-wise token Zℓ representations at each layer ℓ. To enhance the visual clarity, we
randomly extract a 50×50 sub-matrix from Zℓ for display purposes. (Sample 2)
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Figure 10: Visualizing layer-wise token Zℓ representations at each layer ℓ. To enhance the visual clarity, we
randomly extract a 50×50 sub-matrix from Zℓ for display purposes. (Sample 3)
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Figure 11: Visualizing layer-wise token Zℓ representations at each layer ℓ. To enhance the visual clarity, we
randomly extract a 50×50 sub-matrix from Zℓ for display purposes. (Sample 4)
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B.3 CRATE Ablation847

Hyperparameters of CRATE. In Table 2, we present evaluation of CRATE trained with various848

parameters. More specifically, we investigate the effect of number of epochs, weight decay, learning849

rate, step size (η) and the regularization term (λ) in ISTA block. As shown in Table 2, CRATE850

demonstrates consistently satisfactory performance across a diverse range of hyperparameters.851

Table 2: Top 1 accuracy of CRATE on various datasets with different architecture design variants when trained
on ImageNet.

Model epoch weight decay lr η (ISTA) λ (ISTA) ImageNet

CRATE-B 150 (default) 0.5 (default) 2.4× 10−4 0.1 0.1 70.8

CRATE-B 150 0.5 2.4× 10−4 0.02 0.1 70.7

CRATE-B 150 0.5 2.4× 10−4 0.5 0.1 66.7

CRATE-B 150 0.5 2.4× 10−4 0.1 0.02 70.8

CRATE-B 150 0.5 2.4× 10−4 0.1 0.5 70.5

CRATE-B 90 0.5 2.4× 10−4 0.1 0.1 69.5

CRATE-B 300 0.5 2.4× 10−4 0.1 0.1 70.9

CRATE-B 150 1.0 2.4× 10−4 0.1 0.1 70.3

CRATE-B 150 0.05 2.4× 10−4 0.1 0.1 70.2

CRATE-B 150 0.5 4.8× 10−4 0.1 0.1 70.2

CRATE-B 150 0.5 1.2× 10−4 0.1 0.1 70.3

B.4 Exploring Architecture Variants852

In this section, we explore the two following alternative architectures. One architecture involves a853

modification to the attention mechanism, while the other involves a modification to the sparsification854

mechanism. Again, we re-emphasize that these choices, although principled, are entirely modular and855

the choices we make here still lead to very simple architectures. A more sophisticated analysis may856

lead to different, more complicated architectures that perform better in practice. The architectures we857

experiment with are:858

• Compression-inspired attention mechanism: revert the change in (114). That is, the attention859

mechanism implements (11) and (12) directly.860

• Majorization-minimization proximal step sparsification: instead of (16), implement (91).861

We obtain the following classification results in Table 3. After conducting additional simplifications862

to the network architecture (i.e., imposing additional constraints to the network architecture design),863

we discover that CRATE maintains reasonable performance on ImageNet-1K.864

Table 3: Top 1 accuracy of CRATE on various datasets with different architecture design variants when trained
on ImageNet.

Model MSSA-block ISTA-block ImageNet

CRATE-B default default 70.8

CRATE-B Eq. (11) and (12) default 63.3
CRATE-B default Eq. (91) 68.6
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