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Abstract

Model poisoning attacks greatly jeopardize the application of federated learning
(FL). The effectiveness of existing defenses is susceptible to the latest model
poisoning attacks, leading to a decrease in prediction accuracy. Besides, these
defenses are intractable to distinguish benign outliers from malicious gradients,
which further compromises the model generalization. In this work, we propose a
novel defense including detection and aggregation, named RECESS, to serve as a
“vaccine” for FL against model poisoning attacks. Different from the passive analy-
sis in previous defenses, RECESS proactively queries each participating client
with a delicately constructed aggregation gradient, accompanied by the detection
of malicious clients according to their responses with higher accuracy. Further,
RECESS adopts a newly proposed trust scoring based mechanism to robustly
aggregate gradients. Rather than previous methods of scoring in each iteration,
RECESS takes into account the correlation of clients’ performance over multiple
iterations to estimate the trust score, bringing in a significant increase in detec-
tion fault tolerance. Finally, we extensively evaluate RECESS on typical model
architectures and four datasets under various settings including white/black-box,
cross-silo/device FL, etc. Experimental results show the superiority of RECESS
in terms of reducing accuracy loss caused by the latest model poisoning attacks
over five classic and two state-of-the-art defenses.

1 Introduction

Background and Problem. Recently, federated learning (FL) goes viral as a privacy-preserving
training solution with the distributed learning paradigm [1], since data privacy attracts increasing
attention from organizations like banks [2] and hospitals [3], governments like GDPR [4] and CPPA
[5], and commercial companies like Google [6]. FL allows data owners to collaboratively train
models under the coordination of a central server for better prediction performance by sharing local
gradient updates instead of their own private/proprietary datasets, preserving the privacy of each
participant’s raw data. FL is promising as a trending privacy training technology. However, FL is
vulnerable to various model poisoning attacks [7, 8]. The distributed structure of FL characterized
by the privacy-preserving local training paradigm makes it impossible to verify overall gradient
updates and distributions of local datasets. Accordingly, the attacker can corrupt the global model by
hijacking compromised participants, and then uploading malicious local gradient updates, leading to a
reduction in the final model’s prediction performance, which significantly jeopardizes the application
of FL.
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Figure 1: An intuitive example to illustrate the difference between previous defenses and RECESS.
In an FL system with n clients, suppose the first c clients are malicious. Previous defenses find the
malicious gradients by abnormality detection of all received gradients, while RECESS confirms
the malicious gradients by comparing the constructed test gradient with the corresponding client’s
response. Thus, RECESS can distinguish between malicious clients and benign outliers, achieving
higher accuracy in the final trained model.

Limitations of Previous Works. To mitigate model poisoning attacks, many byzantine-robust
aggregation rules, e.g., Krum, Mkrum, Trmean, Median, and Bulyan [9, 10, 7], are proposed to
remove malicious gradients by statistical analyses. Two state-of-the-art (SOTA) defenses, FLTrust
[11] and DnC [12], are also proposed to further enhance the robustness of the FL system. Even
so, (Limitation 1:) these defenses are susceptible to the latest optimization-based model poisoning
attacks [13, 12], leading to a decrease in prediction accuracy.

Besides, (Limitation 2:) these defenses cannot distinguish malicious gradients and benign outliers,
reducing the generalization performance of the final trained model. Considering that the local
datasets across participating clients are Non-IID, it is common to have many biased updates which
are statistical outliers. These statistical outliers are still benign updates (called benign outliers), which
are helpful in improving the generalization performance of the final FL model. However, existing
defenses typically rely on statistical majorities to remove malicious clients, which also implicates
these benign outliers. To the best of our knowledge, the work of tackling benign outliers still remains
open in FL.

Our work. To improve model accuracy and generalization against latest model poisoning attacks
in FL, we propose RECESS acting as “vaccine” to help FL pRoactively dEteCt modEl poiSoning
attackS. Unlike previous defenses using passive analysis and direct aggregation in a single iteration,
RECESS proactively detects malicious clients and robustly aggregates gradients with a new trust
scoring based mechanism. The differences are illustrated in Figure 1. In proactive detection, our
key insight is that the update goals of malicious clients are different from benign clients and outliers.
Therefore, the defender can amplify this difference by delicately constructing aggregation gradients
sent to clients, and then more accurately detect malicious clients and distinguish benign outliers by the
comparison between constructed gradients and the corresponding responses. In robust aggregation,
we propose a new trust scoring based mechanism which estimates the score according to the user’s
performance over multiple iterations, rather than scoring each iteration as in previous methods, which
improves the detection fault tolerance. Finally, we compare RECESS with five classic and two
SOTA defenses under various settings, and the results demonstrate that RECESS is effective to
overcome the two limitations aforementioned.

Contribution. The main contributions are:

(a) We propose a novel defense against model poisoning attacks called RECESS. It offers a new
defending angle for FL and turns the defender from passive analysis to proactive detection, which
defeats the latest model poisoning attacks. RECESS can also identify benign outliers effectively.
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(b) We improve the robust aggregation mechanism. A new trust scoring method is devised by
considering clients’ abnormality over multiple iterations, which significantly increases the
detection fault tolerance of RECESS and further improves the model’s accuracy.

(c) We evaluate RECESS under various settings, including white/black-box, Non-IID degree of
the dataset, number of malicious clients, and cross-silo/device FL. Experimental results show
that RECESS outperforms previous defenses in terms of accuracy loss and achieves consistent
effectiveness.

2 Related Works

2.1 Latest Model Poisoning Attacks in FL

In this work, we focus on the stronger untargeted model poisoning attacks for three reasons:

(a) Model poisoning attacks with the direct manipulation of gradients are more threatening than data
poisoning attacks in FL [8, 13].

(b) Data poisoning attacks are considered a special case of model poisoning attacks as malicious
gradients can be obtained on poisoning datasets [11].

(c) Untargeted poisoning is a more severe threat to model prediction performance than the targeted
one in FL [12].

In the following, we introduce three latest model poisoning attacks.

LIE Attack. The LIE attack [14] lets the defender remove the non-byzantine clients and shift the
aggregation gradient by carefully crafting byzantine values that deviate from the correct ones as far
as possible.

Optimization Attack. [13] propose a new attack idea. They formulate the model poisoning attack as
an optimization program, where the objective function is to let the poisoning aggregation gradient be
far from the aggregation gradient without poisoning. By leveraging the halving search, they obtain a
crafted malicious gradient to poison.

AGR Attack Series. [12] then improve the optimization program by introducing perturbation vectors
and scaling factors. Then three instances (AGR-tailored, AGR-agnostic Min-Max, and Min-Sum) are
proposed, which maximize the deviation between benign gradients and malicious gradients.

2.2 Existing SOTA Defenses

There are two directions to defend against the model poisoning attack: robust aggregation and
anomaly detection. Five classic byzantine-robust aggregation rules and FLTrust belong to the robust
aggregation. DnC is one of the representative anomaly detectors. Here we mainly describe two SOTA
defenses.

FLTrust. [11] devises FLTrust to mitigate the poisoning attack. In FLtrust, the server maintains a
small clean dataset and act as a client to participate in the update, adding the deployment constraint.
In each iteration, clients’ gradients whose direction deviates more from the gradient of the server
are discarded. Moreover, FLtrust normalizes the gradient magnitude to limit the impact of malicious
gradients and achieves a competitive accuracy.

DnC. [12] leverages the spectral method to detect malicious gradients, which is proven effective
in centered learning. They also use random sampling to reduce memory and computational cost.
Note we will evaluate these two defense mechanisms, which have rigorous theoretical guarantees, as
baselines.

3 Proposed RECESS

We propose a new proactive defense against model poisoning attacks in FL called RECESS. We first
take an overview of RECESS. Then we introduce the proactive detection and the new trust scoring
based aggregation mechanism respectively, followed by the effectiveness analysis.
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Figure 2: The overall detection process of RECESS against model poisoning attacks.

3.1 Overview

Intuition. RECESS aims to distinguish malicious and benign gradients without implicating benign
outliers. The essential difference between benign and malicious clients is that: benign clients
including outliers always optimize the received aggregation result to the distribution of their local
dataset to minimize the loss value, while malicious clients aim to make the poisoned aggregation
direction as far away from the aggregation gradient without poisoning as possible to maximize the
poisoning effect. In other words, benign gradients explicitly point to their local distribution, which is
directional and relatively more stable, while the malicious gradients solved based on other benign
gradients change inconsistently and dramatically. The workflow of RECESS is shown in Figure 2.

Proactive Detection. RECESS is different from previous passive analyses. The defender using
RECESS proactively tests each client with elaborately constructed aggregation gradients, rather than
the model weights to clients, and these two approaches are equivalent algorithmically. After clients
fine-tune local models with received aggregation gradients and respond with new gradient updates,
the defender can recognize malicious clients based on the abnormality of their gradient updates. We
also redefine the abnormality in poisoning scenarios to distinguish malicious gradients and outliers,
which promotes the generalization of the FL model. Details are shown in Section 3.2.

Robust Aggregation. RECESS adopts a new trust scoring based aggregation mechanism to
improve the defense. A new scoring method is proposed to give weights to aggregate clients’
gradients. Updates with greater abnormal extent account for a smaller proportion in aggregation,
which increases fault tolerance. Details are shown in Section 3.3.

3.2 Proactive Detection Algorithm

Construction Strategy of Test Gradient. The purpose of the defender is to observe the client’s
response by adding a slight perturbation to the test gradient. Thus, any slight varying gradient is
feasible. To illustrate, we present a strategy based on previous gradients. In details, the defender firstly
stores the aggregation gradient in the last iteration. When entering the detection mode, for example in
(k − 1)-th round of detection, the defender idles this iteration, and for each uploaded gradient gk−1

i
from i-th client (0 < i ≤ n, n is the number of clients), the defender scale down the magnitude of
gk−1
i , i.e., ∥gt

i∥2 = gk−1
i /∥gk−1

i ∥2, and slightly adjust the direction of gt
i by heuristically selecting

several elements and adding noise. Here we set a threshold A to control the direction adjustment.
Then, the defender feedbacks gt

i as the aggregation gradient to client i. The client i updates this
tailored “aggregation gradient” locally and respond with a newly updated gradient gk

i . The defender
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can perform poisoning detection by the comparison between gt
i and gk

i . This process will be repeated
for each client.

RECESS slightly adjusts constructed aggregation gradients, which magnifies the variance of mali-
cious gradients and makes them more conspicuous, but benign clients and outliers are not affected.
The reason is: for benign clients including outliers, their updated gradients always point to the
direction of decreasing loss function values. Although some machine learning optimization algo-
rithms, such as SGD, have deviations, they are still unbiased estimations of the normal gradient
descent direction as a whole [15]. Conversely, malicious clients’ gradients are usually opposite
to the aggregation direction and come from the solution of the attack optimization program on
other benign gradients. Thus, the variance of malicious gradients is enlarged by the optimization
project. Many works [16, 17, 9, 8] also indicate that the fluctuation of the upload gradients cause the
aggregation gradient to change more. Even when the defender uses the poisoned aggregation gradient
to construct test gradient, this basis still remains unchanged and malicious and benign clients behave
quite differently in this test. Besides, RECESS without extra model training is more efficient than
other model-based detectors. Concluding, RECESS is effective to detect model poisoning attacks.

Poisoning Detection. After receiving clients’ responses, the defender detects malicious clients
from two dimensions of abnormality: direction and magnitude of gradient changes before and after
the test. Formally, we use metric cosine similarity Sk

C to measure the angular change in direction
between the constructed gradient gt

i and the response gk
i ,

Sk
C(g

t
i , g

k
i ) =

gt
i · gk

i

∥gt
i∥2 · ∥gk

i ∥2
. (1)

Besides direction, the magnitude of the malicious gradient also dominates the poisoning effect,
especially when larger than the benign gradients. Here we utilize the l2 distance to measure the
magnitude, i.e., ∥gk

i ∥2.

After that, we redefine the abnormality of the client gradient by the deviation extent in direction
and magnitude, instead of the distance from other selected gradients (e.g. Krum, Mkrum, Median,
server’s gradient [11]) or some benchmarks (e.g. Trmean, Bylan).

Definition 1 (Abnormality) In model poisoning attacks of FL, the abnormality α of k-th uploaded
gradient from the i-th client should be measured by

α = − Sk
C

∥gk
i ∥2

. (2)

The cosine similarity Sk
C controls the positive and negative of the abnormality α. When the direction

of the client’s response gradient gk
i is inconsistent with the defender’s test gradient gt

i , α will be
positive, and vice versa. The amount of change in α is related to Sk

C and ∥gk
i ∥2. The smaller the

deviation between the direction of gt
i and gk

i , the smaller the α. Meanwhile, the larger the ∥gk
i ∥2,

the higher the α. This setting encourages small-gradient updates, which avoids the domination of
aggregation by malicious updates usually with a larger magnitude.

3.3 New Robust Aggregation Mechanism

After detection, we propose a new trust scoring based mechanism to aggregate gradients, which
increases RECESS’s fault tolerance for false detection.

Trust Scoring. RECESS estimates the trust score for the long-term performance of each client,
rather than the single iteration considered by previous schemes.

The detail of the scoring process is: the defender first sets the same initial trust score TS0 for each
client. After each round of detection, a constant baseline score is deducted for clients who are detected
as suspicious poisoners and not selected for aggregation. When the trust score of one client i reaches
zero, i.e., TSi = 0, the defender will label this client as malicious and no longer involve this client’s
updated gradients in the aggregation. The TS is calculated by

TS = TS0 − α ∗ baseline_decreased_score. (3)
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The TS0 and baseline_decreased_score controls the detection speed.

To prevent the attacker from increasing the trust score by suspending poisoning or constructing benign
gradients, we let the defender defer adding TS to further restrict the attacker. Only after a period of
good performance (e.g., 10 consecutive rounds), TS increase, but the score would be deducted once
the client is detected as malicious, which effectively forces the attacker not to poison or reduce the
intensity of poisoning to a negligible level.

Aggregation. After assigning TS to all clients, we transform TS into weights which are used to
average clients’ gradients as the aggregation gradient g, i.e.,

g =

n∑
i=1

wi ∗ gi, (4)

the weight of client i is calculated by

wi =
eTSi∑n
j=1 e

TSj
, (5)

where i, j = 1, 2, ..., n.

Advantages. Compared with previous methods, RECESS has four advantages:

(a) Provide a more accurate measure of the abnormality extent for each client’s update to assign the
trust score.

(b) Enable the defender to put clients’ previous performance into account, not only in each iteration,
enhancing the detection fault tolerance.

(c) Protect benign outliers while effectively detecting carefully-constructed poisoning gradient
updates, improving model accuracy and generalization.

(d) Outperform previous FLTrust and ML-based detections in terms of efficiency with no need for
extra data.

4 Evaluation

4.1 Setup

Datasets and FL Setting. Table 1 shows four datasets and parameter settings used in the evaluation.
The IID and Non-IID are both considered in the dataset division. We also consider two typical types
of FL, i.e., cross-silo and cross-device.

Table 1: Experiment datasets and FL settings.

Dataset Class Size Dimension Model Clients Batch Size Optimizer Learning Rates Epochs
MNIST 10 60,000 28× 28 FC (784× 512× 10) 100 100 Adam 0.001 500

CIFAR-10 10 60,000 32× 32 Alexnet [18] 50 250 SGD 0.5 to 0.05 at 1000th epoch 1200
Purchase 100 197,324 600 FC (600× 1024× 100) 80 500 SGD 0.5 1000

FEMNIST 62 671,585 28× 28 LeNet-5 [19] 60 ⊂ 3400 client’s dataset Adam 0.001 1500

Eight defenses are considered in the comparison experiments. Specifically, the common FedAvg
is used as the benchmark. Five classic robust rules, Krum, Mkrum, Bulyan, Trmean, and Median,
can provide convergence guarantees theoretically. Two SOTA defenses, FLtrust and DnC, are also
involved. The parameters of these eight defenses are set to default. For RECESS, we set A = 0.95,
TS0 = 1, and baseline_decreased_score = 0.1 unless otherwise specified.

Attack Setting. We consider the five latest poisoning attacks including LIE, optimization attack,
AGR-tailored attack, AGR-agnostic Min-Max attack, and Min-Sum attack. We also set two scenarios,
i.e., white-box and black-box, where attackers have and does not have knowledge of other benign
gradients. We assume 20% malicious clients as the default value unless specified otherwise. For the
test gradient construction, we select and add noise to the first 10% of dimensions, iteratively adjusting
until cosine similarity before/after meets the threshold.
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Table 2: Comparison results of FL accuracy with various defenses against the latest poisoning attacks
in both white-box and black-box cases. In the white-box (black-box) case, the attacker has (no)
knowledge of other benign gradients. Each result is averaged over multiple repetitions.

Dataset Attacker’s
Knowledge Attacks Defences

Krum Mkrum Bulyan Trmean Median FLTrust DnC RECESS

CIFAR-10
0.6605

(FedAvg)

No Attack 0.5162 0.6494 0.6601 0.6605 0.6582 0.6341 0.6409 0.6554

White-box

LIE 0.5058 0.5921 0.0965 0.6436 0.6243 0.6189 0.6047 0.6085
Optimization attack 0.3459 0.5817 0.6118 0.5066 0.5133 0.6075 0.5813 0.6206

AGR-tailored 0.2246 0.2915 0.2355 0.2276 0.2970 0.4636 0.4614 0.6043
AGR-agnostic Min-Max 0.5134 0.3096 0.3173 0.3709 0.2723 0.5229 0.5579 0.6202
AGR-agnostic Min-Sum 0.2248 0.4461 0.2211 0.4271 0.2765 0.5476 0.5347 0.6406

Black-box

LIE 0.3139 0.4512 0.3648 0.6063 0.5635 0.6319 0.6101 0.6318
Optimization attack 0.2891 0.5673 0.2605 0.5558 0.5452 0.6284 0.6159 0.6390

AGR-tailored 0.2455 0.3123 0.2349 0.3155 0.2650 0.5534 0.6066 0.6177
AGR-agnostic Min-Max 0.4078 0.3311 0.2948 0.2773 0.2934 0.5303 0.5771 0.6286
AGR-agnostic Min-Sum 0.2242 0.3435 0.2551 0.4381 0.3492 0.5094 0.5676 0.6432

FEMNIST
0.8235

(FedAvg)

No Attack 0.6863 0.8206 0.7115 0.8217 0.7897 0.8237 0.8201 0.8230

White-box

LIE 0.2687 0.5897 0.6514 0.8146 0.7828 0.8081 0.8048 0.7957
Optimization attack 0.2605 0.4981 0.6286 0.7920 0.7556 0.7848 0.7456 0.7983

AGR-tailored 0.5462 0.3696 0.4917 0.6127 0.4784 0.7615 0.3661 0.8145
AGR-agnostic Min-Max 0.6001 0.0606 0.6701 0.5717 0.5552 0.7845 0.6916 0.8019
AGR-agnostic Min-Sum 0.4750 0.2904 0.4496 0.5982 0.6264 0.7148 0.0694 0.7967

Black-box

LIE 0.2221 0.8153 0.7045 0.8114 0.7151 0.8148 0.8145 0.8048
Optimization attack 0.5998 0.7411 0.6646 0.7893 0.6741 0.7807 0.7824 0.7937

AGR-tailored 0.5419 0.4009 0.4330 0.6858 0.4527 0.7651 0.7027 0.7745
AGR-agnostic Min-Max 0.3796 0.5631 0.6332 0.6440 0.6605 0.6848 0.7351 0.7850
AGR-agnostic Min-Sum 0.6135 0.7524 0.7052 0.6589 0.6785 0.7848 0.7122 0.7936
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Metric. Accuracy is used to measure the performance of the well-trained model with or without
poisoning. Higher Accuracy indicates better defense.

4.2 Comparison with SOTA

Table 2 shows the main comparison results. RECESS obtains higher accuracy than two SOTA
defenses under latest poisoning attacks. Due to the space limit, here we mainly show the results on
two datasets.

Defender’s Goal (1): Defensive Effectiveness. As we can see from each row in Table 2, RECESS
can defend against model poisoning attacks, but previous defenses have limited effect, especially for
the strongest AGR attack series in the white-box case. The reasons are twofold:

(a) Some malicious gradients evade defenses to be selected for aggregation.

(b) Benign outliers are misclassified as malicious gradients and removed from the aggregation,
especially for Non-IID datasets (e.g., FEMNIST) with more outliers.

Moreover, benign outliers are intractable for all previous defenses. FLTrust is better than other
defenses since its normalization limits the large magnitude gradients. In contrast, RECESS can
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effectively distinguish benign outliers from malicious gradients, thus obtaining the highest accuracy,
even in the most challenging white-box Non-IID case.

Defender’s Goal (2): Model Performance. As shown in the first row in each set of Table 2 where
no attacks are under consideration, robust rules will reduce the accuracy but have little impact on
RECESS. This can be explained from three aspects:

(a) Due to the existence of attackers, only 80% benign clients participate in the aggregation compared
with no attack (e.g. 40 vs 50 for CIFAR-10).

(b) Existing defenses discard benign gradients more or less, especially for benign outliers.

(c) Malicious gradients are selected for aggregation.

The first aspect is inevitable since the defender cannot control the attacker, which also causes the
main accuracy gap between FedAvg and our RECESS. However, RECESS can improve the other
two aspects by more accurately distinguishing whether gradients are malicious or benign.

Impact of Attacker’s Knowledge. Different knowledge affects the attack, and RECESS out-
performs other defenses in both white/black-box. The stronger the attack, the better the effect of
RECESS. In the black-box case, the attacker cannot offset the effect of benign gradients on the
aggregation without the knowledge of other benign gradients, so the poisoning is greatly weakened
and RECESS is not prominent as in the white-box case.

Changing Trend of Trust Score. Figure 3 presents the trust score of benign and malicious clients
in each round of RECESS detection. Here we execute the strongest AGR-agnostic Min-max attack.
Figure 4 shows the histogram of each client’s Abnormality value in the third detection round to
illustrate the effectiveness of RECESS. RECESS can effectively distinguish malicious and benign
users in both the optimization attack and AGR attacks.

4.3 Impact of FL Setting

In this part, we evaluate RECESS under various FL settings to illustrate the practicability of our
proposed scheme.

Non-IID Degree of Dataset (More Outliers). The results on Non-IID FEMNIST in Table 2 show
the effectiveness of our RECESS against latest poisoning attacks. Besides, we also involve the
CIFAR-10 in the evaluation using the Non-IID dataset construction method same as [11, 12]. We
consider four defenses (the best classic robust rules Trmean, SOTA FLtrust and DnC, and RECESS)
against the strongest AGR-agnostic Min-Max attack in white/black-box cases.

Figure 5 shows that the increase in the Non-IID degree leads to an expansion of benign outliers which
are similar to malicious gradients, and previous defenses cannot effectively distinguish outliers from
malicious gradients. However, it has little impact on RECESS, since our method can accurately
detect malicious gradients and benign outliers.
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Table 3: The impact of cross-device FL on the defenses. The model poisoning attack is AGR
Min-Max.

Dataset Attacker’s
Knowledge Attacks Defences

Trmean FLTrust DnC RECESS

CIFAR-10

No Attack 0.6490 0.6178 0.6284 0.6448

White-box

LIE 0.5559 0.6101 0.6157 0.6228
Optimization attack 0.5655 0.6171 0.5913 0.6439

AGR-tailored 0.5080 0.4538 0.5915 0.6046
AGR-agnostic Min-Max 0.5548 0.5226 0.5478 0.6379
AGR-agnostic Min-Sum 0.5758 0.5964 0.5793 0.6393

Black-box

LIE 0.5999 0.6137 0.6128 0.6353
Optimization attack 0.6168 0.6159 0.6209 0.6277

AGR-tailored 0.5509 0.5485 0.5956 0.6142
AGR-agnostic Min-Max 0.5833 0.5715 0.6095 0.6416
AGR-agnostic Min-Sum 0.6068 0.5937 0.6074 0.6385

Table 4: FL accuracy with enhanced RECESSS defenses against the adaptive poisoning attack. The
task is FEMNIST. The detection frequency is contolled by TS0 and baseline_decreased_score.

Attacker’s
Knowledge Attacks RECESS Detection Frequency

0 10 50 100 200

white-box
no attack 0.8235 0.823 0.8221 0.8224 0.8215

optimization attack 0.2182 0.7983 0.8048 0.8106 0.8114
adaptive optimization attack 0.2482 0.3456 0.6847 0.7815 0.8011

black-box optimization attack 0.5152 0.7937 0.8045 0.8117 0.8048
adaptive optimization attack 0.5248 0.6481 0.7847 0.8048 0.8148

Number of Malicious Clients. Figure 6 shows that RECESS remains an outstanding defending
effect all along, as the number of malicious clients increases, all poisoning attacks are more powerful,
while the defending effect of other defenses decreases sharply. We vary the proportion of malicious
clients from 5% to 25%, consistent with [12]. The other settings remain the same as Section 4.3.

Cross-device FL. Previous evaluations are mostly under cross-silo settings except for the FEMNIST
which is naturally cross-device shown in Table 2. Further, we consider the cross-device setting using
the dataset CIFAR-10. In each epoch, the server stochastically selects 10 updates from all clients to
aggregate. The attack steps remain the same, and the other settings are the same as the default.

Table 3 shows that similar to the result of cross-silo, RECESS still achieves the best defense effect.
Besides, the poisoning impacts under the cross-device setting are lower than the one of the cross-silo
setting, because the server selects less number of clients for aggregation and ignores more malicious
gradients in cross-device FL, thus the attacker cannot continuously poison, weakening the impact of
the poisoning. Consequently, this leaves less improvement space for RECESS and other defenses.

4.4 Adaptive Attacks

Active Evasion. With knowledge of RECESS, the attacker checks if it’s a test gradient before
deciding to poison or not. The adaptive strategy involves estimating an aggregated gradient gp in each
iteration from controlled benign clients. Then, the attacker compares the received aggregated gradient
gagg with gp and gk−1

i from the last iteration. If SC(gagg, g
k−1
i ) ≥ SC(gagg, gp), the poisoning

begins, while if SC(gagg, g
k−1
i ) < SC(gagg, gp), the poisoning stops, as it’s considered detected.

As a countermeasure, the defender boosts detection frequency and intersperses it during the entire
training, instead of fixed consecutive detection, and increases the sensitivity of parameters. Note that
the defense should aim to make the model converge, it is not necessary to find the attacker. In other
words, RECESS’s presence increases the attack cost, so even if the attacker evades detection, the
loss of model accuracy is negligible, which is acceptable.

Table 4 shows that the adaptive attack has little impact on the final model accuracy though it is
stealthier than the continuous attack. This is due to the similarity between the test gradient and
the normal aggregated gradient, leading to inaccurate estimation by the attacker and a decrease
in aggregation weight. Also, increasing detection frequency lowers poisoning frequency, so the
poisoning impact will be gradually alleviated by normal training over time.
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Poisoning before the Algorithm Initialization. The detection basis is that the variance of the
malicious gradient is larger than the benign gradient. Malicious gradients, solved by the optimization
problem, are more inconsistent. It is also theoretically proven that the optimization problem amplifies
this variance. Thus, RECESS is unaffected by initial poisoned gradients as it does not change
this basis. Besides, when the poisoned aggregated gradient was used to detect, most clients will be
identified as malicious. This violates the assumption of Byzantine robustness that requires more
than 51% of users to be benign. Hence, the defender can easily discern a potentially poisoned initial
gradient based on the new abnormality definition of RECESS.

Inconsistent attacks. Attackers can also first pretend as benign client to increase the trust score,
and then provide the poisoning gradients. However, RECESS detects such behavior inconsistencies
over time. The trust scoring of RECESS also incorporates delayed penalties for discrepancies
between a client’s current and past behaviors (shown in Section 3.3). Additionally, three factors limit
intermittent attacks’ impact:

(a) FL’s self-correcting property means inconsistent poisoning is much less impactful. Attackers
would not take this approach in practice.

(b) In real settings, clients participate briefly, often just once. Attackers cannot afford to waste rounds
acting benign before attacking.

(c) Defenses aim to accurately detect malicious updates for model convergence. Even if poisoning
temporarily evaded detection, attack efficacy would diminish significantly, making it no longer a
serious security concern.

5 Discussion

This work primarily focuses on untargeted model poisoning, along with previous SOTA works. We
believe that model poisoning has a significant impact on real-world FL deployments for three reasons:

(a) Model poisoning through direct gradient manipulation poses a greater threat than backdoors.
(b) Backdoors are considered special cases of model poisoning, as malicious gradients can be

obtained on poisoning datasets. However, it is challenging to solely imitate model poisoning
gradients through training backdoors.

(c) Untargeted poisoning has a more severe impact on overall model performance degradation
compared to backdoors in FL.

As RECESS detects inconsistencies between client behaviors, it could mitigate targeted attacks from
clients with backdoored data by deploying additional strategies. Due to space limitation, we refer the
readers to our technical report [20] for more details.

6 Conclusion

In this work, we proposed RECESS, a novel defense for FL against the latest model poisoning
attacks. We shifted the classic reactive analysis to proactive detection and offered a more robust
aggregation mechanism for the server. In the comprehensive evaluation, RECESS achieves better
performance than SOTA defenses and solves the outlier detection problem that previous methods
can not handle. We anticipate that our RECESS will provide a new research direction for poisoning
attack defense and promote the application of highly robust FL in practice.
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