
7 Derivations447

Gradient of Inclusive KL Divergence Below, we derive the gradient of the inclusive KL divergence448

for a generic Markovian model. In this derivation, we assume there are no shared parameters between449

the proposal and model.450

�r�KL(p✓||q�) = r�

Z
p✓(x1:T |y1:T ) log q�(x1:T |y1:T )dx1:T (13)

=

Z
p✓(x1:T |y1:T )r� log q�(x1:T |y1:T )dx1:T (14)

=

Z
p✓(x1:T |y1:T )r�

 
X

t

log q�(xt|xt�1,yt:T )

!
dx1:T (15)

=
X

t

Z
p✓(x1:T |y1:T )r� log q�(xt|xt�1,yt:T )dx1:T (16)

=
X

t

Ep✓(x1:T |y1:T ) [r� log q�(xt|xt�1,yt:T )] (17)

We use the assumption that there are no shared parameters in the second equality.451

Gradient of the Marginal Likelihood We derive the gradients for the marginal likelihood. This452

identity is known as Fisher’s identity.453

r✓ log p(y1:T ) = r✓ log

Z
p✓(x1:T ,y1:T )dy1:T (18)

=
1

p✓(y1:T )
r✓

Z
p✓(x1:T ,y1:T )dx1:T (19)

=
1

p✓(y1:T )

Z
r✓p✓(x1:T ,y1:T )dx1:T (20)

=
1

p✓(y1:T )

Z
p✓(x1:T ,y1:T )r✓ log p✓(x1:T ,y1:T )dx1:T (21)

=

Z
p✓(x1:T |y1:T )r✓ log p✓(x1:T ,y1:T )dx1:T (22)

=

Z
p✓(x1:T |y1:T )r✓

X

t

log p✓(yt,xt|xt�1)dx1:T (23)

=
X

t

Z
p✓(x1:T |y1:T )r✓ log p✓(yt,xt|xt�1)dx1:T (24)

=
X

t

Ep✓(x1:T |y1:T ) [r✓ log p✓(yt,xt|xt�1)] (25)

The key steps were the log-derivative trick and Bayes rule.454

8 LGSSM455

Model Details We consider a one-dimensional linear Gaussian state space model with joint distri-456

bution457

p(x1:T ,y1:T ) = N (x1; 0, �2
x
)

TY

t=2

N (xt+1;xt, �
2
x
)

TY

t=1

N (yt;xt, �
2
y
). (26)

In our experiments we set the dynamics variance �2
x

= 1.0 and the observation variance �2
y

= 1.0.458
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Proposal Parameterization For both NAS-X and NASMC, we use a mean-field Gaussian proposal459

factored over time460

q(x1:T ) =
TY

t=1

qt(xt) =
TY

t=1

N (xt; µt, �
2
t
), (27)

with parameters µ1:T and �2
1:T corresponding to the means and variances at each timestep. In total,461

we learn 2T proposal parameters.462

Twist Parametrization We parameterize the twist as a quadratic function in xt whose coefficients463

are functions of the observations and time step and are learned via the density ratio estimation464

procedure described in [Lawson et al., 2022]. We chose this form to match the analytic log density465

ratio for the model defined in Eq 26. Given that p(x1:T , y1:T ) is a multivariate Gaussian, we know466

that p(xt | yt+1:T ) and p(xt) are both marginally Gaussian. Let467

p(xt | yt+1:T ) , N (µ1, �
2
1)

p(xt) , N (0, �2
1)

Then,468

log

✓
p(xt | yt+1:T )

p(xt)

◆
= log N (xt; µ1, �

2
1) � log N (xt; 0, �2

2)

= log Z(�1) � 1

2�2
1

x2
t

+
µ1

�2
1

xt � µ2
1

2�2
1

� log Z(�2) +
1

2�2
x2
t

where Z(�) = 1
�
p
2⇡

, so log Z(�) = � log(�
p

2⇡).469

Collecting terms gives:470

� log(�1

p
2⇡) + log(�2

p
2⇡)

�1

2

✓
1

�2
1

� 1

�2
2

◆
x2
t

+
µ1

�2
1

xt

� µ2
1

2�2
1

So we’ll define471

a , �1

2

✓
1

�2
1

� 1

�2
2

◆

b , µ1

�2
1

c , � µ2
1

2�2
1

� log(�1

p
2⇡) + log(�2

p
2⇡)

We’ll explicitly model log �2
1 , log �2

2 and µ1. Both log �2
1 and log �2

2 are only functions of t, not of472

yt+1:T , so those can be vectors of shape T initialized at 0. µ1 is a linear function of yt+1:T and t, so473

that can be parameterized by a set of T ⇥ T weights, initialized to 1/T and T biases initialized to 0.474

Training Details We use a batch size of 32 for the density ratio estimation step. Since we do not475

perform model learning, we do not repeatedly alternate between tilt training and proposal training for476

NAS-X. Instead, we first train the tilt for 3,000,000 iterations with a batch size of 32 using samples477

from the model. We then train the proposal for 750, 000 iterations. For the tilt, we used Adam with478

a learning rate schedule that starts with a constant learning rate of 1e � 3, decays the learning by479

0.3 and 0.33 at 100, 000 and 300, 000 iterations. For the proposal, we used Adam with a constant480

learning rate of 1e � 3. For NASMC, we only train the proposal.481
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Evaluation In the right panel of Figure 1, we compare the bound gaps of NAS-X and NASMC482

averaged across 20 different samples from the generative model. To obtain the bound gap for NAS-X,483

we run SMC 16 times with 128 particles and with the learned proposal and twists. We then record484

the average log marginal likelihood. For NASMC, we run SMC with the current learned proposal485

(without any twists).486

9 rSLDS487

Model details The generative model is as follows. At each time t, there is a discrete latent state488

zt 2 {1, . . . , 4} as well as a two-dimensional continuous latent state xt 2 R2. The discrete state489

transition probabilities are given by490

p(zt+1 = i | zt = j, xt) / exp
�
ri + RT

i
xt�1

�
(28)

Here Ri and ri are weights for the discrete state zi.491

These discrete latent states dictates two-dimensional latent state xt 2 R2 which evolves according to492

linear Gaussian dynamics.493

xt+1 = Azt+1xt + bzt+1 + vt, vt ⇠iid N (0, Qzt+1) (29)

Here Ak, Qk 2 R2x2 and bk 2 R2. Importantly, from Equations 29 and 28 we see that the dynamics494

of the continuous latent states and discrete latents are coupled. The discrete latent states index into495

specific linear dynamics and the discrete transition probabilities depend on the continuous latent state.496

The observations yt 2 R10 are linear projections of the continuous latent state xt with some additive497

Gaussian noise.498

yt = Cxt + d + wt, vt ⇠iid N (0, S) (30)

Here C, S 2 R10x10 and d 2 R10.499

Proposal Parameterization We use a mean-field proposal distribution factorized over the discrete500

and continuous latent variables (i.e. q(z1:T ,x1:T ) = q(z1:T )q(x1:T )). For the continuous states,501

q(x1:T ) is a Gaussian factorized over time with parameters µ1:T and �2
1:T . For the discrete states,502

q(z1:T ) is a Categorical distribution over K categories factorized over time with parameters p1:K1:T . In503

total, we learn 2T + TK proposal parameters.504

Twist Parameterization We parameterize the twists using a recurrent neural network (RNN) that505

is trained using density ratio estimation. To produce the twist values at each timestep, we first run a506

RNN backwards over the observations y1:T to produce a sequence of encodings e1:T�1. We then507

concatenate the encodings of xt and zt into a single vector and pass that vector into an MLP which508

outputs the twist values at each timestep. The RNN has one layer with 128 hidden units. The MLP509

has 131 hidden units and ReLU activations.510

Model Parameter Evaluation We closely follow the parameter initialization strategy employed by511

Linderman et al. [2017]. First, we use PCA to obtain a set of continuous latent states and initialize512

the matrices C and d. We then fit an autoregressive HMM to the estimated continuous latent states in513

order to initialize the dynamics matrices {Ak, bk}. Importantly, we do not initialize the proposal with514

the continuous latent states described above.515

Training Details We use a batch size of 32 for the density ratio estimation step. We alternate516

between 100 steps of tilt training and 100 steps of proposal training for a total of 50,000 training steps517

in total. We used Adam and considered a grid search over the model, proposal, and tilt learning rates.518

In particular, we considered learning rates of 1e � 4, 1e � 3, 1e � 2 for the model, proposal, and tilt.519

Bootstrap Bound Evaluation To obtain the log marginal likelihood bounds and standard deviations520

in Table 1, we ran a bootstrapped particle filter (BPF) with the learned model parameters for all three521

methods (NAS-X, NASMC, Laplace EM) using 1024 particles. We repeat this across 30 random522

seeds. Initialization of the latent states was important for a fair comparison. To initialize the latent523

states, for NAS-X and NASMC, we simply sampled from the learned proposal at time t = 0. To524

initialize the latent state for Laplace EM, we sampled from a Gaussian distribution with the learned525

dynamics variance at t = 0.526
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10 Inference in Squid Giant Axon Model527

10.1 HH Model Definition528

For the inference experiments (Section 5.3.1) we used a probabilistic version of the squid giant529

axon model Hodgkin and Huxley [1952], Dayan and Abbott [2005]. Our experimental setup was530

constructed to broadly match Lawson et al. [2022], and used a single-compartment model with531

dynamics defined by532

Cm

dv

dt
= Iext � gNam

3h(v � ENa) � ḡKn4(v � EK) � gleak(v � Eleak) (31)

dm

dt
= ↵m(v)(1 � m) � �m(v)m (32)

dh

dt
= ↵h(v)(1 � h) � �h(v)h (33)

dn

dt
= ↵n(v)(1 � n) � �n(v)n (34)

where Cm is the membrane capacitance; v is the potential difference across the membrane; Iext533

is the external current; ḡNa, ḡK, and ḡleak are the maximum conductances for sodium, potassium,534

and leak channels; ENa, EK, and Eleak are the reversal potentials for the sodium, potassium, and535

leak channels; m and h are subunit states for the sodium channels and n is the subunit state for the536

potassium channels. The functions ↵ and � that define the dynamics for n, m, and h are defined as537

↵m(v) =
�4 � v/10

exp(�4 � v/10) � 1
, �m(v) = 4 · exp((�65 � v)/18) (35)

↵h(v) = 0.07 · exp((�65 � v)/20), �h(v) =
1

exp(�3.5 � v/10) + 1
(36)

↵n(v) =
�5.5 � v/10

exp(�5.5 � v/10) � 1
, �n(v) = 0.125 · exp((�65 � v)/80) (37)

This system of ordinary differential equations defines a nonlinear dynamical system with a four-538

dimensional state space: the instantaneous membrane potential v and the ion gate subunit states n, m,539

and h.540

As in Lawson et al. [2022], we use a probabilistic version of the original HH model that adds541

zero-mean Gaussian noise to both the membrane voltage v and the “unconstrained” subunit states.542

The observations are produced by adding Gaussian noise with variance �2
y

to the membrane potential543

v.544

Specifically, let xt be the state vector of the system at time t containing (vt, mt, ht, nt), and let545

'dt(x) be a function that integrates the system of ODEs defined above for a step of length dt. Then546

the probabilistic HH model can be written as547

p(x1:T ,y1:T ) = p(x1)
TY

t=2

p(xt | 'dt(xt�1))
TY

t=1

N (yt;xt,1, �
2
y
) (38)

where the 4-D state distributions p(x1) and p(xt | 'dt(xt�1)) are defined as548

p(xt | 'dt(xt�1)) = N (xt,1; 'dt(xt�1)1, �
2
x,1)

4Y

i=2

LogitNormal(xt,i; 'dt(xt�1)i, �
2
x,i

). (39)

In words, we add Gaussian noise to the voltage (xt,1) and logit-normal noise to the gate states n, m,549

and h. The logit-normal is defined as the distribution of a random variable whose logit has a Gaussian550

distribution, or equivalently it is a Gaussian transformed by the sigmoid function and renormalized.551

We chose the logit-normal because its values are bounded between 0 and 1, which is necessary for552

the gate states.553

Problem Setting For the inference experiments we sampled 10,000 noisy voltage traces from a554

fixed model and used each method to train proposals (and possibly twists) to compute the marginal555

likelihood assigned to the data under the true model.556
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Figure 5: HH inference performance across different numbers of particles.
(left) Log-likelihood lower bounds for proposals trained with 4 particles and evaluated across a
range of particle numbers. NAS-X’s inference performance decays only minimally as the number
of particles is decreased, while all other methods experience significant performance degradation.
(right) A comparison of SIXO and NAS-X containing the same values as the left panel, but zoomed
in. NAS-X is roughly twice as particle efficient as SIXO, and outperforms SIXO by roughly 34 nats
at 4 particles.

As in Lawson et al. [2022], we sampled trajectories of length 50 milliseconds, with a single noisy557

voltage observation every millisecond. The stability of our ODE integrator allowed us to integrate at558

dt = 0.1ms, meaning that there were 10 latent states per observation.559

Proposal and Twist Details Each proposal was parameterized using the combination of a bidirec-560

tional recurrent neural network (RNN) that conditioned on all observed noisy voltages as well as a561

dense network that conditioned on the RNN hidden state and the previous latent state xt�1 [Hochreiter562

and Schmidhuber, 1997, Jordan, 1997]. The twists for SIXO and NAS-X were parameterized using563

an RNN run in reverse over the observations combined with a dense network that conditioned on564

the reverse RNN hidden state and the latent being ‘twisted’, xt. Both the proposal and twists were565

learned in an amortized manner, i.e. they were shared across all trajectories. All RNNs had a single566

hidden layer of size 64, as did the dense networks. All models were fit with ADAM [Kingma et al.,567

2015] with proposal learning rate of 10�4 and tilt learning rate of 10�3.568

A crucial aspect of fitting the proposals was defining them in terms of a ‘residual’ from the prior, a569

technique known as Resq [Fraccaro et al., 2016]. In our setting, we defined the true proposal density570

as proportional to the product of a unit-variance Gaussian centered at '(xt) and a Gaussian with571

parameters output from the RNN proposal.572

10.2 Experimental Results573

In Figure 5 we plot the performance of proposals and twists trained with 4 particles and evaluated574

across a range of particle numbers. All methods except FIVO perform roughly the same when575

evaluated with 256 particles, but with lower numbers of evaluation particles the smoothing methods576

emerge as more particle-efficient than the filtering methods. To achieve NAS-X’s inference perfor-577

mance with 4 particles, NASMC would need 256 particles, a 64-times increase. NAS-X is also more578

particle-efficient than SIXO, achieving on average a 2x particle efficiency improvement.579

The FIVO method with a parametric proposal drastically underperformed all smoothing methods as580

well as NASMC, indicating that the combination of filtering SMC and the exclusive KL divergence581

leads to problems optimizing the proposal parameters. To compensate, we also evaluated the582

performance of “FIVO-BS", a filtering method that uses a bootstrap proposal. This method is583

identical to a bootstrap particle filter, i.e. it proposes from the model and has no trainable parameters.584

FIVO-BS far outperforms standard FIVO, and is only marginally worse than NASMC in this setting.585
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Figure 6: Inferred voltage traces for NASMC, SIXO, and NAS-X.
(top) NASMC exhibits poor performance, incorrectly inferring the timing of most spikes. (middle)
SIXO’s inferred voltage traces are more accurate than NASMC’s with only a single mistimed spike,
but SIXO generates a high number of resampling events leading to particle degeneracy. (bottom)
NAS-X perfectly infers the latent voltage with no mistimed spikes, and resamples very infrequently.

In Figure 6 we investigate these results qualitatively by examining the inferred voltage traces of586

each method. We see that NASMC struggles to produce accurate spike timings and generates587

many spurious spikes, likely because it is unable to incorporate future information into its proposal588

or resampling method. SIXO performs better than NASMC, accurately inferring the timing of589

most spikes but resampling at a high rate. High numbers of resampling events can lead to particle590

degeneracy and poor inferences. NAS-X is able to correctly infer the voltage across the whole trace591

with no suprious or mistimed spikes. Furthermore NAS-X rarely resamples, indicating it has learned a592

high-quality proposal that does not generate low-quality particles that must be resampled away. These593

qualitative results seem to support the quantitative results in Figure 5 — SIXO’s high resampling rate594

and NASMC’s filtering approach lead to lower bound values.595

11 Model Learning in Mouse Pyramidal Neuron Model596

11.1 Model Definition597

For the model learning experiments in Section 5.3.2 we used a generalization of the Hodgkin-Huxley598

model developed for modeling mouse visual cortex neurons by the Allen Institute for Brain Science599

Wang et al. [2020], AIBS [2017]. Specifically we used the perisomatic model with ID 482657528600

developed to model cell 480169178. The model is detailed in the whitepaper AIBS [2017] and the601

accompanying code, but we reproduce the details here to ensure our work is self-contained.602
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Table 2: Train Bound comparison
Metric NAS-X SIXO
L256

BPF �660.7003 �636.2579
L4

train �664.3528 �668.6865
L8

train �662.8712 �653.6352
L16

train �662.0753 �644.8764
L32

train �661.5387 �639.5388
L64

train �660.8040 �636.5131
L128

train �660.5102 �633.7875
L256

train �660.3423 �632.1377

Similar to the squid giant axon model, the mouse visual cortex model is composed of ion channels603

that affect the current flowing in and out of the cell. Let I be the set of ions {Na+, Ca2+, K+}. Each604

ion has associated with it605

1. A set of channels that transport that ion, denoted Ci for i 2 I.606

2. A reversal potential, Ei.607

3. An instantaneous current density, Ii, which is computed by summing the current density608

flowing through each channel that transports that ion.609

Correspondingly, let C be the set of all ion channels so that C =
S

i2I Ci. Each c 2 C has associated610

with it611

1. A maximum conductance density, gc.612

2. A set of subunit states, referred to collectively as the vector �c. Let �c 2 [0, 1]dc , i.e. �c is a613

dc-dimensional vector of values in the interval [0, 1].614

3. A function gc that combines the gate values to produce a number in [0, 1] that weights the615

maximum conductance density, gc · gc(�c).616

4. Functions Ac(·) and bc(·) which compute the matrix and vector used in the ODE describing617

�c dynamics. Ac and bc are functions of both the current membrane voltage v and calcium618

concentration inside the cell [Ca2+]i. If the number of subunits (i.e. the dimensionality of619

�c) is dc, then the output of Ac(v, [Ca2+]i) is a dc ⇥ dc diagonal matrix and the output of620

bc(v, [Ca2+]i) is a dc-dimensional vector.621

With this notation we can write the system of ODEs622

Cm

dv

dt
=

Iext
SA

� gleak(v � Eleak) �
X

i2ions

Ii (40)

Ii =
X

c2Ci

gcgc(�c)(v � Ei) (41)

d�c

dt
= Ac(v, [Ca2+]i)�c + bc(v, [Ca2+]i) 8c 2 C (42)

d[Ca2+]i
dt

= �kICa2+ � [Ca2+]i � [Ca2+]min

⌧
. (43)

Most symbols are as described earlier, SA is the membrane surface area of the neuron, [Ca2+]i is the623

calcium concentration inside the cell, [Ca2+]min is the minimum interior calcium concentration with624

a value of 1 nanomolar, ⌧ is the rate of removal of calcium with a value of 80 milliseconds, and k and625

is a constant with value626

k = 10000 · �

2 · F · depth
(44)

where 10000 is a dimensional constant, � is the percent of unbuffered free calcium, F is Faraday’s627

constant, and depth is the depth of the calcium buffer with a value of 0.1 microns.628
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Because the concentration of calcium changes over time, this model calculates the reversal potential629

for calcium ECa2+ using the Nernst equation630

ECa2+ =
G · T

2 · F
log

✓
[Ca2+]o
[Ca2+]i

◆
(45)

where G is the gas constant, T is the temperature in Kelvin (308.15�), F is Faraday’s constant, and631

[Ca2+]o is the extracellular calcium ion concentration which was set to 2 millimolar.632

Probabilistic Model The probabilistic version of the deterministic ODEs was constructed similarly633

to the probabilistic squid giant axon model — Gaussian noise was added to the voltage and uncon-634

strained gate states. One difference is that the system state now includes [Ca2+]i which is constrained635

to be greater than 0. To noise [Ca2+]i we added Gaussian noise in the log space, analagous to the636

logit-space noise for the gate states.637

Model Size The 38 learnable parameters of the model include:638

1. Conductances g for all ion channels (10 parameters).639

2. Reversal potentials of sodium, potassium, and the non-specific cation: EK+ , ENa+ , and640

ENSC+ .641

3. The membrane surface area and specific capacitance.642

4. Leak channel reversal potential and max conductance density.643

5. The calcium decay rate and free calcium percent.644

6. Gaussian noise variances for the voltage v and interior calcium concentration [Ca2+]i.645

7. Gaussian noise variances for all subunit states (16 parameters).646

8. Observation noise variance.647

The 18-dimensional state includes:648

1. Voltage v649

2. Interior calcium concentration [Ca2+]i650

3. All subunit states (16 dimensions)651

11.2 Channel Definitions652

In this section we provide a list of all ion channels used in the model. In the following equations we653

often use the function exprel which is defined as654

exprel(x) =

8
<

:
1 if x = 0
exp(x) � 1

x
otherwise

(46)

A numerically stable implementation of this function was critical to training our models.655

Additionally, many of the channel equations below contain a ‘temperature correction’ qt that adjusts656

for the fact that the original experiments and Allen Institute experiments were not done at the same657

temperature. In those equations, T is the temperature in Celsius which was 35�.658

11.2.1 Transient Na+659

From Colbert and Pan [2002].660

�c = (m, h), gc(�c) = m3h

1

qt

dm

dt
= ↵m(v)(1 � m) � �m(v)m

1

qt

dh

dt
= ↵h(v)(1 � h) � �h(v)h

qt = 2.3(T�23
10 )
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661

↵m(v) =
0.182 · 6

exprel(�(v + 40)/6)
, �m(v) =

0.124 · 6

exprel((v + 40)/6)

↵h(v) =
0.015 · 6

exprel((v + 66)/6)
, �h(v) =

0.015 · 6

exprel(�(v + 66)/6)

11.2.2 Persistent Na+662

From Magistretti and Alonso [1999].663

�c = h, gc(�c) = m1h

m1 =
1

1 + exp(�(v + 52.6)/4.6)

1

qt

dh

dt
= ↵h(v)(1 � h) � �h(v)h

qt = 2.3(T�21
10 )

664

↵h(v) =
2.88 ⇥ 10�6 · 4.63

exprel((v + 17.013)/4.63)
, �h(v) =

6.94 ⇥ 10�6 · 2.63

exprel(�(v + 64.4)/2.63)

11.2.3 Hyperpolarization-activated cation conductance665

From Kole et al. [2006]. This channel uses a ‘nonspecific cation current’ meaning it can transport666

any cation. In practice, this is modeled by giving it its own special ion NSC+ with resting potential667

ENSC+ .668

�c = m, gc(�c) = m

ENSC+ = �45.0

dm

dt
= ↵m(v)(1 � m) � �m(v)m

669

↵m(v) =
0.001 · 6.43 · 11.9

exprel((v + 154.9)/11.9)
, �m(v) = 0.001 · 193 · exp(v/33.1)

11.2.4 High-voltage-activated Ca2+ conductance670

From Reuveni et al. [1993]671

�c = (m, h), gc(�c) = m2h

dm

dt
= ↵m(v)(1 � m) � �m(v)m

dh

dt
= ↵h(v)(1 � h) � �h(v)h

672

↵m(v) =
0.055 · 3.8

exprel(�(v + 27)/3.8)
, �m(v) = 0.94 · exp(�(v + 75)/17)

↵h(v) = 0.000457 · exp(�(v + 13)/50), �h(v) =
0.0065

exp(�(v + 15)/28) + 1

11.2.5 Low-voltage-activated Ca2+ conductance673

From Avery and Johnston [1996], Randall and Tsien [1997].674

�c = (m, h), gc(�c) = m2h

1

qt

dm

dt
=

m1 � m

m⌧

1

qt

dh

dt
=

h1 � h

h⌧

qt =2.3(T�21)/10

22



675

m1 =
1

1 + exp(�(v + 40)/6)
, m⌧ = 5 +

20

1 + exp((v + 35)/5)

h1 =
1

1 + exp((v + 90)/6.4)
, h⌧ = 20 +

50

1 + exp((v + 50)/7)

11.2.6 M-type (Kv7) K+ conductance676

From Adams et al. [1982].677

�c = m, gc(�c) = m

1

qt

dm

dt
= ↵m(v)(1 � m) � �m(v)m

qt = 2.3(T�21
10 )

678

↵m(v) = 0.0033 exp(0.1(v + 35)), �m(v) = 0.0033 · exp(�0.1(v + 35))

11.2.7 Kv3-like K+ conductance679

�c = m, gc(�c) = m

dm

dt
=

m1 � m

m⌧

680

m1 =
1

1 + exp(�(v � 18.7)/9.7)
, m⌧ =

4

1 + exp(�(v + 46.56)/44.14)

11.2.8 Fast inactivating (transient, Kv4-like) K+ conductance681

From Korngreen and Sakmann [2000].682

�c = (m, h), gc(�c) = m4h

1

qt

dm

dt
=

m1 � m

m⌧

1

qt

dh

dt
=

h1 � h

h⌧

qt =2.3(T�21)/10

683

m1 =
1

1 + exp(�(v + 47)/29)
, m⌧ = 0.34 +

0.92

exp(((v + 71)/59)2)

h1 =
1

1 + exp((v + 66)/10)
, h⌧ = 8 +

49

exp(((v + 73)/23)2)

g = 1 ⇥ 10�5

11.2.9 Slow inactivating (persistent) K+ conductance684

From Korngreen and Sakmann [2000].685

�c = (m, h), gc(�c) = m2h

1

qt

dm

dt
=

m1 � m

m⌧

1

qt

dh

dt
=

h1 � h

h⌧

qt =2.3(T�21)/10
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686

m1 =
1

1 + exp(�(v + 14.3)/14.6)

m⌧ =

⇢
1.25 + 175.03 · e0.026v, if v < �50
1.25 + 13 · e�0.026v, if v � �50

h1 =
1

1 + exp((v + 54)/11)

h⌧ =
24v + 2690

exp(((v + 75)/48)2)

g = 1 ⇥ 10�5

11.2.10 SK-type calcium-activated K+ conductance687

From Köhler et al. [1996]. Note this is the only calcium-gated ion channel in the model.688

�c = z, gc(�c) = z

dz

dt
=

z1 � z

z⌧
689

z1 =
1

1 + (0.00043/[Ca2+]i)4.8
, z⌧ = 1

11.3 Training Details690

Dataset The dataset used to fit the model was a subset of the stimulus/response pairs available691

from the Allen Institute. First, all stimuli and responses were downloaded for cell 480169178. Then,692

sections of length 200 milliseconds were extracted from a subset of the stimuli types. The stimuli693

types and sections were chosen so that the neuron was at rest and unstimulated at the beginning of694

the trace. We list the exclusion criteria below.695

1. Any “Hold” stimuli: Excluded because these traces were collected under voltage clamp696

conditions which we did not model.697

2. Test: Excluded because the stimulus is 0 mV for the entire trace.698

3. Ramp/Ramp to Rheobase: Excluded because the cell is only at rest at the very beginning of699

the trace.700

4. Short Square: 250 ms to 450 ms.701

5. Short Square — Triple: 1250 ms to 1450 ms.702

6. Noise 1 and Noise 2: 1250 ms to 1450 ms, 9250 ms to 9450 ms, 17250 ms to 17450 ms.703

7. Long Square: 250 ms to 450 ms.704

8. Square — 0.5ms Subthreshold: The entire trace.705

9. Square — 2s Suprathreshold: 250 ms to 450 ms.706

10. All others: Excluded.707

For cell 480169178, the criteria above selected 95 stimulus/response pairs of 200 milliseconds each.708

Each trace pair was then downsampled to 1 ms (from the original 0.005 ms per step) and corrupted709

with mean-zero Gaussian noise of variance 20 mV2 to simulate voltage imaging conditions. Finally,710

the 95 traces were randomly split into 72 training traces and 23 test traces.711

Proposal and Twist The proposal and twist hyperparameters were broadly similar to the squid712

axon experiments, with the proposal being parameterized by a bidirectional RNN with a single hidden713

layer of size 64 and an MLP with a single hidden layer of size 64. The RNN was conditioned on the714

observed response and stimulus voltages at each timestep, and the MLP accepted the RNN hidden715

state, the previous latent state, and a transformer positional encoding of the number of steps since716

24



the last voltage response observation. The twist was similarly parameterized using an RNN run in717

reverse across the stimulus and response, combined with an MLP that accepted the RNN hidden718

state, the latent state being evaluated, and a transformer positional encoding of the number of steps719

elapsed since the last voltage response observation. The positional encodings were used to inform the720

twist and proposal of the number of steps elapsed since the last observation because the model was721

integrated with a stepsize of 0.1ms while observations were received once every millisecond.722

Hyperparameter Sweeps To evaluate the methods we swept across the parameters723

1. Initial observation variance: e2, e3, e5724

2. Initial voltage dynamics variance: e, e2, e3725

3. Bias added to scales produced by the proposal: e2, e5726

We also evaluated the models across three different data noise variances (20, 10, and 5) but the results727

were similar for all values, so we reported only the results for variance 20. This amounted to 3 ·3 ·3 ·2728

different hyperparameter settings, and 5 seeds were run for each setting yielding a total of 270 runs.729

When computing final performance, a hyperparameter setting was only evaluated if it had at least730

3 runs that achieved 250,000 steps without NaN-ing out. For each hyperparameter setting selected731

for evaluation, all successful seeds were evaluated using early stopping on the train 4-particle log732

likelihood lower bound.733

12 Strang Splitting for Hodgkin-Huxley Models734

Because the Hodgkin-Huxley model is a stiff ODE, integrating it can be a challenge, especially at735

large step sizes. The traditional solution is to use an implicit integration scheme with varying step736

size, allowing the algorithm to take large steps when the voltage is not spiking. However, because our737

model adds noise to the ODE state at each timestep adaptive step-size methods are not viable as the738

different stepsizes would change the noise distribution.739

Instead, we sought an explicit, fixed step-size method that could be stably integrated at relatively740

large stepsizes. Inspired by Chen et al. [2020], we developed a splitting approach that exploits the741

conditional linearity of the system. The system of ODEs describing the model can be split into742

two subsystems of linear first-order ODEs when conditioned on the state of the other subsystem.743

Specifically, the dynamics of the channel subunit states {�c | c 2 C} is a system of linear first-order744

ODEs when conditioned on the voltage v and interior calcium concentration [Ca2+]i. Similarly, the745

dynamics for v and [Ca2+]i is a system of linear first-order ODEs when conditioned on the subunit746

states.747

Because the conditional dynamics of each subsystem are linear first-order ODEs, an exact solution to748

each subsystem is possible under the assumption that the states being conditioned on are constant for749

the duration of the step. Our integration approach uses these exact updates in an alternating fashion,750

first performing an exact update to the voltage and interior calcium concentration while holding the751

subunit states constant, and then performing an exact update to the subunit states while holding the752

voltage and interior calcium concentration constant. For details on Strang and other splitting methods753

applied to Hodgkin-Huxley type ODEs, see Chen et al. [2020].754
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