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Abstract

Incorporating geometric inductive biases into models can aid interpretability and
generalization, but encoding to a specific geometric structure can be challenging
due to the imposed topological constraints. In this paper, we theoretically and em-
pirically characterize obstructions to training encoders with geometric latent spaces.
We show that local optima can arise due to singularities (e.g. self-intersection) or
due to an incorrect degree or winding number. We then discuss how normalizing
flows can potentially circumvent these obstructions by defining multimodal vari-
ational distributions. Inspired by this observation, we propose a new flow-based
model that maps data points to multimodal distributions over geometric spaces and
empirically evaluate our model on 2 domains. We observe improved stability dur-
ing training and a higher chance of converging to a homeomorphic encoder.

1 Introduction

A well-established idea in machine learning research is that geometric inductive biases can help us
learn representations that reflect the underlying structure of a dataset [Bronstein et al., 2021, Higgins
et al., 2022]. A key intuition behind this line of research is that such representations make it easier to
reason about the similarities of different instances in the dataset, for example by relating inputs using
a rotation or translation, which in turn aids interpretability and data-efficiency. Geometric inductive
biases have been explored in a wide variety of forms, including models that are defined on hyperbolic
or spherical Riemannian manifolds [Lezcano-Casado and Martınez-Rubio, 2019, Ganea et al., 2018],
models that are equivariant or invariant with respect to particular symmetry groups [Kondor and
Trivedi, 2018, Cohen and Welling, 2016], and work that leverages symmetries to learn disentangled
representations that factorize into distinct axes of variation [Higgins et al., 2018].

In this paper, we consider symmetry-based approaches to learning representations in an unsupervised
manner by imposing geometric inductive biases on the representation space. In this context, our
notion of a representation that “reflects the underlying structure of the data” is a representation that
is homeomorphic to the true generative factors. We are specifically interested in the optimization
challenges that arise when encoding to geometric spaces such as Lie groups. While a common
intuition is that an inductive bias that matches the underlying topology of the data will guide a model
towards a homeomorphic representation, there are also indications that certain inductive biases can
make a model more difficult to train in practice [Park et al., 2022, Falorsi et al., 2018, Batson et al.,
2021], which limits their practical utility.
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Figure 1: A GF-VAE consists of an encoder network hφ that maps data x to an intermediate parameter
space Y . The encoded vector y is split into K parts, where each sub-vector yk corresponds to the
parameters of a normalizing flow at layer k. We can sample from the variational distribution qφ by
first sampling from a uniform prior defined on the Lie group (SO(2) in this case), followed by a
sequence of K bijective transformations r(·; yk). The output of the normalizing flows, denoted as
zK , is then passed to a decoder f∗θ that maps from the Lie group Z to the data space X .

To understand why encoding to geometric structures can give rise to optimization challenges, we
formalize topological defects that can occur in a randomly initialized encoder, such as discrepancies
in the winding number or crossing number relative to those in a homeomorphic encoder. We show
that these topological defects will be preserved under continuous optimization, which suggests that
escaping these local optima relies on the discrete jumps that are employed during optimization.

To circumvent these obstacles to optimization, we propose Group-Flow Variational Autoencoders (GF-
VAEs), which leverage normalizing flows to model complex multimodal distributions on Riemannian
manifolds (Figure 1). We show that if we define the mode of the variational distribution to be
the representation, normalizing flows can circumvent some of the challenges associated with local
optima due to their multimodal nature. Experiments demonstrate that GF-VAEs can escape local
optima during the early stages of training, resulting in more reliable convergence to a homeomorphic
mapping and a greater degree of continuity after training.

We summarize the main contributions of this paper as follows:

• We characterize topological defects that can arise in encoders that map onto spaces with
geometric structure. We show that some obstructions that arise from topological defects
cannot be resolved using continuous optimization.

• We define evaluation criteria based on the winding number, crossing number, and continuity
to measure topological defects and homeomorphism violations in the encoder.

• We propose GF-VAEs, a new VAE-based model that that employs normalizing flows to
define complex distribution on Lie groups. We empirically show that GF-VAEs are able to
aid in circumventing identified optimization obstructions.

2 Problem Statement

Homeomorphic Encoders. Our goal is to learn representations in domains where we have prior
knowledge of the geometric structure, specifically structure in the form of a symmetry group that can
be associated with the input data. We assume that data lies on a low-dimensional manifoldM that is
embedded in a higher-dimensional space X := Rn via a mapping gX :M→ X . This is commonly
known as the manifold hypothesis [Bengio et al., 2013]. We denote the image of the mapping by
Mx := gX (M) ⊆ X . Then gX is a homeomorphism, or topological isomorphism, onto its image
g : M ∼−→Mx. That is, g is continuous, bijective, and has a continuous inverse.

We wish to learn an encoder fφ : X → Z such that its restriction fφ|Mx
: Mx → Z is a homeomor-

phism. Following Falorsi et al. [2018], we will define this mapping in terms of a network hφ : X → Y
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that maps to an intermediate space Y := Rd, followed by a known projection π : Y → Z ,

fφ : X hφ−−→ Y π−→ Z. (1)

Lie Groups. Our work focuses the specific case where the manifoldsM and Z are Lie groups. Any
set of symmetries may be formally described by a groupG, which is a set of invertible transformations
which may be composed using a binary operation · : G×G→ G. A Lie group is a group that is also a
differentiable manifold. Lie groups describe continuous symmetries such as rotations and translations,
and are therefore a natural mathematical setting for any system with spatio-temporal symmetries.

Reasoning about Lie groups is difficult due to their non-flat structure. Lie algebras provide a way
to study Lie groups by considering the tangent space g of the manifold at the identity element. The
exponential map exp : g→ G maps points the Lie algebra to points on the group manifold as such.
A vector v ∈ g defines a vector field on G using the group action to transport v around G. Then
exp(v) is defined to be the point reached by flowing along this vector field for unit time. For more
details on Lie groups, we refer the readers to [Hall and Hall, 2013].

Variational Autoencoders on Lie Groups. In this paper, we primarily focus on variational autoen-
coder (VAE) [Kingma and Welling, 2014, Rezende et al., 2014] as a means to learn a homeomorphic
embedding. In this setting, we define a generative model by composing a uniform prior p(z) = U(z)
on Z with a likelihood model pθ(x|z) = N (x; f∗θ (z), σ2

xIn) that is defined in terms of a decoder net-
work f∗θ : Z → X . We use the encoder fφ to define a variational distribution qφ(z|x), whose design
we discuss below and train the encoder and decoder jointly by optimizing the variational lower bound,

LVAE
φ,θ (x) = Eqφ(x|z) [log pθ(x|z)]−DKL [qφ(z|x)‖p(z)] ≤ log pθ(x). (2)

Defining a variational distribution on a manifold is generally not straightforward as it requires finding
an expression of the density on the manifold or keeping track of the change of volume when projecting
to the manifold from the tangent space. Falorsi et al. [2019] define a reparameterized construction for
sampling from a Gaussian distribution on Z by first sampling ε ∼ N (0, Ip) from the p-dimensional
Lie algebra associated withZ , then rescaling ε by way of element-wise multiplication σφ(x)�ε using
a network σφ : X → Rp, and computing the corresponding element zε on the group manifold using
the exponential map. By left multiplying this randomly sampled zε by the group element fφ(x) ∈M
to move the mode of the final distribution to its intended location, we obtain the construction

ε ∼ N (·; 0, Ip), zε = exp(σφ(x)� ε), z = fφ(x) · zε, p(zε) = p(ε)

∣∣∣∣det
∂ exp(ε)

∂ε

∣∣∣∣−1 . (3)

We account for the possible change in volume using the change of variable formula. Note that
composing group elements fφ(x) · zε does not change the density of the resulting point on the
manifold because the Haar measure, a standard choice for Lie groups, is left invariant.

Running Example. As a concrete running example, which we will use throughout this paper, we
will consider data on the circleM = SO(2) that is embedded into a space of images X . The subset
Mx of images generated by a function g : SO(2)→Mx corresponds to images of an object that is
subject to a one-dimensional rotation. We will consider the case of in-plane rotations of images, as
well images of a 3-dimensional object that is rotated around a single axis.

The special orthogonal Lie group SO(2) is defined as

SO(2) := {z | z ∈ GL(2), zT z = I, det(z) = 1} =

{
A(y) :=

[
y1 −y2
y2 y1

]
| y ∈ R2, ‖y‖ = 1

}
,

where GL(2) is the general linear group, which is the group of invertible 2× 2 matrices under matrix
multiplication. The set of images Mx lives on a manifold that is homeomorphic to the rotation
group SO(2), embedded into the space of images by g. Because we assume we know the underlying
manifoldM, we can design Z to have the same structure. WhenM = SO(2), we can use Y := R2.
The function hφ in Equation 1 is then an ordinary neural network, and the projection to Z is simply
the projection onto the unit circle : R2 → SO(2) := y 7→ A(y/‖y‖).
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Figure 2: Example of topological defects in learned encoders for a VAE with data on X = R32x32 in
the form of rotations L-shaped tetrominoes and Z = SO(2) (the unit circle). Our goal is to learn an
encoder fφ that defines a homeomorphism (a continuous bijection with continous inverse) between the
manifold of images of L-shaped tetrominoesMx ⊂ X and that of the latent space Z = SO(2). The
encoder fφ = π ◦ hφ is defined by composing a network hφ : X → Y with a projection π : Y → Z .
On the right, we show the intermediate space Yx = hφ(Mx) and its projection Zx = π(Yx) for 3
random seeds after convergence. Colours indicate the angle associated with each data point on the
manifoldM. Optimization obstructions can arise when the network hφ maps data onto a trajectory
Yx that exhibits topological defects, such as the crossing in a “figure 8” shape, which gives rise to
discontinuities in the projection Zx onto the latent space.

3 Optimization Obstructions

In practice, training homeomorphic encoders can give rise to optimization challenges. To develop
intuition for these challenges, we will consider the running exampleM = SO(2) with data in the
form of in-plane rotated images on X = R32×32 (Figure 2). We train a VAE in which the network hφ
is a standard convolutional network which is paired with a deconvolutional decoder f∗ : SO(2)→
R32×32 (see Appendix A). Figure 2 shows encodings in the intermediate space Y after training with
ELBO with 3 random seeds. For the first two seeds, we see that hφ(Mx) crosses over itself, resulting
in an figure “8” shape. When projected onto Z := SO(2), this results in discontinuities at the
crossover points. The second seed in addition also exhibits a sparse region in the intermediate space,
leading to a gap in the SO(2) projection. Only the third initialization has converged to the correct
topology. These local optima are not unique to this example; obstructions have also been encountered
in Falorsi et al. [2018] when trying to learn 3D orientations of a rotating multi-color cube from 2D
images using a homeomorphic VAE. Park et al. [2022] show that the homeomorphic VAE cannot
generalize well to other shapes and tends to learn a degenerate embedding to a small part of SO(3).

The main observation that we make in this paper is that imposing a geometric structure on the latent
space can introduce topological obstructions during optimization. This insight is distinct from the
homological obstructions identified by de Haan and Falorsi [2018], who describe the obstructions that
emerge from the choice of parameterization on the Lie group. We will refer to the topological defects
that we identify in this paper as “optimization obstructions”. The problem that we identify here is that
randomly-initialized layers have a high probability of exhibiting topological defects (degree, crossing,
etc.) that cannot be resolved under continuous optimization using gradient flow. Removal of these
topological defects is thus only possible by relying on the jumps coming from performing SGD with
a large enough learning rate. This implies that while escaping such local minima is possible, it is
difficult and may require many epochs to do so, dramatically slowing training and undercutting the
advantages of learning a homeomorphic representation.

We now discuss several specific optimization obstructions. We focus on the case whereM is the Lie
group SO(2), with the same example setting described in Section 2. All the optimization obstructions
we consider occur in this case and in the case of higher-dimensional manifoldsM as well, but are
simpler to describe for S1. See Appendix B for proofs.

3.1 Figure Eight Local Minima

To more precisely describe obstructions that might arise during optimization, we consider continuous-
time training along a gradient flow. We denote the weights of the initialized encoder as φ(0) and the
trained weights as φ(1). We consider the idealized setting in which φ(t) is a continuous function of t.

Empirically, either at initialization or after some training, we often observe a “figure 8” pattern in Y of
roughly the form (h∞ ◦ g)(θ) = (cos θ sin θ, sin θ)>. In such a case, the embedding into Z contains
two disjoint pieces [−3π/4,−π/4] ∪ [π/4, 3π/4]. One half of the circle is mapped to one piece at
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the top of the circle and the other half of the circle is mapped to the other disjoint piece at the bottom
of circle. Such a mapping takes advantage of the singularity at (0, 0)2 into order to embed S1 in two
continuous pieces. The resulting mapping is nearly bijective, failing to reconstruct on only a small
region near the two discontinuities. It is also mostly continuous, having only two discontinuities.

Once this local minimum is obtained, it is very difficult to move out of it using gradient descent. It is
unlikely for the two pieces to join together and become a homeomorpic embedding since this would
require passing one disjoint segment through the other and reversing its orientation which would
violate bijectivity and increase the reconstruction loss.

Figure 3: The figure 8 pattern in Y (grey)
maps to two disconnected components in
Z . The cyclic order of these 4 endpoints
is preserved by homotopy. Following
the parameterization of the data mani-
fold the cyclic order is (z1, z2, z4, z3),
which is distinct from the cyclic order
of a homeomorphic embedding, either
(z1, z2, z3, z4) or (z4, z3, z2, z1).

We make this observation precise by noting that continu-
ous optimization preserves the ordering of points on the
circle. Let (z1, z2, z3, z4) denote the four end points of
the two disjoint intervals of fφ(0). The ordering of these
points is only defined up to cyclic permutations mod C4.
Proposition 3.1 states that continuous optimization must
preserve ordering mod C4. Figure 3 illustrates the proof.

Proposition 3.1 Assume that fφ(t) undergoes continuous
optimization. Assume that fφ(t) ◦ g is injective for all t.
The cyclic ordering induced on k points by fφ(0) is equal
to fφ(1). Thus a figure 8 embedding, which corresponds
to cyclic order (z1, z2, z4, z3) mod C4, cannot be trans-
formed to a homeomorphic embedding, which has cyclic
order (z1, z2, z3, z4) mod C4 or (z4, z3, z2, z1) mod C4.

In other words, transition from a figure 8 embedding to a
homeomorphic embedding is impossible without violating
continuity during optimization. This indicates that escap-
ing a figure 8 local optimum during training would need
to rely on discrete jumps and likely the stochasticity of the
gradient estimate.

3.2 Degree Obstructions

A second class of topological defects that can arise are encodings with a discrepancy in the winding
number. We can compute the degree, or winding number, of a map ψ : S1 → S1 around the origin
by summing up the differentials along its path on the sphere,

ω(ψ) =
1

2π

∫
S1

dψ(θ).

This concept can be extended to arbitrary connected oriented manifolds, where it is usually referred
to as the degree of a mapping. Intuitively, it describes the number of times that the domain manifold
wraps around the co-domain manifold.

If the embedded image hφ(t)(Mx) does not contain the origin, then the mapping factors through
R2 \ {(0, 0)} and is consequently continuous. Therefore, a continuous path in φ yields a continuous
path in Z . If fφ|Mx

is continuous, then the function ψφ := π ◦ hφ ◦ g : S1 → S1 has a well-defined
degree, also known as winding number w(ψφ) ∈ Z. In order for fφ|Mx

to be a homeomorphism, the
winding number must be w(ψφ) ∈ {−1, 1}. Under random initialization, however, the initial network
may have winding number equal to any integer. Assuming continuous optimization and continuous
embeddings, then hφ(t)(x) is a continuous function of both x, t. We assume that hφ(t)(x) 6= (0, 0)
for any t, x and thus winding number is defined for any time. The following proposition thus holds.

Proposition 3.2 Winding numbers of the initialized and final model are equal w(ψφ(0)) = w(ψφ(1)).

In practice, neither the continuous optimization assumption nor the avoidance of the origin holds.
Rather hφ is updated by SGD in discrete jumps and hφ ◦ g may map to the origin. Thus, empirically,
we do see that the winding number may change during training. However, if the initialization avoids

2In practice, we never exactly cross (0, 0) but only pass by it with a small distance.
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Figure 4: The initialized encoder (t=0) may contain defects as described in Section 3, such as a
figure 8 pattern. With a standard VAE, where the learned representation (red point) is the mean of a
conditional gaussian, these defects are unlikely to be resolved during optimization, as it would require
passing through intermediate parameters (and hence representations) with higher reconstruction loss.
Using a multimodal variational distibution, the parameters and corresponding representations are
less tightly coupled, in the sense that a continuous change in the parameter space can result in a
discontinues change in representation (i.e. the mode of the distribution) without passing through
high-loss areas of the parameters space.

the origin, then due to the tendency of the magnitude of the unnormalized embeddings hφ(x) to grow
during optimization (see Section 3.3), the winding number changing becomes more unlikely. This
means that defects in the winding number pose significant obstruction to learning homeomorphic
embeddings. The winding number is also the primary optimization obstruction which makes it
impractical to remove the hard projection π. If instead we decode directly from y ∈ Y but push
embeddings to the unit circle using the loss |‖y‖ − 1|, then it is far more likely we converge to
discontinuous embeddings with the incorrect winding number (Appendix D).

3.3 Magnitude Growth in Y

Empirically, we observe the values of the embeddings in Y := R2 continually grow during training.
This phenomenon makes it more difficult for the embedded data manifold hφ(Mx) to cross the origin
and for the winding number to change. We give a theoretical explanation for this behavior.

Consider what would happen if the embedding y were updated directly based on the gradient of the
loss ∇yL with respect to y. We assume the loss depends only on z = y/‖y‖, and so has level sets
which are unions of radial rays from the origin. The gradient∇yL must then be tangent to a circle
about the origin. That is, for y = (a, b), the gradient ∇yL = (±b,∓a). Under gradient flow, the
evolution of y in time yt would thus flow along circles of fixed radius and so ‖y0‖ = ‖yt‖. Under
gradient descent, however, due to the convexity of the flow lines, which are circular, the embeddings
y will tend to grow in magnitude. For η ∈ R>0, we compute

‖y − η∇yL‖2 = (a∓ ηb)2 + (b± ηa)2 = (a2 + b2)(1 + η2) > ‖y‖2.

In practice, however, we do not update y based on∇yL but rather based on the gradient with respect
to model parameters φ. Let F : Φ→ Y be the map from model parameters φ to y given fixed input
data x. Then the actual update to y is ∇̃yL = dFT ◦∇φL where dF is the total derivative or Jacobian
of the map F . Since ∇φL = (dF )∇yL we have ∇̃yL = dFT dF∇yL. The angle between ∇̃yL
and ∇yL is bounded by some θ a quantity depending on the eigenvalues of the operator dF . Given
that ∇yL is tangential to the circle, assuming for simplicity ∇̃yL has constant length L and uniform
distribution [−θ, θ] in angle to∇yL, the norm of y still grows in expectation.

Proposition 3.3 Assume a circle of radius R. Let v be a random vector at y on the circle of length L
with angle to the tangent uniform in [−θ, θ]. Then

E[‖y + v‖2] = L2 +R2 > R2 = ‖y‖2.

4 GroupFlow-VAE

The topological obstructions to optimization that we identified in Section 3 cannot be resolved
under continuous optimization. Moreover, even if we allow for a degree of discontinuity, resolving
obstructions like a figure 8 will require violating bijectivity, which implies that the reconstruction loss
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must increase to escape this defect. This suggests that a VAE with a reparameterized construction
as described in Equation 3 will be susceptible to local optima, which aligns with the empirical
observation that homeomorphic VAEs can be difficult to train.

This raises the question of whether we can make VAEs less susceptible to topological obstructions by
employing a different parameterization from that of Equation 3. More concretely, we will consider a
parameterization that admits multiple modes in the variational distribution qφ(z|x), rather than the
unimodal construction in Equation 3, and define fφ(x) in terms of the mode,

fφ(x) := arg max
z

qφ(z|x). (4)

The intuition behind this approach is illustrated in Figure 4. If the variational distribution contains
multiple modes, rather than a single peak centered at π(hφ(x)), then it may becomes possible for
small changes to result in non-local changes, such as the reordering of points that is needed to untwist
a figure 8, by switching between modes in the variational distribution. Moreover, increasing the
number of parameters of qφ(z|x) is likely beneficial for escaping some of the topological obstructions
as some defects such as self-intersection are less likely to occur in high-dimensional spaces.

Motivated by this intuition, we consider a parameterization of qφ(z|x) that employs normalizing
flows [Rezende and Mohamed, 2015]. In a normalizing flow, the sample z is defined as a push forward
of sequence of smooth bijective transformations, which makes it possible to reshape a simple unimodal
distribution into a more complex multimodal distribution. The probability of a sample from the final
density can be computed by repeatedly applying the rule for change of variables. Concretely, given a
base distribution p(z0) and a sequences of bijective transformations rk : Z → Z , we obtain a sample
z = zK and probability by first sampling z0 ∼ p(z0) and defining a sequence of transformations

zk = rk(zk−1), log p(zk) = log p(zk−1)− log

∣∣∣∣det
∂ rk(zk−1)

∂ zk−1

∣∣∣∣ for k = 1 · · ·K. (5)

Normalizing flows have been used to define distributions on geometric structures such as Lie groups
by either defining a flow on the Lie algebra and computing the push-forward density of the exponential
map [Falorsi et al., 2019], or designing structure-specific transformations [Rezende et al., 2020].

In the GF-VAE, we will define a construction in which the encoder network returns the parameters of
the flow. We show an overview of the architecture in Figure 1. We define a network hφ : X → Y :=
RK×l whereK and l are the number of flow layers and parameters respectively, a sequence of bijective
transformations {r(·; yk)}Kk=1 parameterized by {yk}Kk=1, and a base distribution distribution p(z0)
which we define as a distribution on the group. The sequence {r(·; yk)}Kk=1 is then used to define a
new distribution on Z given an x by transforming the base distribution. This defines a conditional
flow that can be trained using a stand lower bound (Eq. 2),

z0 ∼ p(z0), zk = r(zk−1; yk), log q(zk|x) = log q(zk−1|x)− log

∣∣∣∣det
∂ r(zk−1; yk)

∂ zk−1

∣∣∣∣ .
The choice of the flow r is very important here as normalizing flows are typically defined on flat
spaces. This means that, for a specific manifoldM, additional care must be taken when designing
them to ensure that they are a diffeomorphism from Z to itself [Rezende et al., 2020, Durkan et al.,
2019, Mathieu and Nickel, 2020]. In this paper, we employ a similar method as Falorsi et al. where
we define an affine layer followed by a single layer of spline flow, and a Tanh layer multiplied by π
as the last layer to push all the probability density between −π and π.

5 Experiments

We perform a series of experiments to evaluate the difficulty of learning a homeomorphic encoder.
Concretely, we investigate how often we fall into one of the failure cases described in Section 3 in
standard VAEs with geometric latent spaces in practice. Subsequently, we examine how well GF-
VAE can circumvent these topological obstructions during training.

Baselines. Throughout our experiments, we compare against (1) a standard VAE, and (2) a super-
vised VAE where in addition to maximizing the ELBO, the encoder is trained to predict the ground
truth representations. These two scenarios serve as extremes on the spectrum of guiding the model to
the right representation. We also compare against a deterministic autoencoder (AE) which does not
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Figure 5: Top: Latent traversals in the decoder for a VAE and GF-VAE after training. Bottom: The
representations in latent space Z for VAEs and GF-VAEs initialized with 15 different random seeds.
For VAEs, the gray line inside the circle show the (scaled-down) y-traversals. For GF-VAEs, we it is
difficult to visualize Y space as it is high-dimensional space. Therefore, to inspect for obstructions,
we show the traversal of the z vectors instead.

regularize the embedding space. We also tried regularizing the y-space to be close S1 (by penaliz-
ing (‖y‖2 − 1)2) in order to mitigate the optimization problem discussed in Subsection 3.3, which
we refer to as “reg-y” loss. Finally, we evaluate the β-VAE objective [Higgins et al., 2017] which
increases the regularization on the latent space by upweighting the KL term in Eq 2. All models em-
ploy a 4-layer CNN architecture for the encoder and decoder with LeakyReLU activations. For the
decoder, we also experiment with action-decoder proposed by Falorsi et al., which we found helpful
for learning a homeomorphic mapping. The action-decoder uses a special first layer where the group
action is applied to a set of learned Fourier coefficients rather than directly being passed as input to
the architecture. For further details regarding our experiments, please refer to Appendix A.

Evaluation. We evaluate all models based on two criteria: (1) Has the encoder learned a homeo-
morphic mapping? and (2) Has the decoder learned a good model of the data? Assessing whether a
learned mapping is homeomorphic is challenging. To verify homeomorphism, we follow the evalu-
ation proposed in Falorsi et al. [2018] by examining whether the encoder yields a continuous path
when interpolating in the data manifold from −π to π. Details on evaluating continuity are provided
in Appendix C. To determine how often the models encounter the topological obstructions described
in Section 3, we also report crossing and winding numbers in Appendix E. A crossing number grater
than 0 implies a “figure 8” obstruction, and a winding number that is not equal to 1 or −1 implies
winding number obstruction. Lastly, we measure the log-likelihood to assess how well each model
approximates the data manifold. If the model has diverged during training due to posterior collapse,
we report it as a non-homeomorphic mapping and ignore its continuity score in the average.

5.1 Images: SO(2)
In our first experiment, we train on images of an L-shaped tetromino [Bozkurt et al., 2021], a teapot,
and an airplane [Shilane et al., 2004]. The SO(2) manifold corresponding to each object is made by
rotating the image of the object around the center. We report our findings in Tables 1 and 3.

Table 1: Number of learned homeomorphic encoders and their continuity score for different objectives
trained with 15 different random seeds.

L-shaped Tetromino Teapot Airplane
# H. Continuity # H. Continuity # H. Continuity

AE 2/15 137.28± 54.15 0/15 173.37± 21.99 0/15 132.95± 40.61
VAE (β = 1) 0/15 117.02± 23.17 6/15 14.21± 7.30 0/15 86.72± 65.12
VAE (β = 4) 2/15 132.45± 58.79 15/15 1.22± 0.05 5/15 67.88± 59.20
VAE + y-reg 1/15 152.71± 74.20 1/15 14.51± 81. 3/15 124.10± 93.53
GF-VAE (β = 1) 5/15 50.51± 58.18 7/15 21.07± 24.42 0/15 63.94± 34.43
GF-VAE (β = 4) 9/15 24.04± 29.14 13/15 8.16± 17.89 7/15 27.70± 29.23
Action-GF-VAE (β = 4) 10/15 19.35± 23.37 13/15 3.14± 1.74 9/15 33.26± 40.03

Sup-VAE 15/15 5.74±0.49 13/15 5.67± 0.34 0/15 96.78± 38.
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Figure 6: Latent traversals in the decoder of a GF-VAE trained on Tetrominoes with a torus latent
spaces. In each traversal, we keep the value for one Lie group fixed and do a geodesic interpolation
across the other group. The traversals in the latent space highlighted are by red and orange.

We observe that even though the types of obstructions vary across images, both VAE and AE in general
fail to learn a homeomorphic encoder. The GF-VAE objective improves performance noticeably
across both metrics. We also did not find y regularization to be very helpful as it mainly stabilized
training towards whatever mapping that was achieved at the early stages of training. We observed the
main failure case for most of the non-homeomorphic encoders was due to discontinuity emerging
from figure-eight obstruction. Moreover, looking at the learning curves in Figure 9, we observe
that the winding number is susceptible to change during training which suggests that the continuity
assumption is of importance in proposition 3.2. GF-VAE resolves both issues, which allows us to
interpolate nicely in the Z-space (Figure 5). What is very surprising is that in the case of airplanes,
we see that even supervised objective fails to overcome these optimization obstructions, while a GF-
VAE is able to achieve this at a much better rate.

We also observe that increasing the β value for the KL term generally helps. This is perhaps
unsurprising given that a high β value encourages the latent space to cover the prior and therefore
discourages the winding numbers from being 0 and improves the performance on the continuity metric.
In the case of the teapots, we in fact observe that increasing β is sufficient to learn a homeomorphic
encoder. However, GF-VAE still generally scores better in terms of continuity and winding numbers.

5.2 Images: Torus
In this experiment, we consider a ring torus as the latent space, which is homeomorphic to the Lie
group SO(2)× SO(2). We create a dataset homeomorphic to this group by independently rotating
the L-shaped tetromino in both orientation and color. All models can be extended to Tori by simply
duplicating the latent space and learning multiple encodings to SO(2) in parallel. This is done
by defining a factorized density qφ(z(1), z(2)|x) = qφ(z(1)|x)qφ(z(2)|x), where each distribution
qφ(z(i)|x) defines a distribution on a S1. Ideally, we want one subgroup to correspond to colour and
the other to orientation. In this setting, we evaluate homeomorphism by picking 10 different values in
either colour or orientation and measuring the continuity of the encoded path when interpolating in
the data manifold on the other attribute. We identify the encoder as homeomorphic if the average
continuity score of all 10 paths is below a certain threshold (see Appendix C). Unsurprisingly, we
found that learning a homeomorphic mapping in tori is more challenging compared to circles. Out
of 15 runs, the VAE models learn a homeomorphic mapping 1 time, while a GF-VAE manages to
learn a homeomorphic mapping 7 times. To be able to align each Lie group with the corresponding
attribute, we also used the weakly supervised proposed by Locatello et al., where the model receives
a sequence of images in which only the angle or the colour is changing. We show the latent traversal
in the decoder model for one of the successful runs of GF-VAE in Figure 6. As we can see, the model
has successfully managed to disentangle colour and orientation in the latent space.

6 Related Work

Learning Geometric Representations. There has been a large amount of work concerned with
learning representations from data with geometric structure in the unsupervised or weakly supervised
setting. One line of work has focused on the use of geometric spaces such as lie groups in latent
space [Davidson et al., 2018, Falorsi et al., 2018, Perez Rey et al., 2020, Vadgama et al., 2022]. In
[Miao et al.], it was argued that that geometric inductive biases in VAEs should be Incorporated via a
deterministic mapping rather than the prior which is consistent with our work. As we show in this
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work, naively incorporating a geometric bias leads to topological obstructions. Another line of work
has focused on inferring the latent structure by exploring the local connectivity information [Moor
et al., 2020, Chen et al., 2021, Lee et al., 2021, Pfau et al., 2020].

Learning Disentangled Representations. Topological group structure can be used to define a
notion of disentanglement that is based on equivariant properties under group transformations [Higgins
et al., 2018]. There exists a body of work that aims to learn both disentangled and equivariant group
representations. One set of methods relies on agent actions to predict the group element [Caselles-
Dupré et al., 2019, Quessard et al., 2020]. An adjacent line of work is to regularize encoders to
be equivariant with respect to the group action, using triplets of the form (xt,mt, xt+1) or longer
sequences [Guo et al., 2019, Dupont et al., 2020, Tonnaer et al., 2022]. Some approaches focus on
learning symmetry-based disentangled representations in fully unsupervised settings or by enforcing
commutativity in the latent Lie group [Yang et al., 2022, Zhu et al., 2021]. Another related area
disentangles class and pose in the latent space [Marchetti et al., 2022, Winter et al., 2022]. Our work
does not focus on disentanglement, but the topological obstructions that we describe are relevant to
this domain.

Topological Obstructions in Learning. The topological obstructions that we consider in this work
are distinct from the homological obstructions that have been characterized in prior work [de Haan
and Falorsi, 2018, Batson et al., 2021, Falorsi et al., 2018, Perez Rey et al., 2020]. Theorem 1 by
de Haan and Falorsi [2018] defines homological obstructions as follows: For any latent space Z
with non-trivial topology, it is possible to learn an encoder fφ that is continuous when restricted to
Mx ⊂ X , but this encoder must be discontinuous on the full space X . For this reason, Falorsi et al.
[2018] and others [Xu and Durrett, 2018, Meng et al., 2019] use the two-part encoder from equation 1,
inserting discontinuous layers π when mapping to circles, spheres, SO(n), or other manifolds. This
explicit discontinuity circumvents the homological obstruction without forcing the linear layers of
the network to approximate discontinuities using large weights, which we and others find leads to
instability during training and inferior reconstructions (Section 5).

Normalizing Flows on Manifolds. In recent years, there has been a surge of interest in extending
normalizing flows, originally formulated for Euclidean spaces, to Riemannian manifolds [Rezende
et al., 2020, Mathieu and Nickel, 2020, Köhler et al., 2021, Durkan et al., 2019]. One approach
involves leveraging the Lie group structure of the manifold to define a parametrization of the
flow [Rezende et al., 2020], which is also the strategy we adopt in this work. These recent advance-
ments have paved the way for applying normalizing flows to the group SO(3) in order to learn pose
estimation in molecular structures [Köhler et al., 2023] and images [Liu et al., 2023, Murphy et al.,
2021]. Our work differs from these efforts in that the primary objective of our method is not to target
flexible distributions on Riemannian manifolds, but rather to demonstrate that utilizing a flow as a
variational distribution aids optimization in learning a homeomorphic embedding.

7 Conclusion

In this paper, we investigate obstructions to optimization that can arise when learning encoders for
topological spaces. We classify different types of obstructions, provide evidence these are encountered
in practice, and give mathematical explanations for how they occur under certain assumptions. We
propose GF-VAE, a novel model that employs normalizing flows as variational distributions to help
circumvent these issues and show its effectiveness across several datasets when encoding to circles
and tori. This work contains several limitations. Firstly, our theoretical analysis is limited by the
idealized assumptions necessary to analyze the method using topological tools which do not exactly
match those encountered in practice. Secondly, the metrics we define such as winding and crossing
numbers are harder to define and compute for higher dimensional manifolds. Future work includes
expanding our analysis and techniques to a wider array of Lie groups and non-group manifolds.
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A Experimental Details

We train all our models for 150 epochs with a batch-size of 600. For optimization, we use the RAdam
optimizer [Liu et al., 2019] with a learning rate of 5e-4. For all image datasets, we use a 4-layer CNN
with kernel, stride, and padding of size 4, 2 and 1 respectively followed by a leakyReLU activation
(Table 2) for the encoder and a Sigmoid activation for the decoder. The network σ2

ε , shares the same
architecture with the only difference being the last layer, which is a fully-connected network followed
by a Softplus activation which is common in standard VAEs. In all our experiments, we used K = 1
for the GF-VAE models as it was sufficient to avoid the optimization obstructions mentioned in the
paper. All models were initialized and trained with 153 different random seeds.

Table 2: Architecture of the encoders and decoders employed for all image datasets.

Encoder
Input 32× 32 images
4× 4 conv. 32 stride 2, LeakyReLU.
4× 4 conv. 32 stride 2, LeakyReLU.
4× 4 conv. 64 stride 2, LeakyReLU.
4× 4 conv. 64 stride 2, LeakyReLU.
F.C. 2, π(y) := y/‖y‖.

Decoder

Input z ∈ R2 s.t. ‖z‖2 = 1
4× 4 deconv. 64, stride 2, ELU.
4× 4 deconv. 64, stride 2, ELU.
4× 4 deconv. 32, stride 2, ELU.
4× 4 deconv. 3, stride 2, Sigmoid.

B Proofs

We include the proofs for the propositions in the main text.

B.1 Figure Eight Local Minimum

Proposition B.1 Assume that fφ(t) undergoes continuous optimization and is thus continuous in
t. Assume that π ◦ fφ(t) ◦ g is injective for all t. The cyclic ordering induced on k points by fφ(0)
is equal to that induced by fφ(1). Thus a figure 8 embedding, which corresponds to cyclic order
(z1, z2, z4, z3) mod C4, cannot be transformed to a homeomorphic embedding, which has cyclic
order (z1, z2, z3, z4) mod C4 or (z4, z3, z2, z1) mod C4.

Proof: Since we assume π ◦ fφ(t) ◦ g is injective for all t, the path z(t) = (π ◦ fφ(0) ◦ g(θi))
4
i=1

is inside the k-fold configuration space on S1 defined Confk(S1) = {(z1, . . . , zk) ∈ (S1)k : zi 6=
zj for i 6= j}. In order to prove the claim, we will show that the path-connected components of
Confk(S1) correspond to cyclic orderings of (z1, . . . , zk) and thus the start and end point of every
path share a cyclic ordering.

Mapping (z1, . . . , zk) 7→ (zk, (z
−1
k z1, . . . , z

−1
k zk−1)) gives a homeomorphism Confk(S1) ∼=

SO(2) × Confk−1(S1 \ {1}) ∼= SO(2) × Confk−1(R). Let z̃i = z−1k zi. Consider D =
{(z̃1, . . . , z̃k−1) : z̃1 < . . . < z̃k−1} ⊂ Confk−1(R).

We can identify the connected components of Confk−1(R). The set D is a fundamental domain for
the action of the symmetric group Sk−1 on Confk−1(R). Thus Confk−1(R) =

∐
σ∈Sk σ(D) is a

disjoint union. Linear interpolation shows D is connected. The sets D and σ(D) for σ ∈ Sk are
not connected. Consider a path from z = (z1, . . . , zk) ∈ D to σ(z) ∈ σ(D). The element σ must
reverse the order of at least two elements zj < zi. Thus the function f(z) = zi − zj must take the
value 0 over the path by intermediate value theorem. Hence the path cannot be in Confk−1(R). Thus
the connected components of π0(Confk−1(R)) ∼= Sk−1.

Since SO(2) is connected, π0(Confk(S1)) ∼= Sk−1. That is each connected component of Confk(S1)
is labeled by an element of Sk−1 describing the ordering of z̃1, . . . , z̃k−1 in R. Each ordering of
(z̃1, . . . , z̃k−1) in turn corresponds to a different cyclic ordering of z1, . . . , zk in S1, that is, a different
element of Sk/Ck. Thus two k-point configurations are homotopic if and only if they have the same
cyclic ordering. �

3We used a higher number of random seeds than normal to account for the training instability.
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B.2 Degree Obstruction

Proposition B.2 The winding number of the initialized model and final model are equal w(π′ ◦
hφ(1) ◦ g) = w(π′ ◦ hφ(1) ◦ g).

Proof: The winding number of a map is a continuous function t 7→ w(π′ ◦ hφ(t) ◦ g). Since the
output space Z is discreet, the winding number must be constant in t. �

B.3 Magnitude Growth in Y

We assume that dF is full rank, which is a reasonable assumption for an overparameterized neural
network. In that case M = dFT dF is a positive definite symmetric matrix and can be orthogonally
diagonalized M = QΛQT where Q is orthogonal and

Λ =

(
λ1 0
0 λ2

)
and λi > 0. The maximum angle between x = ∇yL and Mx = ∇̃yL can then computed in terms of
the eigenvalues λi. This maximum is computed for the case of an n× n symmetric positive definite
matrix here4. We include the proof for the 2× 2 case we consider here for completeness.

Lemma B.1 The maximum angle between x and Mx for x ∈ R2
6=0 is

cos−1
(

2
√
λ1λ2

λ1 + λ2

)
.

Proof: The angle is maximized at the minimum value of

xTMx

‖x‖‖Mx‖
.

It suffices to consider ‖x‖ = 1. Substituting M = QΛQT and y = Qx, we want to minimize

xTQTΛQx

xTQTΛ2Qx
=

yTΛy

yTΛ2y

over all ‖y‖ = 1 since ‖Qx‖ = ‖x‖ = 1. Letting a = y21 and noting y21 + y22 = 1, this is equal to
minimizing

aλ1 + (1− a)λ2
aλ21 + (1− a)λ22

over 0 ≤ a ≤ 1. Setting the derivative equal to 0 gives

(λ1 − λ2)2(−λ2 + a(λ1 + λ2))

2 (λ22 + a(λ21 − λ22)))
3/2

= 0

and yields one critical value at a = λ2/(λ1 + λ2) corresponding to value 2
√
λ1λ2

λ1+λ2
. This is the global

minimum since the boundary values a = 0 and a = 1 correspond to maxima with value 1. �

Thus the angle between∇yL and ∇̃yL is bounded by θ = cos−1
(
2
√
λ1λ2/(λ1 + λ2)

)
. Given that

∇yL is tangential to the circle, assuming for simplicity ∇̃yL has constant length L and uniform
distribution [−θ, θ] in angle to∇yL, the norm of y grows in expectation.

4karakusc (https://math.stackexchange.com/users/176950/karakusc), Maximum angle between a vector x
and its linear transformation Ax, URL (version: 2017-05-06): https://math.stackexchange.com/q/2266057
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Proof: Without loss of generality, y = (0, R) and v = (L cos t, L sin t) where |t| < θ. Then we
evaluate

E[‖y + v‖2] =
1

2θ

∫ θ

−θ
‖(L cos t, R+ L sin t)‖2‖dt

=
1

2θ

∫ θ

−θ
(L2 cos2 t+R2 + 2RL sin t+ L2 sin2 t)dt

=
1

2θ

∫ θ

−θ
(L2 +R2)dt

= L2 +R2.

by Pythagorean identity and the fact sin t is odd. �

C Continuity Metric

For measuring continuity, we adopt a similar method as Falorsi et al. and evaluate continuity in
terms of how the largest “jump” compare to others when walking a continuous path mi ∈ M for
i = 1 · · ·N pairwise close points. We define qi to be the ratio distances between the ground-truth
and the learned representation

qi =
dM(ηφ(mi), ηφ(mi+1))

dM(mi,mi+1)
.

From the set {qi}i, we compute the continuity metric Lcont as

Lcont =
M

Pα
, M = max

i
qi, Pα = α-th percentile of {qi}Ni=1. (6)

In our experiments, we set α = 90.

There are two differences between how we evaluate continuity compared to [Falorsi et al., 2018]. First,
we measure the continuity of ψφ rather than fφ, which we argue is more relevant. Second, in [Falorsi
et al., 2018], the authors are mainly interested in verifying whether the encoder is discontinuous in the
topological sense (which they verify by examining the inequality M > γPα for some γ). We on the
other hand report continuity on the spectrum by computing the γ that would make ηφ discontinuous.
For evaluating homeomorphism, we conclude for an encoder to be homeomorphic if Lcont < 10
(empirically, we observed the mapping to appear smooth for a continuity score below this threshold).
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D Decoding From Y

We consider the alternate strategy of removing the projection π and adding a loss so that y stays close
to the desired manifoldM in Y . Winding number obstructions become far more prominent in this
case. In Figure 7, we show the latent space for different random seeds in the teapot case when we
train with such an objective.

Figure 7: Y and Z space of Isom-AEs trained on teapots for 15 random seeds, where instead of
decoding from Z , we decode from Y with an additional soft regularization that constrain y values to
have unit length.
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E Experiments: Additional Results

We report the full results of our SO(2) experiments in Table 3.

Table 3: Comparison of different VAEs trained on the various image datasets in terms of number of
encoders with homeomorphic mappings (# H.), correct winding number (# W.), and correct crossing
number (# C.) for 15 random seeds. We additionally report the error on continuity as well as negative
Loglilkelihood (lower is better).

L-shaped Tetrominoes
# H. # W. # C. Continuity −Loglilkelihood

AE 2/15 2/15 2/15 137.28± 54.15 9.66± 5.63
VAE (β = 1) 0/15 7/15 0/15 117.02± 23.17 7.26± 6.99
VAE (β = 4) 2/15 9/15 2/15 132.45± 58.79 2.67± 0.30
GF-VAE (β = 1) 5/15 14/15 – 50.51± 58.18 2.71± 1.67
GF-VAE (β = 4) 9/15 15/15 – 24.04± 29.14 4.43± 1.84
Action-GF-VAE (β = 4) 10/15 14/15 – 19.35± 23.37 4.43± 1.67

Teapots
# H. # W. # C. Continuity −Loglilkelihood.

AE 0/15 15/15 8/15 173.37± 21.99 7.49± 0.16
VAE (β = 1) 6/15 15/15 8/15 14.21± 7.30 7.61± 0.07
VAE (β = 4) 15/15 15/15 15/15 1.22± 0.05 10.60± 0.01
GF-VAE (β = 1) 7/15 15/15 – 21.07± 24.42 8.48± 0.38
GF-VAE (β = 4) 13/15 14/15 – 8.16± 17.89 11.05± 0.24
Action-GF-VAE (β = 4) 13/15 12/15 – 3.14± 1.74 10.96± 0.49

Airplanes
# H. # W. # C. Continuity −Loglilkelihood

AE 0/15 3/15 3/15 132.95± 40.61 11.55± 2.19
VAE (β = 1) 0/15 6/15 4/15 86.72± 65.12 12.61± 3.41
VAE (β = 4) 5/15 9/15 5/15 67.88± 59.20 12.53± 1.77
GF-VAE (β = 1) 0/15 11/15 – 63.94± 34.43 10.88± 1.24
GF-VAE (β = 4) 7/15 13/15 – 27.70± 29.23 13.17± 1.64
Action-GF-VAE (β = 4) 9/15 12/15 – 33.26± 40.03 12.27± 1.79

F Additional Figures
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Figure 8: Top: Latent traversals in the decoder for a VAE and GF-VAE after training with β = 4.
Bottom: The representations in latent space Z for VAEs and GF-VAEs initialized with 15 different
random seeds. For VAEs, the gray line inside the circle show the (scaled-down) y-traversals. For
GF-VAEs, we it is difficult to visualize Y space as it is high-dimensional space. Therefore, to inspect
for obstructions, we show the traversal of the z vectors instead.

0 20 40 60 80 100 120 140
1.0

0.5

0.0

0.5

1.0

VA
E 

(
=

4)

Winding Number

0 20 40 60 80 100 120 140
epoch

1.0

0.5

0.0

0.5

1.0

1.5

GF
-V

AE
 (

=
4)

seed
1
2
3
4
5

Figure 9: The winding numbers for VAE and GF-VAE trained with 5 different random seeds on the
tetromino dataset as a function of epoch.
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Figure 10: ‖y‖2 as a function of epoch for a standard autoencoder trained on teapots for seed 0.
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