
7 APPENDIX408

7.1 Proofs409

7.1.1 Proof of Lemma 3.2410

By Definition 3.1, πθ(s, a) should satisfy the following condition:411 ∫
Tϵ

q(ϵ)dϵ =

∫
Ta

πθ(s, a)da

=

∫
Tϵ

πθ(s, gθ(s, ϵ)) ·
∣∣∣det(∂gθ(s, ϵ)

∂ϵ
)
∣∣∣dϵ (by change of variable).

We denote the set of continuous distributions that satisfy this condition as P . That is,412

Pθ(s, ϵ) ∈ P if
∫
Tϵ

q(ϵ)dϵ =

∫
Tϵ

Pθ(s, ϵ) ·
∣∣∣det(∂gθ(s, ϵ)

∂ϵ
)
∣∣∣dϵ.

Clearly, P̄θ(s, ϵ) = q(ϵ) ·
∣∣∣det(∂gθ(s,ϵ)∂ϵ )

∣∣∣−1

is an element of P , and is well defined, because of413

Equation 3. In fact, P̄θ(s, ϵ) is the only element of P , as the above condition should be met for any414

Tϵ ⊂ Rn. That is, if there was another distribution P̃θ(s, ϵ) ∈ P ,415 ∫
Tϵ

(P̄θ(s, ϵ)− P̃θ(s, ϵ)) ·
∣∣∣det(∂gθ(s, ϵ)

∂ϵ
)
∣∣∣dϵ = 0,∀Tϵ ⊂ Rn.

Since P̃θ is different from P̄θ, there exists an open set T̂ϵ where P̃θ < P̄θ. Then416 ∫
T̂ϵ

(P̄θ(s, ϵ)− P̃θ(s, ϵ)) ·
∣∣∣det(∂gθ(s, ϵ)

∂ϵ
)
∣∣∣dϵ > 0,

which is a contradiction. Therefore, πθ(s, a) = πθ(s, gθ(s, ϵ)) = P̄θ(s, ϵ). The inverse holds417

trivially.418

7.1.2 Proof of Definition 5419

First, we show that f is an injective function by showing that the determinant of Jacobian ∂f
∂a is420

always positive:421

det(
∂f

∂a
) = det(I + α · ∇2

aAπθ̄
(s, a))

= Πn
i=1(1 + α · λi(s, a)) > 0 (∵ |α| < 1

max(s,a)|λ1(s, a)|
),

where λi(s, a) are the eigenvalues of ∇2
aAπθ̄

(s, a) sorted in ascending order.422

Then, for an arbitrary open set of action T ⊂ A, πα selects T̃ = f(T ) ⊂ A with the same probability423

that the original policy πθ̄ selects T .424 ∫
T̃

πα(s, ã)dã =

∫
T

πθ̄(s, a)

|det(I + α∇2
aAπθ̄

(s, a))|
·
∣∣∣det(∂f

∂a
)
∣∣∣da

=

∫
T

πθ̄(s, a)

|det(I + α∇2
aAπθ̄

(s, a))|
·
∣∣∣det(I + α · ∇2

aAπθ̄
(s, a))

∣∣∣da
=

∫
T

πθ̄(s, a)da.

Therefore, πα(s, ·) is a valid probability distribution as πθ̄(s, ·).425
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7.1.3 Proof of Proposition 4.2426

For a given state s, we can estimate the (approximate) expected value of the state under πα as follows.427 ∫
ã

πα(s, ã)Aπθ̄
(s, ã)dã

=

∫
a

πθ̄(s, a)

|det(I + α∇2
aAπθ̄

(s, a))|
Aπθ̄

(s, a+ α∇aAπθ̄
(s, a))|det(I + α∇2

aAπθ̄
(s, a))|da

≈
∫
a

πθ̄(s, a)
[
Aπθ̄

(s, a) + α||∇aAπθ̄
(s, a)||2

]
da

=

∫
a

πθ̄(s, a)Aπθ̄
(s, a)da+ α

∫
a

πθ̄(s, a)||∇aAπθ̄
(s, a)||2da.

Therefore, we can see the following holds:428

Lπθ̄
(πα) =

∫
s

ρπθ̄
(s)

∫
ã

πα(s, ã)Aπθ̄
(s, ã)dã

≈ η(πθ̄) + α

∫
s

ρπθ̄
(s)

∫
a

πθ̄(s, a)||∇aAπθ̄
(s, a)||2da.

Since πθ̄(s, a) and ||∇aAπθ̄
(s, a)||2 are positive, Lπθ̄

(πα) is greater or equal to η(πθ̄) when α > 0.429

On the contrary, when α < 0, Lπθ̄
(πα) is smaller or equal to η(πθ̄). Since this argument builds upon430

local approximation, it holds only when |α| ≪ 1.431

7.1.4 Proof of Lemma 4.3432

When a = gθ̄(s, ϵ),433

gα(s, ϵ) = gθ̄(s, ϵ) + α · ∇gθ̄(s,ϵ)
Aπθ̄

(s, gθ̄(s, ϵ))

⇒ ∂gα(s, ϵ)

∂ϵ
=
∂gθ̄(s, ϵ)

∂ϵ
+ α · ∇2

gθ̄(s,ϵ)
Aπθ̄

(s, gθ̄(s, ϵ)) ·
∂gθ̄(s, ϵ)

∂ϵ

=
(
I + α · ∇2

gθ̄(s,ϵ)
Aπθ̄

(s, gθ̄(s, ϵ))
)
· ∂gθ̄(s, ϵ)

∂ϵ

⇒ det
(∂gα(s, ϵ)

∂ϵ

)
= det

(
I + α · ∇2

gθ̄(s,ϵ)
Aπθ̄

(s, gθ̄(s, ϵ))
)
· det

(∂gθ̄(s, ϵ)
∂ϵ

)
= det

(
I + α · ∇2

aAπθ̄
(s, a)

)
· det

(∂gθ̄(s, ϵ)
∂ϵ

)
Since

∣∣∣det(∂gθ̄(s,ϵ)
∂ϵ

)∣∣∣ > 0 (Equation 3), we can divide both sides of the above equation with434

det
(

∂gθ̄(s,ϵ)
∂ϵ

)
and prove Lemma 4.3.435

7.1.5 Proof of Lemma 4.4436

Here we assume α = 1, and define Â for some state-action pair (st, at) at timestep t as follows,437

Âπθ
(st, at) =

1

2
Est,at,...∼πθ

[ ∞∑
k=t

γkr(sk, ak)
]
,

Then438

∇aÂπθ
(st, at) =

1

2
Est,at,...∼πθ

[ ∞∑
k=t

γk
∂r(sk, ak)

∂at

]
,

which can be rewritten using gθ as follows.439

∇aÂπθ
(st, at) =

1

2
Est,ϵt,...∼q

[ ∞∑
k=t

γk
∂r(sk, gθ(st, ϵt))

∂gθ(st, ϵt)

]
, (10)
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Then, by differentiating Equation 9 with respect to θ after plugging in Â, we can get following440

relationship:441

∂L(θ)

∂θ
= Es0,ϵ0,...,∼q

[ ∞∑
t=0

2 · ∂gθ(st, ϵt)
∂θ

· (gθ(st, ϵt)− gα(st, ϵt))
]

= Es0,ϵ0,...,∼q

[ ∞∑
t=0

2 · ∂gθ(st, ϵt)
∂θ

· (gθ(st, ϵt)− (gθ(st, ϵt) +∇aÂπθ
(st, at)))

]
(∵ α = 1 by above assumption )

= Es0,ϵ0,...,∼q

[ ∞∑
t=0

−2 · ∂gθ(st, ϵt)
∂θ

· ∇aÂπθ
(st, at)

]
= Es0,ϵ0,...,∼q

[ ∞∑
t=0

−2 · ∂gθ(st, ϵt)
∂θ

· 1
2
·

∞∑
k=t

γk
∂r(sk, gθ(st, ϵt)

∂gθ(st, ϵt)

]
(∵ Equation 10)

= Es0,ϵ0,...,∼q

[ ∞∑
t=0

∞∑
k=t

−γk ∂gθ(st, ϵt)
∂θ

· ∂r(sk, gθ(st, ϵt))
∂gθ(st, ϵt)

]
,

which equals to RP gradient in Appendix 7.2.2, but with different sign. However, they turn out to be442

the same because we minimize L(θ), but maximize η(πθ). Therefore, we can say that we gain RP443

gradient as the first gradient when we minimize Equation 9 for particular advantage function Â and444

α = 1.445

7.1.6 Proof of Proposition 4.5446

By Definition 5 and Lemma 4.3,447

πα(s, α̃)

πθ̄(s, a)
=

1

|det(I + α · ∇2
aAπθ̄

(s, a))|

= |det(∂gθ̄(s, ϵ)
∂ϵ

)| · | det(∂gα(s, ϵ)
∂ϵ

)|−1,

where a = gθ(s, ϵ), and thus ã = gα(s, ϵ). Since πθ̄ ≜ gθ̄, following holds:448

πα(s, α̃) = πθ̄(s, a) · | det(
∂gθ̄(s, ϵ)

∂ϵ
)| · | det(∂gα(s, ϵ)

∂ϵ
)|−1

= q(ϵ) · | det(∂gθ̄(s, ϵ)
∂ϵ

)|−1 · | det(∂gθ̄(s, ϵ)
∂ϵ

)| · | det(∂gα(s, ϵ)
∂ϵ

)|−1

(∵ Lemma 3.2)

= q(ϵ) · | det(∂gα(s, ϵ)
∂ϵ

)|−1,

which implies πα ≜ gα.449

7.2 Formulations450

7.2.1 Analytic Gradient of Generalized Advantage Estimator (GAE)451

GAE [Schulman et al., 2015b] has been widely used in many RL implementations [Schulman et al.,452

2017, Raffin et al., 2021, Makoviichuk and Makoviychuk, 2022] to estimate advantages. GAE finds453

a balance between variance and bias of the advantage estimation by computing the exponentially-454

weighted average of the TD residual terms (δVt ) Sutton et al. [1998], which are defined as follows:455

δVt = rt + γV (st+1)− V (st).
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Then, GAE can be formulated as follows:456

AGAE
t (γ, λ) =

∞∑
k=0

(γλ)
k
δVt+k. (11)

We can compute the gradients for these terms as:457

∂AGAE
t

∂at
=

∞∑
k=0

(γλ)
k ∂δ

V
t+k

∂at

= (
1

γλ
)t

∞∑
k=0

(γλ)
t+k ∂δ

V
t+k

∂at

= (
1

γλ
)t

[ ∞∑
k=0

(γλ)
t+k ∂δ

V
t+k

∂at
+

t−1∑
k=0

(γλ)
k ∂δ

V
k

∂at

]

(∵
∂δVk
∂at

= 0 for k < t)

= (
1

γλ
)t

∞∑
k=0

(γλ)
k ∂δ

V
k

∂at

= (
1

γλ
)t
∂AGAE

0

∂at
.

(12)

Based on this relationship, we can compute every ∂AGAE
t

∂at
with only one backpropagation of AGAE

0 ,458

rather than backpropagating for every AGAE
t .459

7.2.2 RP Gradient Formulation460

To differentiate Equation 1 with respect to θ, we first rewrite Equation 1 as follows.461

η(πθ) = Es0,a0,...∼πθ

[ ∞∑
t=0

γtr(st, at)

]

= Es0,ϵ0,...∼q

[ ∞∑
t=0

γtr(st, gθ(st, ϵt))

]
.

Then, we can compute RP gradient as follows.462

∂η(πθ)

∂θ
=

∂

∂θ
Es0,ϵ0,...∼q

[ ∞∑
t=0

γtr(st, gθ(st, ϵt))

]

= Es0,ϵ0,...∼q

[
∂

∂θ

∞∑
t=0

γtr(st, gθ(st, ϵt))

]

= Es0,ϵ0,...∼q

[ ∞∑
t=0

∂gθ(st, ϵt)

∂θ

∞∑
k=t

γk
∂r(sk, gθ(sk, ϵk))

∂gθ(st, ϵt)

]

(∵
∂r(sk, gθ(sk, ϵk))

∂gθ(st, ϵt)
̸= 0 only when k ≥ t.)

= Es0,ϵ0,...∼q

[ ∞∑
t=0

∞∑
k=t

γk
∂gθ(st, ϵt)

∂θ

∂r(sk, gθ(sk, ϵk))

∂gθ(st, ϵt)

]
.

We can estimate this RP gradient using Monte Carlo sampling, and use it for gradient ascent to463

maximize Equation 1.464
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7.2.3 Estimator for Equation 4465

Since η(πθ̄) does not depend on θ, we can ignore the term and rewrite our loss function in Equation 4466

using expectation as follows:467

Lπθ̄
(πθ) =

∫
s

ρπθ̄
(s)

∫
a

πθ(s, a)Aπθ̄
(s, a)

= Es∼ρπ
θ̄
,a∼πθ(s,·)

[
Aπθ̄

(s, a)
]
.

However, note that we did not collect trajectories, or experience buffer, using πθ. Therefore, we use468

another importance sampling function q(s, a) [Schulman et al., 2015a].469

Lπθ̄
(πθ) = Es∼ρπ

θ̄
,a∼q(s,·)

[πθ(s, a)
q(s, a)

Aπθ̄
(s, a)

]
.

Then, we can estimate this value using Monte Carlo estimation as follows, where B is the experience470

buffer of size N , which stores state (si), action (ai), and their corresponding advantage value471

(Aπθ̄
(si, ai)) obtained by following policy πθ̄:472

Lπθ̄
(πθ) ≈

1

N

N∑
i=1

πθ(si, ai)

πθ̄(si, ai)
Aπθ̄

(si, ai). (13)

Note that we used πθ̄ in the place of q, as it is the most natural importance sampling function we can473

use [Schulman et al., 2015a, 2017].474

7.3 Algorithm475

Here we present the entire pseudocode of our algorithm. Before that, we’d like to discuss additional476

aspects of our algorithm other than those discussed in Section 4.3.477

7.3.1 Out-of-range-ratio478

As discussed in Section 2, PPO achieves its stable learning by updating policy only in the trust region479

near the current policy. Note that TRPO [Schulman et al., 2015a] achieves this by computing the480

KL divergence between the current policy and the original policy, and restraining it below certain481

threshold. However, PPO [Schulman et al., 2017] uses a much simpler approach, to restrict the ratio482

of probabilities πθ(si, ai) and πθ̄(si, ai) for every state-action pair (si, ai) in our buffer as follows,483

1− ϵclip <
πθ(si, ai)

πθ̄(si, ai)
< 1 + ϵclip,

where ϵclip is a constant. To be specific, PPO uses following surrogate loss function to mandate this:484

LPPO(θ) =
1

N

N∑
i=1

min(
πθ(si, ai)

πθ̄(si, ai)
Aπθ̄

(si, ai), clip(
πθ(si, ai)

πθ̄(si, ai)
, 1− ϵclip, 1 + ϵclip)Aπθ̄

(si, ai))

(14)

Note that some of the ratios could go out of bounds while optimizing this loss function (see Schulman485

et al. [2017] for details). However, the spirit of PPO lies in restricting this ratio.486

As we discussed in Section 4.3, we first update our policy towards πα by minimizing Equation 9487

before performing PPO update. If α is sufficiently small, most of the ratios πθ(si,ai)
πθ̄(si,ai)

will stay near 1,488

which does not harm the PPO’s assumption. However, if α is big, many of the ratios could go out of489

bounds. Therefore, we compute the out-of-range-ratio after updating our policy to πα as follows,490

out-of-range-ratio =
1

N

N∑
i=1

I(|πθ(si, ai)
πθ̄(si, ai)

− 1| > ϵclip), (15)

where N is the size of the buffer, and I is the indicator function. Note that this ratio depends on ϵclip.491

If this out-of-range-ratio is larger than a pre-defined threshold, we decrease α.492
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7.3.2 Importance sampling function493

After updating our policy to πα, if we do not take additional measure and maximize surrogate loss494

function in Equation 14, the updated policy can totally ignore πα, which is undesirable. To avoid495

such situation, we use another importance sampling function πh defined as follows:496

πh(s, a) =
1

2
(πθ̄(s, a) + πα(s, a)).

By using this importance sampling function and making our updated function to stay near πh, we can497

guarantee that the updated function stays close to πα. Then our final surrogate loss function is498

LGIPPO(θ) =
1

N

N∑
i=1

min(
πθ(si, ai)

πh(si, ai)
Aπθ̄

(si, ai), clip(
πθ(si, ai)

πh(si, ai)
, 1− ϵclip, 1 + ϵclip)Aπθ̄

(si, ai)).

(16)

See how it differs from the original loss function in Equation 14.499

7.3.3 Pseudocode500

In Algorithm 1, we present pseudocode that illustrates the outline of our algorithm, GI-PPO. Note that501

we used three criteria (variance, bias, out-of-range-ratio) to control α after we update our policy to502

the α-policy. If there is no reason to reduce α, we increase it, because we can expect higher expected503

return with bigger α as shown in Proposition 4.2. Also note that there are five hyperparameters here,504

which are α0, β, δdet, δoorr, and max(α). We present specific values for these hyperparameters for505

our experiments in Appendix 7.4.506

Algorithm 1 GI-PPO
α← α0, Initial value
β ← Constant multiplier larger than 1 for α
δdet, δoorr ← Constant thresholds
B ← Experience buffer
while Training not ended do

Clear B
while Not collected enough experience do

Collect experience {st, ϵt, at, rt, st+1} → B
end
Estimate advantage A for every (si, ai) in B using Eq. 11
Estimate advantage gradient ∂A

∂a for every (si, ai) in B using Eq. 12
For current α, approximate α-policy by minimizing loss in Equation 9
// Variance
For each ϵi and its corresponding state-action pair (si, ai), estimate det(I +α · ∇2

aAπθ̄
(s, a)) by

Lemma 4.3 and get its sample minimum (ψmin) and maximum (ψmax)
// Bias
Evaluate expected additional return in Equation 13 with our current policy to get Rα

// Out-of-range-ratio
Evaluate out-of-range-ratio in Equation 15 with our current policy to get Roorr

if ψmin < 1− δdet or ψmax > 1 + δdet or Rα < 0 or Roorr > δoorr then
α = α/β

end
else

α = α× β
end
α = clip(α, 0,max(α))
Do PPO update by maximizing the surrogate loss in Equation 16

end
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(a) De Jong’s Function (64)
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(b) Ackley’s Function (64)

Figure 6: Change of α during solving function optimization problems in Section 5.1. Since these
problems are one-step problems, and observations are all the same, there is no difference between
mean, min, and max of estimated determinant.

7.3.4 Example: Function Optimization Problems (Section 5.1)507

Here we present how α changes as we solve function optimization problems in Section 5.1 with508

Figure 6. There are 4 plots for each of the problems.509

• Alpha: Shows change of α over training epoch.510

• Estimated current performance: Shows expected additional return, which corresponds to511

Equation 13 (Rα in Algorithm 1).512

• Estimate Determinant: Shows statistics of estimated det(I + α · ∇2
aAπθ̄

(s, a)).513

• Out of Range Ratio: Shows out-of-range-ratio in Equation 15.514

For these problems, we have set α0 = 10−5, δdet = 0.4, and δoorr = 0.5.515

For De Jong’s function (Figure 6a), we can observe that α shows steady increase over time, but it is516

mainly upper bounded by variance criterion and out-of-range-ratio. In the end, α stabilizes around517

10−3. In contrast, for Ackley’s function (Figure 6b) we can see that α increases rapidly at first, but it518

soon decreases due to the variance and bias criteria. Compare these graphs with optimization curve519

in Figure 3d. Then we would be able to observe that this large α contributes to the faster convergence520

of GI-PPO compared to PPO at the early stage. However, after that, α decreases slowly due to the521

out-of-range-ratio. In the end, α reaches approximately 10−6, which is much lower than 10−3 of De522

Jong’s function. These observations align well with our intuition that RP gradient would play bigger523

role for De Jong’s function than Ackley’s function, because De Jong’s function exhibits RP gradients524

with much lower variance than those of Ackley’s.525

7.4 Experimental Details526

7.4.1 Baseline Methods527

Here we explain implementation details of the baseline methods that were used for comparisons528

in Section 5. First, we’d like to point out that we used relatively a short time horizon to collect529

experience, and used the critic network for bootstrapping, instead of collecting experience for the530

whole trajectory for all the methods. Therefore, the collected experience could be biased. However,531

we chose to implement in this way, because it allows faster learning than collecting the whole532

trajectory in terms of number of simulation steps.533
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LR We can estimate original LR gradient as follows, using log-derivative trick [Williams and Peng,534

1989, Glynn, 1990]535

∂η(πθ)

∂θ
=

∂

∂θ
Es0,a0,...∼πθ

[
L(s0, a0, ...)

∞∑
t=0

log πθ(s0, a0)
]

=
∂

∂θ
Es0,a0,...∼πθ

[ ∞∑
t=0

L(s0, a0, ...) log πθ(s0, a0)
]
,

where L(s0, a0, ...) =
∑∞

t=0 γ
tr(st, at) is the discounted accumulated return. However, this LR536

gradient often suffers from high variance, because L varies a lot from trajectory to trajectory. To537

reduce such variance and faithfully compare our method to LR gradient-based method, we decided to538

use advantage function in the place of L, and particularly used GAE [Schulman et al., 2015b] as the539

advantage function as we used for PPO. After calculating this LR gradient, we take a gradient ascent540

step with pre-defined learning rate.541

RP By using RP gradient in Appendix 7.2.2, we can perform gradient ascent as we did in LR. Also,542

because we use short time horizon and critic network, this method is very similar to SHAC [Xu et al.,543

2022]. Please refer to it for more details.544

PPO Our PPO implementation is based on that of RL Games [Makoviichuk and Makoviychuk,545

2021]. However, to be as fair as possible, we used the same critic network, instead of using that546

implemented already. Also, we omitted several other additional losses that are not vital to PPO’s547

formulation, such as entropy loss.548

LR+RP After we compute LR (∇LR) and RP (∇RP ) gradient as shown above, we can interpolate549

them using their sample variance as follows [Parmas et al., 2018].550

∇LR+RP = ∇LR · κLR +∇RP · (1− κLR),

κLR =
σ2
RP

σ2
RP + σ2

LR

,

where σRP and σLR are sample standard deviation of RP and LR gradients. We gain these terms by551

computing trace of covariance matrix of the sample gradients from different trajectories.552

Since we have to compute this sample statistics, we have to do multiple different backpropagations553

for different trajectories, which incur a lot of computation time. Also, we found out that computing554

covariance matrix is also time consuming when controller has a large number of parameters. There-555

fore, we decided to use only limited number of sample gradients (16) to compute sample variance,556

and also truncate the gradient to smaller length (512) to facilitate computation.557

PE We tried to faithfully re-implement policy enhancement scheme of [Qiao et al., 2021].558

7.4.2 Network architecture and Hyperparameters559

In this section, we provide network architectures and hyperparameters that we used for experiments560

in Section 5. For each of the experiments, we used the same network architectures, the same length561

of time horizons before policy update, and the same optimization procedure for critic updates, etc.562

We present these common settings first for each of the problems.563

For GI-PPO, there are hyperparameters for update towards α-policy, and those for PPO update. We564

denote the hyperparameters for α-policy update by appending (α), and those for PPO update by565

appending (PPO). For the definition of hyperparameters for α-policy update, please see Algorithm 1566

for details.567

Function Optimization Problems (Section 5.1) For these problems, common settings are as568

follows.569

• Actor Network: MLP with [32, 32] layers and ELU activation function570
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• Critic Network: MLP with [32, 32] layers and ELU activation function571

• Critic Hyperparameters: Learning rate = 10−3, Iterations = 16, Batch Size = 4572

• Number of parallel environments: 64573

• Horizon Length: 1574

• γ (Discount factor): 0.99575

• τ (GAE): 0.95576

Hyperparameters for LR are as follows.577

• Learning Rate: Dejong(1), Dejong(64) = 10−3, Ackley(1) = 10−4, Ackley(64) = 3 · 10−4578

• Learning Rate Scheduler: Linear1579

Hyperparameters for RP are as follows.580

• Learning Rate: Dejong(1), Dejong(64) = 10−2, Ackley(1), Ackley(64) = 10−3581

• Learning Rate Scheduler: Linear582

Hyperparameters for LR+RP are as follows.583

• Learning Rate: Dejong(1), Dejong(64) = 10−3, Ackley(1) = 10−4, Ackley(64) = 3 · 10−4584

• Learning Rate Scheduler: Linear585

Hyperparameters for PPO are as follows.586

• Learning Rate: Dejong(1), Ackley(1) = 10−4, Dejong(64), Ackley(64) = 10−2587

• Learning Rate Scheduler: Constant588

• Batch Size for Actor Update: 64589

• Number of Epochs for Actor Update: 5590

• ϵclip: 0.2591

Hyperparameters for GI-PPO are as follows.592

• (α) Learning Rate: 10−3593

• (α) Batch Size for Actor Update: 64594

• (α) Number of Epochs for Actor Update: 16595

• (α) α0: 10−5596

• (α) max(α): 1.0597

• (α) β: 1.1598

• (α) δdet: 0.4599

• (α) δoorr: 0.5600

• (PPO) Learning Rate: Dejong(1), Ackley(1) = 10−4, Dejong(64), Ackley(64) = 10−2601

• (PPO) Learning Rate Scheduler: Constant602

• (PPO) Batch Size for Actor Update: 64603

• (PPO) Number of Epochs for Actor Update: 5604

• (PPO) ϵclip: 0.2605

1Learning rate decreases linearly to the minimum value as learning progresses.
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Differentiable Physics Problems (Section 5.2) For these problems, common settings are as606

follows.607

• Actor Network: MLP with [64, 64] (Cartpole), and [128, 64, 32] (Ant, Hopper) layers and608

ELU activation function609

• Critic Network: MLP with [64, 64] layers and ELU activation function610

• Critic Hyperparameters: Learning rate = 10−3(Cartpole), 2·10−3(Ant), and 2·10−4(Hopper),611

Iterations = 16, Batch Size = 4612

• Number of parallel environments: 64(Cartpole, Ant), 256(Hopper)613

• Horizon Length: 32614

• γ (Discount factor): 0.99615

• τ (GAE): 0.95616

Hyperparameters for LR are as follows.617

• Learning Rate: 10−4618

• Learning Rate Scheduler: Linear619

Hyperparameters for RP are as follows.620

• Learning Rate: Cartpole = 10−2, Ant, Hopper = 2 · 10−3621

• Learning Rate Scheduler: Linear622

Hyperparameters for PPO are as follows.623

• Learning Rate: Cartpole = 3 · 10−4, Ant, Hopper = 10−4624

• Learning Rate Scheduler: Cartpole = Adaptive2, Ant, Hopper = Constant625

• Batch Size for Actor Update: 2048626

• Number of Epochs for Actor Update: 5627

• ϵclip: 0.2628

Hyperparameters for GI-PPO are as follows.629

• (α) Learning Rate: Cartpole = 10−2, Ant = 5 · 10−4, Hopper = 5 · 10−3630

• (α) Batch Size for Actor Update: Cartpole, Ant = 2048, Hopper = 8192631

• (α) Number of Epochs for Actor Update: 16632

• (α) α0: Cartpole, Ant = 5 · 10−1, Hopper = 5 · 10−3633

• (α) max(α): 1.0634

• (α) β: 1.02635

• (α) δdet: 0.4636

• (α) δoorr: Cartpole, Hopper = 0.75, Ant = 0.5637

• (PPO) Learning Rate: Cartpole = 3 · 10−4, Ant, Hopper = 10−4638

• (PPO) Learning Rate Scheduler: Cartpole = Adaptive, Ant, Hopper = Constant639

• (PPO) Batch Size for Actor Update: 2048640

• (PPO) Number of Epochs for Actor Update: 5641

• (PPO) ϵclip: 0.2642

2Learning rate is adaptively controlled, so that the KL divergence between the updated policy and the original
policy is maintained at certain value, 0.008 in this case.

22



Traffic Problems (Section 5.3) For these problems, common settings are as follows.643

• Actor Network: MLP with [512, 64, 64] layers and ELU activation function644

• Critic Network: MLP with [64, 64] layers and ELU activation function645

• Critic Hyperparameters: Learning rate = 10−3, Iterations = 16, Batch Size = 4646

• Number of parallel environments: 64647

• Horizon Length: 32648

• γ (Discount factor): 0.99649

• τ (GAE): 0.95650

Hyperparameters for LR are as follows.651

• Learning Rate: 3 · 10−4652

• Learning Rate Scheduler: Linear653

Hyperparameters for RP are as follows.654

• Learning Rate: 10−3655

• Learning Rate Scheduler: Linear656

Hyperparameters for LR+RP are as follows.657

• Learning Rate: 3 · 10−4658

• Learning Rate Scheduler: Linear659

Hyperparameters for PPO are as follows.660

• Learning Rate: 3 · 10−4661

• Learning Rate Scheduler: Constant662

• Batch Size for Actor Update: 2048663

• Number of Epochs for Actor Update: 5664

• ϵclip: 0.2665

Hyperparameters for GI-PPO are as follows.666

• (α) Learning Rate: 10−5667

• (α) Batch Size for Actor Update: 2048668

• (α) Number of Epochs for Actor Update: 16669

• (α) α0: 10−1670

• (α) max(α): 1.0671

• (α) β: 1.1672

• (α) δdet: 0.4673

• (α) δoorr: 0.5674

• (PPO) Learning Rate: 3 · 10−4675

• (PPO) Learning Rate Scheduler: Constant676

• (PPO) Batch Size for Actor Update: 2048677

• (PPO) Number of Epochs for Actor Update: 5678

• (PPO) ϵclip: 0.2679

7.5 Problem Definitions680

Here we present details about the problems we suggested in Section 5.681
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(a) De Jong’s Function (b) Ackley’s Function

Figure 7: Landscape of target functions in 2 dimensions.

7.5.1 Function Optimization Problems (Section 5.1)682

(N-dimensional) De Jong’s function (FD) and Ackley’s function (FA) are defined for n-dimensional683

vector x and are formulated as follows [Molga and Smutnicki, 2005]:684

FD(x) =

n∑
i=1

xi
2,

FA(x) = −20 · exp(−0.2 ·

√√√√ 1

n

n∑
i=1

xi2)−

exp(
1

n

n∑
i=1

cos(2πxi)) + 20 + exp(1).

As we mentioned in Section 5.1, we multiply -1 to these functions to make these problems maximiza-685

tion problems. Also, even though these two functions have their optimum at x = 0, they exhibit very686

different landscape as shown in Figure 7.687

When it comes to the formal definition as RL environments, we can define these problems as follows.688

• Episode Length: 1689

• Observation: [0]690

• Action: n-dimensional vector x, all of which element is in [−1, 1].691

• Reward: De Jong’s Function = FD(5.12x), Ackley’s Function = FA(32.768x)692

7.5.2 Traffic Problems (Section 5.3)693

Before introducing pace car problem, which we specifically discussed in this paper, we’d like to694

briefly point out the traffic model that we used to simulate motions of individual vehicles in the traffic695

environment.696

Traffic Model In our traffic simulation, the state s ∈ R2N is defined as a concatenation of all697

vehicle states, qn ∈ R2, where 1 ≤ n ≤ N stands for vehicle ID. qn can be represented simply with698

the vehicle’s position (xn) and velocity (vn).699
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qn =

[
xn
vn

]
s =

[
qT1 , . . . , q

T
N

]T
,

where n is the vehicle ID. Since this traffic state s changes over time, we represent the traffic state at700

timestep t as st. Then our differentiable traffic simulator is capable of providing the gradient of the701

simulation state at the next timestep t+ 1 with respect to the state at the current timestep t, or dst+1

dst
.702

This is possible because we use the Intelligent Driver Model (IDM) to model car-following behavior703

in our simulator Treiber et al. [2000], which is differentiable. IDM describes vehicle speed ẋ and704

acceleration v̇ as a function of desired velocity v0, safe time headway in meters T , maximum705

acceleration a, comfortable deceleration b, the minimum distance between vehicles in meters δ,706

vehicle length l, and difference in speed with the vehicle in front ∆vα as follows:707

ẋα =
dxα
dt

= vα,

v̇α =
dvα
dt

= a

(
1−

(
vα
v0

)δ

−
(
s∗(vα,∆vα)

sα

)2
)
,

sα = xα−1 − xα − lα−1,

s∗(vα,∆vα) = s0 + vα T +
vα ∆vα

2
√
a b

,

∆vα = vα − vα−1,

where α means the order of the vehicle in the lane. Therefore, (α− 1)-th vehicle runs right in front708

of α-th vehicle, and this relationship plays an important role in IDM. Also note that the computed709

acceleration term (v̇) is differentiable with respect to the other IDM variables.710

IDM is just one of many car-following models used in traffic simulation literature. We choose IDM711

for its prevalence in previous mixed autonomy literature, however, any ODE-based car-following712

model will also work in our simulator as far as it is differentiable. In our simulator, automatic713

differentiation governs the gradient computation.714

Lane Under IDM, lane membership is one of the most vital variables for simulation. This is715

because IDM builds on the leader-follower relationship. When a vehicle changes its lane with lateral716

movement, as shown as red arrows in Figure 9, such relationships could change, and our gradients717

do not convey any information about it, because lane membership is a discrete variable in nature.718

Note that this lateral movement also affects the longitudinal movement, rendered in green arrows in719

Figure 9, of a vehicle, and gradient from it is valid as far as the lane membership does not change.720

However, when the lane membership changes, even if our simulator gives gradient, it tells us only721

“partial” information in the sense that it only gives information about longitudinal behavior. Therefore,722

we could say that analytical gradients we get from this environment is “incomplete” (not useless at723

all, because it still gives us information about longitudinal movement), and thus biased.724

Pace Car Problem In this problem, there is a single autonomous vehicle that we have to control725

to regulate other human driven vehicles, which follow IDM, to run at the given target speed. Since726

human driven vehicles control their speeds based on the relationship to their leading vehicles, our727

autonomous vehicle has to control itself to run in front of those human driven vehicles and adjust their728

speeds to the target speed. The number of lanes and human driven vehicles varies across different729

environments as follows.730

• Single Lane: Number of lanes = 1, Number of vehicles per lane = 1731

• 2 Lanes: Number of lanes = 2, Number of vehicles per lane = 2732

• 4 Lanes: Number of lanes = 4, Number of vehicles per lane = 4733

• 10 Lanes: Number of lanes = 10, Number of vehicles per lane = 1734
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Figure 8: α-policies for 1-dimensional (a) De Jong’s function and (b) Ackley’s function [Molga and
Smutnicki, 2005].

See Figure 10 for 10-lane environment.735

Then we can formally define RL environments as follows, where N is the number of human driven736

vehicles in total, and vtgt is the target speed.737

• Episode Length: 1000738

• Observation: s ∈ R2N739

• Action: a ∈ R2 (a0 = Acceleration, a1 = Steering)740

• Reward: 1− 1
N

∑N
i=1 min(

|vi−vtgt|
vtgt

, 1)741

However, to facilitate learning, we additionally adopted following termination conditions to finish742

unpromising trials early.743

• Terminate when autonomous vehicle collides with human driven vehicle744

• Terminate when autonomous vehicle goes out of lane745

• Terminate when autonomous vehicle runs too far away from the other vehicles746

• Terminate when autonomous vehicle falls behind the other vehicles747

When one of these conditions is met, it gets reward of −1 and the trial terminates.748

7.6 Renderings749

7.6.1 α-policies750

Here we illustrate α-policies for De Jong and Ackley’s function in Section 5.1. In Figure 8, the751

original policy is rendered in blue, and alpha policies for different α values are rendered in orange and752

red. Those α-policies are obtained from analytical gradients (∂f(x)∂x ) of the given function f(x), which753

is rendered in black. Note that singularities arise in Ackley’s α-policy near 0 when α = 2 · 10−3, as754

it has a steep change of gradients there. This is explains one of the reasons why we need to keep α755

value sufficiently small.756

7.6.2 Traffic Simulation757

Gradient flow As described in Appendix 7.5.2, analytical gradients are only valid along longitudinal758

direction, as illustrated with green arrows in Figure 9. When a vehicle changes lane with lateral759

movement, as shown with red arrows, even though such change would incur different behaviors of760

following vehicles in multiple lanes, analytical gradients cannot convey such information. However,761

they still tell us information about longitudinal behavior - which is one of the motivations of our762

research, to use analytical gradients even in these biased environments.763
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Figure 9: Traffic Environment. In traffic flows, only partial gradients of forward simulation are
known; acceleration along a (longitudinal) traffic lane is continuous and admits gradient flow (green),
while (lateral) lane-changing is a discrete event and thus prohibits gradient flow (red). Analytical
gradients convey only partial information about traffic dynamics.

(a) 0-th frame (b) 150-th frame

(c) 300-th frame (d) 450-th frame

Figure 10: 10-Lane pace car environment. The autonomous vehicle (Blue) has to interfere paths of
the other human driven vehicles (Yellow) to limit their speeds to 10m/s. Even though it is a hard
problem to achieve high score, our method achieved far better score than the baseline methods.

Pace Car Problem We additionally provide renderings of the 10-lane pace car problem defined in764

Appendix 7.5.2. In Figure 10, we can observe 10 parallel lanes, 10 human driven vehicles rendered765

in yellow, and the autonomous vehicle rendered in blue that we have to control. As shown there,766

human driven vehicles adjust their speeds based on IDM when the autonomous vehicle blocks their767

way. Therefore, the autonomous vehicle has to learn how to change their lanes, and also how to768

run in appropriate speed to regulate the following vehicles. Our experimental results in Section 5.3769

show that our method achieves better score than the baseline methods by adopting biased analytical770

gradients in PPO.771
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