
8 Appendix

8.1 Integer-only Inference

8.1.1 Int-LayerNorm

Inference stage. During inference, with the gathered i and r of systematic outliers, we extract the
layer-wise parameters s and z, and compute µ , s in the integer domain. Meanwhile, thanks to the
BitShift, PTR r can be calculated with the quantized Layernorm efficiently.

cXQ = (XQ � z)<< r, µ(X)⇡ µ(2rs · (XQ � z)) = s ·µ(cXQ), s(X)⇡ s(2rs · (XQ � z)) = s ·s(cXQ). (6)

Integer-only calculations on the statistics. LayerNorm can be formulated as:

LayerNorm(X) =
X �µxp

s2
x + e

· g +b =
Xp

s2
x + e

· g + g
p

s2
x + e � gµxp
s2

x + e
(7)

where g , b are the learned parameters, and µx, and s2
x are the statistics, which are calculated

adaptively based on the input.

Following the definition of LayerNorm, the whole process can be divided into two phases. In the first
phase, we shift the quantized activation XQ with PTR r:

cXQ = (XQ � z)<< r, (8)

In the second phase, we deduce the mean of X and X2 as follows:

µx ⇡
1
C

C

Â
i=1

(X̂Qi · s)!
s
C

T1, µx2 ⇡
1
C

C

Â
i=1

(X̂Qi · s)
2 ! s2

C
T2, (9)

Then we deduce the s2
x :

s2
x = µx2 �µ2

x ⇡ s2

C2 (CT2 �T 2
1),

q
s2

x + e ⇡ s
C

q
CT2 �T 2

1 , (10)

Hence, we deploy integer-only calculations to obtain the statistics of input X .

Integer-only Inference. We rewrite the LayerNorm flows with the quantized X and output OQ:

OQ = b sxgp
s2

x + e
X̂Q +b

p
s2

x + e � gµ
so
p

s2
x + e

e+ zo, A =
sxgp
s2

x + e
, B = b

p
s2

x + e � gµ
so
p

s2
x + e

, (11)

Then for the implementation inference (b is bit-width.):

M1 = b�1�blog2|A|c, M2 = b|A|2M1c, A = sign(A) · M2
2M1

, OQ = bAX̂Q +Bc+ zo (12)

8.1.2 Int-2n-Softmax Inference

Experimental Results of 2n replacement. Our experiments are conducted on ImageNet-1K [13]
with different backbones including DeiT-T, DeiT-S, DeiT-B [43]; Swin-T, Swin-S [33]. The image
resolution is 224⇥224⇥3. We follow most of the training settings as in DeiT and train all models for
300 epochs on 4 NVIDIA V100 GPUs. As shown in Table 5, there is no accuracy loss or negligible
degradation (<0.01%).

Integer-only Inference. We modify the original SoftMax Function in following ways:

SoftMax(X) =
exp(Xi)

ÂJ
j=1 exp(Xj)

! 2Xi

ÂJ
j=1 2Xj

, (13)

Then we subtract the maximum input to avoid overflowing and rewrite the 2n-SoftMax:

X̂i = Xi �max(Xi), 2n-SoftMax(X) =
2X̂i

ÂJ
j=1 2X̂ j

, (14)

Since the input X is the integer value, combined with the BitShit of 2n to replace the multiplication of
the exponential function, we execute the integer-only computation.

15

Table 5: The training results of 2n replacement in the Int-SoftMax on the ImageNet-1K.
Method DeiT-T DeiT-T-2n DeiT-S DeiT-S-2n

Accuracy 72.21 72.23 79.85 79.85
Method DeiT-B DeiT-B-2n Swin-T Swin-T-2n

Accuracy 81.85 81.86 81.35 81.34
Method Swin-S Swin-S-2n

Accuracy 83.2 83.18

Table 6: Training cost for PackQViT .

Model #Head Embed. Dim Depth Training Cost
Baseline

hours
Training

hours
Training
Saving

DeiT-T 3 192 12 24.8 17.2 35.60%
DeiT-S 6 384 12 44.6 26.8 39.90%
DeiT-B 12 768 16 168.2 79.1 53.20%
Swin-T [3,6, 12,24] [96, 192, 384, 768] [2, 2, 6, 2] 35.6 27.4 26.70%
Swin-S [3,6, 12,24] [96, 192, 384, 768] [2, 2, 18, 2] 114.5 62.4 45.40%

8.1.3 Training Comparison between Quantization Fine-tuning and Baseline
Train-From-Strach

Because we execute the outlier-aware training in a fine-tuned way, i.e., 70 epochs for step 2, 30
epochs for step 1, the training hours of the entire pipeline can be 26.7%⇠54% of train-from-scratch
of full precision models.

8.1.4 Systematic Channel-Wise Outliers of ViTs

We present the systematic channel-wise minimum and maximum values of ViTs as shown in Figure 7.
For comparison, we choose the input of the last LayerNorm layer for ViTs. We test 1024 images, and
outliers always occurred in fixed indexes. It is observed that serious and systematic inter-channel
variations are found in ViTs.

8.1.5 CPU Profiling of Popular ViT Models in FP32, INT8 and INT4 Precision

In this section, we show more details in the hardware profiling of ViT models, which mainly includes
FP32, INT8 w/o quantization, full INT8, INT4 w/o quantization, and full INT4, as shown in Figure 8
- 12 (platform: Snapdragon 870 SoC CPU).

DeiT-T DeiT-S DeiT-B

Swin-T Swin-S

Figure 7: Systematic channel-wise minimum and maximum values of ViT.

16

Table 7: Operator speedup compared with the
original implementation.

Operator Snapdragon 870 onboard CPU
Softmax 3.7x
GeLU 3.9x

Layernorm 1.4x

Table 8: Evaluating non-linear operator optimiza-
tion gain on DeiT-T.

Method Latency(ms)
Int4-w/o FullQuantization 46.7

+ Int-24-Softmax 41.2
+ I-GeLU 36.6

+ Int-Layernorm 34.8

Deit-Tiny-EncoderBlock-FP32

Others
1.21%

FullyConnected2
34.42%

GeLU
5.15%

FullyConnected1
35.63%

LinearProjection
2.77%

Attn*V
6.34%

Softmax
3.80%

Q*K^T
2.79%

Reshape / Transpose
0.13%

Linear Trans
6.55%

Layernorm(1+2)
1.20%

Latency: 14.2ms

Deit-Tiny-EncoderBlock-INT8 w/
Conversion

1.50%

23.69%

14.06%

27.21%

2.16%

5.80%

12.66%

3.30%

0.18%

5.57%

3.87%

Latency: 5.689ms

Deit-Tiny-EncoderBlock-FULL-INT4

Others
2.34%

FullyConnected2
25.56%

GeLU
6.32%

FullyConnected1
29.36%

LinearProjection
2.33%

Attn*V
6.26%

Softmax
12.63%

Q*K^T
3.56%

Reshape / Transpose
0.36%

Linear Trans
6.01%

Layernorm(1+2)
5.26%

Latency: 2.85ms

Deit-Tiny-EncoderBlock-INT4 w/
Conversion

Others
1.72%

FullyConnected2
18.69%

GeLU
20.51%

FullyConnected1
21.46%

LinearProjection
1.72%

Attn*V
4.56%

Softmax
18.46%

Q*K^T
2.59%

Reshape / Transpose
0.26%

Linear Trans
4.38%

Layernorm(1+2)
5.64%

Latency: 3.9ms

Deit-Tiny-EncoderBlock-FULL-INT8

Others
1.84%

FullyConnected2
29.06%

GeLU
3.88%

FullyConnected1
33.37%

LinearProjection
2.65%

Attn*V
7.11%

Softmax
7.76%

Q*K^T
4.04%

Reshape / Transpose
0.22%

Linear Trans
6.83%

Layernorm(1+2)
3.23%

Latency: 4.6ms

Figure 8: CPU profiling of DeiT-Tiny.

8.1.6 Breakdown of Efficiency Gain

Table 7 shows the actual speedup on Arm-based platforms of our hardware-friendly design of
nonlinear operations. As shown in Table 8, the integer-based optimization on 3 non-linear operators
would provide an overall latency decrease of approximately 12ms, more than 25% of the original
non-optimal method. Eliminating non-linear operators built on floating-point instructions from the
overall computation flow has significantly improved efficiency. This optimization becomes even more
meaningful when applied alongside 4-bit quantization, where non-linear operations share a higher
latency proportion with further acceleration on matrix multiplication.

Deit-Small-EncoderBlock-FP32

Others
1.50%

FullyConnected2
32.27%

GeLU
5.00%

FullyConnected1
32.97%

LinearProjection
3.87%

Attn*V
5.86%

Softmax
3.52%

Q*K^T
2.34%

Reshape / Transpose
0.07%

Linear Trans
11.49%

Layernorm(1+2)
1.11%

Latency: 30.7ms

Deit-Small-EncoderBlock-INT8 w/
Conversion

Others
1.31%

FullyConnected2
21.80%

GeLU
14.29%

FullyConnected1
23.99%

LinearProjection
3.84%

Attn*V
6.19%

Softmax
12.95%

Q*K^T
2.55%

Reshape / Transpose
0.11%

Linear Trans
9.04%

Layernorm(1+2)
3.93%

Latency: 11.2ms

Deit-Small-EncoderBlock-FULL-INT4

Others
2.58%

FullyConnected2
23.32%

GeLU
7.07%

FullyConnected1
25.66%

LinearProjection
4.11%

Attn*V
6.62%

Softmax
12.72%

Q*K^T
2.73%

Reshape / Transpose
0.22%

Linear Trans
9.67%

Layernorm(1+2)
5.30%

Latency: 5.7ms

Deit-Small-EncoderBlock-INT4-w/
Conversion

Others
1.51%

FullyConnected2
17.14%

GeLU
20.78%

FullyConnected1
18.86%

LinearProjection
3.02%

Attn*V
4.86%

Softmax
18.83%

Q*K^T
2.01%

Reshape / Transpose
0.16%

Linear Trans
7.11%

Layernorm(1+2)
5.71%

Latency: 7.7ms

Deit-Small-EncoderBlock-FULL-INT8

Others
1.64%

FullyConnected2
26.73%

GeLU
4.38%

FullyConnected1
29.42%

LinearProjection
4.71%

Attn*V
7.59%

Softmax
7.88%

Q*K^T
3.13%

Reshape / Transpose
0.14%

Linear Trans
11.09%

Layernorm(1+2)
3.28%

Latency: 9.1ms

Figure 9: CPU profiling of DeiT-Small.

17

Deit-Base-EncoderBlock-FP32

Others
1.33%

FullyConnected2
27.45%

GeLU
4.36%

FullyConnected1
28.07%

LinearProjection
6.82%

Attn*V
5.03%

Softmax
3.02%

Q*K^T
2.00%

Reshape / Transpose
0.08%

Linear Trans
20.87%

Layernorm(1+2)
0.98%

Latency: 71.5ms

Deit-Base-EncoderBlock-INT8 w/
Conversion

Others
0.83%

FullyConnected2
20.32%

GeLU
13.59%

FullyConnected1
21.32%

LinearProjection
5.12%

Attn*V
5.52%

Softmax
11.83%

Q*K^T
1.73%

Reshape / Transpose
0.12%

Linear Trans
15.90%

Layernorm(1+2)
3.74%

Latency: 23.7ms

Deit-Base-EncoderBlock-FULL-INT4

Others
2.94%

FullyConnected2
20.93%

GeLU
7.69%

FullyConnected1
21.96% LinearProjection

5.27%

Attn*V
5.69%

Softmax
12.30%

Q*K^T
1.78%

Reshape / Transpose
0.22%

Linear Trans
16.37%

Layernorm(1+2)
4.85%

Latency: 12.3ms

Deit-Base-EncoderBlock-INT4 w/
Conversion

Others
2.44%

FullyConnected2
17.37%

GeLU
21.49%

FullyConnected1
18.23%

LinearProjection
4.38%

Attn*V
4.72%

Softmax
10.21%

Q*K^T
1.47%

Reshape / Transpose
0.18%

Linear Trans
13.59%

Layernorm(1+2)
5.91%

Latency: 15.1ms

Deit-Base-EncoderBlock-FULL-INT8

Others
0.99%

FullyConnected2
24.22%

GeLU
4.81%

FullyConnected1
25.42%

LinearProjection
6.11%

Attn*V
6.58%

Softmax
7.69%

Q*K^T
2.06%

Reshape / Transpose
0.14%

Linear Trans
18.95%

Layernorm(1+2)
3.04%

Latency: 19.8ms

Figure 10: CPU profiling of DeiT-Base.

Swin-Tiny-FP32

Others
3.66%

Head
0.39%

PatchEmbedding
4.14%

WindowOperation
3.76%

FC2
14.06%

GeLU
5.92%

FC1
15.78%

LinearProjection
5.94%

Attn * V
8.47%

Softmax
6.01%

Q*K^T
7.36%

Reshape / Transpose
6.11%

Linear Trans
15.30%

Layernorm(1+2)
3.10%

Latency: 275.5ms
Swin-Tiny-INT8 w/ Conversion

Others
5.41%

Head
0.34%

PatchEmbedding
3.87%

WindowOperation
6.13%

FC2
8.44%

GeLU
13.28%

FC1
10.12%

LinearProjection
3.81%

Attn * V
5.35%

Softmax
13.49%

Q*K^T
5.47%

Reshape / Transpose
7.09%

Linear Trans
10.25%

Layernorm(1+2)
6.95%

Latency: 122.7ms

Swin-Tiny-FULL-INT8

Others
6.71%

Head
0.43%

PatchEmbedding
4.79%

WindowOperation
7.59%

FC2
10.45%

GeLU
2.95%

FC1
12.54%

LinearProjection
4.72%

Attn * V
6.63%

Softmax
8.07%

Q*K^T
6.78%

Reshape / Transpose
8.78%

Linear Trans
12.70%

Layernorm(1+2)
6.86%

Latency: 99.1ms

Swin-Tiny-INT4 w/ Conversion

Others
6.86%

Head
0.20%

PatchEmbedding
4.90%

WindowOperation
7.77%

FC2
5.89%

GeLU
16.84%

FC1
6.93%

LinearProjection
2.61%

Attn * V
3.72%

Softmax
17.09%

Q*K^T
3.06%

Reshape / Transpose
8.98%

Linear Trans
6.33%

Layernorm(1+2)
8.81%

Latency: 96.7ms
Swin-Tiny-FULL-INT4

Others
9.08%

Head
0.26%

PatchEmbedding
6.49%

WindowOperation
10.28%

FC2
7.80%

GeLU
4.00%

FC1
9.17%

LinearProjection
3.45%

Attn * V
4.92%

Softmax
10.93%

Q*K^T
4.05%

Reshape / Transpose
11.89%

Linear Trans
8.38%

Layernorm(1+2)
9.29%

Latency: 73.1ms

Figure 11: CPU profiling of Swin-Tiny.

Swin-Small-FP32

Others
3.63%

Head
0.38%

PatchEmbedding
4.10%

WindowOperation
3.73%

FC2
13.93%

GeLU
5.87%

FC1
15.63%

LinearProjection
5.88%

Attn * V
8.39%

Softmax
5.96%

Q*K^T
7.55%

Reshape / Transpose
5.90%

Linear Trans
15.92%

Layernorm(1+2)
3.11%

Latency: 556.1ms

Swin-Small-INT8 w/ Conversion

Others
5.38%

Head
0.34%

PatchEmbedding
3.85%

WindowOperation
6.09%

FC2
8.38%

GeLU
13.20%

FC1
10.06%

LinearProjection
3.78%

Attn * V
5.32%

Softmax
13.40%

Q*K^T
5.63%

Reshape / Transpose
6.87%

Linear Trans
10.69%

Layernorm(1+2)
7.01%

Latency: 247.1ms

Swin-Small-FULL-INT8

Others
6.66%

Head
0.42%

PatchEmbedding
4.76%

WindowOperation
7.53%

FC2
10.37%

GeLU
2.93%

FC1
12.45%

LinearProjection
4.68%

Attn * V
6.58%

Softmax
8.01%

Q*K^T
6.97%

Reshape / Transpose
8.50%

Linear Trans
13.23%

Layernorm(1+2)
6.91%

Latency: 199.7ms

Swin-Small-INT4 w/ Conversion

Others
6.84%

Head
0.20%

PatchEmbedding
4.89%

WindowOperation
7.74%

FC2
5.87%

GeLU
16.78%

FC1
6.91%

LinearProjection
2.60%

Attn * V
3.71%

Softmax
17.04%

Q*K^T
3.16%

Reshape / Transpose
8.73%

Linear Trans
6.63%

Layernorm(1+2)
8.91%

Latency: 194.3ms

Swin-Small-FULL-INT4

Others
9.04%

Head
0.26%

PatchEmbedding
6.47%

WindowOperation
10.24%

FC2
7.77%

GeLU
3.98%

FC1
9.14%

LinearProjection
3.44%

Attn * V
4.90%

Softmax
10.89%

Q*K^T
4.18%

Reshape / Transpose
11.54%

Linear Trans
8.77%

Layernorm(1+2)
9.39%

Latency: 146.9ms

Figure 12: CPU profiling of Swin-Small.

18

