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Abstract

While Vision Transformers (ViTs) have undoubtedly made impressive strides in
computer vision (CV), their intricate network structures necessitate substantial
computation and memory resources. A decision-making process for CV tasks typi-
cally entails performing computations with low latency, which is a tricky problem
for ViT models. Model quantization is a widely-used technique to optimize the
hardware efficiency of deep neural networks. Full quantization under Sub-8-bit
precision, in particular, is a promising solution to reduce inference latency signif-
icantly. Unfortunately, current commodity hardware, such as CPUs and GPUs,
still struggles to efficiently execute these sub-8-bit quantized networks, as their
SIMD instructions only support a granularity of 8 bits or wider. Also, there is a
scarcity of literature that presents a full quantization paradigm for ViTs. In this
paper, we propose an activation-aware fully sub-8-bit quantization-aware training
(QAT) framework called PackQViT for efficient yet accurate ViT acceleration on
mobile devices to facilitate real-time AI-powered decision-making. Specifically, in
revisiting data activation within the ViT dataflow, two characteristics are relevant
to quantization strategy and precision: the long-tailed distribution and systematic
channel-wise outliers. In response, we employ either log2 quantization or clipping
to address the long-tailed distribution and incorporate outlier-aware training for
residual link quantization to regulate the various channel-wise outliers more consis-
tently. Notably, due to the systematic fixed pattern, outlier-aware training approach
can predict the channel indices and regularized scales of outliers in advance, thus
avoiding the runtime data-adaptive selection during inference. Furthermore, we
employ Int-2n-Softmax, Int-LayerNorm, and Integer GELU to enable integer-only
computation flow. Finally, we develop a SIMD-based 4-bit packed multiplier to
achieve end-to-end ViT acceleration on mobile phones. Compared to prior studies
on ViT quantization using 8-bit precision, PackQViT surpasses other works by
an improved accuracy ranging from 0.4% to 17.9% for various widely used ViTs
on ImageNet dataset; under 4-bit precision, PackQViT demonstrates 0.4%⇠2.8%
higher accuracy. Compared to the baseline multiplier, our implementations on
the Realme GT Android smartphone with Snapdragon 870 SoC CPU achieve
2.6⇥⇠3.7⇥ speedup under 8-bit scenario and 3.8⇥⇠5.9⇥ speedup under 4-bit
which ensures practical real-time performance. Codes available at PackQViT.

1 Introduction

Transformers [3, 35] have experienced a resurgence in recent times, with ViTs [16] demonstrating
remarkable versatility across a broad range of domains, including computer vision (CV), e.g., image
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The Speedup Ratio of PackQViT on Multiple ViTs.

Model INT8 w/o 
FullQ

INT8 INT4 w/o 
FullQ

INT4

DeiT-T 2.5x 3.1x 3.6x 4.9x

DeiT-S 2.7x 3.3x 3.9x 5.4x

DeiT-B 3.0x 3.7x 4.4x 5.8x

Swin-T 2.2x 2.6x 2.8x 3.8x

Swin-S 2.1x 2.6x 2.9x 3.8x

Figure 1: PackQViT performance on the Realme GT Android smartphone with Snapdragon 870
SoC CPU. Left: Top-1 accuracy (%) on ImageNet compared to SOTA QAT methods on 8-bit/4-bit
precision. Right: The speedup ratio (x) compared to FP32 inference.

classification [16], object detection [9, 53], semantic segmentation [51], image processing [10], and
video understanding [52], as well as in complex scenarios that involve multi-modal data. Moreover,
ViTs have the potential to unify diverse application domains through shared architectures, addressing
two of the most pressing challenges in deep learning: • the reliance on limited domain-specific data;
• the need for constant model refinement to meet evolving demands. Given these strengths, ViTs are
poised to become a dominant force in the field of deep learning.

On the downside, ViTs are usually times slower than competitive convolutional neural networks
(CNNs). Many factors limit the inference speed of ViT, including the massive number of pa-
rameters and quadratic-increasing computation complexity with respect to token length. Model
quantization is a promising approach to address the above-mentioned issues. Still, it faces the
following challenges before ViTs become an indispensable staple of real-world applications on
resource-constrained hardware (e.g., augmented or virtual reality applications on mobile devices).
(i) Researchers [23, 27, 11, 44, 34, 50, 36] have developed quantization techniques to reduce both
computation and communication requirements for Transformers. However, most of these techniques
are based on training-free Post-Quantization (PTQ), which was originally proposed for natural lan-
guage processing (NLP) oriented Transformers [49, 14, 38, 6, 48, 46] and may lead to accuracy drops
when directly applied to ViTs. NLP-oriented transformers tend to have a larger model size than
ViT [14], making it difficult to utilize QAT on limited computing resources. In contrast, ViT can
adapt QAT to minimize the quantization error incurred in PTQ. Although QAT has been applied to
ViT in [29], it lacked an analysis of data distribution within networks and was not fully quantized,
which constrained task accuracy and practical implementation. (ii) To enhance accuracy, ViTs use
more hardware-unfriendly computations than CNNs (e.g., GELU, LayerNorm, and Softmax). Previ-
ous methods [34, 29] do not quantize Softmax/LayerNorm/GELU because quantization may cause
significant accuracy degradation. However, data moving between different data domains, e.g., dequan-
tizing and requantizing, and data movement between floating-point and integer domains, will cause
more hardware overhead. (iii) CPUs utilize SIMD units to perform multiple operations in parallel
efficiently. SIMD instructions can effectively exploit byte-level data (8-bit integers) parallelism and
are well supported in mainstream ISAs and DNN processing frameworks, e.g., GEMMLOWP [24]
in TensorFlow-Lite, and QNNPACK [18] in PyTorch. However, these low-precision libraries are
ineffective for running sub-8-bit (bit-width<8) quantized networks, as the SIMD-based units only
support data parallel execution for 8 bits or wider. Consequently, this poses challenges in imple-
menting sub-8-bit ViTs on mobile with both acceptable accuracy and lower runtime speed. In short,
we should address the hardware implementation issue while enjoying the additional optimization
dimension provided by multi-head self-attention.

In this paper, we present a novel framework called PackQViT for efficient and accurate end-to-end
ViT inference on mobile devices using activation-aware full sub-8-bit quantization. Our approach
involves conducting hardware profiling of ViTs on commercial mobile CPUs to identify an end-to-end
acceleration scheme and model full quantization. To decrease data precision without compromising
model accuracy, we revisit the data distribution in ViTs. Weight data has a typical normal distribution,
while activation data has the long-tailed distribution (attention maps and activation after GELU)
and systematic channel-wise outliers in the addition of residual links. Thus, we implement uniform
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quantization on weight, log2 quantization on attention maps, and uniform quantization on activation
values after GELU with the clipped range [-1, 10]. To address the issue of channel-wise outliers, we
introduce an outlier-aware training for the addition of residual links. The outlier-aware training can
predict the channel indices and regularize scales of outliers with a power-of-two ratio, avoiding the
complex hardware control logic for dynamic data selection during runtime inference. We modify the
inference formulas of Softmax, LayerNorm, and GELU, enabling integer-only inference. Finally, we
develop a SIMD-based 4-bit packed multiplier to accelerate ViT inference on mobile devices.

Compared to state-of-the-art (SOTA) ViT quantization studies [23, 27, 11, 44, 34] as shown in Fig-
ure 1, PackQViT achieves better accuracy: Under 8-bit precision, PackQViT can achieve 0.4%⇠5.8%
higher accuracy than other works and 0.9%⇠2.3% better accuracy than the full precision models;
PackQViT-Swin can achieve 1.4%⇠17.9% higher accuracy than other works and 0.9% better accuracy
than the full precision models. Under 4-bit precision, PackQViT can achieve 0.4%⇠2.8% higher
accuracy than others and <0.4% accuracy drops than full precision models. Compared to the baseline
multiplier on the Realme GT Android smartphone, our inference acceleration PackQViT achieves
2.6⇥⇠3.7⇥ speedup (8-bit) and 3.8⇥⇠5.9⇥ speedup (4-bit). According to our knowledge, Pack-
QViT reaches the real-time performance (34.8 ms in DeiT-T) of classic ViTs on the mobile phone for
the first time. Overall, our contributions are summarized as follows:

• We propose an activation-aware sub-8-bit full QAT framework for the efficient and effective
inference of ViTs.

• We propose an end-to-end integer framework equipped with a SIMD-based 4-bit packed multiplier
for real-time ViT inference on mobile devices.

• We conduct experiments to showcase the superior inference accuracy of PackQViT under the
sub-8-bit scenario compared to state-of-the-art ViT quantization studies, while also highlighting its
significant hardware efficiency.

2 Background and Related Work

2.1 Vision Transformers

The Speedup Ratio of PackQViT on Multiple ViTs.

Figure 2: DeiT-T/Swin-T breakdown on Realme
GT Android smartphone CPU.

Transformers which consist of a multi-head self-
attention (MSA) module and an MLP (FFN)
module, both with LN at the beginning, were
initially designed to tackle long sequence learn-
ing in NLP tasks. However, after the impres-
sive success of a pure transformer architec-
ture for image classification [17], the interest
in transformers for CV surged. This univer-
sality of transformer architectures from NLP
to CV is attributed to the more uniform rep-
resentations across all layers than CNNs, self-
attention mechanism enabling early aggregation
of global information, and ViT residual connec-
tions that propagate features strongly from lower
to higher layers [37]. Consequently, several
ViTs [4, 40, 1, 21, 39, 47, 45, 28] have been
proposed for various CV tasks, including object
detection, semantic segmentation, and image retrieval, achieving competitive performance against
CNN counterparts.

2.2 End-to-End Acceleration Methods

Hardware Profiling Analysis. To better understand the runtime breakdown for ViTs, we profile DeiT-
T and Swin-T, popular ViT models, on the Snapdragon 870 on-board CPU. We present the model in
FP32 precision, INT4 w/o full quantization, and INT4 w/ full quantization. And non-full quantization
means LayerNorm/Softmax/GELU are still in the floating-point domain. In Figure 2, we observe that
for the full precision DeiT-T on an Android smartphone with a Snapdragon 870 SoC CPU, matrix
multiplications, i.e., Linear Transform, Q*KT , Attention*V , Linear Projection, FC1, FC2, occupy the
latency distribution close to 88.51%; Nonlinear operations, i.e., GELU, LayerNorm, SoftMax, merely
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Figure 3: Left: A representative normal distribution of the weight of the 12-th FC1 layer in DeiT-T.
Middle and Right: Long-tail distribution for attention map and activation after GELU.
take the 10.16% of latency distribution. However, under the 4-bit w/o full quantization, nonlinear
operations take 44.61% of latency distribution. Suppose we do the full 4-bit quantization on the
model. In that case, nonlinear operations will only take about 24.21% of latency distribution, and the
model speedup ratio will be improved from 3.6x to 4.9x as Table in Feature 1. Similar to DeiT-T, the
speedup ratio of Swin-T will be increased from 2.8x to 3.8x. Hence, research on full quantization for
end-to-end acceleration is imperative.

Quantization on Transformers. Quantization is one of the most powerful ways to decrease neu-
ral networks’ computational time and memory consumption. It uses low-bit representations for
weight and activation tensors. Low-bit fixed-point representations, such as INT8 and INT4, further
reduce energy consumption as the fixed-point operations are more efficient than their floating-point
counterparts [22]. Current quantization methods can be divided into two categories: QAT and PTQ.
NLP-oriented Transformers mainly employ PTQ for three reasons [49, 14, 48]: • too large model
size (usually over 350M). • not accessible dataset. • limited academic computational resources to
support the training of large language models. However, ViT’s small model size and availability
of public datasets make it suitable for QAT, which avoids the issues associated with PTQ that can
lead to sub-optimal model performance or significant accuracy reduction without fine-tuning. To
illustrate, previous PTQ approaches [34, 31] quantized ViT models to 8 bits, resulting in only a
1.2%⇠1.8% accuracy decrease. [29] proposes a QAT method for ViTs with information-rectified and
similarity-aware strategies. However, this work does not quantize Softmax, LayerNorm, and GELU
modules, which hold significant execution time, e.g., 44.61% of latency distribution for 4-bit DeiT-T
execution and 42.74% for 4-bit Swin-T execution on mobile CPU (Figure 2). In PackQViT, we aim
to implement an accurate, fully quantized ViT under QAT.

2.3 Low-Precision Linear Algebra Kernels

Low-precision linear algebra kernels aim to maximize computing throughput on low-precision
operands by extending existing wider bit-width linear algebra kernels. Using lower-precision operands
has been shown to improve performance in two ways. i) caches to fit more data and ii) lower-precision
SIMD instructions to be utilized (e.g., vmlaq s8() in ARMv8 ISA) to process more elements in parallel
than higher-precision instructions (e.g., vmlaq f32()). SOTA low-precision linear algebra kernels,
such as Google’s GEMMLOWP [24] and Facebook’s QNNPACK [18], have been developed to
maximize the throughput of low-precision operands, which are highly effective in improving the
DNN inference efficiency under the 8-bit quantization (W8A8) scenario, e.g., 3⇥ end-to-end speedup
compared to the FP32 baseline when running on PyTorch with a 64-bit ARM Cortex-A72 CPU [2].
However, for more aggressive sub-8-bit quantization, it does not provide additional performance
benefits because commodity CPUs only support Single Instruction Multiple Data (SIMD) operations
of 8-bit or greater precision. As a result, low-precision kernels merely zero-extend the sub-8-bit
operands to align them with byte boundaries, treating them as 8-bit operands.

3 Revisiting Data Distribution within ViTs

Unlike [32] which merely analyzes the activation value in the attention map and LayerNorm, we
conduct a comprehensive analysis of the data distribution (weight & activation) of ViTs. • Weight.
The data has a standard normal distribution as shown in Figure 3. • Activation. Two characteristics
affect the quantization strategy: long-tail distribution – attention maps & activation after GELU and
channel-wise outliers – in the addition of the residual link.
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Figure 4: Left: Channel-wise minimum and maximum values of the second residual link addition
in the 9th block of Swin-T. Middle: Channel-wise ranges of the last residual link addition in
representative models. Right: Comparison of common Int-Softmax [32] and Int-2n-Softmax in
quantized MSA inference.

Long-Tail Distribution. • Attention map. As model sizes increase, the storage and computation
required for the Softmax with an attention map in each head create a bottleneck that substantially
impacts the throughput and latency of inference (see Section 2.2). To address this issue, we also
investigated attention maps, which reveal a long-tail distribution (see Figure 3). Based on token
pruning techniques [26, 15], the image-level redundancy causes most of the attention values to be
centered around a small value and the rest of the values are discrete and converge to 1 as Figure 3.
Two cases are put here to show the attention sparsity. Compared to the uniform quantization which
assigns only one bin to such a large number of values, the log2 method (only with 4-bit) has more
resolution to cover this data range. • Activation after GELU. The GELU activation function in FFN
leads to a truncation effect that heavily concentrates the resulting values around zero, showcasing a
clear one-sided stacking pattern (see Figure 3(b)).

Channel-Wise Outliers. • A serious inter-channel variation in the addition of residual link. Fig-
ure 4 depicts the channel-wise outliers in the last residual link. To provide a comparison, we
display the activations of ResNets in the last outputs of the 4th step. Notably, the channel-wise
ranges in ViTs exhibit more significant fluctuations than in ResNets. This is because the data flow
of nonlinear functions, such as Softmax and GELU, existing in the residual link of transformer
structures, results in a greater disparity between the input and output of the residual blocks compared
to CNN models. These results suggest that layer-wise quantization, with the same quantization
parameters for all channels, would cause an unacceptable quantization error. • Systematic outliers.
Although outliers basically appear in every sequence, they are concentrated in < 6% fixed feature
dimensions of the fixed encoder blocks, as shown in Figure 4 (Left) (see Appendix 8). For instance,
when testing 1024 images, outliers always occurred in the 21st , 89th, 146th, and 189th channel of the
9th block in Swin-T. Furthermore, setting these outlier features to zero in DeiT-T causes the top-1
accuracy drop by 30% on ImageNet classification. Since the outlier locations follow a fixed pattern,
we can anticipate them in advance, obviating the hardware design with complex control logic to
support online data-adaptive selection.

4 Activation-Aware Fully-Quantized ViTs

In detail, Section 4.1 presents the preliminary of quantization. In Sections 4.2-4.3, we propose two
novel quantization methods to fit the distinct activation distribution inside ViTs, long-tail-aware
quantization, and outlier-aware training for systematic channel-wise outliers quantization. Section 4.4
shows the SIMD-based 4-bit packed multiplier to support the 4-bit computation on mobiles practically.

4.1 Preliminary

Given the quantization bit-width is b, the quantizer Q(X |b) can be formulated as a function mapping
a floating-point number X2R to the nearest quantization bin. Among various quantizers, uniform [23]
and log2 [7] are generally used. Apart from the special data distribution mentioned in Section 3, we
apply symmetric layer-wise uniform quantization on weights and asymmetric channel-wise uniform
quantization on activations. For QAT training, the forward and backpropagation of the quantization
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function in a quantized network is formulated as

Forward : Q�Linear(x) = bx · bw = sxsw(QX (x)+
z
sx
) ·Qw(w),

Backward :
∂z
∂x

=
∂z
∂bx

∂bx
∂x

=

(
∂z
∂x if x 2 [lx,ux]

0 otherwise
,

∂z
∂w

=
∂z
∂x

∂x
∂ bw

∂ bw
∂w

=

(
∂z
∂x

∂x
∂ bw if w 2 [lw,uw]

0 otherwise
,

(1)

z is loss function, straight-through estimator [5] is used to obtain the derivation of the gradient in
backpropagation for Q(·). To achieve a fully quantized ViT, we leverage the analysis in Section 3 and
quantize all modules, including Conv, Linear, MatMul, LayerNorm, Softmax, GELU, etc.

4.2 Long-Tail-Aware Quantization

Two activation feature maps in dataflow exhibit a long-tail distribution: the attention map and the
activation after GELU. GELU truncates activation values to be concentrated around 0, while the rest
keep the original normal distribution. To allocate enough precision bits, we clip the activation value
to [-1, 10] after GELU with uniform quantization. Moreover, we adapt GELU to support integer-only
inference and regularize the quantization error as [15]. In this context, we focus on the attention map.

Log2 Quantization for Attention Map. Since the output range (0,1) of Softmax makes the log2
quantization [7] calibration-free and log2 can convert the MatMul to more hardware-efficient BitShift,
we propose:

AttnQ = Q(Attn|b) = clip(b�log2(Attn)e,0,2b �1), (2)

AttnQ ·VQ = 2�AttnQ ·VQ =VQ >> AttnQ =
1

2M · (VQ << (M�AttnQ)), (3)

where M = 2b �1. Note that directly right shifting VQ with the AttnQ may result in severe truncation
error. M�AttnQ with scaling 1

2M can prevent the error through a left-shift operation.

Inference with Int-2n-Softmax. Replacing the natural constant e inside the Softmax with 2 [8] as
shown in Figure 3, we propose Int-2n-Softmax with Log2 inference:

exp(s ·XQ)⇡ s0 ·2XQ , Int-Softmax(s ·XQ) = M� log2b
Â2XQ

2XQ
e. (4)

BitShift is implemented for the 2XQ and also for the integer log2 function. Experiments show that the
replacement does not cause an accuracy drop under the same training receipt [42] (see Appendix 8).

We illustrate the difference between normal Int-Softmax [25] and our method in Figure 4. On the
left, we present the common Int-Softmax with log2 quantization. On the right, our Int-2n-Softmax
replaces the floating-point exponential calculation with BitShift. Notably, i-exp is a second-order
polynomial that still involves the multiplication and addition in the floating-point domain, while
Int-2n-Softmax employs a 4-bit representation on attention maps and replaces multiplication with
BitShift operations, thereby enabling the inter-only dataflow, and reducing both computation and
memory footprint.

4.3 Outlier-Aware Training for Systematic Channel-Wise Outliers Quantization

The addition of residual links contains many systematic and channel-wise outliers. To mitigate
this, we propose the outlier-aware training approach that predicts the precise channel indices of
the addition of residual links and regulated scales of the outliers with the power-of-two ratio (PTR).
Thanks to the systematic outliers, outlier-aware training can obviate the need for complex control
logic during inference to support data-adaptive selection.

Power-of-Two Ratio for Residual Link Quantization. Given the input activation X 2 B⇥L⇥C,
and the PTR r2NC, then the quantized activation XQ can be formulated as:

XQ = Q(X |b) = clip(b X
2rs

e+ z,0,2b �1), s =
max(X)�min(X)

2R(2b �1)
, z = clip(b� min(X)

max(X)
e,0,2b �1). (5)
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Algorithm 1: Outlier-Aware Training
1 Given the full-precision ViT Model, the test subdataset of target Dataset D, the number of encoder blocks L,

Epochs for searching, Epoch f for fine-tuning, and quantized low-bit b;
// Step1: Initialize the PTC r with the outlier estimated from the full-precision Model.

2 foreach l 2 [0,1, . . . ,L�1] do
3 io, ro = Check_Outliers3s (Modell , D);
4 Quantize Modell by Eq. (5) with io, ro, b into the QModell ;
5 end
// Step2: Search for the channel index of outliers and determine the PTR r by the l2 regularization.

6 r = ro, i=io;
7 foreach eps 2 [0,1, . . . ,E pochs �1] do

// These two operations are gradient-free.
8 i, r = Check_Outliers3s (Modell);
9 ri = argmin

ri2{1,2,...,R}
||Xi �b Xi

2ri s e ·2
ri s||2 ;

// Following Eq. (2), Eq. (4) and Eq. (5).
10 taskloss, quantizationloss = Quantize(QModel, b);
11 Backward(taskloss, quantizationloss);
12 end

// Step3: Finetune the b-bit quantizaton.
13 Fix r and i for outliers and quantize QModel with fine-tune Epoch f ;
14 Finalize the quantized ViT Model.

Hyperparameter R=max(r)=4 satisfies different inter-channel variations across models. We predict
each outlier’s channel index i and PTR r by the following outlier-aware training algorithm.

Outlier-Aware Training. This algorithm is divided into three steps: • Initialize the PTR by detecting
the outlier of the full-precision model with 3s method [12]. • Search for the channel index i and
the PTR r of each outlier with the l2 minimization. • Fix the index i and r obtained in step 2 and
fine-tune the model (see Algorithm 1).

Inference with Int-LayerNorm. During inference, with the gathered i and r of systematic outliers,
we extract the layer-wise parameters s and z, and compute µ , s in the integer domain. Meanwhile,
thanks to the BitShift, PTR r can be calculated with the quantized Layernorm efficiently (also refer
to [25] and see Appendix 8).

4.4 SIMD-Based 4-Bit Packed Multiplier

In the 8-bit multiplier of the SIMD CPU, INT4 data is represented as INT8 with the high 4 bits set to
0, which means there is no benefit for the efficiency improvement of INT4 computation. We develop
our SIMD-based 4-bit packed multiplier (Figure 6): 1) Dot-multiplication. In the SIMD kernel, we
concatenate two weights Wi, j and Wi+1, j from adjacent rows and multiply them with their shared
activation value. The output is an INT16 data type, with the first 8 bits representing the result of the
multiplication with Wi, j, and the last 8 bits corresponding to Wi+1, j. Following the SIMD memory
mechanism where 16-bit of memory footprint will be freed up for the result of each dot-multiplication,
we can avoid potential overflow issues. 2) Addition. Combined with the Bitshift operator, expand
the 16-bit output in Step 1 into 32-bit, where the 1st 8 bits are 0, the 2nd 8 bits containing Outputi, j,
the 3rd being 0, and 4th containing Outputi+1, j. Next, we perform a row-by-row summation. Since
32-bit of memory footprint will be supplied for each addition, this process can handle up to 28 times
additions without overflow, which is sufficient for multi-head attention (head-dimension = 32/64).
Finally, we split the output into two INT16 values and quantize them back to INT4 in value-level,
which can be fused into the GeMM kernel.

Our method is different from per-channel quantization for outliers. We perform layer-wise quantiza-
tion on the activation matrix; all the channels share the same quantization parameters, i.e., scaling
factors and zero-point. However, the predicted power-of-two coefficients will refine the outlier
channels’ scaling factors. In the practical implementation, those power-of-two coefficients will be
equivalently mathematically transformed over the corresponding weights, as shown in Figure 5.
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(1) Dot Multiplication: Concatenate two weights in adjacent rows into one INT16 value and multiply with common value.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(2) Addition: Combined with BitShift operator, expand the INT16 output in (1) into INT32.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Quantize to

Theoretically, save 50%
multiplications and 50% additions.

Figure 6: The paradigm of SIMD-based INT4 packed multiplier.

A11 A11 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

W11 W12 W13 W14 W15 W16

W21 W22 W23 W24 W25 W26

W31 W32 W33 W34 W35 W36

W41 W42 W43 W44 W45 W46

2 1 8 1

x

Power-of-two coefficients for
activation channels

Preload the modified weight on devices

Figure 5: Matrix Multiplication Implementation
for Power-of-Two Ratio.

Our framework is compatible with per-channel
quantization. However, common inference en-
gines usually provide support only for layer-
wise quantization on activation and per-channel
quantization on weights, such as the Gemm
and Convolution operator configuration. For
example, ArmComputeLibrary [41] only sup-
ports channel-wise quantization configuration
for weight matrix instead of the input activation.

5 Evaluation
Our experiments include activation-aware quantization and hardware implementation for multiple
ViTs. To the best of our knowledge, there is no full quantization-aware training of ViTs at this point,
so we reproduce and implement the Q-ViT [29] and LSQ [19] methods by ourselves. Based on
the proposed hardware design logic of the 4-bit multiplier, our team is committed to enhancing the
support for lower-bit precision, such as 3-bit and 2-bit, which will be a major area of our future
development. Currently, we mainly present our model performance on 8-bit and 4-bit precision.
5.1 Experiment Setup
Training Setup for PackQViT Framework. The baseline models with 32-bit floating-point precision
are from the TorchVision library [20]. Our experiments are conducted on the ImageNet-1K [13] with
two popular vision transformer implementations, including DeiT [43] and Swin [33]. Apart from
special notes, we apply symmetric layer-wise quantization on weights and asymmetric channel-wise
quantization on activations. The hyperparameter R in Power-of-Two Coefficients is set to 4. The
training settings follow Q-ViT [29] with its DGD distillation, and the training process is executed on
4 NVIDIA V100 GPUs. Because we execute the outlier-aware training in a fine-tuned way, i.e., 70
epochs for step 2, 30 epochs for step 1, the training hours of the entire pipeline can be 37.5%⇠54%
of train-from-scratch of full precision models (see Appendix 8).

Hardware Platform. To validate the practical deployment efficiency of the proposed PackQViT, we
choose the Realme GT Master Android smartphone as the mobile platform, which is equipped with
a Snapdragon 870 SoC consisting of the onboard Octa-core Kryo 585 CPU. We control the testing
process to use a single thread and let the 3.2GHz Cortex-A77 Main Core perform the computation to
obtain the most stable acceleration ratio with the proposed framework. The latency has been reported
via 100 iterations for each test. Our inference engine is modified based on the ARM Compute Library.
For the operators that are not yet supported in DeiT and Swin (such as Int-LayerNorm, Integer
GELU, Int-2n-Softmax), we implement them based on the design hierarchy of ‘kernel’ to ‘operator’
to ‘runtime’ function, using parallel optimization based on ARM processor’s SIMD support.

5.2 Model Accuracy and Speed Performance
This paper employs several popular post-training quantization methods, including MinMax,
EMA [23], Percentile [27], OMSE [11], Bit-Split [44], PTQ for ViT [34], and FQ-ViT [32]. Also,
we compare with the SOTA quantization-aware training method, Q-ViT [29]. For the sake of fairness,
we reproduced the results of Q-ViT with quantized LayerNorm and Softmax.
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Table 1: Comparison of the Top-1 (%) accuracy with state-of-the-art methods on ImageNet dataset.
We report bit width in the order of weight/activation/attention.

Method #Bits DeiT-T [43] DeiT-S [43] DeiT-B [43] Swin-T [33] Swin-S [33]
Full Precision 32/32/32 72.21 79.85 81.85 81.35 83.2

PTQ
MinMax 8/8/8 70.94 75.05 78.02 64.38 74.37

EMA 8/8/8 71.17 75.71 78.82 70.81 75.05
Percentile 8/8/8 71.47 76.57 78.37 78.78 78.12

OMSE 8/8/8 71.3 75.03 79.57 79.3 78.96
Bit-Split 8/8/8 – 77.06 79.42 – –

PTQ for ViT 8/8/8 – 77.47 80.48 – –
FQ-ViT 8/8/8 71.61 79.17 81.2 80.51 82.71

QAT
Q-ViT 8/8/8 73.6 80.2 82.4 81.8 83.6

PackQViT 8/8/8 74.6 80.8 82.9 82.4 84.1
PackQViT 8/8/4 74.5 80.8 82.9 82.3 84.1

LSQ 4/4/4 70.5 77.8 79 78.7 80.5
Q-ViT 4/4/4 72.1 79.1 81.1 81 82.4

PackQViT 4/4/4 72.7 79.6 81.5 81.5 82.8

Table 2: Comparision of Objection Detec-
tion using DETR-50 on COCO val2017.

Methods #Bits mAP AP50 AP75
FP32 32 59.5 83.3 64.7

VT-PTQ 8 57.6 82.3 63.1
PackQViT 8 58.3 82.9 63.9
PackQViT 4 55.6 82.2 60

Table 3: Evaluating the components on DeiT-T.
Method #Bits Top-1 #Bits Top-1

Full Precision 32-32 72.2 32-32 72.2

Baseline [29] 8-8 73.6 4-4 72.1

+ Log2-Atten (Sec. 4.2) 8-8 74.1 4-4 72.4
+ Outlier-aware Train (Sec. 4.3) 8-8 74.2 4-4 72.5

+ Int-24-Softmax (Sec. 4.2) 8-8 73.5 4-4 72.0
+ Int-LayerNorm (Sec. 4.3) 8-8 73.6 4-4 72.1

PackQViT 8-8 74.5 4-4 72.7

Image Classification on ImageNet. In the 8-bit scenario, SOTA methods for PTQ have suffered
a significant accuracy drop, ranging from 0.5% to 16.9% compared to the full precision baseline.
However, QAT has shown promise in enhancing task accuracy by 0.5% to 2.4% over the baseline,
thanks to its ability to minimize quantization errors and eliminate model redundancy. This suggests
that redundancy in the original model hinders it from converging to the optimum, as confirmed by the
quantized DeiT-T model achieving 1.4% to 2.4% higher accuracy than the baseline. While the current
SOTA QAT method, Q-ViT, has made significant strides in correcting information distribution and
knowledge transfer within ViTs, it falls short in analyzing the internal data flow, leaving room for
improvement in quantization accuracy. Additionally, Q-ViT still relies on floating-point computations
for Softmax, LayerNorm, and GELU, which makes it challenging for efficient hardware deployment.
In contrast, our proposed PackQViT leverages activation flow fitting to achieve an additional accuracy
boost of 0.6% to 1% over Q-ViT. Moreover, when switching the data precision of the attention matrix,
the accuracy only reduces by less than 0.1%, indicating that a 4-bit log2 data type is sufficient to
cover the data representation.

In the 4-bit scenario, PackQViT can effectively prevent accuracy degradation by less than 0.4%.
Compared to other QAT methods, PackQViT still achieves a better accuracy performance of 0.4% to
2.8%. Furthermore, our method can be practically implemented on mobile devices using the ARM
8-bit multiplier and our proposed SIMD-based 4-bit Packed Multiplier.

Object Detection on MSCOCO. We compare object detection with transformers (DETR) [9], an
end-to-end detector via a transformer encoder-decoder. We perform our quantization on DETR-R50.
We compare the large-scale COCO dataset [30] as shown in Table 2. We compare our method under
the 4-bit precision. We report the detection performance of the 8-bit PTQ method, VT-PTQ [34].

For this more complex task, our method has a negligible detection performance degradation by 1.2%
mAP, which is better than the VT-PTQ method by 0.7 mAP. For more aggressive quantization under
4-bit, the model has 3.9 mAP performance drops. For more complex tasks, quantization tends to lead
to a degradation of task performance.

Latency Analysis. Based on Table 4, we can draw the following conclusions: 8-bit quantization
can bring an overall acceleration ratio of 2.5x to 3x depending on the size of the model, as the
high computational workload on mobile devices can benefit from the higher utilization efficiency
of limited memory resources under quantization algorithms. Specifically, INT8 quantization can
achieve approximately 3.5x acceleration compared to FP32 in GeMM, which is very beneficial
for models like Transformers, where most mathematical operations are matrix operations (>80%
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Table 4: Latency (ms) on mainstream processors on edge platforms (1-thread).
Model Method #Bits Size(MB) Android CPU (s) RaspberryPi (s) RISC-V (s)

DeiT-T
Full-precision 32 20.1 0.172 23.97 3.4

PackQViT 8 5.2 0.056 7.73 1.11
PackQViT 4 2.7 0.037 5.15 0.74

DeiT-S
Full-precision 32 88.2 0.363 59.75 7.2

PackQViT 8 22.2 0.11 17.5 2.2
PackQViT 4 11.4 0.073 11.97 1.46

DeiT-B
Full-precision 32 346.2 0.858 143.4 17

PackQViT 8 86.8 0.233 38.24 4.6
PackQViT 4 44.1 0.156 26.12 3.16

Swin-T
Full-precision 32 114.2 0.276 44.9 5.5

PackQViT 8 28.6 0.099 16.4 2.1
PackQViT 4 14.6 0.085 13.76 1.69

Swin-S
Full-precision 32 199.8 0.55 89.78 10.9

PackQViT 8 50.2 0.213 34.4 4.2
PackQViT 4 25.5 0.164 25.93 3.29

computation). Hence, ViT can obtain more speedup gain than CNN, whose memory movement,
such as weight reshaping, image2column, and column2image under different data layouts in each
convolution operation, can dilute the efficient quantization speedup on GeMM. The 4-bit compression
and concatenation technique can further improve this advantage, achieving approximately 1.75x
acceleration compared to INT8 multiplication. This is because, while the theoretical computational
workload is halved, overhead is introduced due to internal shifts of concatenated weights and the
recovery of stored results in INT8 format.

Our 4-bit packed multiplier can be executed on mainstream processors on edge platforms (e.g., mobile
phones, Raspberry Pis, and RISC-V IoT processors), which face challenges in processing low-bit data
since their SIMD instructions only support 8-bit or wider data granularity. Hence, we also test the
speedup gain on other edge devices. Note that INT8 matrix multiplication within PackQViT utilizes
the original byte-level quantized GeMM kernel. For the 8-bit configuration, models can be speedup
by up to 3.7x and up to 2.7x for DeiT and Swin models, respectively. For the 4-bit configuration,
models can be speedup by up to 5.5x and up to 3.5x for DeiT and Swin models through our proposed
packed 4-bit multiplier.
5.3 Ablation Study
Breakdown of Task Accuracy. We give quantitative results of the proposed log2 quantization,
outlier-aware training, and integer activation functions in Table 3. We set Q-ViT as the quantization
baseline, which can improve the accuracy by 1.4%, which illustrates the redundancy inside the full
precision model and suffers a performance drop by 0.1% in 4-bit settings. Log2 Attention and outlier-
aware Training improve the performance when used alone, and integer activation functions almost
maintain the original precision with only 0.1% accuracy drops when setting n=4 in Int-2n-Softmax.
When combining all the components to enable integer-only flow, the performance can be boosted
considerably, e.g., log2 quantization improves the 8-bit baseline by 0.5% and outlier-aware training
by 0.6%. In contrast, the combination with integer-only functions can reach 0.9%.

6 Conclusion and Limitations
This paper proposes an activation-aware fully sub-8-bit QAT framework called PackQViT for ViT
inference acceleration on the mobile. We first arrived at several critical observations regarding the
data distribution in ViTs and pointed out two distinct characteristics in activations influencing the
quantization strategy: a long-tailed distribution, and systematic channel-wise outliers. To address
the long-tailed distribution, we utilized 4-bit log2 quantization and clipping. For the systematic
channel-wise outlier, we designed outlier-aware training to predict outliers’ indexes and scale and
regularize them with PTR in advance. We also develop a SIMD-based 4-bit packed multiplier to
support PackQViT and achieve end-to-end ViT acceleration on mobile phones. Experiments show that
PackQViT achieves superior task accuracy compared to SOTA quantization studies with significant
hardware efficiency. Notably, we primarily validate our QAT methods with 4-bit precision. However,
the PackQViT also holds the potential for application in lower precision scenarios. We are currently
developing an implementation of a lower-bit SIMD-based multiplier to achieve enhanced acceleration.
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