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Abstract

Learning feature interactions can be the key for multivariate predictive modeling.
ReLU-activated neural networks create piecewise linear prediction models. Other
nonlinear activation functions lead to models with only high-order feature inter-
actions, thus lacking of interpretability. Recent methods incorporate candidate
polynomial terms of fixed orders into deep learning, which is subject to the issue of
combinatorial explosion, or learn the orders that are difficult to adapt to different
regions of the feature space. We propose a Polyhedron Attention Module (PAM)
to create piecewise polynomial models where the input space is split into poly-
hedrons which define the different pieces and on each piece the hyperplanes that
define the polyhedron boundary multiply to form the interactive terms, resulting
in interactions of adaptive order to each piece. PAM is interpretable to identify
important interactions in predicting a target. Theoretic analysis shows that PAM
has stronger expression capability than ReLU-activated networks. Extensive ex-
perimental results demonstrate the superior classification performance of PAM on
massive datasets of the click-through rate prediction and PAM can learn meaningful
interaction effects in a medical problem.

1 Introduction

Learning feature interactions provides insights into how predictors (features in x) interact to vary
a dependent variable y, and could significantly improve prediction performance in a wide range of
research areas, such as recommendation systems [1, 2, 3, 4], genetic analysis [5, 6] and neuroscience
[7, 8], and help explain the decision-making of a complex model.

Interactions among features can significantly improve the model’s expression capability. For a simple
example, by incorporating the two-way interaction effect between gender (0/1: female and male) and
age into the linear regression model height ∼ w1 · gender + w2 · age+ w3 · gender × age+ w0

(where w0, w1, w2, w3 are trainable parameters), the effects of female’s age on the heights will be
different from that of male (w2 v.s. w2+w3). A predictive model f(x) has a k-way interaction effect
if it satisfies [9]:

Definition 1 (k-way interaction effect) Let x be the input of a function f(x) : Rp → R, and xi be
the ith feature of x. Let I ⊆ {1, 2, ..., p} be a set of feature indices and k (k > 2) be the cardinality
of I. If

Ex[
∂|I|f(x)

∂xi1
∂xi2

...∂xik
]2 > 0, (1)
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f(x) exhibits a k-way interaction effect among features indexed by i1, i2, ..., ik ∈ I.

A k-th order polynomial f(x) can define k-order interactions which may not be k-way. A k-way
interaction must occur among k different features. For instance, a 2-way interaction between xi

and xj may occur as xixj or x2
ix

3
j , so can be generally written as

∑
mi,mj

wmi,mjx
mi
i x

mj

j for
some nonzero mi and mj if coefficients w’s are nonzero. However, high dimensional features can
generate enormous candidate interactions due to the combinatorial explosion, causing the curse
of dimensionality. For example, k binary features can have 2k possible k-way interactions. This
challenge in learning feature interactions attracts tremendous research interest in various models
ranging from logistic regression to deep neural networks (DNN).

Early methods learn the effects of feature interaction by multiplying features together and employing
the multiplications as input to create an additive model. Two lines of methods have been used to reduce
the quantity of candidate interactions. Penalization methods (e.g., Hierarchical LASSO [10, 11] and
Group-LASSO [12]) assume a hierarchy of interactions, so high-way interactions may be eliminated
by removing low-way interactive terms. Factorization Machines (FM) require fewer parameters to fit
all predefined interaction terms, which implicitly selects among candidate interactions [13, 14, 15].
Only 2- and/or 3-way interactions were considered by these methods. To learn interactions among
more features (higher-way), models such as FM-supported NN [16], product-based NN [17], AutoInt+
[18], DESTINE [19] and AFN [20] predict the target with sigmoidal-activated (such as the softmax
or sigmoid function) DNNs. However, sigmoidal-activated DNN models only capture extremely
high-order interactions among all features according to Definition 1, because sigmoidal activation
functions have continuous (non-zero) derivatives up to infinite order with respect to all input features.

To capture interaction effects among a subset of features, an increasing number of works adopt
ReLU-activated plain DNN which fits a piecewise linear function [21], as the backbone to develop
interaction learning models. Models such as MaskNet [22] first form interaction effects and then use
them as the input of a ReLU-activated DNN, also known as the stacked structure. Recently, more
state-of-the-art performance has been achieved with models such as DeepIM [23], DeepFM [24],
DCN [25], xDeepFM [26], AOANet [4], DCN-V2 [25], EDCN [27] and FinalMLP [28] in a parallel
structure, which combines outputs of the proposed feature interaction learning models with those of a
ReLU-activated plain DNN by operators such as summation, concatenation or Hadamard product.

By fusing ReLU-activated DNNs with models that explicitly incorporate interaction effects, piecewise
polynomial functions can be formed. Rather than predicting the target with a highly non-linear
function infinitely differentiable on the input space, these methods divide the input space into pieces
(e.g., polyhedrons), map instances to different pieces, and predict the target with a piece-specific
polynomial function. For all existing models, the piece-specific polynomial functions fit the same
format of interactions (fixed

∏
xm1
i1

xm2
i2

· xmk
ik

terms for a specific k) across all pieces once they
are identified. However, data instances belonging to different pieces may endorse interactions in
different ways. To address this problem, we propose a new type of attention module called Polyhedron
Attention Module (PAM). The main contribution of this paper are summarized as follows:

• PAM splits the input space into polyhedrons and predicts the target using a piecewise polynomial
function which contains an attention term for each piece. The attention captures interaction effects
of adaptive orders for different polyhedrons according to their local structure.

• We propose a model interpretation approach for PAM to identify important interaction effects for
any given data instance.

• We prove a universal approximation theorem for PAM, and show that DNNs incorporating PAMs
need fewer parameters than ReLU-activated plain DNNs to maintain the same level of approxima-
tion error in fitting functions in the Sobolev space.

• Empirical studies are designed to validate PAM on benchmark datasets that are previously recog-
nized to require feature interaction learning, such as the massive Criteo (33 million samples, 2.1
million features) and Avazu (28.3 million samples, 1.5 million features) click-through-rate datasets.
Using a medical database with feature meanings, we explore the interpretation of PAM.

2 Motivation - Reinterpreting ReLU-based DNN

We argue that a plain fully-connected DNN with ReLU activation function may be interpreted as
an attention mechanism. Such a neural network contains L consecutive blocks each constituting
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a fully-connected layer and a ReLU-activation layer. Let xℓ be the input of the ℓ-th block which
outputs a nested function ReLU(W ℓxℓ + bℓ). The ReLU(z) returns z when activated (if z ≥ 0)
or 0 otherwise. The consecutive L blocks together create piecewise linear functions (each output
in layer L defines such a function). For a given raw input x, let Iℓ contains the indices of the
activated ReLU functions in layer ℓ when x passes through the layer, and WIℓ and bIℓ contain
the original weights, respectively, in W ℓ and bℓ for those rows indexed in Iℓ and 0 vectors for
those in the complement set of Iℓ (denoted by Iℓ−). Then, at a layer ℓ, W (ℓ)x + b(ℓ) ≥ 0 where
W (ℓ) =

∏ℓ
j=1 WIj and b(ℓ) =

∑ℓ
j=1 bIj

∏ℓ
k=j+1 WIk . More precisely, it means that x stays in

a polyhedron that is defined by the intersection of all the half-spaces {x : W (ℓ)x + b(ℓ) ≥ 0}
and {x : W (ℓ−)x + b(ℓ−) < 0} for all ℓ = 1, · · · , L − 1 where W (ℓ−) = WIℓ−

∏ℓ−1
j=1 WIj and

b(ℓ−) = bIℓ− +
∑ℓ−1

j=1 bIjWIℓ−
∏ℓ−1

k=j+1 WIk specify those affine functions not activated in layer
ℓ. Here, WIℓ− and bIℓ− contain the original weights in W ℓ and bℓ for those rows indexed in Iℓ−

and 0 vectors for those in Iℓ. For all x in this polyhedron, the L-th layer outputs affine functions
W (L)x+ b(L).

Figure 1: An example of 2-layer
ReLU-activated plain DNN with
1 output (the green shading shows
the function value). Black lines
are fitted in layer 1 (their intersec-
tion defines the polyhedrons) and
the red line is fitted in layer 2 and
varies on different polyhedrons.

Precisely, the input space is divided into non-overlapping polyhe-
drons and each polyhedron ∆ is defined by a combination of acti-
vated ReLU functions across the layers (a formal proof is given in
Appendix A). To ease the notation, we simply use ∆ to denote the
set of indices of the activated ReLU across all layers that identify the
polyhedron and ∆− denotes the index set of the inactivated ReLU in
the layers. We use an indicator function 1(x ∈ ∆) to define the poly-
hedron which returns 1 for all vectors x that satisfy W

(ℓ)
∆ x+b

(ℓ)
∆ ≥ 0

and W
(ℓ−)
∆ x + b

(ℓ−)
∆ < 0 for ℓ = 1, · · · , L − 1, and 0 otherwise.

The i-th activated ReLU in the L-th layer corresponds to a piece-
wise linear function that computes W (L)

∆,i x+ b
(L)
∆,i on each piece ∆.

Note that W (L)
∆,i and b

(L)
∆,i vary for different polyhedrons due to the

differences in the ReLU activation in the early layers (illustrated in
Fig. 1). Denote the hyperplane {x : W

(L)
∆,i x+ b

(L)
∆,i = 0} by H∆,i,L, which further splits ∆ into two

polyhedrons ∆1 = 1(x ∈ ∆,W
(L)
∆,i x+ b

(L)
∆,i ≥ 0) and ∆2 = 1(x ∈ ∆,W

(L)
∆,i x+ b

(L)
∆,i < 0). Thus,

this piecewise linear function can be written as:

f(x) =
∑

∆1(x ∈ ∆) · ReLU(W
(L)
∆,i x+ b

(L)
∆,i) =

∑
∆1(x ∈ ∆) · ReLU(

W
(L)
∆,ix+b

(L)
∆,i

||W (L)
∆,i ||

||W (L)
∆,i ||)

=
∑

∆ 1(x ∈ ∆1)dist(x, H∆,i,L)︸ ︷︷ ︸
attention

||W (L)
∆,i ||︸ ︷︷ ︸

value on ∆1

+ 1(x ∈ ∆2)dist(x, H∆,i,L)︸ ︷︷ ︸
attention

0︸︷︷︸
value on ∆2

(2)
where dist(x, H∆,i,L) means the distance from x to the hyperplane H∆,i,L. The values on the two
pieces ∆1 and ∆2 are constant ||W (L)

∆,i || where || · || is the ℓ2 vector norm or 0. The attention is a
function of x and depends on how far x is from one of the hyperplanes that define the polyhedron
boundary (see Fig. 1 for illustration).

We observe that a polyhedron ∆ is defined using a sequence of hyperplanes corresponding to the
affine functions in different layers, but the attention of ReLU-activated DNNs is calculated based only
on the hyperplane in the last layer for the polyhedron (piece). Although not all of the hyperplanes in
early layers make the active boundary of a polyhedron (i.e., the polyhedron can locate in the interior
of a half-space), using only one hyperplane in the attention is restrictive. An attention mechanism that
allows multiple active boundary hyperplanes of a polyhedron to aid attention calculation may increase
the model’s expression power. Let H∆ contain all of the active boundary hyperplanes H of ∆. For
convenient notation, and with mild relaxation, we rescale the WH to −WH for those inactivated
affine functions in the DNN so the half-spaces can all be written in the form of WHx + bH ≥ 0.
Then, 1(x ∈ ∆) =

∏
H∈H∆

1(WHx+bH ≥ 0). To learn feature interaction effects, we multiply the
distances from x to each hyperplane in H∆. Given a hyperplane is linear in terms of x, multiplying
the distances from x to two (m) hyperplanes creates quadratic (m-th order) terms. Thus, the number
of active boundary hyperplanes of ∆ offers the upper bound on the order of the multiplicative terms
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Figure 3: Overview description of the proposed method: (A) Split the input space into overlapping polyhedrons
with the oblique tree. (B) Calculate attention on each polyhedron based on distances to the polyhedron’s
boundaries. (C) Calculate the model’s output based on the attention and value vector. (D) Extract main and
interaction effects from the model.

if each hyperplane is used only once. To allow the order to be adaptive to each ∆ within the upper
limit, we further enclose a bounding constraint on the distance (other strategies may exist, which we
leave for future investigation). Thus, the new attention formula can be written as follows:

a∆(x) =1(x ∈ ∆)
∏

H∈H∆
min(dist(x, H), 2UH

||WH || )

=
∏

H∈H∆
1(WHx+ bH ≥ 0)min(dist(x, H), 2UH

||WH || )

=
∏

H∈H∆
max

(
min

(
WHx+bH
||WH || , 2UH

||WH ||

)
, 0
)
,

(3)

where UH determines an upper bound on the distance from x to H and is a trainable parameter. Fig.
2 demonstrates how adding the upper bounds UH allows the attention module to learn interaction
effects of adaptive orders. For example, the instances in the area marked by 0 in the figure (left) are far
from each boundary hyperplane H beyond their respective upper bounds, so the min operator returns
a constant 2UH

||WH || . These x instances thus receive a constant attention that is the multiplication of
these upper bounds each for an H ∈ H∆, which gives a 0-order interaction. When x is close to two of

Figure 2: For a triangular polyhedron ∆
in this example, the attention a∆ can cap-
ture constant, additive, 2-way interactive,
and 3-way interactive effects in the areas,
respectively, marked by 0, 1, 2, and 3, by ad-
justing the upper bound parameter U which
is smaller in the left figure than in the right.

the hyperplanes (in those areas labeled by 2), two distance
terms are used in Eq. 3, defining two-way interactions.

Early methods pre-specify a set of polynomial terms and
use them as input features to a DNN [23] which limits the
search space. In another line of methods [20], each feature
is associated with an order parameter mi and products in
the form of

∏
xmi
i are used as input (rather than raw fea-

tures xi) to a ReLU-activated DNN. The DNN is required
to also learn the proper values of mi. It is an excellent ap-
proach to identify useful interactions, but once these mi’s
are determined, the orders of feature interaction are fixed
and cannot adapt to different pieces because the piecewise
linear model (linear in terms of the input products) learned
by the DNN does not change interaction orders. Unlike
these methods, our attention module automatically identifies the interactions (polynomial terms) of
appropriate orders according to the topology of a piece (particularly, using the number of active
boundary hyperplanes of the polyhedron). Using introduced parameters UH , we can learn the ap-
propriate order of the interactive terms within a polyhedron by adjusting UH (larger values of UH

lead to higher-orders of feature interaction). Our theoretical analysis (Section 5) shows that a DNN
incorporating our attention module can approximate any function represented by ReLU-activated
DNN at any arbitrarily accurate level with fewer model parameters.

3 The Proposed Polyhedron Attention Module (PAM)

This section elaborates on the PAM with the attention score defined in Eq. 3. With input x ∈ Rp, a
DNN using PAM defines a function fPAM :

fPAM (x) = V (x; θG) +
∑

∆a∆(x)V (x; θ∆), (4)

where V (x; θG) is a global value function with trainable parameter θG, and V (x; θ∆) is the local
value function on a piece ∆ with trainable parameters θ∆. We set both the global and local value

4



functions to be affine functions, so θ contains the normal vector W and offset b. Sec 3.2 explains
why affine functions are our choice. Instead of forming polyhedrons by intersecting hyperplanes as
done in ReLU-activated DNNs, we use a tree search to partition the input space into overlapping
polyhedrons. Note that the potential set of partitions created by tree search is a superset of that created
by hyperplance intersections (see Appendix B). We introduce how we generate polyhedrons and then
discuss the attention and value functions.

3.1 Generating polyhedrons via oblique tree

Let S∆ contain all the polyhedrons needed to form a partition of the input space. We adopt the
oblique tree to generate S∆. An oblique tree is a binary tree where each node splits the space by a
hyperplane rather than by thresholding a single feature. The tree starts with the root of the full input
space S, and by recursively splitting S, the tree grows deeper. For a D-depth (D ≥ 3) binary tree,
there are 2D−1 − 1 internal nodes and 2D−1 leaf nodes. As shown in Fig. 3A, each internal and leaf
node maintains a sub-space representing a polyhedron ∆ in S , and each layer of the tree corresponds
to a partition of the input space into polyhedrons. Denote the polyhedron defined in node n by ∆n,
and the left and right child nodes of n by nL and nR. Unlike classic oblique trees that partition S
into non-overlapping sub-spaces, we perform soft partition to split each ∆n into ∆nL

and ∆nR
with

an overlapping buffer. Let the splitting hyperplane be {x ∈ Rp : Wnx + bn = 0}. Then the two
sub-spaces ∆nL

and ∆nR
are defined as follows:

∆nL
= {x ∈ ∆n|Wnx+ bn ≥ −Un},

∆nR
= {x ∈ ∆n| −Wnx− bn ≥ −Un},

(5)

where Un indicates the width of the overlapping buffer. Eq. 5 shows that those instances satisfying
|Wnx+ bn| < Un belong to the buffer in both ∆nL

and ∆nR
. This buffer creates a symmetric band

around the splitting hyperplane.

Let Pn be the node set containing all the ancestor nodes above n. We can group the nodes in Pn

into two subsets P l
n or Pr

n where n appears in the left or right subtree of those ancestors. Let i index
the nodes in P l

n and j index the nodes in Pr
n. Then for any node n except the root node, ∆n can be

expressed as the intersection of the half-spaces:

∆n = {x ∈ Rp : Wix+ bi ≥ −Ui,∀i ∈ P l
n, and −Wjx− bj ≥ −Uj ,∀j ∈ Pnr}. (6)

Based on the polyhedron defined by Eq. 6, the attention a∆n(x) (which we refer to as an(x) to
simplify notation) can be rewritten as

an(x) =
∏

i∈Pl
n
max(min(Wix+bi+Ui

||Wi|| , 2Ui

||Wi|| ), 0)
∏

i∈Pr
n
max(min(−Wix−bi+Ui

||Wi|| , 2Ui

||Wi|| ), 0), (7)

where we use the buffer width Ui to bound the corresponding distance term from above by 2Ui

||Wi|| .

Let Nd consist of all the nodes at the dth layer of the tree, d ∈ {1, 2, ..., D}. The nodes in Nd

altogether specify a soft partition of the input space that maps an instance x to one sub-space or an
intersection of overlapping sub-spaces in |Nd|. Rather than merely utilizing the instance partitioning
map defined by the last layer of the tree (2D−1 polyhedrons), we allow PAM to leverage polyhedrons
generated at all layers in fPAM with S∆ = ∪D

d=2{∆n|n ∈ Nd} which gives 2D − 2 polyhedrons.

3.2 Learning the attention and value functions

Each internal node n in the oblique tree needs to learn two affine functions: a splitting function
used to form a hyperplane to split the sub-space into child nodes, and a value function. Because
nested affine functions still produce affine functions, the set of affine functions is closed under linear
transformations. Thus, we can use the value function to absorb the denominator ||Wi|| from the
attention Eq.7. In other words, for any learned θn, we can find a θ′n (by rescaling θn with those

1
||Wi|| ) such that an(x)Vn(x, θn) = a′n(x)Vn(x, θ

′
n) where a′n(x) =

∏
i∈Pl

n
max(min(Wix+ bi +

Ui, 2Ui), 0)
∏

i∈Pr
n
max(min(−Wix − bi + Ui, 2Ui), 0) and we use the subscript n to denote the

polyhedron ∆ represented in node n. We thus directly set off to learn θ′n and use a′n as an.

More importantly, with affine value functions, we can derive another property. For any internal node
n, the attention of its two child nodes contains an as a factor, so anL

(x) = an(x)max(min(Wnx+
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bn + Un, 2Un), 0) and anR
(x) = an(x)max(min(−Wnx − bn + Un, 2Un), 0). It gives rise an

observation that no matter where x is located (inside the buffer or outside), anL
(x) + anR

(x) =
2Unan(x). Thus, we can substitute anL

(x) in the model fPAM by 2Unan(x) − anR
(x). Then,

an(x)V (x, θn) + anL
(x)V (x, θnL

) + anR
(x)V (x, θnR

) = an(x) (V (x, θn) + 2UnV (x, θnL
)) +

anR
(x) (V (x, θnR

)− V (x, θnL
)), which can be written as an(x)V (x, θ̄)+anR

(x)V (x, θ̃) for some
parameters θ̄ and θ̃ due to the closure of affine functions under linear transformations. Hence, once
again, we directly learn θ̄ and θ̃ in our model training process. Note that we can recursively apply
the above subsitution for all internal nodes n, so we can reduce the polyhedrons in S∆ by half. The
following theorem characterize the above discussion (proof is in Appendix C.)

Theorem 1 If all value functions V belong to a function set that is closed under linear transforma-
tions, then the function learned by PAM fPAM can be equivalently written as

fPAM (x) = V (x, θG) +
∑

n∈S−
∆
an(x)V (x, θn) (8)

where the polyhedron set S−
∆ contains half of the polyhedrons (e.g., the right child nodes or the left

child nodes) in S∆ and

an(x) =
∏

i∈Pl
n
max(min(Wix+bi+Ui, 2Ui), 0)

∏
i∈Pr

n
max(min(−Wix−bi+Ui, 2Ui), 0). (9)

Remark 1 Although we include polyhedrons identified by the internal nodes in our calculation,
fPAM only needs to learn 1

2 (2
D − 2) = 2D−1 − 1 value functions, which is actually in the same

scale as that of only using leaf nodes in fPAM .

Optimization of PAM. The output of fPAM (x) can be treated as a prediction of x’s label or an
embedding of x. PAM can be used as a constituent component in a DNN to approximate a target y =
f(fPAM (x)). For a classification task, we can calculate the conditional distribution ŷ = Pr(y|x) =
softmax(f(fPAM (x))) and optimize the cross-entropy LCE = −E(x,y)∼Dy log ŷ−(1−y) log(1−ŷ)
between the observed y and estimated ŷ to determine the parameters in PAM. For a regression task,
the mean square loss LMSE = E(x,y)∼D(y − f(fPAM (x)))2 can be used.

4 Model Interpretation

We propose a conceptual framework to quantify and interpret the interaction effects learned by PAM.
Without loss of generality, we assume that the DNN has a single output. Additional outputs can be
similarly interpreted using the derived algorithm. The fPAM can be rewritten as a summation of
k-way interaction terms for all possible values of k ≤ D: fPAM (x) =

∑
I⊆{1,2,...,p} ϕI(x) where

ϕI(x) captures the total contribution to the output from the |I|-way interactions among the features
indexed in I. If I ≠ ∅, ϕI(x) =

∑∑
mi≤D wI

∏
i∈I xmi

i where xi represents the ith feature of
x, mi calculates the power of xi in the interaction, and w’s are constant coefficients in front of the
corresponding interaction terms. Given the definition of our attention in Eq.9, the highest polynomial
order is D−1 in the attention, together with the affine value function, the highest polynomial order of
fPAM is D, so

∑
mi can not exceed the depth of the tree. If I = ∅, ϕI = w∅ which is a constant.

We develop a method here to estimate the contribution values ϕI in fPAM =
∑

I⊆{1,2,...,p} ϕI for a
fixed input x without computing the individual polynomial terms.

Algorithm 1: Obtain ϕI for an input x
1: Input: input x, g(x), and an I ⊆ {1, 2, ..., p}
2: Output: ϕI
3: Set 0−I to be a p-length vector with 1’s in the positions indexed

by I and 0’s elsewhere
4: Calculate the following function: (Note that ϕI′ (x) is also

calculated via the same recursive function.)

ϕI(x) =

{
g(0−I ⊙ x) −

∑
I′⊂I ϕI′ (x), I ̸= ∅,

g(0), I = ∅,

where ⊙ is the Hadamard product operator.

For a given x, fPAM can be written explicitly
out as g(x) according to which polyhedron(s)
x belongs to. To determine g(x), we pass x
through the model Eq.8 and evaluate every term
in Eq.9. For instance, for the first product in
Eq.9, if x makes Wix + bi ≥ Ui, we replace
the term max(min(Wix+ bi + Ui, 2Ui), 0) by
2Ui; if Wix+ bi ≤ −Ui, we replace it by 0; or
otherwise, we use Wix + bi + Ui. Once the g
function is computed, we can use Algorithm 1 to
evaluate the contribution ϕI , ∀I ⊆ {1, · · · , p}.

A simple example can be used to demonstrate Algorithm 1. Let I = {1, 2} which means we calculate
the sum of those cross terms that involve exactly x1 and x2. Thus we set all other elements in x to 0
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and calculate g(0−I ⊙ x) to obtain the value v that adds the terms involving only x1 and x2. We
then additionally set either x1 = 0 or x2 = 0, or x1 = x2 = 0 (i.e., make all elements 0), re-compute
g to estimate the linear terms of either x1 or x2, or the constant term in g, and subtract these values
from v to eventually obtain ϕI . The following theorem characterize our results.

Theorem 2 For any input x, by calculating ϕI(x) for each I ⊆ {1, 2, ..., p} via Algorithm 1, we
have

∑
I⊆{1,2,...,p} ϕI(x) = fPAM (x).

The instance-level explanation of fPAM can be obtained by examining the magnitude of ϕI which
reflects the impact of the feature interaction among the features in I. If ϕI(x) > 0, the interaction
increase the predicted value; if ϕI < 0, it reduces the output. The model-level interpretation can be
approximated by computing the mean absolute value of the ϕI across all sample instances.

5 Theoretical Justification - Approximation Theorems

We examine whether using PAM can enhance the expression power for universal approximation.
We first introduce the Sobolev space, which characterizes a space of functions satisfying specific
smoothness properties - Lipschitz continuous up to order n - which is formally defined as:

Definition 2 (Sobolev space) Let Wn,∞([0, 1]p) be the Sobolev space which comprises of functions
on [0, 1]p lying in L∞ along with their weak derivatives up to order n. The norm of a function f in
Wn,∞([0, 1]p) is

||f ||Wn,∞([0,1]p) = max
n:|n|≤n

ess sup
x∈[0,1]p

|Dnf(x)|,

where n = (n1, n2, ..., np) ∈ {1, 2, ..., n}p, |n| = n1 + n2 + ...+ np ≤ n, and Dnf is the n-order
weak derivative. The essential supreme ess sup g(E) = inf{M ∈ R : µ({x ∈ E : f(x) > M}) =
0} captures the smallest value that the function g can approach or exceed on a set E, except for a
negligible subset of points with the measure µ. Essentially, the space Wn,∞([0, 1]p) is Cn−1([0, 1]p)
whose functions’ derivatives up to order n are Lipschitz continuous.

The following assumption is commonly used in the discussion of DNNs. Without loss of generality, it
narrows our focus on a normalized Sobolev sphere. This assumption constrains the functions having
Sobolev norm no greater than 1 within the sphere.

Assumption 1 Let Fn,p be a set of functions lying in the unit ball in Wn,∞([0, 1]p), we have

Fn,p = {f ∈ Wn,∞([0, 1]p) : ||f ||Wn,∞([0, 1]p) ≤ 1}.

This assumption is sufficient for our analysis, as functions encountered in real-world learning tasks
can typically be linearly transformed into Wn,∞([0, 1]p), as shown in previous studies [29]. This
allows us to analyze the error bounds for terms in the polynomial approximation after performing
Taylor expansion. Theorem 3 demonstrates that our model can almost surely approximate any
ReLU-activated DNN model without error. All proofs can be found in Appendix E and F.

Theorem 3 If x is bounded and sampled from a distribution with upper-bounded probability density
function, then for any ReLU activated plain DNN model fDNN(x), there exists a PAM with

Pr(fPAM

(
x) = fDNN(x)

)
→ 1.

Theorem 4 examines the parameter efficiency, and demonstrates that networks incorporating the
proposed polyhedron attention require fewer parameters compared to those relying solely on ReLU
activation, while maintaining the same approximation error in fitting functions in the Sobolev space.

Theorem 4 For any p, n > 0 and ϵ ∈ (0, 1), we have a PAM which can 1) approximates any function
from Fn,p with an error bound ϵ in the sense of L∞ with at most 2pn(N +1)p(p+n−1) parameters,
where N = ⌈( n!

2ppn
ϵ
2 )

− 1
n ⌉.

Remark 2 For the purpose of comparison, the ReLU-activated plain DNN needs pn(N + 1)p(p+
1)nO(log(1/ϵ)) parameters under the same setting in Theorem 4 [30, 29].
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It is worth noting that extensive research has been conducted on the approximation theory of DNNs
with the ReLU-activation, which often concerns common function classes in specific function spaces
such as Besov [31, 32] and Sobolev spaces [33, 34]. These analyses reveal a notable influence of
the smoothness of the target function on the resulting approximation errors. Since Sobolev spaces
characterize the smoothness properties of functions, we can investigate the ability of neural networks
with ReLU activation to approximate functions with different degrees of regularity and smoothness.
These theorems highlight the expressivity of our model and provide theoretical insights for the
parameter efficiency of our proposed attention module in neural network architectures.

6 Empirical Evaluation

We evaluate the effectiveness and efficiency of PAM on three large-scale datasets: the Criteo1 and
Avazu1 click-through-rate (CTR) datasets, and the UK Biobank2 medical database. We conduct
an analysis of the hyperparameters of PAM, and perform ablation studies by individually removing
each of the three key components of PAM and evaluating the performance variations. Given the
lack of known feature meanings in CTR benchmark datasets, we utilize the UK Biobank dataset
as an example for studying model interpretation. Specifically, we validate the interaction effects
captured by our interpretation framework, as detailed in Sec. 4, in the prediction of brain-age by the
grey matter volumes from distinct brain regions. For implementation details, computation and space
complexity of our model, please refer to Appendix G.

6.1 Experimental Setup

Datasets. Both the Criteo and the Avazu are massive industry datasets containing feature values and

Table 1: Statistics of the datasets.

Dataset #Train #Valid #Test #Features

Criteo 33M 8.3M 4.6M 2.1M
Avazu 28.3M 4M 8.1M 1.5M
UK Biobank 31.8K 4K 4K 139

click feedback for display ads, and are processed following the
benchmark protocol in BARS [35, 36]. The UK Biobank serves
as a comprehensive biomedical database and research resource,
offering extensive genetic and health-related information, where
our objective is to predict participants’ age by leveraging the grey
matter volumes from 139 distinct brain regions. The summary
statistics are listed in Table 1.
Evaluation metrics. Criteo and Avazu datasets are concerned with binary classification tasks,
evaluated using Area Under the ROC Curve (AUC). For brain-age prediction, a regression problem,
we assess performance using the R2 score.
Baseline Algorithms. We compare PAM against the top 5 algorithms from a pool of 33 baseline
methods, selected based on the overall AUC scores in BARS, including DESTINE [19] (currently the
best performer on Avazu), DCN [37], AOANet [4], EDCN [27] (best on Criteo), and DCN-V2 [25].
Given that our model and the selected algorithms are DNN-based, we also include a well-tuned DNN1

as a strong baseline for our model comparison. It is worth noting that several state-of-the-art studies
on CTR datasets, such as Criteo and Avazu, from Google [2, 24, 37], Microsoft [38] and Huawei
[24], have recognized that even a marginal improvement of AUC at the level of 1‰ is considered a
significant performance enhancement.

6.2 Effectiveness and efficiency evaluation

Performance Comparison. We compare the results over five runs. As shown in Fig. 4a, PAM
achieves the highest AUC and R2 score amongst all benchmark algorithms. PAM outperforms
the second-best model by 1.4 ‰ for Criteo, 0.6 ‰ for Avazu, and 2.2 for UK Biobank, which is
much higher than the improvement achieved by the second-best model from the next model (0.4
‰ for Criteo, 0.16 ‰ for Avazu and 0.6 ‰ for UK Biobank). It is also worth noting that, despite
being well-tuned, none of the benchmark algorithms performs optimally across all three datasets
simultaneously. We evaluate the computation time of PAM by comparing the training and inferecing
runtime (seconds) per batch to the number of trainable parameters (#Par). As shown in Table 2,
almost all models have a similar amount of free parameters, and their runtime per batch is com-
parable among the methods (PAM is superior than half of the methods and inferior than the other half.)

1https://github.com/openbenchmark/BARS/tree/master; 2https://www.ukbiobank.ac.uk/
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Figure 4: Experimental results. Error bars represent the means and standard deviations of AUC for classification
and R2 for regression. a) AUC and R2 scores of PAM and comparison methods. b) Hyper-parameter analysis of
PAM. U: the initial value of Un. D: the depth of the oblique tree in PAM. c) Ablation studies of PAM.

Table 2: The number of parameters (#Par) and seconds per batch (Sec/Batch) during the
training and inference of PAM and baseline models.

Model
Criteo Avazu UK Biobank

#Par Sec/Batch #Par Sec/Batch #Par Sec/Batch

Training Interence Training Interence Training Interence

PAM 22.3M 0.102 0.0330 14.1M 0.090 0.0263 315K 0.083 0.0018
DNN 21.8M 0.046 0.0139 13.8M 0.038 0.0129 380K 0.056 0.0063
DESTINE 21.5M 0.130 0.0344 13.6M 0.090 0.0188 384K 0.072 0.0069
DCN 21.3M 0.044 0.0114 13.4M 0.080 0.0099 381K 0.069 0.0064
DCN-V2 22.0M 0.103 0.0128 13.8M 0.091 0.0137 458K 0.059 0.0067
AOANet 21.4M 0.151 0.0314 13.4M 0.338 0.0168 457K 0.066 0.0067
EDCN 21.5M 0.066 0.0119 13.1M 0.048 0.0113 63K 0.072 0.0071

Hyper-parameter Study. Al-
though Ui’s are trainable param-
eters in PAM, their initialization
may affect how well PAM works.
We hence study the effects of the
initial values of Ui’s by testing a
set of choices from 1 to 3 by a
step size of 0.5. We also exam-
ine the effects of the tree depth D
on PAM’s performance. Fig. 4b
shows the comparison where the
initial values of Un do not sub-
stantially change PAM’s performance, which indicates that Un may be well trained during the PAM
optimization. As for the tree depth D, the performance of PAM initially improves as D increases,
but when D becomes large, the performance may deteriorate. An appropriate value of D will help
PAM to learn more domain knowledge, but if D is too large, highly complex interactions may not
necessarily lead to better prediction due to issues such as overfitting.

Ablation Study of PAM. The following specifies the three components for our ablation experiments.
1) PAM without overlapping polyhedrons (PAM w/o OP). As shown in Eqs. 5, 6 and 7, overlapping
polyhedrons are generated in PAM to fit the target. To demonstrate the importance of soft splitting, we
calculate an(x) with

∏
i∈Pl

n
max(min(Wix+ bi, 2Ui), 0)

∏
i∈Pr

n
max(min(−Wix− bi, 2Ui), 0).

2) PAM without adaptively learning interaction (PAM w/o ALI). As shown in Fig. 5, the upper-
bound 2Ui enables PAM to learn interactions with different orders in different polyhedrons. To exam
the effectiveness of the upper bound, we remove this upper bound 2Ui from Eq. 9.
3) PAM without removing ||Wi|| (PAM w/o RW). According to Theorem 1, the denominator of Eq.
7 can be removed without reducing the expression capability of PAM. To examine the correctness of
this claim, we directly use PAM without removing ||Wi|| from the denominator.
Fig. 4c clearly demonstrates a notable decline in the performance of the PAM when key components
are removed. In particular, the standard PAM significantly outperforms the PAM w/o OP. It confirms
the critical role of overlapping polyhedrons in enhancing PAM’s performance. The removal of
ALI decreases the AUC and R2 of PAM as well, indicating the significance of combining low-way
interaction effects with high-way ones to fit the target. Moreover, PAM w/o RW shows that removing
||Wi|| from the denominator in Eq. 7 improves PAM’s performance. Although, according to Theorem
1, PAM without RW has the same expressive capability as standard PAM, the inclusion of W ’s norm
in the denominator of Eq. 7 may result in unstable gradient variances, potentially compromising the
performance of the optimizer.

6.3 Identified interaction effects among neural markers in predicting brain age

Although the interpretation framework was developed for PAM, it can be applied to those DNN
architectures whose functions are piece-wise polynomials (see Appendix D). After carefully checking
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Figure 5: Top 5 main and 2-way interactions identified by PAM (Figs. a and b), DCN (Figs. c and d) and
AOANet (Figs. e and f) by sorting mean absolute values of each ϕI averaged over all participants. For each
effect, points (each corresponding to a participant) are distributed according to ϕ values calculated by Algorithm
1 in the beeswarm bars. L: left; R: right; CR: crus II cerebellum; FOC: frontal orbital Cortex; FG: frontal gyrus;
PP: planum polare; OCSD: lateral occipital cortex, superior division; FP: frontal pole; LOC: lateral occipital
cortex; PG: precentral gyrus; T: thalamus; SC: subcallosal cortex.

all baseline methods, we found that our interpretation framework could be used to extract interactions
from DCN and AOANet. Fig. 5 presents the top five main effects (Figs. a, c and e) and two-way
interaction effects (Figs. b, d and f) between brain regions to brain-age prediction, as determined by
the trained PAM, DCN and AOANet.

According to Figs. 5a and 5b, PAM found that the grey matter volumes (GMV) of both the left and
right frontal poles (FP) play significant main effect as individual features, which is well aligned with
previous research findings[39, 40, 41]. The other three brain regions, lateral occipital cortex (LOC),
precentral gyrus (PG) and thalamus (T), are also discussed in early studies[42, 43, 44]. Existing
aging studies primarily focus on main effects of GMV, but the top five two-way GMV interactions
of identified brain regions have been acknowledged in works such as [42]. As shown in Fig. 5c,
5d, 5e and 5f, the main effects of PG and T identified by PAM were found by DCN and AOANet,
respectively, and all three algorithms found the two-way interactions between the left and right FP. In
addition to the shared top-5 brain regions identified by PAM, AOANet and DCN, PAM additionally
identified the main effect of the LOC and FP and two-way interaction effects related to the insular
and subcallosal cortex (SC) regions.

7 Conclusions and Future Work

We propose a novel feature interaction learning module, namely Polyhedron Attention Module (PAM),
to fit a target with adaptive-order interaction effects. PAM produces a self-attention mechanism
partitioning the input space into overlapping polyhedrons and learning the boundary hyperplanes for
each polyhedron automatically. These hyperplanes multiply to identify interaction effects specific
to individual polyhedrons. Under this mechanism, PAM automatically captures both simple and
complex interaction effects. In our theoretic analysis, we show that PAM can enhance the model
expression power for universal approximation. Experimental results demonstrate that the proposed
model achieves better performance on massive datasets than the state-of-the-art. In the future, we will
study how to dynamically pruning PAM’s oblique tree during the training process to regularize the
model. It will also be interesting to investigate how to define boundaries with non-linear functions.
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