
Polyhedron Attention Module: Learning
Adaptive-order Interactions

Anonymous Author(s)
Affiliation
Address
email

Appendixes1

Contents2

A Deriving Eq. 2. 23

B The hyperplane set generated by the oblique tree is a superset of that created by the4

ReLU-activated plain DNN 35

C Proof of Theorem 1 46

D Proof of Theorem 2 57

E Proof of Theorem 3 68

F Proof of Theorem 4 79

G Implementation Detail 810

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

A Deriving Eq. 2.11

We consider a L-layer (L ≥ 2) ReLU activated plain DNN module f : Rn0 → RnL with input12

x ∈ Rp. Let W ℓ ∈ Rnℓ×nℓ−1 and bℓ ∈ Rnℓ be the weights and offset vectors of layer ℓ, for13

ℓ = {1, ..., L} and n0 = p. Let f0(x) = x. For ℓ ∈ {1, ..., L}, we define recursively the pre- and14

post-activation output of every layer as15

gℓ(x) = W ℓf ℓ−1(x) + bℓ,

f ℓ(x) = ReLU(gℓ(x)),

where ReLU activation function is denoted by ReLU(t) = max(0, t).16

The first L− 1 layers of the ReLU-activated DNN module has
∑L−1

ℓ=1 nℓ activation functions, and17

thus have 2
∑L−1

ℓ=1 nℓ possible activation states. Let A ∈ {1,−1}
∑L−1

ℓ=1 nℓ be an activation state (1/− 118

means activate/inactive) of all but the last layer’s ReLU in the DNN module, and Aℓ
i ∈ {−1, 1} be the19

activation state of the ith ReLU activation function in the lth layer of the DNN module. Conditioned20

on {A1, ..., Aℓ−1}, gℓ(x) can be rewritten as a linear function.21

gℓ(x)|{A1,...,Aℓ−1}

=

W

(1)
∅ x+ b

(1)
∅

= W 1x+ b1, ℓ = 1,

W
(ℓ)

{A1,...,Aℓ−1}x+ b
(ℓ)

{A1,...,Aℓ−1}

= W ℓΣAℓ−1

W
(ℓ−1)

{A1,...,Aℓ−2}x+W ℓΣAℓ−1

b
(ℓ−1)

{A1,...,Aℓ−2} + bℓ, ℓ > 1,

(1)

where W
(ℓ)

{A1,...,Aℓ−1} ∈ Rnℓ×n0 , b(ℓ){A1,...,Aℓ−1} ∈ Rnℓ , ΣAℓ

is a nℓ × nℓ matrix with22

ΣAℓ

i,j = 1(i = j and Aℓ
i = 1).

To generate the activation state A, x should meet all inequalities Aℓ
ig

ℓ
i (x)|{A1,...,Aℓ−1} ≥ 0 for23

∀ℓ ∈ {1, 2, ..., L − 1} and ∀i ∈ {1, 2, ..., nℓ}, where gℓi (x)|{A1,...,Aℓ−1} is the ith result of24

gℓ(x)|{A1,...,Aℓ−1}. It results in a polyhedron ∆A:25

∆A = ∩ℓ∈{1,...,L−1} ∩i∈{1,...,nℓ} {z ∈ Rp|Aℓ
ig

ℓ
i (z)|{A1,...,Aℓ−1} ≥ 0}. (2)

Let the set of polyhedron be S∆ = {∆A|A ∈ {1,−1}
∑L−1

l=1 nℓ} . We have26

gL(x) =

W

(L)
∆1

x+ b
(L)
∆1

, x ∈ ∆1,

...

W
(L)
∆|S∆|

x+ b
(L)
∆|S∆|

, x ∈ ∆|S∆|.

(3)

Then the ith activation function’s output in the last layer of the DNN can be expressed as27

ReLU(gLi (x)) =
∑

∆∈S∆

1(x ∈ ∆)ReLU(W
(L)
∆,i x+ b

(L)
∆,i)

=
∑

∆∈S∆

1(x ∈ ∆,W
(L)
∆,i x+ b

(L)
∆,i ≥ 0)(W

(L)
∆,i x+ b

(L)
∆,i) +

∑
∆∈S∆

1(x ∈ ∆,W
(L)
∆,i x+ b

(L)
∆,i < 0) · 0

=
∑

∆∈S∆

1(x ∈ ∆,W
(L)
∆,i x+ b

(L)
∆,i ≥ 0)dist(x, H∆,i,L)||W (L)

∆,i ||

+
∑

∆∈S∆

1(x ∈ ∆,W
(L)
∆,i x+ b

(L)
∆,i < 0)dist(x, H∆,i,L) · 0,

where gLi (x) is the ith element of gL(x)’s output, W (L)
∆,i is the ith row of W (L)

∆ , b(L)
∆,i is the ith28

element of b(L)
∆ , and dist(x, H∆,i,L) is the distance from x to W

(L)
∆,i x+ b

(L)
∆,i = 0. Let ∆1 = {x ∈29

∆,W
(L)
∆,i x + b

(L)
∆,i ≥ 0} and ∆2 = {x ∈ ∆,W

(L)
∆,i x + b

(L)
∆,i < 0}. Eq. 2 in the main text can be30

obtained by rewriting
∑

∆∈S∆
as

∑
∆.31

2

B The hyperplane set generated by the oblique tree is a superset of that32

created by the ReLU-activated plain DNN33

An oblique tree is a binary tree where each node splits the space by a hyperplane rather than by34

thresholding a single feature. The tree starts with the root of the full input space S , and by recursively35

splitting S, the tree grows deeper. For a D-depth (D ≥ 3) binary tree, there are 2D−1 − 1 internal36

nodes and 2D−1 leaf nodes. As shown in Fig. 3, each internal and leaf node maintains a sub-space37

representing a polyhedron ∆ in S, and each layer of the tree corresponds to a partition of the input38

space into polyhedrons. Denote the polyhedron defined in node n by ∆n, and the left and right39

child nodes of n by nL and nR. We perform soft partition to split each ∆n into ∆nL
and ∆nR

with40

an overlapping buffer. Let the splitting hyperplane be {x ∈ Rp : Wnx + bn = 0}. Then the two41

sub-spaces ∆nL
and ∆nR

are defined as follows:42

∆nL
= {x ∈ ∆n|Wnx+ bn ≥ −Un},

∆nR
= {x ∈ ∆n| −Wnx− bn ≥ −Un},

(4)

where Un indicates the width of the overlapping buffer.43

According to the Appendix A, a ReLU-activated plain DNN gL(x) can be rewritten as a piece-wise44

linear function dividing the input space into a set of polyhedrons S∆. In this section, we are going45

to prove that for any S∆ generated by the ReLU-activated plain DNN, there exists an oblique tree46

dividing the input space into the same polyhedron set.47

Proof: Statement: For any S∆ generated by the ReLU-activated plain DNN, there exists an oblique48

tree dividing the input space into the same polyhedron set.49

Base Case: Let Aℓ = {1,−1}nℓ be the activation state (1/− 1 means activate/ inactive) of the ℓth50

layer of the DNN. To generate the activation state A1 , the input of the ReLU-activated plain DNN x51

belongs to the polyhedron52

∆{A1} = ∩i∈{1,...,n1}{z ∈ Rp|A1
i g

1
i (z)|∅ ≥ 0},

where g1i (x)|∅ is defined in Eq. 1. We can build an oblique tree T 1 to generate ∆{A1}. In53

particular, the depth of the oblique tree is n1 + 1. Let Nd be the oblique tree’s node set with depth54

d (d ∈ {1, 2, ..., n1}). For each node n ∈ Nd, we have Wn = W 1
d , bn = b1d, and Un = 0 (see55

definitions in Eq. 4). According to Eq. 6 in the main text, for each T 1’s leaf node n , the oblique tree56

generates polyhedrons following57

∆n =
[
∩n′∈Pl

n
{z ∈ Rp|Wn′z+ bn′ ≥ 0}

]
∩
[
∩n′∈Pr

n
{z ∈ Rp|(−Wn′)z+ (−bn′) ≥ 0}

]
.

For any possible A1, we can find a leaf node n from Nn1+1 with ∆n = ∆{A1}. Then for each leaf58

node n, we can also find a activation state with ∆{A1} = ∆n. Therefore, we have {∆{A1}|Aℓ′ ∈59

{1,−1}nℓ′ , ℓ′ ∈ {1}} = {∆n|n is T 1’s leaf node}.60

Inductive Step: To generate activation states {A1, ..., Aℓ−1} (ℓ > 1), according to Eq. 2, the input61

of the DNN model belongs to62

∆{A1,...,Aℓ−1} = ∩ℓ′∈{1,...,ℓ−1} ∩i∈{1,...,nℓ′} {z ∈ Rp|Aℓ′

i g
ℓ′

i (z)|{A1,...,Aℓ′−1} ≥ 0}.

If there exists a (
∑l−1

l′=1 nℓ′ +1)-depth oblique tree T ℓ−1 splitting the input space into a set of polyhe-63

drons with {∆{A1,...,Aℓ−1}|Aℓ′ ∈ {1,−1}nℓ′ , ℓ′ ∈ {1, 2, ..., ℓ− 1}} = {∆n|n is T ℓ−1’s leaf node},64

by adding nodes to T ℓ−1, we could build a (
∑l

l′=1 nℓ′ + 1)-depth oblique tree T ℓ with65

{∆{A1,...,Aℓ}|Aℓ′ ∈ {1,−1}nℓ′ , ℓ′ ∈ {1, 2, ..., ℓ}} = {∆n|n is T ℓ’s leaf node}. In the following66

part, we exhibit the pipeline to build T ℓ.67

For each T ℓ−1’s leaf node n with ∆n = ∆{A1,...,Aℓ−1}, We build an oblique sub-tree rooted at n to68

generate69

∆{A1,...,Aℓ} = ∆{A1,...,Aℓ−1} ∩
[
∩i∈{1,...,nℓ} {z ∈ Rp|Aℓ

ig
ℓ
i (z)|{A1,...,Aℓ−1} ≥ 0}

]
.

In particular, the depth of the oblique sub-tree is nℓ + 1 . Let Nd be the oblique sub-tree’s node set70

with depth d. For each node n ∈ Nd, we have Wn = W
(ℓ)

{A1,...,Aℓ−1},d, bn = b
(ℓ)

{A1,...,Aℓ−1},d, and71

3

Un = 0. After adding sub-trees to each of T ℓ−1’s leaf nodes to form T ℓ, for any activation state72

{A1, ..., Aℓ}, we can find a leaf node n ∈ N∑l
l′=1

nl′+1 from T ℓ with ∆n = ∆{A1,...,Aℓ}.73

Conclusion: According to the base case and the inductive step, for any ReLU-activated plain DNN’s74

S∆ = {∆{A1,...,AL−1}|Aℓ ∈ {1,−1}nℓ , ℓ ∈ {1, 2, ..., L − 1}}, we can build an oblique tree TL−175

with S∆ = {∆n|n is TL−1’s leaf nodes}. □76

C Proof of Theorem 177

If all value functions V belong to a function set that is closed under linear transformations, then the78

function learned by PAM fPAM can be equivalently written as79

fPAM (x) = V (x, θG) +
∑

n∈S−
∆
an(x)V (x, θn) (5)

where the polyhedron set S−
∆ contains half of the polyhedrons (e.g., the right child nodes or the left80

child nodes) in S∆ and81

an(x) =
∏

i∈Pl
n
max(min(Wix+bi+Ui, 2Ui), 0)

∏
i∈Pr

n
max(min(−Wix−bi+Ui, 2Ui), 0). (6)

Proof: Suppose that both V (x, θG) and V (x, θn) in Eq. 5 belong to the function set V . Then we82

have83

an(x)V (x, θn)

=
∏
i∈Pl

n

max(min(
Wix+ bi + Ui

||Wi||
,

2Ui

||Wi||
), 0)

∏
i∈Pr

n

max(min(
−Wix− bi + Ui

||Wi||
,

2Ui

||Wi||
), 0)

×
[
V (x, θn)

∏
i∈Pl

n

||Wi||
∏
i∈Pr

n

||Wi||]

Since V is a function set closed under linear transformation, there exists a value function V (x, θ′n) =84 [
V (x, θn)

∏
i∈Pl

n
||Wi||

∏
i∈Pr

n
||Wi||] with V (x, θ′n) ∈ V . Therefore, removing the 2-norm of Wi85

will not decrease the expression capability of attention.86

To prove that S∆ can be replaced with S−
∆ , with S∆ = ∪D

d=2{∆n|n ∈ Nd}, we rewrite the output of87

PAM (Eq. 4 in the main text) to88

fPAM (x) = V (x; θG) +
∑D

d=2

∑
n∈Nd

an(x)V (x; θn).

Then we start from depth D to 2 and show that |Nd|
2 value functions can be removed in each depth d.89

First, let Pn and Sn be the parent and sibling nodes of n. We have90 ∑
n∈ND

an(x)V (x; θn) +
∑

n∈ND−1

an(x)V (x; θn)

=
∑

n∈ND

1(n is the left child node)an(x)V (x; θn) +
∑

n∈ND

1(n is the right child node)an(x)V (x; θn)

+
∑

n∈ND−1

an(x)V (x; θn)

=
∑

n∈ND

1(n is the left child node)an(x)(V (x; θn)− V (x; θSn
))

+
∑

n∈ND−1

an(x)(2UnV (x; θnR
) + V (x; θn))

(7)
Since V belongs to V , a function set closed under linear transformation, we have91

V (x; θ′n) = V (x; θn)− V (x; θSn
), n ∈ ND,

V (x; θ′′n) = 2UnV (x; θnR
) + Vn(x; θn), n ∈ ND−1.

Therefore, |ND|
2 attention scores and value functions can be removed in depth D. By replacing value92

functions from depth D to 2 following Eq. 7, the number of value functions is halved in each depth of93

the tree. It means that S∆ can be replaced by S−
∆ . □94

4

D Proof of Theorem 295

For any input x, by calculating ϕI(x) for each I ⊆ {1, 2, ..., p} via Algorithm 1, we have96 ∑
I⊆{1,2,...,p} ϕI(x) = fPAM (x).97

Proof: We first shows that fPAM can be written explicitly out as g(x) according to which polyhe-98

dron(s) x belongs to.99

As shown in Eq. 8, max and min operators in PAM’s attentions can be rewritten as the ReLU-activated100

function101

max(z, 0) = ReLU(z) and min(z, 2Ui) = −ReLU(−z+ 2Ui) + 2Ui, (8)

the calculation of each PAM’s attention score contains 2 ReLU activation functions. Suppose that102

the fPAM has na ReLU activation functions in total, which results in 2na possible activation states.103

Let A = {A1, ..., Ana
} ∈ {1,−1}na be an activation state (1/ − 1 means activate/inactive) of104

fPAM (x), and A be the set containing all possible activation states. Let ReLU(hi(x)) be the ith105

ReLU activation function in fPAM (x). We have106

fPAM (x) =
∑
A∈A

[na∏
i=1

1(Aihi(x) ≥ 0)
]
gA(x), (9)

where gA(x) is a polynomial function differentiable everywhere under the activation state A. In107

particular, if we have an activation state A, we can obtain gA(x) by replacing the ReLU activations108

in fPAM (x) with either hi(x) or 0 depending on whether the corresponding pre-activation value109

hi(x) is non-negative or negative, respectively. For the sake of simplicity, we simplify gA(x) as g(x).110

Given the definition of our attention in Eq. 9 in the main text, the highest polynomial order is D − 1111

in the attention, together with the affine value function, the highest polynomial order of g(x) is D.112

Since we have assumed fPAM has only one output at the beginning of section 4 in the main text,113

g(x) : Rp → R is a D + 1 times continuously differentiable function at every point a ∈ Rp, and114

g(x)’s (D + 1)-order partial derivatives always equals zero, the D order Taylor polynomial of g(x)115

at the point a is116

g(x) =
∑

|m|≤D

Dmg(a)

m!
(x− a)m =

∑
|m|≤D

wmxm, (10)

where m = {m1,m2, ...,mp} with mi ∈ Z+, |m| = m1 + ... + mp, m! = m1!...mp!, xm =117

xm1
1 ...x

mp
p , Dmg = ∂|m|g

∂x
m1
1 ...∂x

mp
p

and wm ∈ R is the weight for the interaction term xm. Let118

I ⊆ {1, 2, ..., p} be a set of x’s feature indices. The interaction effects among x’s elements indexed119

by I are defined by120

ϕI(x) =
∑

|m|≤D

1(
∏
i∈I

mi > 0 and
∑

i∈{1,2,...,p}/I

mi = 0)wmxm1
1 ...xmp

p ,

ϕ∅(x) =g(0) = wm||m|=0,

(11)

where ϕ∅(x) is the constant effects. Obviously, we have121

∑
I⊆{1,2,...,p}

ϕI(x) = g(x).

5

The indicator function in Eq. 11 can be removed by rewriting ϕI(x) as122

ϕI(x) =
∑

|m|≤D

1(
∏
i∈I

mi > 0)wm(0−I ⊙ x)m

=
∑

|m|≤D

wm(0−I ⊙ x)m −
∑

|m|≤D

1(
∏
i∈I

mi = 0)wm(0−I ⊙ x)m

=
∑

|m|≤D

wm(0−I ⊙ x)m −
∑

|m|≤D

[∑
I′⊂I

1(
∏
i∈I′

mi > 0 and
∑

i∈{1,2,...,p}/I′

mi = 0)
]
wm(0−I ⊙ x)m

=
∑

|m|≤D

wm(0−I ⊙ x)m −
∑

|m|≤D

∑
I′⊂I

1(
∏
i∈I′

mi > 0)wm(0−I′
⊙ 0−I ⊙ x)m

=
∑

|m|≤D

wm(0−I ⊙ x)m −
∑

|m|≤D

∑
I′⊂I

1(
∏
i∈I′

mi > 0)wm(0−I′
⊙ x)m

=g(0−I ⊙ x)−
∑
I′⊂I

ϕI′(x).

(12)
where 0−I is a d-length zero vector with ones indexced by I, ⊙ is the Hadamard product operator.123

Since we have ϕ∅(x) = g(0), we can calcualte any ϕI(x) by recursively calculating ϕI′(x) for124

every I’s subset I ′. □125

E Proof of Theorem 3126

If x is bounded and sampled from a distribution with upper-bounded probability density function,127

then for any ReLU activated plain DNN model fDNN(x), there exists a PAM with128

Pr(fPAM

(
x) = fDNN(x)

)
→ 1.

Proof: For any oblique tree’s internal node n in the PAM, we set V (x; θn) ≡ 0. Then by setting129

V (x, θG) ≡ 0, with the set of T ’s leaf node ND, we have130

fPAM (x)

=
∑

n′∈ND
an′(x)V (x; θn′)

=
∑

n′∈ND

∏
i∈Pl

n′
max(min(Wix+ bi + Ui, 2Ui), 0)

∏
i∈Pr

n′
max(min(−Wix− bi + Ui, 2Ui), 0)V (x; θn′)

=
∑

n′∈ND

[∏
i∈Pl

n′
1(Wix+ bi + Ui ≥ 2Ui)

∏
i∈Pr

n′
1(−Wix− bi + Ui ≥ 2Ui)

[∏
i∈Pl

n′∪Pr
n′
2Ui

]
V (x; θn′)

+(1−
∏

i∈Pl
n′
1(Wix+ bi + Ui ≥ 2Ui)

∏
i∈Pr

n′
1(−Wix− bi + Ui ≥ 2Ui))an′(x)V (x; θn′)

]
.

(13)

Given x, if there exists a T ’s leaf node n′ with131 ∏
i∈Pl

n′

1(Wix+ bi + Ui ≥ 2Ui)
∏

i∈Pr
n′

1(−Wix− bi + Ui ≥ 2Ui) = 1,

we have132 ∏
i∈Pl

n′

1(Wix+ bi ≥ 0)
∏

i∈Pr
n′

1(−Wix− bi ≥ 0) = 1, (14)

Therefore, conditioned on the event133

E = {∃n′ ∈ ND,
∏

i∈Pl
n′
1(Wix+ bi + Ui ≥ 2Ui)

∏
i∈Pr

n′
1(−Wix− bi + Ui ≥ 2Ui) = 1},

we have134

fPAM (x)|E
=
∑

n′∈ND

∏
i∈Pl

n′
1(Wix+ bi ≥ 0)

∏
i∈Pr

n′
1(−Wix− bi ≥ 0)

[∏
i∈Pl

n′∪Pr
n′
2Ui

]
V (x; θn′).

6

If we set Wi, bi following the pipeline in Appendix B, we have ND = S∆ (see definition in Eq. 3).135

Then for each ∆ ∈ S∆, by setting136 [∏
i∈Pl

n′∪Pr
n′

2Ui

]
V (x; θn′) = W∆x+ b∆,

we have137

fPAM (x)|E = gL(x).

To bound the probability of Pr(fPAM

(
x) = fDNN(x)

)
, we need to bound138

Pr(fPAM (x) = fDNN (x))

=Pr(∃n′ ∈ ND,
∏

i∈Pl
n′
1(Wix+ bi + Ui ≥ 2Ui)

∏
i∈Pr

n′
1(−Wix− bi + Ui ≥ 2Ui) = 1)

=
∑

n′∈ND

Pr(
∏

i∈Pl
n′

1(Wix+ bi ≥ Ui)
∏

i∈Pr
n′

1(−Wix− bi ≥ Ui) = 1).

(15)
According to Eq. 15, Pr(fPAM (x) = fDNN (x)) increases as Ui decreases. When Ui = 0, it’s139

easy to get Pr(fPAM (x) = fDNN (x)) = 1. Therefore, with Ui → 0, we have Pr(fPAM (x) =140

fDNN (x)) → 1.141

□142

F Proof of Theorem 4143

Before providing the proof of Theorem 4, we establish Lemma 1 as its foundation.144

Lemma 1 Under Assumption 1 in the main text, for any p, n > 0, ϵ ∈ (0, 1), and z ∈ [0, 1]p+n−1,145

if we have a function Q(z) = z1z2...zp+n−1, a function could be built on the basis of Q(z) which146

can 1) approximates any function from Fn,p with an error bound ϵ in the sense of L∞ with at147

most NQp
n(N + 1)p parameters, where NQ is the number of trainable parameter in Q, and148

N = ⌈(n!
2ppn

ϵ
2)

− 1
n ⌉.149

Proof: By replacing Ep. 18’s nested Q with Q(z) in Theorem 1 in [1], we could get the conclusion.150

□151

Theorem 4 For any p, n > 0 and ϵ ∈ (0, 1), we have a PAM which can 1) approximates any function152

from Fn,p with an error bound ϵ in the sense of L∞ with at most 2pn(N +1)p(p+n−1) parameters,153

where N = ⌈(n!
2ppn

ϵ
2)

− 1
n ⌉.154

Proof: To prove Theorem 4, we first show that there exists a PAM fPAM (z) outputting155

z1z2...zNp+n−1
. In particular, we construct a (p+ n)-depth oblique tree T . For any T ’s internal node156

i, we set Ui = UC as an extremely large hyper-parameter. For any depth d ∈ {1, 2, ..., p+ n− 1},157

all nodes with depth d share the same hyperplane with bi = 0 and158

Wi,j =

{
1, j = d,

0, j ̸= d,

for j ∈ {1, 2, ..., p+ n− 1}, which means that each depth has 2 parameters, and the oblique tree has159

2(p+ n− 1) parameters.160

According to the Assumption 1 in the main text, x is bounded, which means that with UC ≥ 1, for161

any leaf node l, we have162

a∆l
(z) =

∏
n∈Pl

l

minmax((zdl
+ UC , 0), 2UC)

∏
l∈Pr

l

minmax(−zdl
+ UC , 0), 2UC)

=
∏
l∈Pl

l

zdl
+ UC

∏
l∈Pr

l

−zdl
+ UC ,

7

where dn is the depth of node n. Then for any oblique tree’s node n, V (z; θn) is fixed following163

V (z; θn) =

{
0, n is the internal node,
(−1)|P

r
n|

2p+n−1 , n is the leaf node,

we have164

fPAM (z) = z1z2...zNd+n−1
.

With Q(z) = fPAM (z) = z1z2...zNd+n−1
, we get the conclusion following the Lemma 1.165

□166

G Implementation Detail167

Figure 1: The structure of PAM-Net with 2 levels. BN: Batch Norm Layer; AVG: average; SUM:
summation; Dropout: Dropout layer; Mul: matrix multiplication.

As shown in Fig. 1, we combine PAMs in a successive manner similar to cascade forest [2, 3, 4], and168

name the resultant network as the PAM-Net. In the PAM-Net, each PAM at a higher level calculates169

interactions among the outputs from its preceding level. Each level of PAM-Net maintains a forest,170

i.e., a set of PAMs of the same depth D, and outputs the average of these PAM outputs.171

We follow the principle of Yan et al’s work [5] to discuss the complexity of PAMs shown in Fig. 1. In172

Fig. 1, we consider two kinds of value functions, i.e., V (x; θn) = Wnx+ bn,Wn ∈ Rp×1, bn ∈ R.173

Since a PAM with a D-depth oblique tree has 2D−1 value functions (1 global value function following174

Eq. 3 in the main text and 2D−1 − 1 value functions for polyhedrons following Remark 1 in the175

main text), and the dimension of PAM’s input is p according to Eq. 4 in the main text, the memory176

complexity of these two kinds of value functions is O(2Dp). In addition to the value function, a177

D-depth oblique tree has 2D−1 − 1 hyperplanes with O(2D−1p) trainable parameters. Therefore, the178

total memory complexity of PAM is O(2Dp). As for the time complexity, PAM need to 1) calculate179

the attention score following Eq. 9 in the main text, 2) generate the corresponding values via value180

functions mentioned above, and 3) output fPAM by multiplying the attention with values following181

Eq. 8 in the main text. As shown in Table 1, the TIME complexity of PAM is O(2D−1(2p+D)).182

For the classification task (Criteo and Avazu dataset), we compress the high dimensional inputs into183

numerical vectors of a fixed length following the protocol of BARS [6]. For each one-hot encoded or184

continuous feature, denoted by xraw
i , a numerical vector with a fixed length of 10 can be obtained by185

Wix
raw
i where Wi ∈ R10×|xraw

i | is a trainable embedding matrix. Therefore, for Criteo and Avazu186

8

Table 1: The computation complexity of PAMs in Fig. 1.
Value Function Step 1 Step 2 Step 3

Wnx+ bn O(2D−1(p+D)) O(2D−1p) O(2D−1)
bn O(2D−1(p+D)) - O(2D−1p)

datasets, the input of PAMs in the first level of PAM-Net has 390 and 210 elements, respectively.187

While for the regression task (UK Biobank dataset), we directly use the raw data as the input of the188

first level, which contains 139 elements.189

In PAM-Net, we set the number of levels to 2. A grid search is performed over different configurations190

of tree depth, i.e. D = {4, 5, 6, 7, 8}, where the numbers of PAM trees in each level are set to 96,191

48, 24, 12, and 6 for the Criteo and Avazu datasets, and 24, 12, 6, 3, and 1 for the UK Biobank192

dataset, respectively. We conduct grid searches on the dropout rate over {0, 0.1, 0.2} and the initial193

value of Ui over {1, 1.5, 2, 2.5, 3}. Note that BN and dropout layers were also used in all baseline194

algorithms and the dropout rate was well-tuned. The Adam optimizer is employed to minimize195

the loss function using a learning rate of 0.001 with a mini-batch size of 4,096 (Criteo and Avazu196

datasets) or 1,024 (UK Biobank dataset). To avoid overfitting, we perform early-stopping according197

to the AUC calculated on the validation set. All algorithms are implemented in PyTorch and tested198

on servers equipped with Intel Xeon Gold 6150 2.7GHz CPU, 192GB RAM, and an NVIDIA Tesla199

V100 GPU.200

References201

[1] Feng-Lei Fan, Hang-Cheng Dong, Zhongming Wu, Lecheng Ruan, Tieyong Zeng, Yiming202

Cui, and Jing-Xiao Liao. One neuron saved is one neuron earned: On parametric efficiency of203

quadratic networks. arXiv preprint arXiv:2303.06316, 2023.204

[2] Neeraj Dhungel, Gustavo Carneiro, and Andrew P Bradley. Automated mass detection in205

mammograms using cascaded deep learning and random forests. In 2015 international conference206

on digital image computing: techniques and applications (DICTA), pages 1–8. IEEE, 2015.207

[3] Gaoxiang Chen, Qun Li, Fuqian Shi, Islem Rekik, and Zhifang Pan. Rfdcr: Automated brain208

lesion segmentation using cascaded random forests with dense conditional random fields. Neu-209

roImage, 211:116620, 2020.210

[4] Xiongfei Tian, Ling Shen, Zhenwu Wang, Liqian Zhou, and Lihong Peng. A novel lncrna–protein211

interaction prediction method based on deep forest with cascade forest structure. Scientific212

Reports, 11(1):1–15, 2021.213

[5] Bencheng Yan, Pengjie Wang, Kai Zhang, Feng Li, Hongbo Deng, Jian Xu, and Bo Zheng. Apg:214

Adaptive parameter generation network for click-through rate prediction. Advances in Neural215

Information Processing Systems, 35:24740–24752, 2022.216

[6] Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi Xiao, and Rui217

Zhang. Bars: Towards open benchmarking for recommender systems. In Proceedings of the 45th218

International ACM SIGIR Conference on Research and Development in Information Retrieval,219

SIGIR ’22, page 2912–2923, New York, NY, USA, 2022. Association for Computing Machinery.220

9

	Deriving Eq. 2.
	The hyperplane set generated by the oblique tree is a superset of that created by the ReLU-activated plain DNN
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Implementation Detail

