
A Ablation study of normalization466

A.1 For LEHD model467

In Table 5, we explore the effects of eliminating normalization from the attention layer in our LEHD468

model. We train three LEHD models with the same training scheme and training budget, differing469

solely in the attention layer: one with batch normalization (BN), one with instance normalization470

(IN), and one without normalization (w/o). Our experimental results demonstrate that the LEHD471

model without normalization in the attention layer significantly outperforms the other two models472

with normalization.473

Table 5: Effect of normalization for LEHD model.

TSP100 TSP200 TSP500 TSP1000

BN 0.775% 1.312% 3.808% 12.209%
IN 0.640% 1.197% 34.391% 222.730%
w/o 0.577% 0.859% 1.560% 3.168%

A.2 For POMO model474

We also compare the performance of POMO [30] models with different types of normalization: one475

with batch normalization (BN), one with instance normalization (IN), and one without normalization476

(w/o) in Table 6. We train all three POMO models with the same reinforcement learning method477

with POMO strategy and training budget (1000 epochs). The results show that different types of478

normalization have few effects on the POMO model.479

Table 6: Effect of normalization for POMO model.

TSP100 TSP200 TSP500 TSP1000

BN 1.325% 5.502% 27.616% 41.631%
IN 1.449% 5.602% 27.454% 41.748%
w/o 1.321% 4.990% 28.598% 45.747%

The results in Table 6 show that removing normalization from attention layer has little impact on the480

model with a heavy encoder and a light decoder. However, the results in Table 5 show that removing481

normalization from attention layer has a positive impact on the performance of the LEHD model, but482

it is not the critical factor for the LEHD model’s strong generalization ability since the LEHD model483

with batch normalization still performs significantly better than POMO and SGBS in the case of484

TSP1000. Instead, we can conclude that the underlying reason for the model’s strong generalization485

ability lies in the heavy decoder structure.486
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B Implementation details for TSP487

B.1 Problem setup488

The task of solving a TSP instance with n nodes involves finding the shortest loop that visits each489

node exactly once and eventually returns to the first visited node . We generate TSP instances490

following the approach in [28], where the coordinates of n nodes are sampled uniformly at random491

from the unit square.492

B.2 Implementation details493

For a TSP instance S, the node features (s1, . . . , sn) are the 2-dimentional coordinates of the n nodes494

in the graph.495

Similar to AM, the encoder produces the node embedding hi for i = 1, . . . , n.496

In the original AM decoder, irrelevant nodes are masked during each construction step. In our model,497

we remove the embeddings of irrelevant nodes from the decoder input. This removal serves the same498

purpose as masking them in every decoder attention layer but also saves computational resources499

since the decoder is not required to perform computations related to irrelevant nodes. Consequently,500

for each construction step, the input node embeddings for the decoder consist of the starting node501

embedding, the destination node embedding, and the avaliable node embeddings.502

Here is an extended explanation of Equation 2 in the case of TSP. After L attention layers, H(0)503

is transformed to H(L) = {h(L)
i , i /∈ {x2:t−2}}, and each vector h(L)

i ∈ Rd is transformed into a504

scalar oi by applying the linear projection WO ∈ Rd×1, i.e. oi = WOh
(L)
i . When calculating the505

probability Pt = softmax(O), the scalars oi, i = {x1, xt−1} corresponding to the starting node and506

destination node are masked.507
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C Implementation details for CVRP508

C.1 Problem setup509

A CVRP instance involves n customer nodes and one depot node, with each customer node i having510

a specific demand δi that must be fulfilled. We aim to determine a set of sub-tours starting and511

ending at the depot such that the sum of demand satisfied by each sub-tour is within the capacity512

constraint D of the vehicle. Given the capacity constraint D, the objective is to minimize the total513

distance of the set of sub-tours. Similarly, following [28], we generate CVRP instances where the514

coordinates of custormer nodes and depot nodes are sampled uniformly from the unit square. The515

demand δi is sampled uniformly form {1, . . . , 9}. And the vehicle capacity D = 50, 80, 100, 250 for516

N = 100, 200, 500, 1000, respectively.517

Following [12, 29], we define the formation of a feasible solution for CVRP. Rather than treating a518

visit to the depot as a separate step, we use binary variables to indicate whether a customer node is519

reached via the depot or another customer node. Specifically, in a feasible solution, a node is assigned520

a value of 1 if it is reached via the depot and a value of 0 if it is reached through another customer521

node.522

For example, a feasible CVRP solution {0, 1, 2, 3, 0, 4, 5, 0, 6, 7, 0} where 0 represents the depot, can523

be denoted as follows:524 [
1 2 3 4 5 6 7
1 0 0 1 0 1 0

]
(5)

In this notation, the first row represents the sequence of visited nodes in the solution, and the second525

row indicates whether each node is reached via the depot or another customer node.526

The purpose of using this notation is to ensure solution alignment. In CVRP instances, solutions with527

the same number of customer nodes may have varying numbers of sub-tours, leading to potential528

misalignment. By employing this notation, we can avoid such issues.529

C.2 Implementation details530

For CVRP, the node feature si is represented as a 3-dimensional vector, comprising the 2-dimensional531

coordinates and the demand of node i. The demand of the depot is assigned a value of 0. Without532

loss of generality, we normalize the vehicle capacity D to D̂ = 1, and the demand δi to δ̂i =
δi
D [28].533

In the decoder, the dynamically changing remaining capacity is added to both the starting node534

and destination node embeddings, resembling the approach employed in [30]. Similar to TSP, the535

irrelevant node embeddings are excluded from the decoder input.536

Here is an extended explanation of Equation 2 in the case of CVRP. After L attention layers, H(0) is537

transformed to H(L) = {h(L)
i , i /∈ {x2:t−2}}. Each vector h(L)

i ∈ Rd is projected to a 2-dimensional538

vector oi using the linear projection WO ∈ Rd×2, i.e. oi = WOh
(L)
i . Each oi corresponds to two539

actions associated with the node i: either being reached via the depot or another customer node. This540

relation corresponds to the notation mentioned in equation 5. Subsequently, resembling the approach541

employed in [12], O is flattened, and the softmax is utilized to compute the probability associated542

with each possible action. The actions associated with the starting node and destination node are543

masked.544
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D Solution Visualizations545

Table 2 shows the test results on TSPLib and CVRPLib instances with different sizes and distributions.546

For TSPLib, we report the results on 2D Euclidean TSP instances with size smaller than 5000 (up to547

4461). For CVRPLib, we report the results on the instances without additional constraints such as548

time windows.549

Figures 3, 4 show the solutions of two instances in TSPLib. Figures 5, 6 show the solutions of two550

instances in CVRPLib. For each figure, panel (a) shows the optimal solution, panel (b), (c), and (d)551

show the solution generated by POMO, BQ, and LEHD, respectively.552

D.1 Solution visualizations of two TSPLib instances553

(a) Optimal solution (b) POMO aug×8: gap 44.7%

(c) BQ bs16: gap 7.4% (d) LEHD RRC 1000: gap 1.6%

Figure 3: Instance pr1002 with 1002 nodes.
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(a) Optimal solution (b) POMO aug×8: gap 69.6%

(c) BQ bs16: gap 29.4% (d) LEHD RRC 1000: 5.5%

Figure 4: Instance pr2392 with 2392 nodes.
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D.2 Solution visualizations of two CVRPLib instances554

(a) Optimal solution (b) POMO aug×8: gap 65.6%

(c) BQ bs16: gap 4.7% (d) LEHD RRC 1000: gap 0.8%

Figure 5: Instance X-n561-k42 with 560 customer nodes.
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(a) Optimal solution (b) POMO aug×8: gap 24.8%

(c) BQ bs16: gap 6.9% (d) LEHD RRC 1000: gap 3.1%

Figure 6: Instance X-n1001-k43 with 1000 customer nodes
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E Licenses555

Table 7: List of licenses for the codes and datasets we used in this work

Resource Type Link License

OR-Tools [43] Code https://github.com/google/or-tools Apache License 2.0
LKH3 [16] Code http://webhotel4.ruc.dk/ keld/research/LKH-3/ Available for academic research use
HGS [50] Code https://github.com/chkwon/PyHygese MIT License
Concorde [2] Code https://github.com/jvkersch/pyconcorde BSD 3-Clause License
POMO [30] Code https://github.com/yd-kwon/POMO MIT License
Att-GCN+MCTS [13] Code https://github.com/SaneLYX/TSP_Att-GCRN-MCTS MIT License
EAS [20] Code https://github.com/ahottung/EAS Available online
SGBS [8] Code https://github.com/yd-kwon/SGBS MIT License
TSPLib Dataset http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ Available for any non-commercial use
CVRPLib Dataset http://vrp.galgos.inf.puc-rio.br/index.php/en/ Available for academic research use

The licenses for the codes and the datasets used in this work are listed in Table 7.556
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