Polyhedron Attention Module: Learning Adaptive-order Interactions

Anonymous Author(s)

Affiliation
Address
email

1 Appendixes
= Contents
3 A Deriving Eq. 2.

6 C Proof of Theorem 1 4
7 D Proof of Theorem 2 5

8 E Proof of Theorem 3 6
9 Proof of Theorem 4 7
10 G Implementation Detail 8

A Deriving Eq. 2.

We consider a L-layer $(L \geq 2)$ ReLU activated plain DNN module $f: \mathbb{R}^{n_{0}} \rightarrow \mathbb{R}^{n_{L}}$ with input $\mathbf{x} \in \mathbb{R}^{p}$. Let $W^{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell-1}}$ and $b^{\ell} \in \mathbb{R}^{n_{\ell}}$ be the weights and offset vectors of layer ℓ, for $\ell=\{1, \ldots, L\}$ and $n_{0}=p$. Let $f^{0}(\mathbf{x})=\mathbf{x}$. For $\ell \in\{1, \ldots, L\}$, we define recursively the pre- and post-activation output of every layer as

$$
\begin{aligned}
g^{\ell}(\mathbf{x}) & =W^{\ell} f^{\ell-1}(\mathbf{x})+b^{\ell} \\
f^{\ell}(\mathbf{x}) & =\operatorname{ReLU}\left(g^{\ell}(\mathbf{x})\right)
\end{aligned}
$$

where ReLU activation function is denoted by $\operatorname{ReLU}(t)=\max (0, t)$.
The first $L-1$ layers of the ReLU-activated DNN module has $\sum_{\ell=1}^{L-1} n_{\ell}$ activation functions, and thus have $2^{\sum_{\ell=1}^{L-1} n_{\ell}}$ possible activation states. Let $A \in\{1,-1\}^{\sum_{\ell=1}^{L-1} n_{\ell}}$ be an activation state $(1 /-1$ means activate/inactive) of all but the last layer's ReLU in the DNN module, and $A_{i}^{\ell} \in\{-1,1\}$ be the activation state of the $i^{t h}$ ReLU activation function in the $l^{t h}$ layer of the DNN module. Conditioned on $\left\{A^{1}, \ldots, A^{\ell-1}\right\}, g^{\ell}(\mathbf{x})$ can be rewritten as a linear function.

$$
\begin{align*}
& \left.g^{\ell}(\mathbf{x})\right|_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}} \\
= & \begin{cases}W_{\varnothing}^{(1)} \mathbf{x}+b_{\varnothing}^{(1)} \\
=W^{1} \mathbf{x}+b^{1}, & \ell=1, \\
W_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}}^{(\ell)} \mathbf{x}+b_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}}^{(\ell)} \\
=W^{\ell} \Sigma^{A^{\ell-1}} W_{\left\{A^{1}, \ldots, A^{\ell-2}\right\}}^{(\ell-1)} \mathbf{x}+W^{\ell} \Sigma^{A^{\ell-1}} b_{\left\{A^{1}, \ldots, A^{\ell-2}\right\}}^{(\ell-1)}+b^{\ell}, & \ell>1,\end{cases} \tag{1}
\end{align*}
$$

where $W_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}}^{(\ell)} \in \mathbb{R}^{n_{\ell} \times n_{0}}, b_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}}^{(\ell)} \in \mathbb{R}^{n_{\ell}}, \Sigma^{A^{\ell}}$ is a $n_{\ell} \times n_{\ell}$ matrix with

$$
\Sigma_{i, j}^{A^{\ell}}=\mathbb{1}\left(i=j \text { and } A_{i}^{\ell}=1\right)
$$

To generate the activation state A, \mathbf{x} should meet all inequalities $\left.A_{i}^{\ell} g_{i}^{\ell}(\mathbf{x})\right|_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}} \geq 0$ for $\forall \ell \in\{1,2, \ldots, L-1\}$ and $\forall i \in\left\{1,2, \ldots, n_{\ell}\right\}$, where $\left.g_{i}^{\ell}(\mathbf{x})\right|_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}}$ is the $i^{t h}$ result of $\left.g^{\ell}(\mathbf{x})\right|_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}}$. It results in a polyhedron Δ_{A} :

$$
\begin{equation*}
\Delta_{A}=\cap_{\ell \in\{1, \ldots, L-1\}} \cap_{i \in\left\{1, \ldots, n_{\ell}\right\}}\left\{\mathbf{z} \in \mathbb{R}^{p}\left|A_{i}^{\ell} g_{i}^{\ell}(\mathbf{z})\right|_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}} \geq 0\right\} \tag{2}
\end{equation*}
$$

Let the set of polyhedron be $\mathcal{S}_{\Delta}=\left\{\Delta_{A} \mid A \in\{1,-1\}^{\sum_{l=1}^{L-1} n_{\ell}}\right\}$. We have

$$
g^{L}(\mathbf{x})= \begin{cases}W_{\Delta_{1}}^{(L)} \mathbf{x}+b_{\Delta_{1}}^{(L)}, & \mathbf{x} \in \Delta_{1} \tag{3}\\ \cdots & \\ W_{\Delta_{\left|\mathcal{S}_{\Delta}\right|}}^{(L)} \mathbf{x}+b_{\Delta_{\left|\mathcal{S}_{\Delta}\right|}}^{(L)} & \mathbf{x} \in \Delta_{\left|\mathcal{S}_{\Delta}\right|}\end{cases}
$$

Then the $i^{t h}$ activation function's output in the last layer of the DNN can be expressed as

$$
\begin{aligned}
& \operatorname{Re} L U\left(g_{i}^{L}(\mathbf{x})\right)=\sum_{\Delta \in \mathcal{S}_{\Delta}} \mathbb{1}(\mathbf{x} \in \Delta) \operatorname{Re} L U\left(W_{\Delta, i}^{(L)} \mathbf{x}+b_{\Delta, i}^{(L)}\right) \\
= & \sum_{\Delta \in \mathcal{S}_{\Delta}} \mathbb{1}\left(\mathbf{x} \in \Delta, W_{\Delta, i}^{(L)} \mathbf{x}+b_{\Delta, i}^{(L)} \geq 0\right)\left(W_{\Delta, i}^{(L)} \mathbf{x}+b_{\Delta, i}^{(L)}\right)+\sum_{\Delta \in \mathcal{S}_{\Delta}} \mathbb{1}\left(\mathbf{x} \in \Delta, W_{\Delta, i}^{(L)} \mathbf{x}+b_{\Delta, i}^{(L)}<0\right) \cdot 0 \\
= & \sum_{\Delta \in \mathcal{S}_{\Delta}} \mathbb{1}\left(\mathbf{x} \in \Delta, W_{\Delta, i}^{(L)} \mathbf{x}+b_{\Delta, i}^{(L)} \geq 0\right) \operatorname{dist}\left(\mathbf{x}, H_{\Delta, i, L}\right)\left\|W_{\Delta, i}^{(L)}\right\| \\
& +\sum_{\Delta \in \mathcal{S}_{\Delta}} \mathbb{1}\left(\mathbf{x} \in \Delta, W_{\Delta, i}^{(L)} \mathbf{x}+b_{\Delta, i}^{(L)}<0\right) \operatorname{dist}\left(\mathbf{x}, H_{\Delta, i, L}\right) \cdot 0
\end{aligned}
$$

where $g_{i}^{L}(\mathbf{x})$ is the $i^{\text {th }}$ element of $g^{L}(\mathbf{x})$'s output, $W_{\Delta, i}^{(L)}$ is the $i^{\text {th }}$ row of $W_{\Delta}^{(L)}, b_{\Delta, i}^{(L)}$ is the $i^{\text {th }}$ element of $b_{\Delta}^{(L)}$, and $\operatorname{dist}\left(\mathbf{x}, H_{\Delta, i, L}\right)$ is the distance from \mathbf{x} to $W_{\Delta, i}^{(L)} \mathbf{x}+b_{\Delta, i}^{(L)}=0$. Let $\Delta_{1}=\{\mathbf{x} \in$ $\left.\Delta, W_{\Delta, i}^{(L)} \mathbf{x}+b_{\Delta, i}^{(L)} \geq 0\right\}$ and $\Delta_{2}=\left\{\mathbf{x} \in \Delta, W_{\Delta, i}^{(L)} \mathbf{x}+b_{\Delta, i}^{(L)}<0\right\}$. Eq. 2 in the main text can be obtained by rewriting $\sum_{\Delta \in \mathcal{S}_{\Delta}}$ as \sum_{Δ}.

B The hyperplane set generated by the oblique tree is a superset of that created by the ReLU-activated plain DNN

An oblique tree is a binary tree where each node splits the space by a hyperplane rather than by thresholding a single feature. The tree starts with the root of the full input space \mathcal{S}, and by recursively splitting \mathcal{S}, the tree grows deeper. For a D-depth $(D \geq 3)$ binary tree, there are $2^{D-1}-1$ internal nodes and 2^{D-1} leaf nodes. As shown in Fig. 3, each internal and leaf node maintains a sub-space representing a polyhedron Δ in \mathcal{S}, and each layer of the tree corresponds to a partition of the input space into polyhedrons. Denote the polyhedron defined in node n by Δ_{n}, and the left and right child nodes of n by n_{L} and n_{R}. We perform soft partition to split each Δ_{n} into $\Delta_{n_{L}}$ and $\Delta_{n_{R}}$ with an overlapping buffer. Let the splitting hyperplane be $\left\{\mathbf{x} \in \mathbb{R}^{p}: W_{n} \mathbf{x}+b_{n}=0\right\}$. Then the two sub-spaces $\Delta_{n_{L}}$ and $\Delta_{n_{R}}$ are defined as follows:

$$
\begin{align*}
& \Delta_{n_{L}}=\left\{\mathbf{x} \in \Delta_{n} \mid W_{n} \mathbf{x}+b_{n} \geq-U_{n}\right\} \\
& \Delta_{n_{R}}=\left\{\mathbf{x} \in \Delta_{n} \mid-W_{n} \mathbf{x}-b_{n} \geq-U_{n}\right\} \tag{4}
\end{align*}
$$

where U_{n} indicates the width of the overlapping buffer.
According to the Appendix A, a ReLU-activated plain DNN $g^{L}(\mathbf{x})$ can be rewritten as a piece-wise linear function dividing the input space into a set of polyhedrons \mathcal{S}_{Δ}. In this section, we are going to prove that for any \mathcal{S}_{Δ} generated by the ReLU-activated plain DNN, there exists an oblique tree dividing the input space into the same polyhedron set.

Proof: Statement: For any \mathcal{S}_{Δ} generated by the ReLU-activated plain DNN, there exists an oblique tree dividing the input space into the same polyhedron set.

Base Case: Let $A^{\ell}=\{1,-1\}^{n_{\ell}}$ be the activation state ($1 /-1$ means activate/ inactive) of the $\ell^{\text {th }}$ layer of the DNN. To generate the activation state A^{1}, the input of the ReLU-activated plain DNN x belongs to the polyhedron

$$
\Delta_{\left\{A^{1}\right\}}=\cap_{i \in\left\{1, \ldots, n_{1}\right\}}\left\{\mathbf{z} \in \mathbb{R}^{p}\left|A_{i}^{1} g_{i}^{1}(\mathbf{z})\right|_{\varnothing} \geq 0\right\}
$$

where $\left.g_{i}^{1}(\mathbf{x})\right|_{\varnothing}$ is defined in Eq. 1 . We can build an oblique tree T^{1} to generate $\Delta_{\left\{A^{1}\right\}}$. In particular, the depth of the oblique tree is $n_{1}+1$. Let \mathcal{N}_{d} be the oblique tree's node set with depth $d\left(d \in\left\{1,2, \ldots, n_{1}\right\}\right)$. For each node $n \in \mathcal{N}_{d}$, we have $W_{n}=W_{d}^{1}, b_{n}=b_{d}^{1}$, and $U_{n}=0$ (see definitions in Eq. 4. According to Eq. 6 in the main text, for each T^{1} 's leaf node n, the oblique tree generates polyhedrons following

$$
\Delta_{n}=\left[\cap_{n^{\prime} \in \mathcal{P}_{n}^{l}}\left\{\mathbf{z} \in \mathbb{R}^{p} \mid W_{n^{\prime}} \mathbf{z}+b_{n^{\prime}} \geq 0\right\}\right] \cap\left[\cap_{n^{\prime} \in \mathcal{P}_{n}^{r}}\left\{\mathbf{z} \in \mathbb{R}^{p} \mid\left(-W_{n^{\prime}}\right) \mathbf{z}+\left(-b_{n^{\prime}}\right) \geq 0\right\}\right] .
$$

For any possible A^{1}, we can find a leaf node n from $\mathcal{N}_{n_{1}+1}$ with $\Delta_{n}=\Delta_{\left\{A^{1}\right\}}$. Then for each leaf node n, we can also find a activation state with $\Delta_{\left\{A^{1}\right\}}=\Delta_{n}$. Therefore, we have $\left\{\Delta_{\left\{A^{1}\right\}} \mid A^{\ell^{\prime}} \in\right.$ $\left.\{1,-1\}^{n_{\ell^{\prime}}}, \ell^{\prime} \in\{1\}\right\}=\left\{\Delta_{n} \mid n\right.$ is T^{1} 's leaf node $\}$.
Inductive Step: To generate activation states $\left\{A^{1}, \ldots, A^{\ell-1}\right\}(\ell>1)$, according to Eq. 2 , the input of the DNN model belongs to

$$
\Delta_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}}=\cap_{\ell^{\prime} \in\{1, \ldots, \ell-1\}} \cap_{i \in\left\{1, \ldots, n_{\ell^{\prime}}\right\}}\left\{\mathbf{z} \in \mathbb{R}^{p}\left|A_{i}^{\ell^{\prime}} g_{i}^{\ell^{\prime}}(\mathbf{z})\right|_{\left\{A^{1}, \ldots, A^{\ell^{\prime}-1}\right\}} \geq 0\right\}
$$

If there exists a $\left(\sum_{l^{\prime}=1}^{l-1} n_{\ell^{\prime}}+1\right)$-depth oblique tree $T^{\ell-1}$ splitting the input space into a set of polyhedrons with $\left\{\Delta_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}} \mid A^{\ell^{\prime}} \in\{1,-1\}^{n_{\ell^{\prime}}}, \ell^{\prime} \in\{1,2, \ldots, \ell-1\}\right\}=\left\{\Delta_{n} \mid n\right.$ is $T^{\ell-1}$'s leaf node $\}$, by adding nodes to $T^{\ell-1}$, we could build a $\left(\sum_{l^{\prime}=1}^{l} n_{\ell^{\prime}}+1\right)$-depth oblique tree T^{ℓ} with $\left\{\Delta_{\left\{A^{1}, \ldots, A^{\ell}\right\}} \mid A^{\ell^{\prime}} \in\{1,-1\}^{n_{\ell^{\prime}}}, \ell^{\prime} \in\{1,2, \ldots, \ell\}\right\}=\left\{\Delta_{n} \mid n\right.$ is T^{ℓ} 's leaf node $\}$. In the following part, we exhibit the pipeline to build T^{ℓ}.
For each $T^{\ell-1}$,s leaf node n with $\Delta_{n}=\Delta_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}}$, We build an oblique sub-tree rooted at n to generate

$$
\Delta_{\left\{A^{1}, \ldots, A^{\ell}\right\}}=\Delta_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}} \cap\left[\cap_{i \in\left\{1, \ldots, n_{\ell}\right\}}\left\{\mathbf{z} \in \mathbb{R}^{p}\left|A_{i}^{\ell} g_{i}^{\ell}(\mathbf{z})\right|_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}} \geq 0\right\}\right] .
$$

In particular, the depth of the oblique sub-tree is $n_{\ell}+1$. Let \mathcal{N}_{d} be the oblique sub-tree's node set with depth d. For each node $n \in \mathcal{N}_{d}$, we have $W_{n}=W_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}, d}^{(\ell)}, b_{n}=b_{\left\{A^{1}, \ldots, A^{\ell-1}\right\}, d}^{(\ell)}$, and

$$
\begin{align*}
& \sum_{n \in \mathcal{N}_{D}} a_{n}(\mathbf{x}) V\left(\mathbf{x} ; \theta_{n}\right)+\sum_{n \in \mathcal{N}_{D-1}} a_{n}(\mathbf{x}) V\left(\mathbf{x} ; \theta_{n}\right) \\
= & \sum_{n \in \mathcal{N}_{D}} \mathbb{1}(n \text { is the left child node }) a_{n}(\mathbf{x}) V\left(\mathbf{x} ; \theta_{n}\right)+\sum_{n \in \mathcal{N}_{D}} \mathbb{1}(n \text { is the right child node }) a_{n}(\mathbf{x}) V\left(\mathbf{x} ; \theta_{n}\right) \\
& +\sum_{n \in \mathcal{N}_{D-1}} a_{n}(\mathbf{x}) V\left(\mathbf{x} ; \theta_{n}\right) \\
= & \sum_{n \in \mathcal{N}_{D}} \mathbb{1}(n \text { is the left child node }) a_{n}(\mathbf{x})\left(V\left(\mathbf{x} ; \theta_{n}\right)-V\left(\mathbf{x} ; \theta_{S_{n}}\right)\right) \\
+ & \sum_{n \in \mathcal{N}_{D-1}} a_{n}(\mathbf{x})\left(2 U_{n} V\left(\mathbf{x} ; \theta_{n_{R}}\right)+V\left(\mathbf{x} ; \theta_{n}\right)\right) \tag{7}
\end{align*}
$$

Since V belongs to \mathcal{V}, a function set closed under linear transformation, we have

$$
\begin{array}{lrl}
V\left(\mathbf{x} ; \theta_{n}^{\prime}\right) & =V\left(\mathbf{x} ; \theta_{n}\right)-V\left(\mathbf{x} ; \theta_{S_{n}}\right), & n \in \mathcal{N}_{D} \\
V\left(\mathbf{x} ; \theta_{n}^{\prime \prime}\right) & =2 U_{n} V\left(\mathbf{x} ; \theta_{n_{R}}\right)+V_{n}\left(\mathbf{x} ; \theta_{n}\right), & n \in \mathcal{N}_{D-1}
\end{array}
$$

Therefore, $\frac{\left|\mathcal{N}_{D}\right|}{2}$ attention scores and value functions can be removed in depth D. By replacing value functions from depth D to 2 following Eq. 7. the number of value functions is halved in each depth of the tree. It means that \mathcal{S}_{Δ} can be replaced by \mathcal{S}_{Δ}^{-}.

D Proof of Theorem 2

For any input \mathbf{x}, by calculating $\phi_{\mathcal{I}}(\mathbf{x})$ for each $\mathcal{I} \subseteq\{1,2, \ldots, p\}$ via Algorithm 1, we have $\sum_{\mathcal{I} \subseteq\{1,2, \ldots, p\}} \phi_{\mathcal{I}}(\mathbf{x})=f_{P A M}(\mathbf{x})$.

Proof: We first shows that $f_{P A M}$ can be written explicitly out as $g(\mathbf{x})$ according to which polyhedron(s) x belongs to.
As shown in Eq. 8, max and min operators in PAM's attentions can be rewritten as the ReLU-activated function

$$
\begin{equation*}
\max (\mathbf{z}, 0)=\operatorname{Re} L U(\mathbf{z}) \text { and } \min \left(\mathbf{z}, 2 U_{i}\right)=-\operatorname{Re} L U\left(-\mathbf{z}+2 U_{i}\right)+2 U_{i} \tag{8}
\end{equation*}
$$

the calculation of each PAM's attention score contains 2 ReLU activation functions. Suppose that the $f_{P A M}$ has n_{a} ReLU activation functions in total, which results in $2^{n_{a}}$ possible activation states. Let $A=\left\{A_{1}, \ldots, A_{n_{a}}\right\} \in\{1,-1\}^{n_{a}}$ be an activation state ($1 /-1$ means activate/inactive) of $f_{P A M}(\mathbf{x})$, and \mathcal{A} be the set containing all possible activation states. Let $\operatorname{Re} L U\left(h_{i}(\mathbf{x})\right)$ be the $i^{\text {th }}$ ReLU activation function in $f_{P A M}(\mathbf{x})$. We have

$$
\begin{equation*}
f_{P A M}(\mathbf{x})=\sum_{A \in \mathcal{A}}\left[\prod_{i=1}^{n_{a}} \mathbb{1}\left(A_{i} h_{i}(\mathbf{x}) \geq 0\right)\right] g_{A}(\mathbf{x}) \tag{9}
\end{equation*}
$$

where $g_{A}(\mathbf{x})$ is a polynomial function differentiable everywhere under the activation state A. In particular, if we have an activation state A, we can obtain $g_{A}(\mathbf{x})$ by replacing the ReLU activations in $f_{P A M}(\mathbf{x})$ with either $h_{i}(\mathbf{x})$ or 0 depending on whether the corresponding pre-activation value $h_{i}(\mathbf{x})$ is non-negative or negative, respectively. For the sake of simplicity, we simplify $g_{A}(\mathbf{x})$ as $g(\mathbf{x})$. Given the definition of our attention in Eq. 9 in the main text, the highest polynomial order is $D-1$ in the attention, together with the affine value function, the highest polynomial order of $g(\mathbf{x})$ is D. Since we have assumed $f_{P A M}$ has only one output at the beginning of section 4 in the main text, $g(\mathbf{x}): \mathbb{R}^{p} \rightarrow \mathbb{R}$ is a $D+1$ times continuously differentiable function at every point $\mathbf{a} \in \mathbb{R}^{p}$, and $g(\mathbf{x})$'s $(D+1)$-order partial derivatives always equals zero, the D order Taylor polynomial of $g(\mathbf{x})$ at the point \mathbf{a} is

$$
\begin{equation*}
g(\mathbf{x})=\sum_{|\mathbf{m}| \leq D} \frac{D^{\mathbf{m}} g(\mathbf{a})}{\mathbf{m}!}(\mathbf{x}-\mathbf{a})^{\mathbf{m}}=\sum_{|\mathbf{m}| \leq D} w_{\mathbf{m}} \mathbf{x}^{\mathbf{m}} \tag{10}
\end{equation*}
$$

where $\mathbf{m}=\left\{m_{1}, m_{2}, \ldots, m_{p}\right\}$ with $m_{i} \in \mathbb{Z}^{+},|\mathbf{m}|=m_{1}+\ldots+m_{p}, m!=m_{1}!\ldots m_{p}!, \mathbf{x}^{\mathbf{m}}=$ $x_{1}^{m_{1}} \ldots x_{p}^{m_{p}}, D^{\mathbf{m}} g=\frac{\partial^{|\mathbf{m}|} g}{\partial x_{1}^{m_{1}} \ldots \partial x_{p}^{m_{p}}}$ and $w_{\mathbf{m}} \in \mathbb{R}$ is the weight for the interaction term $\mathbf{x}^{\mathbf{m}}$. Let $\mathcal{I} \subseteq\{1,2, \ldots, p\}$ be a set of \mathbf{x} 's feature indices. The interaction effects among \mathbf{x} 's elements indexed by \mathcal{I} are defined by

$$
\begin{align*}
& \phi_{\mathcal{I}}(\mathbf{x})=\sum_{|\mathbf{m}| \leq D} \mathbb{1}\left(\prod_{i \in \mathcal{I}} m_{i}>0 \text { and } \sum_{i \in\{1,2, \ldots, p\} / \mathcal{I}} m_{i}=0\right) w_{\mathbf{m}} \mathbf{x}_{1}^{m_{1}} \ldots x_{p}^{m_{p}} \tag{11}\\
& \phi_{\varnothing}(\mathbf{x})=g(\mathbf{0})=\left.w_{\mathbf{m}}\right|_{|\mathbf{m}|=0},
\end{align*}
$$

where $\phi_{\varnothing}(\mathbf{x})$ is the constant effects. Obviously, we have

$$
\sum_{\mathcal{I} \subseteq\{1,2, \ldots, p\}} \phi_{\mathcal{I}}(\mathbf{x})=g(\mathbf{x}) .
$$

$$
\begin{align*}
\phi_{\mathcal{I}}(\mathbf{x}) & =\sum_{|\mathbf{m}| \leq D} \mathbb{1}\left(\prod_{i \in \mathcal{I}} m_{i}>0\right) w_{\mathbf{m}}\left(\mathbf{0}^{-\mathcal{I}} \odot \mathbf{x}\right)^{\mathbf{m}} \\
& =\sum_{|\mathbf{m}| \leq D} w_{\mathbf{m}}\left(\mathbf{0}^{-\mathcal{I}} \odot \mathbf{x}\right)^{\mathbf{m}}-\sum_{|\mathbf{m}| \leq D} \mathbb{1}\left(\prod_{i \in \mathcal{I}} m_{i}=0\right) w_{\mathbf{m}}\left(\mathbf{0}^{-\mathcal{I}} \odot \mathbf{x}\right)^{\mathbf{m}} \\
& =\sum_{|\mathbf{m}| \leq D} w_{\mathbf{m}}\left(\mathbf{0}^{-\mathcal{I}} \odot \mathbf{x}\right)^{\mathbf{m}}-\sum_{|\mathbf{m}| \leq D}\left[\sum_{\mathcal{I}^{\prime} \subset \mathcal{I}} \mathbb{1}\left(\prod_{i \in \mathcal{I}^{\prime}} m_{i}>0 \text { and } \sum_{i \in\{1,2, \ldots, p\} / \mathcal{I}^{\prime}} m_{i}=0\right)\right] w_{\mathbf{m}}\left(\mathbf{0}^{-\mathcal{I}} \odot \mathbf{x}\right)^{\mathbf{m}} \\
& =\sum_{|\mathbf{m}| \leq D} w_{\mathbf{m}}\left(\mathbf{0}^{-\mathcal{I}} \odot \mathbf{x}\right)^{\mathbf{m}}-\sum_{|\mathbf{m}| \leq D} \sum_{\mathcal{I}^{\prime} \subset \mathcal{I}} \mathbb{1}\left(\prod_{i \in \mathcal{I}^{\prime}} m_{i}>0\right) w_{\mathbf{m}}\left(\mathbf{0}^{-\mathcal{I}^{\prime}} \odot \mathbf{0}^{-\mathcal{I}} \odot \mathbf{x}\right)^{\mathbf{m}} \\
& =\sum_{|\mathbf{m}| \leq D} w_{\mathbf{m}}\left(\mathbf{0}^{-\mathcal{I}} \odot \mathbf{x}\right)^{\mathbf{m}}-\sum_{|\mathbf{m}| \leq D} \sum_{\mathcal{I}^{\prime} \subset \mathcal{I}} \mathbb{I}\left(\prod_{i \in \mathcal{I}^{\prime}} m_{i}>0\right) w_{\mathbf{m}}\left(\mathbf{0}^{-\mathcal{I}^{\prime}} \odot \mathbf{x}\right)^{\mathbf{m}} \\
& =g\left(\mathbf{0}^{-\mathcal{I}} \odot \mathbf{x}\right)-\sum_{\mathcal{I}^{\prime} \subset \mathcal{I}} \phi_{\mathcal{I}^{\prime}}(\mathbf{x}) . \tag{12}
\end{align*}
$$

where $\mathbf{0}^{-\mathcal{I}}$ is a d-length zero vector with ones indexced by \mathcal{I}, \odot is the Hadamard product operator. Since we have $\phi_{\varnothing}(\mathbf{x})=g(\mathbf{0})$, we can calcualte any $\phi_{\mathcal{I}}(\mathbf{x})$ by recursively calculating $\phi_{\mathcal{I}^{\prime}}(\mathbf{x})$ for every \mathcal{I} 's subset \mathcal{I}^{\prime}.

E Proof of Theorem 3

If \mathbf{x} is bounded and sampled from a distribution with upper-bounded probability density function, then for any ReLU activated plain DNN model $f_{\mathrm{DNN}}(\mathbf{x})$, there exists a PAM with

$$
\operatorname{Pr}\left(f_{P A M}(\mathbf{x})=f_{\mathrm{DNN}}(\mathbf{x})\right) \rightarrow 1
$$

Proof: For any oblique tree's internal node n in the PAM, we set $V\left(\mathbf{x} ; \theta_{n}\right) \equiv 0$. Then by setting $V\left(\mathbf{x}, \theta_{G}\right) \equiv 0$, with the set of T 's leaf node \mathcal{N}_{D}, we have

$$
\begin{align*}
& f_{P A M}(\mathbf{x}) \\
= & \sum_{n^{\prime} \in \mathcal{N}_{D}} a_{n^{\prime}}(\mathbf{x}) V\left(\mathbf{x} ; \theta_{n^{\prime}}\right) \\
= & \sum_{n^{\prime} \in \mathcal{N}_{D}} \prod_{i \in \mathcal{P}_{n^{\prime}}^{l}} \max \left(\min \left(W_{i} \mathbf{x}+b_{i}+U_{i}, 2 U_{i}\right), 0\right) \prod_{i \in \mathcal{P}_{n^{\prime}}^{r}} \max \left(\min \left(-W_{i} \mathbf{x}-b_{i}+U_{i}, 2 U_{i}\right), 0\right) V\left(\mathbf{x} ; \theta_{n^{\prime}}\right) \\
= & \sum_{n^{\prime} \in \mathcal{N}_{D}}\left[\prod_{i \in \mathcal{P}_{n^{\prime}}^{l}} \mathbb{1}\left(W_{i} \mathbf{x}+b_{i}+U_{i} \geq 2 U_{i}\right) \prod_{i \in \mathcal{P}_{n^{\prime}}^{r}} \mathbb{1}\left(-W_{i} \mathbf{x}-b_{i}+U_{i} \geq 2 U_{i}\right)\left[\prod_{i \in \mathcal{P}_{n^{\prime}}^{l} \cup \mathcal{P}_{n^{\prime}}^{r}} 2 U_{i}\right] V\left(\mathbf{x} ; \theta_{n^{\prime}}\right)\right. \\
+ & \left.\left(1-\prod_{i \in \mathcal{P}_{n^{\prime}}^{l},} \mathbb{1}\left(W_{i} \mathbf{x}+b_{i}+U_{i} \geq 2 U_{i}\right) \prod_{i \in \mathcal{P}_{n^{\prime}}^{r}} \mathbb{1}\left(-W_{i} \mathbf{x}-b_{i}+U_{i} \geq 2 U_{i}\right)\right) a_{n^{\prime}}(\mathbf{x}) V\left(\mathbf{x} ; \theta_{n^{\prime}}\right)\right] . \tag{13}
\end{align*}
$$

Given \mathbf{x}, if there exists a T 's leaf node n^{\prime} with

$$
\prod_{i \in \mathcal{P}_{n^{\prime}}^{l}} \mathbb{1}\left(W_{i} \mathbf{x}+b_{i}+U_{i} \geq 2 U_{i}\right) \prod_{i \in \mathcal{P}_{n^{\prime}}^{r}} \mathbb{1}\left(-W_{i} \mathbf{x}-b_{i}+U_{i} \geq 2 U_{i}\right)=1
$$

we have

$$
\begin{equation*}
\prod_{i \in \mathcal{P}_{n^{\prime}}^{l}} \mathbb{1}\left(W_{i} \mathbf{x}+b_{i} \geq 0\right) \prod_{i \in \mathcal{P}_{n^{\prime}}^{r}} \mathbb{1}\left(-W_{i} \mathbf{x}-b_{i} \geq 0\right)=1 \tag{14}
\end{equation*}
$$

Therefore, conditioned on the event

$$
\mathcal{E}=\left\{\exists n^{\prime} \in \mathcal{N}_{D}, \prod_{i \in \mathcal{P}_{n^{\prime}}^{l}} \mathbb{1}\left(W_{i} \mathbf{x}+b_{i}+U_{i} \geq 2 U_{i}\right) \prod_{i \in \mathcal{P}_{n^{\prime}}^{r}} \mathbb{1}\left(-W_{i} \mathbf{x}-b_{i}+U_{i} \geq 2 U_{i}\right)=1\right\}
$$

we have

$$
\begin{aligned}
& \left.f_{P A M}(\mathbf{x})\right|_{\mathcal{E}} \\
= & \sum_{n^{\prime} \in \mathcal{N}_{D}} \prod_{i \in \mathcal{P}_{n^{\prime}}^{l}} \mathbb{1}\left(W_{i} \mathbf{x}+b_{i} \geq 0\right) \prod_{i \in \mathcal{P}_{n^{\prime}}^{r}} \mathbb{1}\left(-W_{i} \mathbf{x}-b_{i} \geq 0\right)\left[\prod_{i \in \mathcal{P}_{n^{\prime}}^{l} \cup \mathcal{P}_{n^{\prime}}^{r}} 2 U_{i}\right] V\left(\mathbf{x} ; \theta_{n^{\prime}}\right) .
\end{aligned}
$$

If we set W_{i}, b_{i} following the pipeline in Appendix B , we have $\mathcal{N}_{D}=\mathcal{S}_{\Delta}$ (see definition in Eq. 3). Then for each $\Delta \in \mathcal{S}_{\Delta}$, by setting

$$
\left[\prod_{i \in \mathcal{P}_{n^{\prime}}^{l} \cup \mathcal{P}_{n^{\prime}}^{r}} 2 U_{i}\right] V\left(\mathbf{x} ; \theta_{n^{\prime}}\right)=W_{\Delta} \mathbf{x}+b_{\Delta}
$$

we have

$$
\left.f_{P A M}(\mathbf{x})\right|_{\mathcal{E}}=g^{L}(\mathbf{x}) .
$$

To bound the probability of $\operatorname{Pr}\left(f_{P A M}(\mathbf{x})=f_{\mathrm{DNN}}(\mathbf{x})\right)$, we need to bound

$$
\begin{align*}
& \operatorname{Pr}\left(f_{P A M}(\mathbf{x})=f_{D N N}(\mathbf{x})\right) \\
= & \operatorname{Pr}\left(\exists n^{\prime} \in \mathcal{N}_{D}, \prod_{i \in \mathcal{P}_{n^{\prime}}^{l}} \mathbb{1}\left(W_{i} \mathbf{x}+b_{i}+U_{i} \geq 2 U_{i}\right) \prod_{i \in \mathcal{P}_{n^{\prime}}^{r}} \mathbb{1}\left(-W_{i} \mathbf{x}-b_{i}+U_{i} \geq 2 U_{i}\right)=1\right) \\
= & \sum_{n^{\prime} \in \mathcal{N}_{D}} \operatorname{Pr}\left(\prod_{i \in \mathcal{P}_{n^{\prime}}^{l}} \mathbb{1}\left(W_{i} \mathbf{x}+b_{i} \geq U_{i}\right) \prod_{i \in \mathcal{P}_{n^{\prime}}^{r}} \mathbb{1}\left(-W_{i} \mathbf{x}-b_{i} \geq U_{i}\right)=1\right) . \tag{15}
\end{align*}
$$

According to Eq. 15, $\operatorname{Pr}\left(f_{P A M}(\mathbf{x})=f_{D N N}(\mathbf{x})\right)$ increases as U_{i} decreases. When $U_{i}=0$, it's easy to get $\operatorname{Pr}\left(f_{P A M}(\mathbf{x})=f_{D N N}(\mathbf{x})\right)=1$. Therefore, with $U_{i} \rightarrow 0$, we have $\operatorname{Pr}\left(f_{P A M}(\mathbf{x})=\right.$ $\left.f_{D N N}(\mathbf{x})\right) \rightarrow 1$.

F Proof of Theorem 4

Before providing the proof of Theorem 4, we establish Lemma 1 as its foundation.
Lemma 1 Under Assumption 1 in the main text, for any $p, n>0, \epsilon \in(0,1)$, and $\mathbf{z} \in[0,1]^{p+n-1}$, if we have a function $Q(\mathbf{z})=z_{1} z_{2} \ldots z_{p+n-1}$, a function could be built on the basis of $Q(\mathbf{z})$ which can 1) approximates any function from $F_{n, p}$ with an error bound ϵ in the sense of L^{∞} with at most $N_{Q} p^{n}(N+1)^{p}$ parameters, where N_{Q} is the number of trainable parameter in Q, and $N=\left\lceil\left(\frac{n!}{2^{p} p^{n}} \frac{\epsilon}{2}\right)^{-\frac{1}{n}}\right\rceil$.

Proof: By replacing Ep. 18's nested Q with $Q(\mathbf{z})$ in Theorem 1 in [1], we could get the conclusion.

Theorem 4 For any $p, n>0$ and $\epsilon \in(0,1)$, we have a PAM which can 1) approximates any function from $F_{n, p}$ with an error bound ϵ in the sense of L^{∞} with at most $2 p^{n}(N+1)^{p}(p+n-1)$ parameters, where $N=\left\lceil\left(\frac{n!}{2^{p} p^{n}} \frac{\epsilon}{2}\right)^{-\frac{1}{n}}\right\rceil$.

Proof: To prove Theorem 4, we first show that there exists a PAM $f_{P A M}(\mathbf{z})$ outputting $z_{1} z_{2} \ldots z_{N_{p+n-1}}$. In particular, we construct a $(p+n)$-depth oblique tree T. For any T 's internal node i, we set $U_{i}=U_{C}$ as an extremely large hyper-parameter. For any depth $d \in\{1,2, \ldots, p+n-1\}$, all nodes with depth d share the same hyperplane with $b_{i}=0$ and

$$
W_{i, j}=\left\{\begin{array}{l}
1, j=d \\
0, j \neq d
\end{array}\right.
$$

for $j \in\{1,2, \ldots, p+n-1\}$, which means that each depth has 2 parameters, and the oblique tree has $2(p+n-1)$ parameters.
According to the Assumption 1 in the main text, \mathbf{x} is bounded, which means that with $U_{C} \geq 1$, for any leaf node l, we have

$$
\begin{aligned}
a_{\Delta_{l}}(\mathbf{z}) & \left.=\prod_{n \in \mathcal{P}_{l}^{l}} \min \max \left(\left(z_{d_{l}}+U_{C}, 0\right), 2 U_{C}\right) \prod_{l \in \mathcal{P}_{l}^{r}} \min \max \left(-z_{d_{l}}+U_{C}, 0\right), 2 U_{C}\right) \\
& =\prod_{l \in \mathcal{P}_{l}^{l}} z_{d_{l}}+U_{C} \prod_{l \in \mathcal{P}_{l}^{r}}-z_{d_{l}}+U_{C}
\end{aligned}
$$

G Implementation Detail

Figure 1: The structure of PAM-Net with 2 levels. BN: Batch Norm Layer; AVG: average; SUM: summation; Dropout: Dropout layer; Mul: matrix multiplication.
where d_{n} is the depth of node n. Then for any oblique tree's node $n, V\left(\mathbf{z} ; \theta_{n}\right)$ is fixed following

$$
V\left(\mathbf{z} ; \theta_{n}\right)= \begin{cases}0, & n \text { is the internal node } \\ \frac{(-1)^{\left|\mathcal{P}_{n}^{r}\right|}}{2^{p+n-1}}, & n \text { is the leaf node }\end{cases}
$$

we have

$$
f_{P A M}(\mathbf{z})=z_{1} z_{2} \ldots z_{N_{d+n-1}} .
$$

With $Q(\mathbf{z})=f_{P A M}(\mathbf{z})=z_{1} z_{2} \ldots z_{N_{d+n-1}}$, we get the conclusion following the Lemma 1 .

As shown in Fig. 1, we combine PAMs in a successive manner similar to cascade forest [2, 3, 4], and name the resultant network as the PAM-Net. In the PAM-Net, each PAM at a higher level calculates interactions among the outputs from its preceding level. Each level of PAM-Net maintains a forest, i.e., a set of PAMs of the same depth D, and outputs the average of these PAM outputs.

We follow the principle of Yan et al's work [5] to discuss the complexity of PAMs shown in Fig. 1] In Fig. 1. we consider two kinds of value functions, i.e., $V\left(x ; \theta_{n}\right)=W_{n} x+b_{n}, W_{n} \in \mathbb{R}^{p \times 1}, b_{n} \in \mathbb{R}$. Since a PAM with a D-depth oblique tree has 2^{D-1} value functions (1 global value function following Eq. 3 in the main text and $2^{D-1}-1$ value functions for polyhedrons following Remark 1 in the main text), and the dimension of PAM's input is p according to Eq. 4 in the main text, the memory complexity of these two kinds of value functions is $\mathcal{O}\left(2^{D} p\right)$. In addition to the value function, a D-depth oblique tree has $2^{D-1}-1$ hyperplanes with $\mathcal{O}\left(2^{D-1} p\right)$ trainable parameters. Therefore, the total memory complexity of PAM is $\mathcal{O}\left(2^{D} p\right)$. As for the time complexity, PAM need to 1) calculate the attention score following Eq. 9 in the main text, 2) generate the corresponding values via value functions mentioned above, and 3) output $f_{P A M}$ by multiplying the attention with values following Eq. 8 in the main text. As shown in Table 1 , the TIME complexity of PAM is $\mathcal{O}\left(2^{D-1}(2 p+D)\right)$.
For the classification task (Criteo and Avazu dataset), we compress the high dimensional inputs into numerical vectors of a fixed length following the protocol of BARS [6]. For each one-hot encoded or continuous feature, denoted by $x_{i}^{r a w}$, a numerical vector with a fixed length of 10 can be obtained by $\mathbf{W}_{i} x_{i}^{r a w}$ where $\mathbf{W}_{i} \in \mathbb{R}^{10 \times\left|x_{i}^{r a w}\right|}$ is a trainable embedding matrix. Therefore, for Criteo and Avazu

Table 1: The computation complexity of PAMs in Fig. 1 .

Value Function	Step 1	Step 2	Step 3
$W_{n} x+b_{n}$	$\mathcal{O}\left(2^{D-1}(p+D)\right)$	$\mathcal{O}\left(2^{D-1} p\right)$	$\mathcal{O}\left(2^{D-1}\right)$
b_{n}	$\mathcal{O}\left(2^{D-1}(p+D)\right)$	-	$\mathcal{O}\left(2^{D-1} p\right)$

datasets, the input of PAMs in the first level of PAM-Net has 390 and 210 elements, respectively. While for the regression task (UK Biobank dataset), we directly use the raw data as the input of the first level, which contains 139 elements.
In PAM-Net, we set the number of levels to 2. A grid search is performed over different configurations of tree depth, i.e. $D=\{4,5,6,7,8\}$, where the numbers of PAM trees in each level are set to 96 , $48,24,12$, and 6 for the Criteo and Avazu datasets, and 24, 12, 6, 3, and 1 for the UK Biobank dataset, respectively. We conduct grid searches on the dropout rate over $\{0,0.1,0.2\}$ and the initial value of U_{i} over $\{1,1.5,2,2.5,3\}$. Note that BN and dropout layers were also used in all baseline algorithms and the dropout rate was well-tuned. The Adam optimizer is employed to minimize the loss function using a learning rate of 0.001 with a mini-batch size of 4,096 (Criteo and Avazu datasets) or 1,024 (UK Biobank dataset). To avoid overfitting, we perform early-stopping according to the AUC calculated on the validation set. All algorithms are implemented in PyTorch and tested on servers equipped with Intel Xeon Gold 61502.7 GHz CPU, 192GB RAM, and an NVIDIA Tesla V100 GPU.

References

[1] Feng-Lei Fan, Hang-Cheng Dong, Zhongming Wu, Lecheng Ruan, Tieyong Zeng, Yiming Cui, and Jing-Xiao Liao. One neuron saved is one neuron earned: On parametric efficiency of quadratic networks. arXiv preprint arXiv:2303.06316, 2023.
[2] Neeraj Dhungel, Gustavo Carneiro, and Andrew P Bradley. Automated mass detection in mammograms using cascaded deep learning and random forests. In 2015 international conference on digital image computing: techniques and applications (DICTA), pages 1-8. IEEE, 2015.
[3] Gaoxiang Chen, Qun Li, Fuqian Shi, Islem Rekik, and Zhifang Pan. Rfdcr: Automated brain lesion segmentation using cascaded random forests with dense conditional random fields. NeuroImage, 211:116620, 2020.
[4] Xiongfei Tian, Ling Shen, Zhenwu Wang, Liqian Zhou, and Lihong Peng. A novel lncrna-protein interaction prediction method based on deep forest with cascade forest structure. Scientific Reports, 11(1):1-15, 2021.
[5] Bencheng Yan, Pengjie Wang, Kai Zhang, Feng Li, Hongbo Deng, Jian Xu, and Bo Zheng. Apg: Adaptive parameter generation network for click-through rate prediction. Advances in Neural Information Processing Systems, 35:24740-24752, 2022.
[6] Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi Xiao, and Rui Zhang. Bars: Towards open benchmarking for recommender systems. In Proceedings of the 45 th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '22, page 2912-2923, New York, NY, USA, 2022. Association for Computing Machinery.

