
Bandit Task Assignment
with Unknown Processing Time

Shinji Ito
NEC Corporation, RIKEN AIP

i-shinji@nec.com

Daisuke Hatano
RIKEN AIP

daisuke.hatano@riken.jp

Hanna Sumita
Tokyo Institute of Technology
sumita@c.titech.ac.jp

Kei Takemura
NEC Corporation

kei_takemura@nec.com

Takuro Fukunaga
Chuo University

fukunaga.07s@g.chuo-u.ac.jp

Naonori Kakimura
Keio University

kakimura@math.keio.ac.jp

Ken-ichi Kawarabayashi
National Institute of Informatics, The University of Tokyo

k_keniti@nii.ac.jp

Abstract

This study considers a novel problem setting, referred to as bandit task assignment,
that incorporates the processing time of each task in the bandit setting. In this
problem setting, a player sequentially chooses a set of tasks to start so that the
set of processing tasks satisfies a given combinatorial constraint. The reward and
processing time for each task follow unknown distributions, values of which are
revealed only after the task has been completed. The problem generalizes the
stochastic combinatorial semi-bandit problem and the budget-constrained bandit
problem. For this problem setting, we propose an algorithm based on upper
confidence bounds (UCB) combined with a phased-update approach. The proposed
algorithm admits a gap-dependent regret upper bound of O(MN(1/∆)log T ) and
a gap-free regret upper bound of Õ(

√
MNT ), where N is the number of the tasks,

M is the maximum number of tasks run at the same time, T is the time horizon,
and ∆ is the gap between expected per-round rewards of the optimal and best
suboptimal sets of tasks. These regret bounds nearly match lower bounds.

1 Introduction

This paper introduces a new model of sequential decision-making that we refer to as the bandit task
assignment problem. The goal of this model is to determine which tasks to perform sequentially so
that the total reward will be maximized, while estimating the distribution of rewards and processing
time for each task. For each round t = 1, 2, . . . , T , we choose a set At of tasks to start. Each task i in
At will be completed in the (t+ cti)-th round, and we then obtain the reward rti. The processing time
cti and the reward rti follow unknown distributions independently for all t, and they are observed
only when the task has been completed, i.e., only bandit feedback is available. In all rounds, the set
of processing tasks is required to satisfy a given combinatorial constraint. That is, in each round, the
player can start a set of new tasks that, together with the tasks still in progress, satisfies the given
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Figure 1: An example of a feasible task assignment.

constraint. The performance of the algorithm is evaluated by means of regret RT , which is defined as
the difference between the cumulative rewards obtained with an optimal policy and with the algorithm.
Our model allows an arbitrary constraint for a set of tasks that is expressed by A ⊆ {0, 1}N , where
N is the number of tasks. Each vector a = (a1, a2, . . . , aN )> ∈ A is interpreted as a feasible set of
tasks A = {i ∈ [N ] | ai = 1}, where [N ] := {1, 2, . . . , N}.
Figure 1 illustrates an example of a feasible task assignment for the case of A = {a ∈ {0, 1}3 |
‖a‖1 ≤ 2}, in which we choose which tasks to start from three candidates so that the number of
processing tasks does not exceed two. Each arrow in this figure represents the interval of time to
process a task. In this example, at round 2, two tasks (Tasks 1 and 2) are still processing, and hence,
we cannot start any new task. At the beginning of round 3, we observe that Task 1 is completed, and
it is then possible to start one new task. We note that the processing time cti and the reword rti of
task i stated at time t are revealed only at the completion time (t+ cti).

The model in this paper is a common generalization of stochastic combinatorial semi-bandit problems
[25, 24, 34] and budget-constrained bandit problems [20, 15, 12, 37]. In fact, if the processing time
cti is always equal to 1 for any task i, the player can choose any set of A in every round and can
observe the feedback immediately afterward, which coincides with the stochastic combinatorial
semi-bandit problem. On the other hand, if we suppose that A = {a ∈ {0, 1}N | ‖a‖1 ≤ 1}, i.e., if
only a single task can be performed in every round, the problem corresponds to stochastic N -armed
bandits with a budget constraint [20, 15]. Indeed, by regarding cti as the cost for choosing arm i, we
can interpret the model as a problem with the budget constraint that the cumulative cost is at most T .

We note that our problem setting is similar to blocking bandits [8], in which each chosen arm is
blocked, i.e., is unavailable for a certain period of time after it is chosen. However, they are different in
the constraints on the actions in each round. For example, consider A = {a ∈ {0, 1}N | ‖a‖1 ≤ K}.
Then, in the bandit task assignment problem, we cannot start a new task when K tasks are already
running. On the other hand, in the blocking bandit problem, the player can choose any K arms that
are not blocked. Blocking bandits have been extended to contextual bandit models [9], semi-bandit
models [3, 28], and adversarial models [10], as well.

Applications of our model include the following examples:

Example 1 (Matching constraint). We consider the problem of assigning L jobs to K workers. Let
V1 and V2 be the sets of workers and jobs, respectively. Let E ⊆ V1 × V2 be a set of pairs of a
worker and a job such that (u, v) ∈ E if and only if the worker u is qualified to do the job v. In each
round, we choose a subset M of E so that no two elements in M share the same worker or job, that
is, M must satisfy the matching constraint for the bipartite graph G = (V1 ∪ V2, E). Each job has
processing time to complete, and, when a job is assigned to a worker, the job-worker pair is occupied
until the job is completed. Thus the occupied job-worker pairs have to be included in M . We assume
that the time required to complete a job and the quality of the results (rewards) follow unknown
distributions that depend on the job-worker pair. This problem can be regarded as a special case of
the bandit task assignment problem with N = |E|. Choosing at ∈ A corresponds to assigning a job
v to a worker u for each e = (u, v) such that ate = 1, and the worker u and the job v will then be
occupied and unavailable until the task is completed. It would be worth mentioning that the matching
constraint is often the subject of consideration in the context of combinatorial semi-bandits [18, 30].

Example 2 (Knapsack constraint). Consider the situation where we want to perform tasks (e.g., of
data processing) under resource constraints (e.g., computational resources such as CPUs, GPUs,
and memories). We assume that the processing time of each task varies stochastically, and is not
revealed until it is completed. Formally, we are given N tasks and K resources. Assume that each
task i ∈ [N ] consumes bki ∈ R≥0 amount of resource k ∈ [K] per unit time, and that the total
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amount of resource k available in unit time is fk. Then the player can choose a set of tasks from
A = {a ∈ {0, 1}N | b>k a ≤ fk (k ∈ [K])}, where bk = (bk1, bk2, . . . , bkN )> ∈ RN≥0 for each
resource k. Note that the set of all running tasks must satisfy the constraint given by A, which means
that we cannot use resources occupied by tasks in progress and we are restricted to choose a set of
tasks that can be executed with remaining resources. We note that the class of problems with a single
resource (K = 1) includes the budget-constrained multi-armed bandit [20, 15] as a special case.
Example 3 (Matroid constraint [35, 17]). If A consists of indicator vectors for independent sets of a
matroid with the ground set [N ], we call this a matroid constraint. Matroid constraints capture a variety
of problem settings of practical importance, including the situation in which the number of tasks that
can be executed simultaneously is limited to at most K, i.e., A = {a ∈ {0, 1}N | ‖a‖1 ≤ K}. This
special case is called a uniform matroid.

1.1 Contribution

Our main contribution is to present an algorithm that achieves a regret bound of O(Cu

C2
l
MN(1/∆ +

Cu) lnT ), where Cu and Cl are upper and lower bounds for the processing times cti, M is the
maximum of ‖a‖1 for a ∈ A, and ∆ > 0 is the gap between expected per-round rewards for the
optimal and the best suboptimal actions. The proposed algorithm also enjoys a gap-free regret bound
of O( 1

Cl

√
CuMNT lnT ). Our contributions include a nearly tight lower bound as well, i.e., we

show that any algorithm suffers a regret at least Ω( 1
Cl

√
CuMNT ). This indicates that the proposed

algorithm achieves nearly optimal regret bounds.

To design our algorithm, we first show that a nearly optimal policy can be characterized by expected
per-round rewards for tasks (Proposition 2.2 in Section 2). This implies that, given estimation for
expected per-round rewards and a linear optimization oracle for A, we can compute asymptotically
optimal actions. This is in contrast to the blocking bandits, in which it is computationally hard to
maximize the total reward even if all the distributions are known, as presented, e.g., in Corollary
3.2 by Basu et al. [8]. That is why, for the blocking bandits, existing algorithms can achieve only
approximate regret bounds, i.e., the performance is only guaranteed to be (close to) a constant-factor
approximation for the optimal strategy.

Proposition 2.2 suggests us to balance exploration and exploitation with the aid of upper confidence
bounds (UCB) on the expected per-round reward for each task, which can be computed efficiently.
Such a UCB-based approach is similar to CombUCB1 for combinatorial semi-bandits [25]. CombUCB1,
however, does not directly apply to our problem setting due to the stochastically variable processing
time. In the bandit task assignment problem, the set of tasks that the player can start in each round
changes depending on the set of tasks still in progress, which makes the decision of the player
restricted. To address this issue, we introduce a phased-update approach, in which we divide the
entirety of the rounds [T ] = {1, 2, . . . , T} into segments of appropriate length. At the beginning of
each segment s, we compute a set of tasks A′s based on the UCB for expected per-round rewards. We
note that this can be done independently of the state of running tasks. Then, in the s-th segment, we
basically continue to perform the same set of tasks A′s.

One main technical difficulty is how to determine the length ls of the segment s. At the start of a new
segment s, tasks in A′s cannot be executed until all tasks performed in the previous segment have been
completed, i.e., every switching point between segments causes idle time with non-zero probability.
Therefore, the larger the number of segments (i.e., the shorter the length of each segment), the greater
the loss due to such waiting time. In particular, if the segment length is O(C), we cannot avoid a
linear regret of Ω(T/C) due to idle time. On the other hand, setting too long segments also has a
negative impact on performance as the longer the length of each segment, the less frequently the set
A′s will be updated, which may degrade the efficiency of exploration and exploitation. To address
this dilemma, this study designs a way of determining the segment length ls by which these potential
losses will be well balanced and the overall regret will be bounded as desired.

Another nontrivial technique in the proposed algorithm is to employ Bernstein-type confidence
bounds [4, 27] for the processing time. Thanks to this, we can construct a tight UCB estimator for
the expected per-round reward for each task i, with a width depending on the mean c̄i and variance
σ2
i of the processing time. This is essential to achieve the nearly optimal Õ( 1

Cl

√
CuMNT )-regret

bound. In fact, as we mention in Remark 4.2, an algorithm with standard confidence bounds will lead
to regret upper bounds with additional Cu/Cl factors, which do not match the lower bound.
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Summary of contributions The contributions of this paper are summarized in the following four
points: (i) We propose a novel problem setting of the bandit task assignment, which incorporates
simultaneously combinatorial constraints among tasks, (unknown) processing time of each task, and
the exploration-exploitation trade-off. The model includes various practical applications as described
in Examples 1, 2 and 3. (ii) We show that a nearly optimal policy can be characterized with expected
per-round rewards, which can be computed efficiently given only a linear optimization oracle. This
contrasts with the computational difficulty in blocking bandits. (iii) We provide an algorithm with
nearly optimal regret bounds. We handle the difficulties arising from the combinatorial constraints
together with processing times by the phased-update approach. (iv) We present a regret lower bound
that matches to the regret bound of the proposed algorithm, ignoring logarithmic factors. This means
that the proposed algorithm achieves nearly optimal performance in terms of the worst-case analysis.

2 Problem Setup

LetN be the number of tasks. The player is given a family of feasible sets of tasks, which is expressed
by A ⊆ {0, 1}N . Here, each binary vector a in {0, 1}N corresponds to a set of tasks, and a ∈ A
means that the set of tasks A = {i ∈ [N ] | ai = 1} can be executed simultaneously. We assume
that A is closed under inclusion, i.e., a ∈ A and b ≤ a together imply b ∈ A. Note here that,
for any vectors a = (a1, . . . , aN )>, b = (b1, . . . , bN )> ∈ RN , the notation of b ≤ a means that
bi ≤ ai holds for all i ∈ {1, . . . , N}. We denote M = maxa∈A ‖a‖1. In each round t, the player
will choose a set of tasks at from A. The chosen set has to exclude all the processing tasks not yet
completed. More precisely, at is constrained to satisfy at + bt ∈ A, where bt is the set of tasks still
in progress at the t-th round (see (1) below). Each task i with ati = 1 is then started and will be
completed at the beginning of the (t+ cti)-th round, which yields the reward of rti. The reward rti
and the processing time cti will be revealed only after the task is completed. We assume that rti and
cti are restricted so that rti ∈ [0, 1] and cti ∈ {Cl, Cl + 1, . . . , Cu}, where Cl and Cu are integers
satisfying 1 ≤ Cl ≤ Cu. We also assume that ((rti, cti))

N
i=1 follows an unknown distribution D over

([0, 1]× {Cl, . . . , Cu})N , independently for t = 1, 2, . . . , T . Note that rti and cti may be dependent.
From the above problem definition, a family At of task sets available at the t-th round is expressed as
follows:

bti =

t−1∑
s=1

asi1[s+ csi > t] (i ∈ [N ]), At = {a ∈ A | a+ bt ∈ A}, (1)

where the vector bt = (bti)
N
i=1 corresponds to the set of uncompleted tasks that starts before the t-th

round. The goal of the player is to maximize the sum of rewards earned by the T -th round, which can
be expressed as

∑T
t=1 r

>
t at.

Remark 2.1. Stochastic combinatorial semi-bandits [25] and the multi-armed bandit problem with a
budget constraint [15] are special cases of the bandit task assignment problem. In fact, if cti = 1 for
all t and i, the problem corresponds to a combinatorial semi-bandit problem with action set A. In
addition, if A = {a ∈ {0, 1}N | ‖a‖1 ≤ 1}, the problem corresponds to an N -armed bandit with
budget B = T and costs {cti}.

In the problem, we assume that we are able to solve linear optimization over A efficiently. More
precisely, we suppose that we are given access to an offline linear optimization oracle that returns
a solution â ∈ arg maxa∈A q

>a for any input q ∈ RN≥0. Note here that, for the problems with
matching constraints or with matroid constraints (Examples 1 and 3, respectively), such an oracle can
be implemented in polynomial time [23, 17]. For Example 2, linear optimization over A is NP-hard,
but can be solved practically fast in many cases, with the aid of dynamic programming or integer
programming algorithms.

We define the regret RT to be the expectation of the difference between the total rewards obtained
with the optimal proper policy and those obtained with the algorithm by the T -th round, where we
call a policy for choosing at proper if at satisfies the constraint defined by (1) and each at depends
on information observed by the beginning of t-th round, but not on ((rs, cs))

T
s=t. Any proper policy

can be expressed as sequences of mapping π = (πt)t=1,2,..., where each πt maps from the history ht,
which consists of chosen actions (as)

t−1
s=1 and feedback obtained by the beginning of the t-round, to
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action at in A. Let Π denote the set of all proper policies. The regret can then be expressed as

RT = max
π∗∈Π

E

[
T∑
t=1

r>t π
∗
t (h∗t )

]
−E

[
T∑
t=1

r>t at

]
,

where (h∗t )t=1,2,... denotes histories generated by the policy π∗. Intuitively, the total reward obtained
with the optimal proper policy corresponds to the maximum performance achieved by an agent with
unlimited computational resources who knows the distribution D of processing times and rewards.
Note that the regret RT is defined on the basis of tasks started by the T -th round. Although it
may seem more natural to define the regret by the rewards for tasks completed by the T -th round,
the difference between these two alternatives is only O(M/Cl), which is almost negligible as it is
independent of T .

We can see that the performance of the optimal proper policy (and therefore also regret) can be
characterized by using the expected per-round rewards. We define r̄i and c̄i to be the expectation
of rti and cti, respectively. We also denote qi = r̄i/c̄i. Define vectors r̄ ∈ [0, 1]N , c̄ ∈ [Cl, Cu]N

and q ∈ [0, 1/Cl]
N by r̄ = (r̄1, r̄2, . . . , r̄N )>, c̄ = (c̄1, c̄2, . . . , c̄N )> and q = (q1, q2, . . . , qN )> =

(r̄1/c̄1, r̄2/c̄2, . . . , r̄N/c̄N )>. Note that qi corresponds to the expected per-round reward for running
each task i. Then, the expected total reward for an optimal policy can be bounded as follows:

Proposition 2.2. For any proper policy π = (πt)t=1,2,... ∈ Π, we have E
[∑T

t=1 r
>
t πt(ht)

]
≤

(T + Cu) maxa∈A
{
q>a

}
, where (ht)

T
t=1 denote histories generated by π.

Proposition 2.2 can be considered as a generalization of Lemma 1 by Ding et al. [15]. From this
proposition, the regret can be bounded as follows:

RT ≤ (T + Cu) max
a∈A

q>a−E

[
T∑
t=1

r>t at

]
≤ E

[
T∑
t=1

(q>a∗ − r>t at)

]
+
CuM

Cl
, (2)

where we denote a∗ ∈ arg maxa∈A q
>a and the last inequality follows from the facts that qi ≤ 1/Cl

holds for any i and that ‖a∗‖1 ≤M .

3 Algorithm

The proposed algorithm employs a phased-update approach, in which we update a policy for each
phase, and each phase continues to select the same set of tasks.

The procedure starts with the initialization phase (or the zeroth phase), in which we execute each
task B = Θ(Cu

Cl
lnT ) times. This is required to ensure that the UCB estimators q̂i(t) given in (3) are

close enough to the true expected reward qi. Let t1 ≥ 1 denote the round this initialization terminates,
which is at most O(CuNB). As the regret per round is at most MCl

, the total regret in the initialization

phase is at most O(CuMNB
Cl

) = O(
C2

u

C2
l
MN lnT ), which turns out to be negligible in the overall

regret upper bound.

The s-th phase (s ∈ {1, 2, . . .}) consists of a segment of rounds with length ls, which implies that the
first round ts of the s-th phase is expressed as ts =

∑s−1
u=1 lu + t1. At the beginning of each phase s,

we compute a′s ∈ A and the length ls of the s-th phase, for which the details will be described later.
Then, in the subsequent ls rounds, we continue to choose the set A′s = {i ∈ [N ] | a′si = 1}. More
precisely, in the t-th round, we choose at = a′s − bt if bt ≤ a′s and choose at = 0 otherwise, where
we recall bt is the set of tasks in progress at the t-th round (see (1)). Since a′s ∈ A, at clearly belongs
to At. In this procedure, intuitively, we repeatedly restart each task i in A′s just after i is completed,
in the s-th phase. Note here that all tasks executed in the (s − 1)-st phase are completed by the
(ts + Cu)-th round as the processing times are at most Cu, which implies that bt ≤ a′s holds for any
t ∈ [ts + Cu, ts+1 − 1]. Hence, in any round t ∈ [ts + Cu, ts+1 − 1], it holds that bt + at = a′s,
which implies all tasks in A′s are running in the phase. Furthermore, for each task i ∈ A′s, the number
of times the task i is completed in the s-th phase will be at least b(ls − Cu)/Cuc(≥ ls/Cu − 2) and
at most ls/Cl + 1.

We next describe how to compute a′s. We use upper confidence bounds (UCB) for qi = r̄i/c̄i, the
expected reward per round. In our definition of the UCB, we use the empirical means r̂i(t) and ĉi(t)
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of rewards and costs, the empirical variance V ci (t) of costs, and the number Ti(t) of times that the
task i has been completed before the t-th round. We define the UCB q̂i(t) on qi by

q̂i(t) =
min{1, r̂i(t) + dri (t)}

max{Cl, ĉi(t)− dci (t)}
, where dri (t) =

√
1.5 ln t

Ti(t)
,

dci (t) =

√
3V ci (t) ln t

Ti(t)
+

9(Cu − Cl) ln t

Ti(t)
. (3)

We would like to note this definition includes an empirical Bernstein bound dci (t) [4] for the processing
time cti, which will turn out to be essential for tight regret upper bounds, as mentioned in Remark 4.2.
We then have

Pr [|r̂i(t)− r̄i| ≥ dri (t)] ≤
2

t2
, Pr [|ĉi(t)− c̄i| ≥ dci (t)] ≤

4

t2
. (4)

These can be shown from Azuma–Hoeffding inequality and empirical Bernstein’s inequality [4],
of which details can be found in Section A.4 of the appendix. Hence, with probability 1 − 6/t2,
we have qi ≤ q̂i(t). At the beginning of each phase s, i.e., in the ts-th round, we calculate these
UCBs q̂(ts) = (q̂1(ts), q̂2(ts), . . . , q̂N (ts))

>, and then call the linear optimization oracle to find
a′s ∈ arg maxa∈A q̂(ts)

>a.

We set the length ls of the s-th phase on the basis of mini∈A′s Ti(ts), where we denote A′s = {i ∈
[N ] | a′si = 1}. We set ls = Cl mini∈A′s Ti(ts) + 2Cu. In the analysis, we assume that B is given by
B = d90Cu

Cl
lnT e. We then have

Ti(ts) ≥ 90Cu lnT/Cl, ls ≥ 90Cu lnT, 90CuN lnT ≤ t1 = O
(
C2

uN lnT/Cl

)
, (5)

which will be used at several points in our analysis. These conditions and the construction of ls
lead to the bound on Ti(ts) as in the lemma below, which will be used in the regret analysis for the
proposed algorithm.
Lemma 3.1. For any s ≥ 1 and i ∈ A′s, we have ls ≤ 2Cu(Ti(ts+1) − Ti(ts)) and Ti(ts+1) ≤
4Ti(ts).

All omitted proofs are given in the appendix. We also have the following bound on ts:
Lemma 3.2. For any s ≥ 1, there exists i ∈ A′s such that Ti(ts+1) ≥ (1 + Cl/Cu)Ti(ts). Conse-
quently, we have ts ≥ Cl(1 + Cl/Cu)s/N−2 for any s ≥ 1.

From Lemma 3.2, we have ln ts ≥ lnCl +
(
s
N − 2

)
ln
(

1 + Cl

Cu

)
≥ lnCl +

(
s
N − 2

)
Cl

2Cu
, where

the last inequality follows from the fact that ln(1 + x) ≥ x/2 for any x ∈ [0, 1]. This implies
that we have s ≤ N

(
2Cu

Cl
ln ts + 2

)
. Hence, the number of phases, denoted by S, is bounded by

S ≤ N
(

2Cu

Cl
lnT + 2

)
+ 1 = O

(
Cu

Cl
N lnT

)
, since the last phase contains T .

The overall procedure of the proposed algorithm is summarized in Algorithm 1, which consists of
arithmetic operations and offline linear optimization over A. The number of arithmetic operations in
each round is bounded by O(N) since the update of each parameter in Step 7–10 of Algorithm 1 can
be performed in O(1)-arithmetic operations. Furthermore the number of calls to the offline linear
optimization oracle is at most S = O

(
Cu

Cl
N lnT

)
. In fact, the offline linear optimization oracle

is called only at the beginning of each phase. This means that Algorithm 1 is more efficient than
standard UCB algorithms for combinatorial semi-bandits algorithms [24, 25] that require O(T ) calls
to the oracle. The space complexity, other than that required for the offline optimization oracle, is
O(N) since the algorithm works by maintaining O(N) parameters.

4 Regret Analysis

We denote a∗ ∈ arg maxa∈A q
>a. Let A∗ = {i ∈ [N ] | a∗i = 1} and Ã = [N ] \ A∗. We define

suboptimality gaps ∆a, ∆i and ∆min, respectively, by

∆a = q>a∗ − q>a (a ∈ A), ∆i = min
a∈A:ai=1,∆a>0

∆a (i ∈ [N ]), ∆min = min
i∈Ã

∆i. (6)
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Algorithm 1 Phased-update UCB algorithm for bandit task assignment
Require: A ⊆ {0, 1}N : a family of feasible task sets. Cl, Cu: lower and upper bounds for the

processing time. B: length of initialization phase. Offline linear optimization oracle for A.
1: For each i ∈ [N ], execute the i’s task B times, and let t1 be the round it completed. Set
Ti(t1) = B.

2: for s = 1, 2, . . . , do
3: Set q̂i(ts) by (3).
4: Call the offline linear optimization oracle to find a′s ∈ arg maxa∈A q̂(ts)

>a, and set A′s =
{i ∈ [N ] | a′si = 1}.

5: Set ls = Cl mini∈A′s Ti(ts) + 2Cu and ts+1 = ts + ls.
6: for t = ts, ts + 1, . . . , ts+1 − 1 do
7: If bt ≤ a′s, output at = a′s − bt, where bt is given by (1). Otherwise, output at = 0.
8: for i = 1, 2, . . . , N do
9: If task i is completed (i.e., bti = 0) and ct′,i and rt′,i are observed (t′ is the last round the

task i is started), update c̄i(t), r̄i(t) and V ci (t) by using ct′,i and rt′,i. Set Ti(t + 1) =
Ti(t) + 1.

10: end for
11: end for
12: end for

We also denote the variance of the processing time cti by σ2
i = E[(cti − c̄i)

2]. We note that
σ2
i ≤ E[(cti − Cl)

2] ≤ (Cu − Cl)E[cti − Cl] = (Cu − Cl)(c̄i − Cl).

The goal of this section is to show the following:

Theorem 4.1. The regret for Algorithm 1 is bounded as

RT ≤ O

M∑
i∈Ã

C̃i lnT

∆i
+
C2

u

C2
l

NM lnT

 ≤ O(( 1

∆min
+ Cu

)
CuNM lnT

C2
l

)
, (7)

where C̃i ≤ O
(

1
c̄i

(
1 + 1

c̄2i

(
σ2
i + (Cu−Cl)

2Cl

Cu

)))
≤ O

(
1
c̄i

(
1 + Cu−Cl

c̄i

))
≤

O
(
Cu

c̄iCl

)
. Furthermore, for any distribution D, the regret is bounded as RT =

O
(

1
Cl

√
CuNMT lnT +

C2
u

C2
l
NM lnT

)
.

The specific definition of C̃i is given in (19) in the appendix.
Remark 4.2. Bernstein-type confidence bounds used in (3) are essential to achieve the nearly optimal
regret bound of RT = O

(
1
Cl

√
CuNMT lnT

)
. In fact, if we employ a standard confidence bound

for c̄i instead of the Bernstein-type one given in (3), the parameter σ2
i in the definition of C̃i will be

replaced with (Cu − Cl)
2, which leads a suboptimal regret bound of RT = O

(√
C2

u

C3
l
T lnT

)
.

From Proposition 2.2, the regret can be bounded as follows:

RT ≤ E

[
T∑
t=1

(q>a∗ − r>t at)

]
+
Cu

Cl
M ≤ M

Cl
E [t1] +R

(1)
T +R

(2)
T +

Cu

Cl
M, (8)

where we define

R
(1)
T = E

[
S∑
s=1

ts+1−1∑
t=ts

(q>a∗ − q>a′s)

]
, R

(2)
T = E

[
S∑
s=1

ts+1−1∑
t=ts

(q>a′s − r>t at)

]
. (9)

In these definitions of R(1)
T and R(2)

T , the index S represents the phase that includes the T -th round,
and we define tS+1 = T + 1 exceptionally, for notational simplicity.
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Let us next show the upper bounds for R(1)
T and R(2)

T separately. We will show that

R
(1)
T = O

M∑
i∈Ã

C̃i lnT

∆i
+
C2

u

C2
l

NM

 , R
(2)
T = O

(
C2

u

C2
l

NM lnT

)
. (10)

These, together with (8) and (5), prove the gap-dependent regret bound (7) in Theorem 4.1.

We here discuss an upper bound on R(1)
T while the analysis of R(2)

T is given in the supplementary

material. We denote Ãs = A′s\A∗. Define di(t) by di(t) =
√

C̃i

c̄i
ln t
Ti(t)

, where C̃i is defined by (19) in

the appendix so that C̃i = Θ
(

1
c̄i

(
1 + 1

c̄2i

(
σ2
i + (Cu−Cl)

2Cl

Cu

)))
. We then have q̂i(t)−qi(t) ≤ di(t)

with high probability. In fact, we can show the following lemma using concentration inequalities, of
which proof can be found in the appendix.
Lemma 4.3. For any s, with a probability at least 1 − 6N/t2s, we have ∆a′s

≤
∑
i∈Ãs

di(ts).

Consequently, we have R(1)
T ≤ E[R̂T ] +O

(
MN
Clt1

)
, where we define R̂T =

∑S
s=1 ls∆a′s

1[Fs] with

Fs =
{

∆a′s
≤
∑
i∈Ãs

di(ts), ∆a′s
> 0
}
.

We can show an upper bound on R̂T in a way similar to what Kveton et al. [25] did, as follows:

Lemma 4.4. R̂T defined in Lemma 4.3 is bounded as E[R̂T ] = O
(
M
∑
i∈Ã

C̃i lnT
∆i

)
.

This bound on R̂T together with Lemma 4.3 and (5) leads to the first part of (10).

4.1 Gap-Free Regret Bound

We can obtain the gap-free regret bound of RT = Õ(
√

Cu

C2
l
NMT ) in Theorem 4.1 by

modifying the analysis of R̂T . For any ε > 0, R̂T can be bounded as R̂T ≤∑S
s=1

(
ls∆a′s

1[Fs,∆a′s
> ε] + ls∆a′s

1[Fs,∆a′s
≤ ε]

)
= O

(
Cu

C2
l
MN lnT

ε + εT
)
, where the last

inequality follows from the same argument for showing Lemma 4.4. By setting ε =
√

CuMN lnT
C2

l T
, we

obtain R̂T = O
(

1
Cl

√
CuMNT lnT

)
. From this, (8), the second part of (10), and Lemma 4.3, we

obtain the gap-free regret bound presented in Theorem 4.1. This completes the proof of Theorem 4.1.

4.2 Regret Lower Bound

As shown in Theorem 4.1, the proposed algorithm achieves RT = O( 1
Cl

√
CuNMT ). This is tight

up to a logarithmic factor in T . In fact, we have the following lower bound:
Theorem 4.5. For any N,M, T such that N ≥M and T = Ω(Cu), there exists a problem instance
for which any algorithm suffers regret of RT = Ω( 1

Cl
min

{√
CuNMT,MT

}
).

In the proof of this theorem, we first focus on the case of M = 1. If we consider the case of cti = Cl,
our model is equivalent to the N -armed bandit with time horizon T ′ = Θ(T/Cl), which leads
to a lower bound of Ω(

√
NT ′) = Ω(

√
NT/Cl) with the aid of the lower bound for multi-armed

bandit problems given in Theorem 5.1 by Auer et al. [6]. When considering the case of rti = 1
and cti ∈ {Cl, Cu}, we can show a regret lower bound of Ω(Cu−Cl

ClCu

√
CuNT ), by using the proof

technique by Badanidiyuru et al. [7]. Combining these two bounds, we obtain an Ω( 1
Cl

√
CuNT )-

lower bound for the case of M = 1. From this result and the technique used in Proposition 2 by
Kveton et al. [25], we have an Ω( 1

Cl

√
CuMNT )-lower bound for M > 1.

5 Numerical Experiment

We conducted small experiments to evaluate the practical performance of the proposed algorithm
using a synthetic dataset. We set the parameters for the dataset as follows: A = {A ⊆ [N ] |
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Figure 2: Instance with small ∆.

0 2000 4000 6000 8000 10000
round

0

500

1000

1500

2000

2500

3000

3500

re
gr

et

UCB-BV1
CombUCB1
Proposed

Figure 3: Instance with large ∆.

|A| ≤ M} with (N,M) = (4, 2), T = 10000, Cu = 6, Cl = 1, r̄ = (0.5, 0.5, 0.5, 0.5). For the
expected processing times, we set c̄ = (1.5, 1.5, 2.0, 2.0) as a problem instance with small ∆ or
c̄ = (1.5, 1.5, 5.0, 5.0) as a problem instance with large ∆. Each cti and rti are generated so that
cti − 1 follows binomial distributions over {0, 1, . . . , Cu − 1} and rti follows Bernoulli distributions
over {0, 1}. For comparison, we have added the results of applying UCB-BV1 by Ding et al. [15] and
CombUCB1 by Kveton et al. [24]. More detailed information on the experimental setup is provided
in the supplementary material.

Figures 2 and 3 show the empirical means of regret computed by 100 repetitions of independent
experiments. We depict 2-standard deviations of the empirical regret by the shaded areas. These
results imply that the proposed algorithm performs better experimentally than other algorithms. We
note that UCB-BV1 and CombUCB1 cannot avoid a linear regret as they choose a set in A and
wait for them all to be completed, which causes idling time with non-zero probability every time. It
is also worth mentioning that the empirical performance of the proposed algorithm is much better
than Theorem 4.1 predicts. In fact, under the parameter settings of these experiments, the values in
Theorem 4.1 can be approximated as: 1

Cl

√
CuNMT lnT ≈ 2100 and Cu

Cl
NM lnT ≈ 2650.

6 Related Work

One of the most relevant studies to this work would be those on combinatorial semi-bandits, in which
a family F ⊆ 2[N ] of subsets of arms [N ] is given and the player sequentially chooses At ∈ F
and then observes the obtained rewards rti for each i ∈ At. Studies on combinatorial semi-bandits
are classified into those on stochastic models [25, 24, 34], in which rt are i.i.d. for t, and those on
adversarial models [33, 5], in which {rt} are arbitrary sequences that may be chosen in an adversarial
manner. As noted in the introduction, the stochastic combinatorial semi-bandits are special cases
of bandit task assignment. The stochastic combinatorial semi-bandits are known to admit sublinear
regret. Typical approaches to achieve sublinear regret include upper confidence bounds (UCB)-type
algorithms [25, 24] and Thompson sampling algorithms [34].

Our problem is also relevant to bandit problems with budget constraints. Ding et al. [15] consider a
stochastic multi-armed bandit (MAB) problem with a budget constraint, in which the player observes
the reward rtit and the cost ctit for the chosen arm it in each round t. The goal of the player
is to maximize the cumulative rewards earned before cumulative costs reach a given total budget
amount. This can be seen as a special case of our problem. As shown in Ding et al. [15], in the
budget-constrained MAB problem, the reward of the optimal policy can be characterized by the
expected reward-to-cost. This fact is generalized to our setting in Proposition 2.2, which will be
used in our regret analysis. It should be mentioned that the budget-constrained MAB problem has
been generalized to bandits with multiple plays [37], which differs from our model, as problems with
processing times cannot be reduced to budget-constrained models in general. In addition to their
work, there are various generalizations and variants, such as contextual bandit models [36], models
with general distributions [11, 12], and models with multiple budgets [2, 31, 7].

While delayed feedback models [13, 38, 3] are similar to our model in that rewards earned will be
revealed in later rounds, there are some essential differences. For example, in our model, the selected
arm is occupied during the processing time and cannot be selected, while in the delayed feedback
model, the arm can be selected while waiting for feedback. The former model can handle situations
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where the arm corresponds to a labor or computing resource, as in the examples shown in Examples 1
and 2.

Phased-update or lazy-update approaches were incorporated in other bandit problems and online
learning problems such as a phased version of UCB for MAB (e.g., Exercise 7.5 of the book [26])
and the rarely switching OFUL algorithm for linear stochastic bandits [1]. The motivation for using
phased-update approaches is primarily to reduce the computational cost [1, 22], to minimize switching
cost [2, 21], or to address batched settings [29, 19]. To our knowledge, our proposed algorithm is the
first algorithm that applies such a phased-update approach to combinatorial semi-bandits. It allows us
to reduce the number of oracle calls, and more importantly, to achieve the nearly tight regret bounds
for the bandit task assignment. Our study reveals new usefulness of a phased-update approach.

Another line of research related to our problem is the online matching or online allocation problems
with reusable resources [14, 16, 32]. The problem is formalized with a bipartite graph, and we choose
edges for sequentially arriving vertices. The model is similar to ours in that each chosen edge will be
unavailable for a certain period of time that follows a probability distribution. However, it is different
in that the bipartite graph is unknown at first and all the distributions are given. Moreover, those
papers adopt competitive ratio analyses rather than regret analyses, i.e., they evaluate the performance
compared to a stronger agent who knows the sequence of arriving vertices. Thus, the existing papers
are incomparable with our work.

As mentioned in the introduction, the problem setting of blocking bandit [8] appears to be similar
to ours while the difficulties are significantly different. Considering unconstrained situations can
highlight the differences in the problem. In the task assignment problem with no constraints, the
optimal strategy will be trivial, in which we make each task always processing, i.e., in each round,
we start every task that is completed at that round. On the other hand, as the reviewer commented,
blocking bandits only allow us to play a single action in each round, which makes the optimal strategy
nontrivial. In fact, finding the optimal policy can be an NP-hard problem even if the true distributions
of r and c are given. This is an illustrative example of why bandit task assignment can be easier than
blocking bandits.

7 Conclusion and limitation

In this paper, we introduced a new problem setting that we referred to as bandit task assignment,
for which we proposed an algorithm with regret bounds. A limitation of this work is that we need
to know the upper and lower bounds Cu, Cl on the processing times, which may not be possible to
assume in some real-world applications. To remove this assumption, it would be necessary to modify
the framework of the problem. One possible modification would be to allow the player to suspend
processing tasks. In this modified problem setup, even in cases whereCu is incorrectly underestimated,
it will be possible to immediately abort the task and correct Cu when the underestimation is detected.
We expect that this strategy and the appropriate parameter update rules for Cu and Cl allow us
to remove the assumption of prior knowledge about processing times. Another future direction
is to extend the problem to a decentralized setting, in which multiple agents collaborate to make
task assignment decisions. We believe that such an extension of the problem provides insight into
real-world applications where multiple entities perform task assignments, such as crowdsourcing and
federated learning.
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A Omitted Proofs

Lemma A.1 (Empirical bernstein inequalities, [4]). LetX1, X2, . . . , Xn ∈ [Cl, Cu] be a sequence of
i.i.d. random variables with mean µ and variance σ2. Let µ̂n =

∑n
i=1Xi/n and Vn =

∑n
i=1(Xi −

µ̂n)2/n. For any δ ∈ (0, 1), with probability 1− 4δ, we have

|µ̂n − µ| ≤
√
Vn
n

ln
1

δ
+

3(Cu − Cl)

n
ln

1

δ
≤
√
σ2

n
ln

1

δ
+

5(Cu − Cl)

n
ln

1

δ
. (11)

Proof. Theorem 1 by Audibert et al. [4] implies that the first inequality holds with probability 1− 3δ.
The second inequality follows from Bernstein’s inequality for Vt:

Pr

[
Vt ≥ σ2 +

√
2(Cu − Cl)2σ2

n
ln

1

δ
+

2(Cu − Cl)
2

3n
ln

1

δ

]
≤ δ. (12)

From this, with probability 1− δ, we have√
Vn
n

ln
1

δ
≤

√√√√ 1

n

(
σ2 +

√
2(Cu − Cl)2σ2

n
ln

1

δ
+

2(Cu − Cl)2

3n
ln

1

δ

)
ln

1

δ

=

√
σ2

n
ln

1

δ
·

√
1 +

√
2(Cu − Cl)2

σ2n
ln

1

δ
+

2(Cu − Cl)2

3σ2n
ln

1

δ

≤
√
σ2

n
ln

1

δ
·

(
1 + 2

√
(Cu − Cl)2

σ2n
ln

1

δ

)
≤
√
σ2

n
ln

1

δ
+

2(Cu − Cl)

n
ln

1

δ
,

where the second inequality follows from
√

1 + x+ y ≤
√

1 + x+
√
y ≤ 1 + x/2 +

√
y that holds

for any x, y ≥ 0. This implies that the second inequality of (11) holds with probability 1− δ.

A.1 Proof of Proposition 2.2

Proof. For t = 1, 2, . . . , T , denote at = πt(ht) and define bt by (1). For t > T , let at = 0 for the
notational simplicity. Then, as rt is independent of at, we have

E

[
T∑
t=1

r>t at

]
= E

[
T∑
t=1

r̄>at

]
= r̄>E

[
T∑
t=1

at

]
. (13)

From (1), we have E
[∑T+Cu

t=1 (ati + bti)
]

= E
[∑T+Cu

t=1

(
ati +

∑t−1
s=1 asi1[s+ csi ≥ t]

)]
=

E
[∑T

t=1 aticti

]
= c̄iE

[∑T
t=1 ati

]
for any i, where the last equality follows from the fact that ct

is independent of at. Hence, we have E
[∑T+Cu

t=1 (at + bt)
]

= DE
[∑T

t=1 at

]
, where D ∈ RN×N>0

denote the diagonal matrix with entries c̄1, c̄2, . . . , c̄N . As we have at + bt ∈ A, this implies that
1

T+Cu
DE

[∑T
t=1 at

]
= E

[
1

T+Cu

∑T+Cu

t=1 (at + bt)
]

is in the convex hull of A. We hence have

r̄>E
[∑T

t=1 at

]
= (T + Cu)(D−1r̄)>

(
1

T+Cu
DE

[∑T
t=1 at

])
≤ (T + Cu) maxa∈A

{
q>a

}
,

where the last inequality follows from D−1r̄ = q and the fact that 1
T+Cu

DE
[∑T

t=1 at

]
is in the

convex hull of A. Combining this with (13), we obtain the bound in Proposition 2.2.

A.2 Proof of Lemma 3.1

Proof. From (5), we have mini∈A′s Ti(ts) ≥ Cu/Cl, which implies ls = Cl mini∈A′s Ti(ts)+2Cu ≥
2Cu. From this, for all i ∈ A′s. we have Ti(ts+1) − Ti(ts) ≥ (ls − 2Cu)/Cu ≥ ls/(2Cu). This
means the first inequality in Lemma 3.1 holds. Further, we have

Ti(ts+1)− Ti(ts) ≤ (ls + 1)/Cl ≤ (Cl min
i∈A′s

Ti(ts) + Cu + 1)/Cl

= min
i∈A′s

Ti(ts) + Cu/Cl + 1/Cl ≤ 3 min
i∈A′s

Ti(ts),

which implies that the second inequality in Lemma 3.1 holds.
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A.3 Proof of Lemma 3.2

Proof. Let i∗ ∈ A′s be a task such that Ti∗(s) = mini∈A′s Ti(ts). We then have ls = ClTi∗(s)+2Cu.
As the task i∗ is completed at least (ls − 2Cu)/Cu = (Cl/Cu)Ti∗(s) times within the s-th phase,
we have Ti∗(s + 1) − Ti∗(s) ≥ (Cl/Cu)Ti∗(s), which implies Ti∗(s + 1) ≥ (1 + Cl/Cu)Ti∗(s).
Further, if i ∈ A′s′ for some s′ < s, we have T ′i (s) ≥ Cu/Cl as shown in the proof of Lemma 3.1.
Hence, if s ≥ NK + 1 for some positive integer K, there exists i ∈ [N ] such that Tti(s) ≥
(Cu/Cl)(1 + Cl/Cu)K−1. From this, as ts ≥ ClTi(ts) holds for any i ∈ [N ], we have ts ≥
Cl(1 + Cl/Cu)s/N−2.

A.4 Proof of Lemma 4.3

Let us first show that ∆a′s
≤
∑
i∈Ãs

di(ts) holds with a probability of at least 1 − 6N/t2s. Fix t
arbitrarily.

For any i and let τ(1) < τ(2) < · · · represent all the indices of rounds at which the i-th task is
started. Define the sequence E1, E2, . . . by Ej =

∑j
s=1(ri(τ(s))− r̄i). Then, since Ej is a sum of

j i.i.d. random variables, the Azuma–Hoeffding inequality implies Pr[|Ej | ≥
√

1.5j · ln t] ≤ 2
t for

any t and j. We hence have

Pr [|r̂i(t)− r̄i| ≥ dri (t)] = Pr
[
|ETi(t)| ≥

√
1.5Ti(t) · ln t

]
≤ Pr

[
∃j ∈ [t], |Ej | ≥

√
1.5j · ln t

]
≤

t∑
j=1

Pr
[
|Ej | ≥

√
1.5j · ln t

]
≤

t∑
j=1

2

t3
≤ 2

t2
. (14)

which means that the first part of (4) holds. Similarly, by considering Ej =
∑j
s=1(ci(τ(s))− c̄i). it

can be shown from Lemma A.1 that

Pr

[
|ĉi(t)− c̄i| ≤ dci (t) ≤

√
3σ2

i ln t

Ti(t)
+

15(Cu − Cl) ln t

Ti(t)

]
≥ 1− 4

t2
. (15)

We further have√
3σ2

i ln t

Ti(t)
+

15(Cu − Cl) ln t

Ti(t)
≤

(√
3σ2

i + 15(Cu − Cl)

√
Cl

90Cu

)√
ln t

Ti(t)

≤
√

3σ2
i

√
Cl

90Cu
+ 15(Cu − Cl)

Cl

90Cu
≤
√

(Cu − Cl)(c̄i − Cl)

√
Cl

30Cu
+ (Cu − Cl)

Cl

6Cu

≤
√

(c̄i − Cl)Cl√
30

+
Cl

6
≤ c̄i

4
, (16)

where the first and second inequalities follow from the lower bound on Ti(ts) in (5), and the third
and last inequalities follow from Cl ≤ c̄i ≤ Cu. Hence, with probability 1− 6N/t2,

q̂i(t) =
min{1, r̂i(t) + dri (t)}

max{Cl, ĉi(t)− dci (t)}
≥ r̄i
c̄i

= qi. (17)

As (16) implies c̄i − 2dci (t) ≥ c̄i/2, we have

q̂i(t) =
min{1, r̂i(t) + dri (t)}

max{Cl, ĉi(t)− dci (t)}
≤ min{1, r̄i + 2dri (t)}

max{Cl, c̄i − 2dci (t)}
=:

r̃i
c̃i

=
r̄i
c̄i

+
r̃i − r̄i
c̄i

+
r̃i(c̄i − c̃i)

c̄ic̃i
≤ qi +

2dri (t)

c̄i
+

2dci (t)

c̄ic̃i
≤ qi +

2dri (t)

c̄i
+

4dci (t)

c̄2i

≤ qi +

(
2
√

1.5

c̄i
+

4

c̄i2

(√
3σ2

i + 15(Cu − Cl)

√
Cl

90Cu

))√
ln ts
Ti(ts)

= qi +

√
C̃i
c̄i

ln ts
Ti(ts)

= qi + di(ts), (18)
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where we denote r̃i = min{1, r̄i + 2dri (t)} and c̃i = max{Cl, c̄i− 2dci (t)} ≥ c̄i/2. We here defined
C̃i by

C̃i =
1

c̄i

(
2
√

1.5 +
4

c̄i

(√
3σ2

i + 15(Cu − Cl)

√
Cl

90Cu

))2

. (19)

We then have

∆a′s
=

∑
i∈A∗\A′s

qi −
∑

i∈A′s\A∗
qi ≤

∑
i∈A∗\A′s

q̂i(ts)−
∑

i∈A′s\A∗
qi

≤
∑

i∈A′s\A∗
q̂i(ts)−

∑
i∈A′s\A∗

qi ≤
∑

i∈A′s\A∗
di(ts) =

∑
i∈Ãs

di(ts), (20)

where the first and last inequalities follow from (17) and (18), respectively, and the second inequality
follows from the definition of a′s. Indeed, a′s ∈ arg maxa∈A q̂(ts)

>a implies the following inequality:∑
i∈A∗\A′s

q̂i(ts)−
∑
i∈A′s\A∗

q̂i(ts) = q̂(ts)
>a∗ − q̂(ts)>a′s ≤ 0.

Let us next show the bound on R(1)
T . We decompose R(1)

T as follows:

R
(1)
T = E

[
S∑
s=1

ls∆a′s

]
= E

[
S∑
s=1

ls∆a′s
1[Fs] +

S∑
s=1

ls∆a′s
1[F̄s]

]
= E

[
R̂T +

S∑
s=1

ls∆a′s
1[F̄s]

]
,

(21)

where F̄s denotes the complement of the event Fs. The second part of RHS can be bounded as

E

[
S∑
s=1

ls∆a′s
1[F̄s]

]
= E

 S∑
s=1

ls∆a′s
1

∆a′s
>
∑
i∈Ãs

di(ts)


≤ E

[
S∑
s=1

ls
M

Cl

6N

t2s

]
=

6MN

Cl
E

[
S∑
s=1

ls
t2s

]
(22)

where the first inequality follows from the fact that (20) holds with a probability of at least 1− 6N/t2s
and the inequality of ∆a′s

≤M/Cl. We have

ls
t2s

=
ts+1 − ts

t2s
=
ts+1 − ts
ts+1ts

ts+1

ts
=

(
1

ts
− 1

ts+1

)
ts+1

ts
≤ 5

(
1

ts
− 1

ts+1

)
,

where the last inequality follows from

ts+1

ts
= 1 +

ls
ts
≤ 1 +

1

ts

(
Cl max

i∈[N ]
T ′i (s) + 2Cu

)
≤ 1 +

3Cl

ts
max
i∈[N ]

T ′i (s) ≤ 1 +
3Cl

ts

(
ts
Cl

+ 1

)
≤ 5.

Hence, we have

S∑
s=1

ls
t2s
≤ 5

S∑
s=1

(
1

ts
− 1

ts+1

)
≤ 5

1

t1
. (23)

Combining (21), (22) and (23), we obtain the bound on R(1)
T in Lemma 4.3.

A.5 Proof of Lemma A.2

The following lemma can be shown in a way similar to that of Kveton et al. [25, Lemma 3].

Lemma A.2. Let {αk} and {βk} be positive real sequences for which 1 = β0 > β1 > · · · > βk >

· · · > 0, α1 > α2 > · · · > αk > · · · > 0, limk→∞ αk = limk→∞ βk = 0, and
∑∞
k=1

βk−1−βk√
αk

≤ 1.

Suppose that Fs occurs. There then exists k such that Ss,k = {i ∈ Ãs | ∆a′s
≤ M

√
αkdi(ts)}

satisfies |Ss,k| ≥ βkM .
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Proof. Let us show the claim via proof by contradiction. Suppose that |Ss,k| < βkM holds for all k.
We then have∑

i∈Ãs

di(ts) <

∞∑
k=1

∑
i∈Ss,k−1\Ss,k

∆a′s

C̃M
√
αk

=
∆a′s

C̃M

∞∑
k=1

|Ss,k−1| − |Ss,k|√
αk

=
∆a′s

C̃M

(
|Ss,0|√
α1

+

∞∑
k=1

|Sk|
(

1
√
αk+1

− 1
√
αk

))

<
∆a′s

C̃

(
β0√
α1

+

∞∑
k=1

βk

(
1

√
αk+1

− 1
√
αk

))

=
∆a′s

C̃

∞∑
k=1

βk−1 − βk√
αk

≤
∆a′s

C̃
,

where the first inequality follows from the definition of Ss,k, i.e., C̃M
√
αkdi(ts) < ∆a′s

holds for
all i ∈ [N ] \ Ss,k, and the second inequality follows from the initial assumption made in this proof.
This means that Fs occurs. Hence, if Fs occurs, thi initial assumption is false, which means that
there exists k such that |Ss,k| ≥ βkM .

We will apply Lemma A.2 with {αk} and {βk} such that
∑∞
k=1

αk

βk
= O(1), which are provided in

Appendix A.4 in [25]. From Lemma A.2, if Fs occurs,
∑
i∈Ã 1[i ∈ Ãs,∆a′s

≤ 2C̃M
√
αkdi(ts)] ≥

βkM holds for some k, which implies

1[Fs] ≤
∞∑
k=1

1

βkM

∑
i∈Ã

1 [Gs,k,i] , where Gs,k,i =
{
i ∈ Ãs,∆a′s

≤M
√
αkdi(ts)

}
. (24)

Proof. Using (24), we can bound R̂T as

R̂T ≤
∑
i∈Ã

∞∑
k=1

1

βkM

S∑
s=1

ls∆a′s
1 [Gs,k,i] ≤

∑
i∈Ã

∞∑
k=1

√
αk
βk

S∑
s=1

lsdi(ts)1 [Gs,k,i]

=
∑
i∈Ã

∞∑
k=1

√
αk
βk

S∑
s=1

ls

√
C̃i
c̄i

ln ts
Ti(ts)

1 [Gs,k,i] ≤
√

lnT
∑
i∈Ã

√
C̃i
c̄i

∞∑
k=1

√
αk
βk

S∑
s=1

ls1 [Gs,k,i]√
Ti(ts)

.

(25)

Let us evaluate
∑S
s=1

ls1[Gs,k,i]√
Ti(ts)

for some fixed k and i. If Gs,k,i occurs, we have ∆i ≤ ∆a′s
≤

M
√
αkdi(ts) ≤ M

√
αkC̃i lnT
c̄iTi(ts) which implies that

√
Ti(ts) ≤ M

√
αkC̃i lnT

c̄i
1

∆i
=: γ. We hence

have
S∑
s=1

ls1 [Gs,k,i]√
Ti(ts)

≤
S∑
s=1

ls1[i ∈ Ãs]1[
√
Ti(ts) ≤ γ]√

Ti(ts)
. (26)

The expectation of the right-hand side can be bounded as follows. From Lemma A.4 in the Appendix,
we have

E

[
ls1[i ∈ Ãs]√

Ti(ts)

]
≤ 2c̄iE

[
Ti(ts+1)− Ti(ts)√

Ti(ts)

]
(27)

By using Lemma 3.1, we obtain Ti(ts+1)−Ti(ts)√
Ti(ts)

= 3 Ti(ts+1)−Ti(ts)√
4Ti(ts)+

√
Ti(ts)

≤ 3 Ti(ts+1)−Ti(ts)√
Ti(ts+1)+

√
Ti(ts)

=

3(
√
Ti(ts+1) −

√
Ti(ts)). Combining this with (26) and (27), we obtain E

[∑S
s=1

ls1[Gs,k,i]√
Ti(ts)

]
≤

6c̄i
∑S
s=1

(√
Ti(ts+1)−

√
Ti(ts)

)
1
[√

Ti(ts) ≤ γ
]
≤ 12c̄iγ = 12M

√
αk c̄iC̃i lnT

∆i
, where we

the last inequality follows from Lemma 3.1. Combining this with (25), we obtain E
[
R̂T

]
=

O
(
M lnT ·

∑
i∈Ã C̃i

∑∞
k=1

αk

βk

1
∆i

)
= O

(
M
∑
i∈Ã

C̃i lnT
∆i

)
, which completes the proof.
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A.6 Proof of the second part of (10) (bounding R̂(2)
T )

The second part of (10) can be shown via the following:

Lemma A.3. Given a′s, ts and ts+1, we have E
[∑ts+1−1

t=ts
(q>a′s − r>t at)

]
≤ 3M Cu

Cl
.

Proof. For any s ≥ 1 and task i ∈ [N ], the number of times to start task i duaring the s-th phase is at
least (Ti(ts+1)− Ti(ts)− 1). We hence have

E

[
ts+1−1∑
t=ts

r>t at

]
≥ E

∑
i∈A′s

r̄i(Ti(ts+1)− Ti(ts)− 1)

 ≥ E

∑
i∈A′s

r̄i
ls − 3Cu

c̄i


= E

∑
i∈A′s

qi(ls − 3Cu)

 ≥ E

ls ∑
i∈A′s

qi

− 3
Cu

Cl
M = E

[
ls · q>a′s

]
− 3

Cu

Cl
M,

where the second inequality follows from Lemma A.4 and the third inequality follows from qi =
r̄i/c̄i ≤ 1/Cl and |A′s| ≤M . This completes the proof.

We used the following lemma in the proof of Lemma A.3.

Lemma A.4. For any s ≥ 1 and i ∈ A′s, we have

E[Ti(ts+1)− Ti(ts)|ls] ≥
ls − 2Cu

c̄i
. (28)

Consequently, we have

ls ≤ 2c̄i ·E
s

[Ti(ts+1)− Ti(ts)] , (29)

where Es denote the conditional expectation given ls and Ti(ts).

Proof. We will show (28) by induction in the value of ls ≥ 0. It is clear that (28) hold if ls ≤ 2Cu.
As the inductive hypothesis, we assume that (28) holds if ls ≤ m for some m ≥ 2Cu. Then, if
ls = m+ 1 > 2Cu, at least once, task i ∈ A′s is started and completed during the s-th phase. Let ci
denote the processing time when task i is first started and completed during the s-th phase. We then
have

E [Ti(ts+1)− Ti(ts)|ls = m+ 1] =

Cu∑
c=Cl

Pr[ci = c]E [1 + Ti(ts+1)− Ti(ts)|ls = m+ 1− c]

= 1 +

Cu∑
c=Cl

Pr[ci = c]E [Ti(ts+1)− Ti(ts)|ls = m+ 1− c]

≥ 1 +

Cu∑
c=Cl

Pr[ct,i = c]
m+ 1− c− 2Cu

c̄i

= 1 +
m+ 1− c̄i − 2Cu

c̄i
=
m+ 1− 2Cu

c̄i
,

where the inequality follows from the inductive hypothesis. Hence, (28) holds for l = m+ 1 as well.
By induction, it has been shown that (28) holds. Further, as we have ls ≥ ClB + 2Cu ≥ 4Cu, we
have ls − 2Cu ≥ ls/2, which implies (29) holds.

From Lemma A.3, we have R̂(2)
T ≤ 2Cu

Cl
SM . By combining this with S = O

(
Cu

Cl
N lnT

)
, which

follows from Lemma 3.2, we obtain the second part of (10).
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A.7 Proof of Theorem 4.5

We start from the special case in which M = 1, i.e., we assume A = {{i} | i ∈ [N ]} ∪ {∅}. We will
show the following two lower bounds separately:

RT = Ω

(
min

{√
1

Cl
NT,

T

Cl

})
, (30)

RT = Ω

(
Cu − Cl

ClCu
min

{√
CuNT, T

}
− Cu

Cl

)
. (31)

These two bounds together lead to the regret lower bound of

RT = Ω

(
1

Cl
min

{√
CuNT, T

})
. (32)

In fact, if Cu ≤ 2Cl, (30) implies that (32) holds as we have Cu

C2
l

= Θ( 1
Cl

). On the other hand, if

Cu ≥ 2Cl, (31) implies that (32) holds since we have Cu−Cl

ClCu
= Ω( 1

Cl
).

From the lower bound of (32), we can obtain

RT = Ω

(
1

Cl
min

{√
CuMNT,MT

})
(33)

by the technique used in the proof of Proposition 2 by Kveton et al. [25], which provides a regret
lower bound for combinatorial semi-bandits. To see this, suppose that N = MK for simplicity. The
action set of K-path combinatorial semi-bandit (in Proposition 2 by Kveton et al. [25]) is expressed
as A′ = {Ak | k ∈ [K]} ∪ {∅}, where Ak = {M(k − 1) + j | j ∈ [M ]}. Note that this does not
satisfy the assumption that the action set is closed under inclusion, which is posed in our problem
setting. In order to address this assumption, we set A = {A ⊆ [N ] | ∃A′ ∈ A′, A ⊆ A′}, which is
closed under inclusion. Let us consider bandit task assignment problems with action set A, instead of
A′. We suppose that, for each k ∈ [K], rti and cti take the same values for all i ∈ Ai, i.e., there exists
r′tk and c′tk such that rti = r′tk and cti = c′tk for all i ∈ Ai. If r′_tk and c′_tk are i.i.d. for different
t, this is a proper problem instance in our model. (Our model does not assume that rti and cti are
independent for different tasks i as stated in Section 2). For any action At ∈ A \ {∅}, let A′t ∈ A′ be
such that At ⊆ A′t. Then, if (At)

T
t=1 is feasible, (A′t)

T
t=1 is also feasible, and the reward for the latter

is greater than or equal to the former. This means that any algorithm can be converted to one that
takes only actions in A′ without sacrificing the performance. Hence, it is sufficient to consider only
algorithms that choose actions from A′ in the proof of lower bounds. Therefore, regret lower bounds
with action set {{k} | k ∈ [K]} ∪ {∅}, multiplied with M , apply to our problem setting. Hence, the
lower bound of (32) implies (33) as well.

The rest of this section is dedicated to the proofs of (30) and (31).

Proof of (30) If M = 1 and cti = Cl for all t and i with probability one, the problem is equivalent
to a standard N -armed bandit problem with time horizon T ′ = Θ(T/Cl). As shown in Theorem 5.1
by Auer et al. [6], any algorithm for the N -armed bandit problem suffers Ω(min{

√
NT ′, T ′})-regret

in the worst case with time horizon T ′. By substituting T ′ = Θ(T/Cl) into this lower bound, we
obtain (30).

Proof of (31) Set p = Cl

Cu+Cl
. Fix an arbitrary algorithm. For some fixed i∗ ∈ [N ] and ε ∈ [0, p/2],

define a distribution Di∗,ε of c and r as follows:

ci =

{
Cu with probability p− ε · 1[i = i∗]
Cl with probability 1− p+ ε · 1[i = i∗]

,

ri = 1 (i ∈ [N ]).

We also denote this distribution with ε = 0 by D0, which does not depend on i∗. Denote c̄ =
pCu + (1− p)Cl = 2ClCu

Cl+Cu
= 2pCu. Then the expected processing time can be expressed as

c̄i = E[ci] = c̄− ε · (Cu − Cl)1[i = i∗]. (34)
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Denote the number of completing the task i during T rounds by Ti. Then the expected regret can be
expressed as

RT ≥ E
i∗,ε

[
(T − Cu) (c̄− ε · (Cu − Cl))

−1 −
N∑
i=1

Ti

]

≥ T

c̄

(
1 +

1

c̄
ε · (Cu − Cl)

)
− E
i∗,ε

[
N∑
i=1

Ti

]
− 2Cu

Cl
, (35)

where Ei∗,ε means the expectation for the case in which c and r follow Di∗,ε. As the expected value
of the number of rounds to process the task i is expressed as Ei∗,ε[c̄iTi], we have

E
i∗,ε

[
N∑
i=1

c̄iTi

]
≤ T.

From (34), the left-hand side of this can be expressed as

E
i∗,ε

[
N∑
i=1

c̄iTi

]
= E
i∗,ε

[
c̄

N∑
i=1

Ti − ε · (Cu − Cl)Ti∗

]
.

Combining the above, we obtain

E
i∗,ε

[
N∑
i=1

Ti

]
≤ 1

c̄
(T + ε · (Cu − Cl) E

i∗,ε
[Ti∗ ]). (36)

Similarly, we can show that

E
0

[
N∑
i=1

Ti

]
≤ T

c̄
,

where E0 means the expectation for the case in which c and r follow D0. This means that there exists
i∗ such that

E
0

[Ti∗ ] ≤
T

c̄N

We assume that i∗ satisfies this in the following.

From (35) and (36), we have

RT ≥ ε ·
Cu − Cl

c̄
·
(
T

c̄
− E
i∗,ε

[Ti∗ ]

)
− 2Cu

Cl
. (37)

By a similar argument to Lemma 6.6 of by Badanidiyuru et al. [7], we can show that

E
i∗,ε

[T ∗i ] ≤ 3

4

T

c̄− ε · (Cu − Cl)
if ε ≤ 1

16

√
pc̄N

T
.

Hence, if ε = min

{
p
4 ,

1
16

√
pc̄N
T

}
, we have

3

4

T

c̄− ε · (Cu − Cl)
≤ 3

4

T

c̄− pCu/4
=

3

4

T

c̄− c̄/8
=

6

7

T

c̄
.

Combining this with (37), we obtain

RT ≥
1

7
ε · Cu − Cl

c̄

T

c̄
− 2Cu

Cl
=

1

7
· Cu − Cl

c̄

T

c̄
min

{
p

4
,

1

16

√
pc̄N

T

}
− 2Cu

Cl

=
1

7
· Cu − Cl

2pCu

T

2pCu
min

{
p

4
,

1

16

√
2p2CuN

T

}
− 2Cu

Cl

= Ω

(
Cu − Cl

ClCu
min

{
T,
√
CuNT

})
− 2Cu

Cl
,

which completes the proof of (31).
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Figure 4: Instance specified by parame-
ters c̄ = (2.19, 4.6, 5.35, 1.42) and r̄ =
(0.38, 0.43, 0.35, 0.47), which are generated
from uniform distributions over [Cl, Cu] and
[0, 1], respectively.

0 2000 4000 6000 8000 10000
round

0

500

1000

1500

2000

re
gr

et

UCB-BV1
CombUCB1
Proposed

Figure 5: The average for instances in which
the entries of c̄ and r̄ are generated from uni-
form distributions over [Cl, Cu] and [0, 1], re-
spectively. The shaded areas represent the
standard deviations of the empirical regret.

B Notes on experimental setup

In the implementation on UCB-BV1 proposed by Ding et al. [15], by considering each element in
A = {A ⊆ [N ] | |A| = M} as a single arm, we transform an instance of the bandit task assignment
into a budget constrained multi-armed bandit problem with

(
N
M

)
-arms. To satisfy the constraints, we

wait until all tasks in the previously chosen set are completed before deciding the next arm, i.e., the
budget consumed by choosing At is given as maxi∈At

{cti}.
Similarly, in the implementation of CombUCB1 proposed by Kveton et al. [25], each time a set
At in A is selected and it waits until all the tasks in At are completed before selecting the next set.
However, the way of choosing the set is different from that of UCB-BV1: we maintain the UCB
scores for each task i ∈ [N ], not for each set A ∈ A, and then choose a set so that the sum of the
UCB scores for tasks in it are maximized, as suggested in the paper by Kveton et al. [25]. Data and
source code to reproduce the experimental results in this paper are included in the supplementary
materials.

C Additional experiments

This section provides the results of numerical experiments performed to evaluate (i) the performance
for randomly generated instances and (ii) how the algorithm behaves under different settings, such as
varying values of N and Cu. Settings of parameters not specified in the captions are the same as in
Section 5 and in Appendix B.

Figures 4 and 5 show the results of synthetic experiments for randomly chosen r̄ and c̄. This
experiment confirms that the proposed algorithm works well empirically in randomly generated
environments, including cases where the values of r̄ are not necessarily constant.

Some results of an empirical evaluation of the algorithm’s sensitivity to parameters N and Cu are
given in Figures 6, 7, and 8. Figure 6 suggests that the values of the regret scale linearly with
respect to N , which is consistent with the regret upper bound of (7). Figure 7 shows the computation
time for varying problem sizes, which implies that the proposed algorithm is superior in terms of
computational complexity. Figure 8 represents how false beliefs about Cu affect the performance
of the algorithms. Experimental results suggest that the performance of the proposed algorithm is
sensitive to underestimation of Cu, while it is robust to overestimation of Cu.
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Figure 6: Dependency of the
regret on the problem size.
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Figure 7: Dependency of the
computational time on the
problem size.
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Figure 8: Impact of the mis-
specification of Cu on the re-
gret. Note that the true value
of Cu is 6.
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