
Appendix

A Related Work [Extended]

A.1 Optimal Transport Plan

The optimal transport (OT) distance (e.g., Wasserstein distance or Gromov-Wasserstein distance)
provides a flexible way to compare and couple probability distributions. In machine learning, optimal
transport distances can be used to perform various learning tasks over histograms (distributions)
[2, 56]. With the increasing prevalence of graphs [50, 69, 75], OT is being increasingly applied for
their processing. Existing studies directly apply the final result (e.g., optimal transport distance or
plan) from the OT problem to corresponding tasks, such as graph alignment and partition [14, 54, 68],
domain adaptation [11, 48] and shape matching [33, 43], rather than using the transport plan to
design a specific model. Furthermore, to the best of our knowledge, studies focusing on considering
multiple transport plans (independently) are currently found only in the design of OT algorithms
[34, 46, 57]. Mémoli [34] implicitly introduces the decoupled variant of the Gromov-Wasserstein
distance in the optimization procedure, which considers two coupling measures (plans) independently.
[57] makes this process explicit that seeks to simultaneously learn two independent correspondences
(i.e. rows and columns of matrices) by decoupling the GW distance. In contrast to these approaches
that consider different plans independently, our work aims to align two closely related transport plans,
which consider the same dependency and matching relationship that a pair of objects should have
under different spaces (e.g., graph space and representation space).

B Optimization, Complexity, and Implementation Details

B.1 Optimization

The optimization problem for π mainly includes the computation of the Wasserstein and the Gromov-
Wasserstein terms, where the former is a linear program and the latter is a nonconvex quadratic
program. To improve the efficiency of the algorithm with respect to the GW term, we use semi-relaxed
Gromov-Wasserstein divergence

π∗ = argmin
π∈Π(µ,m)

⟨L(A1,A2)⊗ π, π⟩ (13)

where
Π(µ,m) := {π ∈ Rn×m

+ |π1m = µ},
in [60] and optimize the transport plan with the conditional gradient (CG) solver. The gradient of
π with respect to Equation (13) is ∇π = 2L(A1,A2) ⊗ π. The conditional gradient algorithm
[21] consists in solving a linearization ⟨X,∇π⟩ at each iteration r. It can be solved by gradient
descent with a direction X(r) − π(r), followed by a line search for the optimal step. The details of
the algorithm are summarized in Algorithm 1. As a result, the optimization for Equation (7) only
requires replacing the gradient with∇π = σK(X1,X2) + 2(1− σ)L(A1,A2)⊗ π.

For the Wasserstein term, we can solve the linear program with OT network simplex solver [4]
or using the Sinkhorn-Knopp algorithm [12] which allows a fast computation of the transport
plan. The Sinkhorn-Knopp algorithm iteratively approximates the optimal solution π∗. Specifically,
the Sinkhorn-Knopp algorithm add an additional entropy regularizer and perform a scheme of
alternating Sinkhorn projections: π(0) = exp(−J(Z1,Z2)/λ) and π(t+1) = S(T (π(t))), where
t denotes the number of iterations, λ weights the regularization, S(π) = π ⊘ (11⊤π) ⊙ (1b⊤)
and T (π) = π ⊘ (π11⊤)⊙ (a1⊤), ⊙ denotes the Hadamard product and ⊘ denotes element-wise
division. As shown by [12], in the limit this scheme converges to a minimizer π(t) t→∞−→ π∗.

We compute the gradient∇Ziπ
(t) using backpropagation to update the parameters of GNNs in the

optimization progress. It’s noteworthy that extensive research has been conducted concerning the
convergence properties of this differential mechanism. Recent advancements in this domain are
highlighted in the paper [40], wherein theoretical proofs have been established. Theorem 3.3 of
[40] imples that π(t) is continuously differentiable for all t and the sequence of derivatives∇Ziπ

(t)

converges at a linear rate. In particular, for all Zi,∇Zi
π(t) t→∞−→ ∇Zi

π∗, where Zi is the independent
variable of the cost matrix C(Zi) and it corresponds to θ in the original text of [40].

15



Algorithm 1 Conditional Gradient Solver.
1: repeat
2: ∇(r)

π ← 2L(A1,A2)⊗ π.
3: X(r) ← argminX∈Π(µ,m)⟨X,∇(r)

π ⟩.
4: Line search the optimal step size for the descent direction: γ⋆ = argminγ∈[0,1]⟨L(A1,A2)⊗

Z(r)(γ),Z(r)(γ)⟩, where Z(r)(γ) = π(r) + γ(X(r) − π(r)).
5: π(r+1) ← (1− γ⋆)π(r) + γ⋆X(r).
6: until Convergence.

B.2 Implementation details

The proposed model GALOPA mainly consists of three components: graph perturbation, the backbone
model, and optimization of the OT plan. To perform graph augmentation, we use 4 types of operations:
Edge Perturbation, Feature Masking, Node Dropping, and Graph Sampling. The encoder used for our
model is GCN. We use Algorithm 1, OT network simplex solver [4], or Sinkhorn-Knopp algorithm
[12] for the optimization of the OT plan. Our model is implemented with Pytorch Geometric
[13] and Deep Graph Library [63]. All experiments are conducted on the Linux server (version
5.15.0-72-generic) with 12 Intel(R) Xeon(R) CPUs (E5-2603 v4 @1.70GHz) and two NVIDIA RTX
A5000.

C Perturbation on Graph Contrastive Learning

0.1 0.2 0.4 0.6 0.8
Edge Perturbation Rate

0.
8

0.
6

0.
4

0.
2

0.
1

Fe
at

ur
e 

M
as

ki
ng

 R
at

e

0.707 0.709 0.703 0.688 0.687

0.718 0.711 0.706 0.701 0.693

0.731 0.745 0.722 0.703 0.706

0.739 0.743 0.742 0.729 0.714

0.737 0.742 0.734 0.718 0.711

PROTEINS

(a) GRAPHCL

0.1 0.2 0.4 0.6 0.8
Edge Perturbation Rate

0.
8

0.
6

0.
4

0.
2

0.
1

0.845 0.82 0.836 0.825 0.817

0.863 0.833 0.841 0.831 0.825

0.851 0.871 0.839 0.831 0.822

0.866 0.848 0.833 0.837 0.823

0.867 0.839 0.849 0.828 0.819

MUTAG

(b) GRAPHCL

0.1 0.2 0.4 0.6 0.8
Edge Perturbation Rate

0.
8

0.
6

0.
4

0.
2

0.
1

0.683 0.67 0.675 0.668 0.658

0.7 0.701 0.689 0.678 0.673

0.714 0.718 0.706 0.693 0.689

0.716 0.716 0.721 0.703 0.69

0.712 0.709 0.719 0.689 0.682

CITESEER

(c) BGRL

0.1 0.2 0.4 0.6 0.8
Edge Perturbation Rate

0.
8

0.
6

0.
4

0.
2

0.
1

0.788 0.795 0.771 0.76 0.739

0.794 0.791 0.789 0.775 0.751

0.811 0.809 0.795 0.8 0.758

0.8 0.812 0.811 0.799 0.767

0.792 0.809 0.806 0.785 0.763

CORA

(d) BGRL

Figure 7: The mean graph/node classification accuracy when contrasting with different perturbation
rate under 4 datasets. Fix one of the augmentations as NoAug and the other augmentation be the
combination of edge perturbation and feature masking. Darker colors indicate better performance.

In this section, we propose to investigate the performance fluctuations of the traditional graph
contrastive learning algorithms when the anchor graph is perturbed with different augmentation
rates. As with Section 7, when augmenting the graph, we fixed one of the augmentations as NoAug
and the other augmentation requires a hyper-parameter “aug ratio” that controls the portion of
node attributes/edge that are selected for perturbing. We perform two augmentation policies, edge
perturbation and feature masking, with different augmentation rates on 2 social network datasets,
CORA and CITESEER [25] for node classification, and 2 graph classification data PROTEINS and
MUTAG from TUDataset [36] for graph classification. We select two state-of-the-art GCL algorithms
GRAPHCL [72] and BGRL [55] and evaluate them on graph data and network data, respectively.
The results are shown in Figure 7. As shown in Figure 7, the performance of GRAPHCL and BGRL
fluctuates considerably when the perturbation rate is too small or too large. For example, if both the
edge perturbation rate and feature masking rate are set to 0.8, GRAPHCL is 5.8% below its optimal
performance on the dataset PROTEINS. BGRL degrades 6.3% and 7.3% on the datasets CITESEER
and CORA, respectively.

D Comparing with the Model based on Graph Edit Distance
More recently, a self-supervised learning model D-SLA based on graph edit distance [22] aims to
learn the discrepancy between the original and the augmented graphs and utilizes the graph edit

16



distance to train graph discriminator to predict whether a graph is an original graph or a perturbed
one. Since the graph edit distance is not directly comparable with the embedding-level distance, the
algorithm relaxes the constraint to let the ratio of two embedding-level distances in the representation
space equal to the ratio of the corresponding two graph edit distances in the graph space. In
other words, this is equivalent to assuming the existence of an appropriate linear mapping over the
graph edit distance and forcing the embedding-level distance equal to the mapped edit distance.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

PROTEINS

MUTAG

DD

NCI1

COLLAB

IMDB-B

GALOPA

D-SLA

Figure 8: The mean graph classification accuracy on 4
datasets between GALOPA and D-SLA.

This model has the following limita-
tions: (1) Inconsistency of discrete and
continuous distances. The graph edit
distance is actually a discrete distance,
and deleting or adding nodes (edges)
causes the distance to change by a con-
stant cost. In contrast, the embedding-
level distance (e.g. Euclidean distance)
between graph representations obtained
from the encoder is a continuous dis-
tance. Forcing a linear relationship be-
tween the two distances is not realistic;
(2) Insufficiency. Since the same graph
edit distance may correspond to mul-
tiple different perturbations, it is not
sufficient to model the discrepancy be-
tween different graphs using the edit
distance only; (3) Label-invariance. To prevent the computation of the edit distance between vastly
different graphs, which is a complex problem, this method utilizes the principle of contrastive learning.
It assumes that the distance between the original graph and the perturbed graph should be less than the
distance between the original graph and the negative graph. However, positive and negative samples
are still needed for this model, and it relies on the assumption of label invariance.

Next, we conduct experiments to compare our paradigm with this model based on graph edit distance.
We evaluate the performance on 6 graph classification data NCI1, PROTEINS, DD, MUTAG,
COLLAB, and IMDB-B from TUDataset [36], since the implementation of the model is mainly
oriented towards graph classification. Figure 8 reports the averaged graph classification accuracy
results over the graph-level datasets. From Figure 8, we can find that our method significantly
outperforms the counterpart for most cases.

E Experiments on Large Scale Datasets

We performed the experiments in Sections 5-7 on the dataset ogbn-arxiv [20], which contains 169,343
nodes with 1,166,243 edges. We first partition the graph and compute the plan between subgraphs.
We perform self-supervised pre-training with all training data and supervised fine-tuning with 10% of
them then evaluate the test sets, which is repeated 10 times.

In Section 5, we compare the plan and distance. Table 3 records the node classification accuracies on
the ogbn-arxiv when pre-training using the Equations (11) and (12) as losses. ‘NoPretrain’ refers
to direct fine-tuning without pre-training. We can find that using the plan as losses outperforms the
counterpart using the distance, which is consistent with the conclusions in the paper. In Section 6, we
compare node attributes and edges. If σ = 1, the model takes into account only node attributes. When
σ = 0, it integrates only edge. We set ρ = 0 (or ρ ̸= 0) to remove (or add) the implicit structure
term L(im)strc. From the table, we can see similar conclusions to the paper. In Section 7, we test the
robustness of GALOPA. Table 5 records the performance when both feature masking (vertical axis)
and edge perturbations (horizontal axis) are used. We can find that our model is robust on ogbn-arxiv.

F An Effort to Reduce Complexity

Fast algorithms would come with their associated trade-offs. Efficiency gains may entail some
compromise in precision. In light of this observation, our subsequent comparison experiments (Tables
6-9) illustrate that the performance trade-off resulting from these fast algorithms is minor when
compared to the significant time savings they offer. This holds particularly true for medium to large

17



Table 3: Experimental results w.r.t plan versus
distance on large-scale dataset ogbn-arxiv.

Algo. Test Accuracy
NoPretrain 0.512 ± 0.31

Plan 0.544 ± 0.18

Dist 0.527 ± 0.26

Table 4: Results on ogbn-arxiv under different
values of parameters.

Para Test Accuracy
ρ = 0, σ = 1 0.523 ± 0.24

ρ ̸= 0, σ = 1 0.542 ± 0.37

ρ ̸= 0, σ = 0.5 0.544 ± 0.34

ρ ̸= 0, σ = 0 0.540 ± 0.25

Table 5: Results on ogbn-arxiv with diffrent perturbation rate.

Aug Rate 0.1 0.2 0.4 0.6 0.8
0.1 0.542 ± 0.23 0.543 ± 0.36 0.540 ± 0.32 0.538 ± 0.31 0.532 ± 0.26
0.2 0.543 ± 0.30 0.544 ± 0.27 0.544 ± 0.18 0.543 ± 0.35 0.538 ± 0.45
0.4 0.539 ± 0.16 0.541 ± 0.33 0.544 ± 0.29 0.542 ± 0.17 0.540 ± 0.39
0.6 0.534 ± 0.38 0.539 ± 0.19 0.543 ± 0.26 0.542 ± 0.32 0.539 ± 0.19
0.8 0.531 ± 0.23 0.535 ± 0.25 0.539 ± 0.19 0.537 ± 0.36 0.537 ± 0.41

datasets. Thus, the cost incurred by the use of fast algorithms is judiciously balanced against the
benefits they provide.

To provide a more comprehensive evaluation, we devise a variant algorithm known as GALOPA(linear).
This variant focuses on computing the transport plan solely based on the node attributes and employs
the linear Sinkhorn algorithm [45] to optimize in both the graph space and representation space. The
original version of our model retains the name GALOPA(cube). We conduct experiments, maintaining
the experimental settings outlined in the paper, across node and graph classification datasets. The
performance outcomes are recorded, and the results are presented in the subsequent table.

From the results on Tables 6 and 7 we can observe that the variant GALOPA(linear) exhibits compara-
ble performance with the GALOPA(cube), especially on median/large graphs such as the Amz-Photo
(with 7,650 nodes), PubMed (19,717 nodes), Coauthor-CS (18,333 nodes), and Amz-Comp. (13,752
nodes). In some cases, GALOPA(linear) performs better than GALOPA(cube) because the neural
networks may get stuck at local optima resulting in a slight difference in performance, which is a side
note to the good performance of GALOPA(linear).

Table 6: Node classification accuracy (%) for GALOPA(cube) and GALOPA(linear).

Models Cora CiteSeer PubMed WiKiCS Amz-Comp. Amz-Photo Coauthor-CS
GALOPA(cube) 84.21 ± 0.30 74.34 ± 0.18 84.57 ± 0.34 81.23 ± 0.19 88.65 ± 0.11 92.77 ± 0.40 93.04 ± 0.25
GALOPA(linear) 82.73 ± 0.29 72.12 ± 0.35 84.39 ± 0.19 81.15 ± 0.39 88.49 ± 0.17 92.82 ± 0.27 92.76 ± 0.22

Table 7: Graph classification accuracy (%) for GALOPA(cube) and GALOPA(linear).

Models PROTEINS DD MUTAG NCI1 COLLAB IMDB-B
GALOPA(cube) 76.93 ± 0.18 83.87 ± 0.42 91.11 ± 1.27 77.86 ± 0.36 73.20 ± 0.37 70.72 ± 0.48
GALOPA(linear) 76.77 ± 0.32 82.39 ± 0.45 90.88 ± 1.29 76.59 ± 0.24 73.33 ± 0.41 70.71 ± 0.39

Additionally, we count the average elapsed time per epoch for training these two models on all
datasets. The results are shown in the table below. These tables underscore the substantial reduction
in time consumption associated with GALOPA(linear) compared to GALOPA(cube), especially evident
in medium to large datasets such as PubMed, Amz-Comp., DD, etc.

We record in the following table the average elapsed time per epoch taken to pre-train on the ogbn-
arxiv with the algorithm GALOPA(cube), the variant algorithm GALOPA(linear), and the baseline
BGRL (with linear complexity), and the fine-tuning accuracies obtained on the supervised algorithms.
Note that for GALOPA(cube) and GALOPA(linear) we first partition the graph and compute the plan
between subgraphs, where the average size of each subgraph is ∼5000 nodes. The results of our

18



Table 8: The average elapsed time per epoch of the models on Node classification datasets.

Models Cora CiteSeer PubMed WiKiCS Amz-Comp. Amz-Photo Coauthor-CS
GALOPA(cube) 1.53s 2.18s 74.58s 25.66s 34.73s 11.60s 71.17s
GALOPA(linear) 0.29s 0.80s 10.20s 3.14s 5.24s 1.66s 32.03s

Table 9: The average elapsed time per epoch of the models on Graph classification datasets.

Models PROTEINS DD MUTAG NCI1 COLLAB IMDB-B
GALOPA(cube) 7.05s 300.50s 1.21s 18.15s 74.64s 3.59s
GALOPA(linear) 3.36s 20.07s 0.47s 11.75s 21.46s 2.76s

experiments on the ogbn-arxiv dataset, presented in Table 10, showcase the substantial reduction in
running time achieved through the implementation of the complexity reduction approach. Importantly,
this efficiency enhancement is coupled with comparable performance to the original model.

Table 10: The average elapsed time per epoch and the fine-tuning accuracies on ogbn-arxiv.

Models Time Test Accuracy
GALOPA(cube) 60.4s 0.544 ± 0.18
GALOPA(linear) 2.79s 0.541 ± 0.29

BGRL 1.02s 0.535 ± 0.19

G Ablation Study

In this section we perform loss ablation experiments. We compare the performance of the algorithms
when using Equation (9) and Equation (10) alone as losses below

Table 11: Ablation study on the losses Lmatch and L(im)strc.

Loss Cora CiteSeer PROTEINS MUTAG
Lmatch + L(im)strc 0.842 ± 0.30 0.743 ± 0.18 0.769 ± 0.18 0.911 ± 1.27

Lmatch 0.820 ± 0.36 0.689 ± 0.34 0.758 ± 0.21 0.879 ± 1.14
L(im)strc 0.812 ± 0.25 0.684 ± 0.24 0.762 ± 0.23 0.869 ± 1.21

From Table 11 we can see that using only one loss alone leads to performance degradation, which
verifies that each loss is indispensable. In addition we find that the plan matching loss Lmatch gives
relatively better performance on most datasets compared to the implicit structure loss L(im)strc, which
also suggests that the former may contribute more.

H Sensitivity Analysis

For the selection of ρ and σ, we search the optimal configuration for them from the set
{10−3, 10−2, . . . , 102, 103} and {0, 0.1, 0.2, . . . , 0.9, 1}. In this section we conducted sensitivity
analysis on these two parameters. Table 12 shows the average node classification accuracy on the
data Cora for different values of the parameter ρ (vertical axis) and the parameter σ (horizontal axis).

From the table, we can see that when we remove the implicit structure constraint L(im)strc (ρ = 0), the
performance of GALOPA drops dramatically if we do not use the explicit edge structure (σ = 1) at
the same time. Whereas, if we use the edge structure (σ < 1) to a greater extent, i.e., the smaller the
σ, the better performance of the algorithm. Additionally, we discuss the case where only the node
attributes are considered without using explicit edge structure (σ = 1). In this case, if we add implicit
structure constraints (ρ ̸= 0) we can get superior performance. Combining these two cases, it can be
concluded that implicit structural constraint L(im)strc do capture the internal structure of the graph.

19



Table 12: The sensitivity analysis of the method to the hyperparameters σ and ρ.

ρ vs. σ 0 0.3 0.5 0.8 1
0 0.813 ± 0.35 0.809 ± 0.26 0.801 ± 0.38 0.784 ± 0.22 0.776 ± 0.30

10−3 0.816 ± 0.21 0.823 ± 0.18 0.834 ± 0.31 0.836 ± 0.37 0.838 ± 0.30
10−2 0.814 ± 0.27 0.828 ± 0.45 0.831 ± 0.36 0.840 ± 0.32 0.838 ± 0.21
10−1 0.818 ± 0.34 0.830 ± 0.31 0.829 ± 0.31 0.839 ± 0.43 0.842 ± 0.34
100 0.823 ± 0.24 0.834 ± 0.26 0.835 ± 0.15 0.838 ± 0.20 0.841 ± 0.27
101 0.819 ± 0.29 0.838 ± 0.40 0.834 ± 0.38 0.833 ± 0.27 0.832 ± 0.38
102 0.821 ± 0.18 0.826 ± 0.29 0.829 ± 0.34 0.841 ± 0.14 0.839 ± 0.38
103 0.820 ± 0.33 0.824 ± 0.36 0.833 ± 0.26 0.832 ± 0.28 0.841 ± 0.31

Furthermore, we find that the algorithm is robust to the parameters ρ and σ, which fluctuate slightly
for different values (>0).

I GALOPA on Heterophilic Graphs

To better appreciate our work, in this section, we encapsulate several crucial aspects, which are further
elucidated through empirical evaluations of the heterophilic graphs.

(i) Universality of GALOPA: Our proposed GALOPA framework possesses the flexibility to be
employed on both homophilic and heterophilic graphs. To adapt GALOPA for heterophilic graphs, we
only need to replace the current backbone encoder with a suitable one tailored for heterophilic graph
scenarios.

According to [76], the heterophily restricts the learning ability of existing homophilic GNNs on
general graph-structural data, resulting in significant performance degradation on heterophilic graphs.
GALOPA is a flexible OT-based self-supervised framework. The choice of a backbone for graph
encoding in GALOPA is not rigidly tied to the proposed framework. This flexibility empowers users
to select different backbones based on the specific context. For instance, transitioning GALOPA
from homophilic to heterophilic graph settings involves a straightforward substitution of the current
homophilic encoder with a suitable heterophilic encoder, serving as the backbone for GALOPA.

To demonstrate this, we conducted a new set of experiments on 4 heterophilic graph data, i.e.,
Chameleon, Wisconsin, Cornell, and Squirrel. In these experiments, we compared GALOPA against
state-of-the-art homophilic graph methods (BGRL) and heterophilic graph methods (SP-GCL [62]).
For both BGRL and GALOPA, we assessed two scenarios by employing both traditional GNNs
encoders (HoGNN) used in the paper as well as specialized heterophilic GNNs encoders (HeGNN)
based on the structure proposed in [32]. We also retained SP-GCL’s original encoder design as it is
specifically tailored for heterophilic graphs. The results are presented in Table 13.

Table 13: Node classification accuracy on four heterophilic datasets.

Alg. Wisconsin Cornell Squirrel Chameleon
BGRL(HoGNN) 0.523 ± 0.27 0.561 ± 0.34 0.462 ± 0.31 0.634 ± 0.51
BGRL(HeGNN) 0.685 ± 0.22 0.579 ± 0.29 0.468 ± 0.36 0.636 ± 0.45

SP-GCL 0.635 ± 0.18 0.586 ± 0.33 0.522 ± 0.47 0.653 ± 0.36
GALOPA(HoGNN) 0.627 ± 0.24 0.577 ± 0.25 0.428 ± 0.39 0.598 ± 0.42
GALOPA(HeGNN) 0.731 ± 0.26 0.682 ± 0.31 0.473 ± 0.28 0.654 ± 0.39

The results demonstrate clear performance enhancements in GALOPA when transitioning the backbone
from HoGNN to HeGNN across all heterophilic data. Notably, instances like the Wisconsin data
exhibit a notable 16.6% enhancement, while Chameleon showcases a 9.4% uplift. Importantly,
GALOPA consistently surpasses BGRL in performance. Additionally, in comparison to SP-GCL, a
leading heterophilic graph solution, GALOPA outperforms it on three out of four datasets. This robust
performance reinforces the efficacy of GALOPA on heterophilic graphs.

(ii) Versatile performance across graph types: In this part, we evaluate the performance of GALOPA
across both homophilic and heterophilic graph data, utilizing a single adaptable backbone. We
demonstrate that if a graph encoder performs effectively on both homophilic and heterophilic graphs,

20



the same holds true for GALOPA when utilizing this encoder as its backbone. The adaptability of
HeGNN in encoding both homophilic and heterophilic graphs is evident [32]. To verify this, we
evaluate the performance of GALOPA(HeGNN) on three homophilic graph data in Table 14.

Table 14: Node classification accuracy on homophilic graph datasets.

Alg. Cora CiteSeer PubMed
MVGRL 0.834 ± 0.68 0.732 ± 0.48 0.800 ± 0.62
BGRL 0.813 ± 0.54 0.720 ± 0.63 0.805 ± 0.30

GALOPA(HoGNN) 0.842 ± 0.30 0.743 ± 0.18 0.845 ± 0.34
GALOPA(HeGNN) 0.839 ± 0.21 0.745 ± 0.34 0.836 ± 0.27

The findings illustrate that GALOPA(HeGNN) exhibits comparable performance to GALOPA(HoGNN)
on homophilic graphs while outperforming baselines. This can largely be attributed to its capacity to
adeptly utilize the low-pass, high-pass, and identity channels within GNNs, effectively addressing
the variations in both homophilic and heterophilic scenarios. These results further affirm GALOPA’s
capability to achieve strong performance across distinct graph types by utilizing a unified backbone.

J GALOPA with Different Backbones

In this section, we evaluate the stability of the proposed GALOPA across various GNNs backbones.
The final results show that GALOPA exhibits consistent stability when employing different similar
GNNs as its backbone. We conducted an examination of the performance impact on GALOPA by
employing diverse GNNs, specifically GCN (as used in the original paper) and SGC (with 1- or
2-hops, denoted as SGC-1 and SGC-2) [65] as encoders. The GCN structure employs a 2-layer design,
while the SGC structure utilizes a 1-layer configuration by default. The hidden layer dimension for
both models is set to 512. The experimental results are shown in Table 15. The results obtained
from these experiments highlight the stability of GALOPA’s performance when different GNNs
are employed as its backbone. This consistency across diverse GNN architectures underscores the
robustness and versatility of our proposed approach.

Table 15: Node classification accuracy of GALOPA and baselines on homophilic graph datasets.

Alg. Cora CiteSeer PubMed
MVGRL 0.834 ± 0.68 0.732 ± 0.48 0.800 ± 0.62
BGRL 0.813 ± 0.54 0.720 ± 0.63 0.805 ± 0.30

GALOPA(GCN) 0.842 ± 0.30 0.743 ± 0.18 0.845 ± 0.34
GALOPA(SGC-2) 0.831 ± 0.24 0.732 ± 0.38 0.851 ± 0.41
GALOPA(SGC-1) 0.822 ± 0.36 0.735 ± 0.34 0.840 ± 0.18

K Wilcoxon Signed Rank Test

We performed the Wilcoxon signed rank test on GALOPA and baseline on the node classification
dataset and the graph classification dataset, respectively. Tables 16 and 17 report the p-values for the
Wilcoxon signed-ranks test for GALOPA at 0.05 significance level with node classification baselines
and graph classification baselines, respectively. If the p-value is small, it can reject the idea that
the difference is due to chance and conclude that the population has a median distinct from the
performance of the baseline model. As shown in the table, GALOPA achieves superior performance
against all the baselines.

Table 16: The p-values for the Wilcoxon test for GALOPA on node dataset at 0.05 significance level.

BGRL GCA GRACE MVGRL DGI VGAE GAE NODE2VEC DEEPWALK

0.015 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

21



Table 17: The p-values for the Wilcoxon test for GALOPA on graph data at 0.05 significance level.

SIMGRACE RGCL JOAOV2 AD-GCL GRAPHCL INFOGRAPH GRAPH2VEC SUB2VEC DGK WL GK
0.078 0.078 0.046 0.015 0.078 0.078 0.031 0.015 0.031 0.078 0.015

L Statistics of Datasets

For evaluation purposes, we choose 7 node classification benchmark datasets: CORA, CITESEER,
PUBMED [25] and Wiki-CS, Amazon-Computers, Amazon-Photo, and Coauthor-CS [47]. Addi-
tionally, we select 6 public graph classification benchmark datasets from TUDataset [36]: NCI1,
PROTEINS, DD, MUTAG, COLLAB, and IMDB-B. The statistics for these datasets can be found in
Tables 18 and 19.

Table 18: The statistical information of node classification datasets.

Dataset Nodes Edges Classes Feat.
Cora 2708 10556 7 1433

CiteSeer 3327 9228 6 3703
PubMed 19717 88651 3 500
WikiCS 11701 216123 10 300

Coauthor-CS 18333 327576 15 6805
Amz-Comp. 13752 574418 10 767
Amz-Photo 7650 287326 8 745

Table 19: The statistical information of graph classification datasets.

Dataset Graphs Avg. Nodes Avg. Edges Classes
PROTEINS 1113 39.06 72.82 2

DD 1178 284.32 715.66 2
MUTAG 188 17.93 19.79 2

NCI1 4110 29.87 32.30 2
COLLAB 5000 74.49 2457.78 3
IMDB-B 1000 19.77 96.53 2

22


