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Abstract

Learning with noisy labels (LNL) poses a significant challenge in training a well-
generalized model while avoiding overfitting to corrupted labels. Recent advances
have achieved impressive performance by identifying clean labels and correcting
corrupted labels for training. However, the current approaches rely heavily on
the models predictions and evaluate each sample independently without consid-
ering either the global or local structure of the sample distribution. These lim-
itations typically result in a suboptimal solution for the identification and cor-
rection processes, which eventually leads to models overfitting to incorrect la-
bels. In this paper, we propose a novel optimal transport (OT) formulation, called
Curriculum and Structure-aware Optimal Transport (CSOT). CSOT concurrently
considers the inter- and intra-distribution structure of the samples to construct a
robust denoising and relabeling allocator. During the training process, the allo-
cator incrementally assigns reliable labels to a fraction of the samples with the
highest confidence. These labels have both global discriminability and local co-
herence. Notably, CSOT is a new OT formulation with a nonconvex objective
function and curriculum constraints, so it is not directly compatible with clas-
sical OT solvers. Here, we develop a lightspeed computational method that in-
volves a scaling iteration within a generalized conditional gradient framework
to solve CSOT efficiently. Extensive experiments demonstrate the superiority
of our method over the current state-of-the-arts in LNL. Code is available at
https://github.com/changwxx/CSOT-for-LNL.

1 Introduction

Deep neural networks (DNNs) have significantly boosted performance in various computer vision
tasks, including image classification [33], object detection [61], and semantic segmentation [32].
However, the remarkable performance of deep learning algorithms heavily relies on large-scale high-
quality human annotations, which are extremely expensive and time-consuming to obtain. Alterna-
tively, mining large-scale labeled data based on a web search and user tags [49, 37] can provide a
cost-effective way to collect labels, but this approach inevitably introduces noisy labels. Since DNNs
can so easily overfit to noisy labels [4, 79], such label noise can significantly degrade performance,
giving rise to a challenging task: learning with noisy labels (LNL) [50, 52, 46].

Numerous strategies have been proposed to mitigate the negative impact of noisy labels, including
loss correction based on transition matrix estimation [35], re-weighting [60], label correction [76]
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and sample selection [52]. Recent advances have achieved impressive performance by identifying
clean labels and correcting corrupted labels for training. However, current approaches rely heavily
on the models predictions to identify or correct labels even if the model is not yet sufficiently trained.
Moreover, these approaches often evaluate each sample independently, disregarding the global or
local structure of the sample distribution. Hence, the identification and correction process results in
a suboptimal solution which eventually leads to a model overfitting to incorrect labels.

In light of the limitations of distribution modeling, optimal transport (OT) offers a promising solution
by optimizing the global distribution matching problem that searches for an efficient transport plan
from one distribution to another. To date, OT has been applied in various machine learning tasks
[11, 83, 28]. In particular, OT-based pseudo-labeling [11, 73] attempts to map samples to class
centroids, while considering the inter-distribution matching of samples and classes. However, such
an approach could also produce assignments that overlook the inherent coherence structure of the
sample distribution, i.e. intra-distribution coherence. More specifically, the cost matrix in OT relies
on pairwise metrics, so two nearby samples could be mapped to two far-away class centroids (Fig.
1).

In this paper, to enhance intra-distribution coherence, we propose a new OT formulation for denois-
ing and relabeling, called Structure-aware Optimal Transport (SOT). This formulation fully consid-
ers the intra-distribution structure of the samples and produces robust assignments with both global
discriminability and local coherence. Technically speaking, we introduce local coherent regularized
terms to encourage both prediction- and label-level local consistency in the assignments. Further-
more, to avoid generating incorrect labels in the early stages of training or cases with high noise
ratios, we devise Curriculum and Structure-aware Optimal Transport (CSOT) based on SOT. CSOT
constructs a robust denoising and relabeling allocator by relaxing one of the equality constraints to
allow only a fraction of the samples with the highest confidence to be selected. These samples are
then assigned with reliable pseudo labels. The allocator progressively selects and relabels batches of
high-confidence samples based on an increasing budget factor that controls the number of selected
samples. Notably, CSOT is a new OT formulation with a nonconvex objective function and curricu-
lum constraints, so it is significantly different from the classical OT formulations. Hence, to solve
CSOT efficiently, we developed a lightspeed computational method that involves a scaling iteration
within a generalized conditional gradient framework [59].

Our contribution can be summarized as follows: 1) We tackle the denoising and relabeling problem
in LNL from a new perspective, i.e. simultaneously considering the inter- and intra-distribution
structure for generating superior pseudo labels using optimal transport. 2) To fully consider the in-
trinsic coherence structure of sample distribution, we propose a novel optimal transport formulation,
namely Curriculum and Structure-aware Optimal Transport (CSOT), which constructs a robust de-
noising and relabeling allocator that mitigates error accumulation. This allocator selects a fraction
of high-confidence samples, which are then assigned reliable labels with both global discriminabil-
ity and local coherence. 3) We further develop a lightspeed computational method that involves a
scaling iteration within a generalized conditional gradient framework to efficiently solve CSOT. 4)
Extensive experiments demonstrate the superiority of our method over state-of-the-art methods in
LNL.

2 Related Work

Learning with noisy labels. LNL is a well-studied field with numerous strategies having been pro-
posed to solve this challenging problem, such as robust loss design [82, 70], loss correction [35, 56],
loss re-weighting [60, 80] and sample selection [52, 31, 41]. Currently, the methods that are deliv-
ering superior performance mainly involve learning from both selected clean labels and relabeled
corrupted labels [46, 45]. The mainstream approaches for identifying clean labels typically rely on
the small-loss criterion [31, 77, 71, 14]. These methods often model per-sample loss distributions us-
ing a Beta Mixture Model [51] or a Gaussian Mixture Model [57], treating samples with smaller loss
as clean ones [3, 71, 46]. The label correction methods, such as PENCIL [76], Selfie [63], ELR [50],
and DivideMix [46], typically adopt a pseudo-labeling strategy that leverages the DNNs predictions
to correct the labels. However, these approaches evaluate each sample independently without con-
sidering the correlations among samples, which leads to a suboptimal identification and correction
solution. To this end, some work [55, 45] attempt to leverage k-nearest neighbor predictions [6] for
clean identification and label correction. Besides, to further select and correct noisy labels robustly,
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OT Cleaner [73], as well as concurrent OT-Filter [23], designed to consider the global sample distri-
bution by formulating pseudo-labeling as an optimal transport problem. In this paper, we propose
CSOT to construct a robust denoising and relabeling allocator that simultaneously considers both
the global and local structure of sample distribution so as to generate better pseudo labels.

Optimal transport-based pseudo-labeling. OT is a constrained optimization problem that aims
to find the optimal coupling matrix to map one probability distribution to another while minimiz-
ing the total cost [40]. OT has been formulated as a pseudo-labeling (PL) technique for a range
of machine learning tasks, including class-imbalanced learning [44, 28, 68], semi-supervised learn-
ing [65, 54, 44], clustering [5, 11, 25], domain adaptation [83, 12], label refinery [83, 68, 73, 23],
and others. Unlike prediction-based PL [62], OT-based PL optimizes the mapping samples to class
centroids, while considering the global structure of the sample distribution in terms of marginal con-
straints instead of per-sample predictions. For example, Self-labelling [5] and SwAV [11], which are
designed for self-supervised learning, both seek an optimal equal-partition clustering to avoid the
models collapse. In addition, because OT-based PL considers marginal constraints, it can also con-
sider class distribution to solve class-imbalance problems [44, 28, 68]. However, these approaches
only consider the inter-distribution matching of samples and classes but do not consider the intra-
distribution coherence structure of samples. By contrast, our proposed CSOT considers both the
inter- and intra-distribution structure and generates superior pseudo labels for noise-robust learning.

Curriculum learning. Curriculum learning (CL) attempts to gradually increase the difficulty of
the training samples, allowing the model to learn progressively from easier concepts to more com-
plex ones [42]. CL has been applied to various machine learning tasks, including image classifica-
tion [38, 84], and reinforcement learning [53, 2]. Recently, the combination of curriculum learning
and pseudo-labeling has become popular in semi-supervised learning. These methods mainly focus
on dynamic confident thresholding [69, 29, 75] instead of adopting a fixed threshold [62]. Flex-
match [78] designs class-wise thresholds and lowers the thresholds for classes that are more difficult
to learn. Different from dynamic thresholding approaches, SLA [65] only assigns pseudo labels
to easy samples gradually based on an OT-like problem. In the context of LNL, CurriculumNet
[30] designs a curriculum by ranking the complexity of the data using its distribution density in a
feature space. Alternatively, RoCL [85] selects easier samples considering both the dynamics of
the per-sample loss and the output consistency. Our proposed CSOT constructs a robust denois-
ing and relabeling allocator that gradually assigns high-quality labels to a fraction of the samples
with the highest confidence. This encourages both global discriminability and local coherence in
assignments.

3 Preliminaries

Optimal transport. Here we briefly recap the well-known formulation of OT. Given two proba-
bility simplex vectors α and β indicating two distributions, as well as a cost matrix C ∈ R|α|×|β|,
where |α| denotes the dimension of α, OT aims to seek the optimal coupling matrix Q by minimiz-
ing the following objective

min
Q∈Π(α,β)

⟨C,Q⟩ , (1)

where ⟨·, ·⟩ denote Frobenius dot-product. The coupling matrix Q satisfies the polytope Π(α,β) ={
Q ∈ R|α|×|β|

+ |Q1|β| = α, Q⊤1|α| = β
}

, where α and β are essentially marginal probability
vectors. Intuitively speaking, these two marginal probability vectors can be interpreted as coupling
budgets, which control the mapping intensity of each row and column in Q.

Pseudo-labeling based on optimal transport. Let P ∈ RB×C
+ denote classifier softmax predic-

tions, where B is the batch size of samples, and C is the number of classes. The OT-based PL
considers mapping samples to class centroids and the cost matrix C can be formulated as − logP
[65, 68]. We can rewrite the objective for OT-based PL based on Problem (1) as follows

min
Q∈Π( 1

B 1B , 1
C 1C)

⟨− logP,Q⟩ , (2)

where 1d indicates a d-dimensional vector of ones. The pseudo-labeling matrix can be obtained by
normalization: BQ. Unlike prediction-based PL [62] which evaluates each sample independently,
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Figure 1: (Top) Comparison between classical OT and our proposed Structure-aware OT. Clas-
sical OT tends to mismatch two nearby samples to two far-away class centroids when the decision
boundary is not accurate enough. To mitigate this, our SOT generates local consensus assignments
for each sample by preserving prediction-level and label-level consistency. Notably, for vague sam-
ples located near the ambiguous decision boundary, SOT rectifies their assignments based on the
neighborhood majority consistency. (Bottom) The illustration of our curriculum denoising and
relabeling based on proposed CSOT. The decision boundary refers to the surface that separates
two classes by the classifier. The m represents the curriculum budget that controls the number of
selected samples and progressively increases during the training process.

OT-based PL considers inter-distribution matching of samples and classes, as well as the global
structure of sample distribution, thanks to the equality constraints.

Sinkhorn algorithm for classical optimal transport problem. Directly optimizing the exact
OT problem would be time-consuming, and an entropic regularization term is introduced [19]:
minQ∈Π(α,β) ⟨C,Q⟩+ ε ⟨Q, logQ⟩ , where ε > 0. The entropic regularization term enables OT to
be approximated efficiently by the Sinkhorn algorithm [19], which involves matrix scaling iterations
executed efficiently by matrix multiplication on GPU.

4 Methodology

Problem setup. Let Dtrain = {(xi, yi)}Ni=1 denote the noisy training set, where xi is an image
with its associated label yi over C classes, but whether the given label is accurate or not is unknown.
We call the correctly-labeled ones as clean, and the mislabeled ones as corrupted. LNL aims to train
a network that is robust to corrupted labels and achieves high accuracy on a clean test set.

4.1 Structure-Aware Optimal Transport for Denoising and Relabeling

Even though existing OT-based PL considers the global structure of sample distribution, the intrinsic
coherence structure of the samples is ignored. Specifically, the cost matrix in OT relies on pairwise
metrics and thus two nearby samples could be mapped to two far-away class centroids. To further
consider the intrinsic coherence structure, we propose a Structure-aware Optimal Transport (SOT)
for denoising and relabeling, which promotes local consensus assignment by encouraging prediction-
level and label-level consistency, as shown in Fig. 1.

Our proposed SOT for denoising and relabeling is formulated by adding two local coherent regular-
ized terms based on Problem (2). Given a cosine similarity S ∈ RB×B among samples in feature
space, a one-hot label matrix L ∈ RB×C transformed from given noisy labels, and a softmax pre-
diction matrix P ∈ RB×C

+ , SOT is formulated as follows

min
Q∈Π( 1

B 1B , 1
C 1C)

⟨− logP,Q⟩+ κ
(
ΩP(Q) + ΩL(Q)

)
, (3)
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where the local coherent regularized terms ΩP and ΩL encourages prediction-level and label-level
local consistency respectively, and are defined as follows

ΩP(Q) = −
∑
i,j

Sij

∑
k

PikPjkQikQjk = −
〈
S, (P⊙Q) (P⊙Q)

⊤
〉
, (4)

ΩL(Q) = −
∑
i,j

Sij

∑
k

LikLjkQikQjk = −
〈
S, (L⊙Q) (L⊙Q)

⊤
〉
, (5)

where⊙ indicates element-wise multiplication. To be more specific, ΩP encourages assigning larger
weight to Qik and Qjk if the i-th sample is very close to the j-th sample, and their predictions Pik

and Pjk from the k-th class centroid are simultaneously high. Analogously, ΩL encourages assign-
ing larger weight to those samples whose neighborhood label consistency is rather high. Unlike the
formulation proposed in [1, 16], which focuses on sample-to-sample mapping, our method intro-
duces a sample-to-class mapping that leverages the intrinsic coherence structure within the samples.

4.2 Curriculum and Structure-Aware Optimal Transport for Denoising and Relabeling

In the early stages of training or in scenarios with a high noise ratio, the predictions and feature
representation would be vague and thus lead to the wrong assignments for SOT. For the purpose of
robust clean label identification and corrupted label correction, we further propose a Curriculum and
Structure-aware Optimal Transport (CSOT), which constructs a robust curriculum allocator. This
curriculum allocator gradually selects a fraction of the samples with high confidence from the noisy
training set, controlled by a budget factor, then assigns reliable pseudo labels for them.

Our proposed CSOT for denoising and relabeling is formulated by introducing new curriculum con-
straints based on SOT in Problem (3). Given curriculum budget factor m ∈ [0, 1], our CSOT seeks
optimal coupling matrix Q by minimizing following objective

min
Q
⟨− logP,Q⟩+ κ

(
ΩP(Q) + ΩL(Q)

)
s.t. Q ∈

{
Q ∈ RB×C

+ |Q1C ≤
1

B
1B ,Q

⊤1B =
m

C
1C

}
.

(6)

Unlike SOT, which enforces an equality constraint on the samples, CSOT relaxes this constraint
and defines the total coupling budget as m ∈ [0, 1], where m represents the expected total sum of
Q. Intuitively speaking, m = 0.5 indicates that top 50% confident samples are selected from all
the classes, avoiding only selecting the same class for all the samples within a mini-batch. And the
budget m progressively increases during the training process, as shown in Fig. 1.

Based on the optimal coupling matrix Q solved from Problem (6), we can obtain pseudo label by
argmax operation, i.e. ŷi = argmaxj Qij . In addition, we define the general confident scores of
samples asW = {w0, w1, · · · , wB−1}, where wi = Qiŷi

/(m/C). Since our curriculum allocator
assigns weight to only a fraction of samples controlled by m, we use topK(S ,k) operation (return
top-k indices of input set S) to identify selected samples denoted as δi

δi =

{
1, i ∈ topK(W, ⌊mB⌋)
0, otherwise

, (7)

where ⌊·⌋ indicates the round down operator. Then the noisy dataset Dtrain can be splited into
Dclean and Dcorrupted as follows

Dclean ← {(xi, yi, wi)|ŷi = yi, δi = 1, (xi, yi) ∈ Dtrain} ,
Dcorrupted ← {(xi, ŷi, wi)|ŷi ̸= yi, (xi, yi) ∈ Dtrain} .

(8)

4.3 Training Objectives

To avoid error accumulation in the early stage of training, we adopt a two-stage training scheme. In
the first stage, the model is supervised by progressively selected clean labels and self-supervised by
unselected samples. In the second stage, the model is semi-supervised by all denoised labels. No-
tably, we construct our training objective mainly based on Mixup loss Lmix and Label consistency
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loss Llab same as NCE [45], and a self-supervised loss Lsimsiam proposed in SimSiam [15]. The
detailed formulations of mentioned loss and training process are given in Appendix. Our two-stage
training objective can be constructed as follows

Lsup = Lmix
Dclean

+ Llab
Dclean

+ λ1Lsimsiam
Dcorrupted

, (9)

Lsemi = Lmix
Dclean

+ Llab
Dclean

+ λ2Llab
Dcorrupted

. (10)

5 Lightspeed Computation for CSOT

The proposed CSOT is a new OT formulation with nonconvex objective function and curriculum
constraints, which cannot be solved directly by classical OT solvers. To this end, we develop a
lightspeed computational method that involves a scaling iteration within a generalized conditional
gradient framework to solve CSOT efficiently. Specifically, we first introduce an efficient scaling iter-
ation for solving the OT problem with curriculum constraints without considering the local coherent
regularized terms, i.e. Curriculum OT (COT). Then, we extend our approach to solve the proposed
CSOT problem, which involves a nonconvex objective function and curriculum constraints.

5.1 Solving Curriculum Optimal Transport

For convenience, we formulate curriculum constraints in Probelm (6) in a more general form. Given
two vectors α and β that satisfy ∥α∥1 ≥ ∥β∥1 = m, a general polytope of curriculum constraints
Πc(α,β) is formulated as

Πc(α,β) =
{
Q ∈ R|α|×|β|

+ |Q1|β| ≤ α,Q⊤1|α| = β
}
. (11)

For the efficient computation purpose, we consider an entropic regularized version of COT

min
Q∈Πc(α,β)

⟨C,Q⟩+ ε ⟨Q, logQ⟩ , (12)

where we denote the cost matrix C := − logP in Probelm (6) for simplicity. In-
spired by [8], Problem (12) can be easily re-written as the Kullback-Leibler (KL) projection:
minQ∈Πc(α,β) εKL(Q|e−C/ε). Besides, the polytope Πc(α,β) can be expressed as an intersec-
tion of two convex but not affine sets, i.e.

C1
def
=
{
Q ∈ R|α|×|β|

+ |Q1|β| ≤ α
}

and C2
def
=
{
Q ∈ R|α|×|β|

+ |Q⊤1|α| = β
}
. (13)

In light of this, Problem (12) can be solved by performing iterative KL projection between C1 and
C2, namely Dykstra’s algorithm [21] shown in Appendix.
Lemma 1. (Efficient scaling iteration for Curriculum OT) When solving Problem (12) by iterating
Dykstra’s algorithm, the matrix Q(n) at n iteration is a diagonal scaling of K := e−C/ε, which is
the element-wise exponential matrix of −C/ε:

Q(n) = diag
(
u(n)

)
Kdiag

(
v(n)

)
, (14)

where the vectors u(n) ∈ R|α|, v(n) ∈ R|β| satisfy v(0) = 1|β| and follow the recursion formula

u(n) = min
( α

Kv(n−1)
,1|α|

)
and v(n) =

β

K⊤u(n)
. (15)

The proof is given in the Appendix. Lemma 1 allows a fast implementation of Dykstra’s algorithm by
only performing matrix-vector multiplications. This scaling iteration for entropic regularized COT
is very similar to the widely-used and efficient Sinkhorn Algorithm [19], as shown in Algorithm 1.

5.2 Solving Curriculum and Structure-Aware Optimal Transport

In the following, we propose to solve CSOT within a Generalized Conditional Gradient (GCG)
algorithm [59] framework, which strongly relies on computing Curriculum OT by scaling iterations
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Algorithm 1 Efficient scaling iteration for entropic regularized Curriculum OT

1: Input: Cost matrix C, marginal constraints vectors α and β, entropic regularization weight ε
2: Initialize: K← e−C/ε, v(0) ← 1|β|

3: Compute: Kα ← K
diag(α)1|α|×|β|

, K⊤
β ← K⊤

diag(β)1|β|×|α|
// Saving computation

4: for n = 1, 2, 3, . . . do
5: u(n) ← min

(
1|α|

Kαv(n−1) ,1|α|

)
6: v(n) ← 1|β|

K⊤
β u(n)

7: end for
8: Return: diag(u(n))Kdiag(v(n))

in Algorithm 1. The conditional gradient algorithm [27, 36] has been used for some penalized OT
problems [24, 17] or nonconvex Gromov-Wasserstein distances [58, 67, 13], which can be used to
solve Problem (3) directly.

For simplicity, we denote the local coherent regularized terms as Ω(·) := ΩP(·) + ΩL(·), and give
an entropic regularized CSOT formulation as follows:

min
Q∈Πc(α,β)

⟨C,Q⟩+ κΩ(Q) + ε ⟨Q, logQ⟩ . (16)

Since the local coherent regularized term ΩP(·) is differentiable, Problem (16) can be solved within
the GCG algorithm framework, shown in Algorithm 2. And the linearization procedure in Line 5
can be computed efficiently by the scaling iteration proposed in Sec 5.1.

Algorithm 2 Generalized conditional gradient algorithm for entropic regularized CSOT

1: Input: Cost matrix C, marginal constraints vectors α and β, entropic regularization weight ε,
local coherent regularization weight κ, local coherent regularization function Ω : R|α|×|β| → R,
and its gradient function ∇Ω : R|α|×|β| → R|α|×|β|

2: Initialize: Q(0) ← αβT

3: for i = 1, 2, 3, . . . do
4: G(i) ← Q(i) + κ∇Ω(Q(i)) // Gradient computation
5: Q̃(i) ← argminQ∈Πc(α,β)

〈
Q,G(i)

〉
+ ε ⟨Q, logQ⟩

// Linearization, solved efficiently by Algorithm 1
6: Choose η(i) ∈ [0, 1] so that it satisfies the Armijo rule // Backtracking line-search
7: Q(i+1) ←

(
1− η(i)

)
Q(i) + η(i)Q̃(i) // Update

8: end for
9: Return: Q(i)

6 Experiments

6.1 Implementation Details

We conduct experiments on three standard LNL benchmark datasets: CIFAR-10 [43], CIFAR-100
[43] and Webvision [49]. We follow most implementation details from the previous work DivideMix
[46] and NCE [45]. Here we provide some specific details of our approach. The warm-up epochs
are set to 10/30/10 for CIFAR-10/100/Webvision respectively. For CIFAR-10/100, the supervised
learning epoch Tsup is set to 250, and the semi-supervised learning epoch Tsemi is set to 200. For
Webvision, Tsup = 80 and Tsemi = 70. For all experiments, we set λ1 = 1, λ2 = 1, ε = 0.1, κ = 1.
And we adopt a simple linear ramp for curriculum budget, i.e. m = min(1.0,m0 +

t−1
Tsup−1 ) with

an initial budget m0 = 0.3. For the GCG algorithm, the number of outer loops is set to 10, and the
number for inner scaling iteration is set to 100. The batch size B for denoising and relabeling is set
to 1024. More details will be provided in Appendix.
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Table 1: Comparison with state-of-the-art methods in test accuracy (%) on CIFAR-10 and
CIFAR-100. The results are mainly copied from [45, 48]. We present the performance of our CSOT
method using the "mean±variance" format, which is obtained from 3 trials with different seeds.

Dataset CIFAR-10 CIFAR-100
Noise type Symmetric Assymetric Symmetric

Method/Noise ratio 0.2 0.5 0.8 0.9 0.4 0.2 0.5 0.8 0.9

Cross-Entropy 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
F-correction [56] 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2

Co-teaching+ [31] 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
PENCIL [76] 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3

DivideMix [46] 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
ELR [50] 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4
NGC [72] 95.9 94.5 91.6 80.5 90.6 79.3 75.9 62.7 29.8
RRL [48] 96.4 95.3 93.3 77.4 92.6 80.3 76.0 61.1 33.1

MOIT [55] 93.1 90.0 79.0 69.6 92.0 73.0 64.6 46.5 36.0
UniCon [41] 96.0 95.6 93.9 90.8 94.1 78.9 77.6 63.9 44.8

NCE [45] 96.2 95.3 93.9 88.4 94.5 81.4 76.3 64.7 41.1

OT Cleaner [73] 91.4 85.4 56.9 - - 67.4 58.9 31.2 -
OT-Filter [23] 96.0 95.3 94.0 90.5 95.1 76.7 73.8 61.8 42.8

CSOT (Best) 96.6±0.10 96.2±0.11 94.4±0.16 90.7±0.33 95.5±0.06 80.5±0.28 77.9±0.18 67.8±0.23 50.5±0.46
CSOT (Last) 96.4±0.18 96.0±0.11 94.3±0.20 90.5±0.36 95.2±0.12 80.2±0.31 77.7±0.14 67.6±0.36 50.3±0.33

Table 2: Comparison with SOTA methods in
top-1 / 5 test accuracy (%) on the Webvision
and ImageNet ILSVRC12 validation sets.

Webvision ILSVRC12
Method top-1 top-5 top-1 top-5

F-correction [56] 61.12 82.68 57.36 82.36
Decoupling [52] 62.54 84.74 58.26 82.26
MentorNet [39] 63.00 81.40 57.80 79.92

Co-teaching [31] 63.58 85.20 61.48 84.70
DivideMix [46] 77.32 91.64 75.20 90.84

ELR [50] 76.26 91.26 68.71 87.84
ELR+ [50] 77.78 91.68 70.29 89.76
NGC [72] 79.20 91.80 74.40 91.00
RRL [48] 77.80 91.30 74.40 90.90

UniCon [41] 77.60 93.44 75.29 93.72
MOIT [55] 77.90 91.90 73.80 91.70

NCE [45] 79.50 93.80 76.30 94.10

CSOT 79.67 91.95 76.64 91.67

Table 3: Time cost (s) for solving CSOT op-
timization problem of different input sizes.
VDA indicates vanilla Dykstras algorithm-
based CSOT solver, while ESI indicates the effi-
cient scaling iteration-based solver.

(|α|, |β|) VDA-based ESI-based (Ours)
(1024,10) 0.83 0.82 ↓
(1024,50) 1.00 0.80 ↓
(1024,100) 0.87 0.80 ↓
(50,50) 0.82 0.79 ↓
(100,100) 0.88 0.80 ↓
(500,500) 0.88 0.87 ↓
(1000,1000) 0.94 0.81 ↓
(2000,2000) 2.11 0.98 ↓
(3000,3000) 3.74 0.99 ↓

6.2 Comparison with the State-of-the-Arts

Synthetic noisy datasets. Our method is validated on two synthetic noisy datasets, i.e. CIFAR-
10 [43] and CIFAR-100 [43]. Following [46, 45], we conduct experiments with two types of label
noise: symmetric and asymmetric. Symmetric noise is injected by randomly selecting a percentage
of samples and replacing their labels with random labels. Asymmetric noise is designed to mimic
the pattern of real-world label errors, i.e. labels are only changed to similar classes (e.g. cat↔dog).
As shown in Tab. 1, our CSOT has surpassed all the state-of-the-art works across most of the noise
ratios. In particular, our CSOT outperforms the previous state-of-the-art method NCE [45] by 2.3%,
3.1% and 9.4% under a high noise rate of CIFAR-10 sym-0.8, CIFAR-100 sym-0.8/0.9, respectively.

Real-world noisy datasets. Additionally, we conduct experiments on a large-scale dataset with
real-world noisy labels, i.e. WebVision [49]. WebVision contains 2.4 million images crawled from
the web using the 1,000 concepts in ImageNet ILSVRC12 [20]. Following previous works [46, 45],
we conduct experiments only using the first 50 classes of the Google image subset for a total of
∼61,000 images. As shown in Tab. 2, our CSOT surpasses other methods in top-1 accuracy on both
Webvision and ILSVRC12 validation sets, demonstrating its superior performance in dealing with
real-world noisy datasets. Even though NCE achieves better top-5 accuracy, it suffers from high
time costs (using a single NVIDIA A100 GPU) due to the co-training scheme, as shown in Tab. S5.

8



Table 4: Ablation studies under multiple label noise ratios on CIFAR-10 and CIFAR-100.
"repl." is an abbreviation for "replaced", and Lce represents a cross-entropy loss. GMM refers
to the selection of clean labels based on small-loss criterion [46]. CT (confidence thresholding [62])
is a relabeling scheme where we set the CT value to 0.95.

Dataset CIFAR-10 CIFAR-100
AvgNoise type Sym. Asym. Sym.

Method/Noise ratio 0.5 0.8 0.9 0.4 0.5 0.8 0.9

Denoise
Relabeling
Technique

(a) Classical OT 95.45 91.95 82.35 95.04 75.96 62.46 43.28 78.07
(b) Structure-aware OT 95.86 91.87 83.29 95.06 76.20 63.73 44.57 78.65
(c) CSOT w/o ΩP and ΩL 95.53 93.84 89.50 95.14 75.96 66.50 47.55 80.57
(d) CSOT w/o ΩP 95.77 94.08 89.97 95.35 76.09 66.79 48.13 80.88
(e) CSOT w/o ΩL 95.55 93.97 90.41 95.15 76.17 67.28 48.01 80.93

Learning
Technique

(f) GMM + Lsup 92.48 80.37 31.76 90.80 69.52 48.49 20.86 62.04
(g) CSOT repl. Lsup with Lce 93.47 81.93 53.45 91.43 72.66 50.62 21.77 66.48
(h) CSOT w/o Lsemi 95.34 93.04 88.9 94.11 75.16 61.13 36.94 77.80
(i) CSOT repl. correction with CT (0.95) 95.46 90.73 89.09 95.21 75.85 64.28 48.76 79.91
(j) CSOT w/o Lsimsiam

Dcorrupted
95.92 94.17 89.31 95.16 76.38 66.17 45.56 80.38

CSOT 96.20 94.39 90.65 95.50 77.94 67.78 50.50 81.85

6.3 Ablation Studies and Analysis

Effectiveness of CSOT-based denoising and relabeling. To verify the effectiveness of each com-
ponent in our CSOT, we conduct comprehensive ablation experiments, shown in Tab. 4. Compared
to classical OT, Structure-aware OT, and Curriculum OT, our proposed CSOT has achieved supe-
rior performance. Specifically, our proposed local coherent regularized terms ΩP and ΩQ indeed
contribute to CSOT, as demonstrated in Tab 4 (c)(d)(e). Furthermore, our proposed curriculum con-
straints yield an improvement of approximately 2% for both classical OT and structure-aware OT,
as shown in Tab 4 (a)(b)(c). Particularly, under high noise ratios, the improvement can reach up to
4%, which demonstrates the effectiveness of the curriculum relabeling scheme.

Effectiveness of clean labels identification via CSOT. As shown in Tab. 4 (f), replacing our
CSOT-based denoising and relabeling with GMM [46] for clean label identification significantly
degrades the model performance. This phenomenon can be explained by the clean accuracy during
training (Fig. 2a) and clean recall rate (Fig. 2c), in which our CSOT consistently outperforms
other methods in accurately retrieving clean labels, leading to significant performance improvements.
These experiments fully show that our CSOT can maintain both high quantity and high quality of
clean labels during training.

Effectiveness of corrupted labels correction via CSOT. As shown in Tab. 4 (h), only training
with identified clean labels leads to inferior model performance. Furthermore, replacing our CSOT-
based denoising and relabeling with confidence thresholding (CT) [62] for corrupted label correction
also degrades the model performance, as shown in Tab. 4 (i). The CT methods assign pseudo labels
to samples based on model prediction, which is unreliable in the early training stage, especially
under high noise rates. Our CSOT-based denoising and relabeling fully consider the inter- and intra-
distribution structure of samples, yielding more robust labels. Particularly, our CSOT outperforms
NCE and DivideMix significantly in label correction, as demonstrated by the superior corrected
accuracy in Fig. 2b and the improved clarity of the confusion matrix in Fig. S7.

Effectiveness of curriculum training scheme. According to the progressive clean and corrupted
accuracy during the training process shown in Fig. 2a and Fig. 2b, our curriculum identification
scheme ensures high accuracy in the early training stage, avoiding overfitting to wrong corrected
labels. Note that since our model is trained using only a fraction of clean samples, it is crucial to
employ a powerful supervised learning loss to facilitate better learning. Otherwise, the performance
will be poor without the utilization of a powerful supervised training loss, as evidenced in Tab.
4 (g). In addition, the incorporation of self-supervised loss enhances noise-robust representation,
particularly in high noise rate scenarios, as demonstrated in our experiments in Tab. 4 (j).

Time cost discussion for solving CSOT To verify the efficiency of our proposed lightspeed scal-
ing iteration, we conduct some experiments for solving CSOT optimization problem of different
input sizes on a single GPU NVIDIA A100. As demonstrated in Tab. 3, our proposed lightspeed
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Figure 2: Performance comparison for clean label identification and corrupted label correc-
tion.

computational method that involves an efficient scaling iteration (Algorithm 1) achieves lower time
cost compared to vanilla Dykstras algorithm (Algorithm S6). Specifically, compared to the vanilla
Dykstra-based approach, our efficient scaling iteration version can achieve a speedup of up to 3.7
times, thanks to efficient matrix-vector multiplication instead of matrix-matrix multiplication. More-
over, even for very large input sizes, the computational time cost does not increase significantly.

7 Conclusion and Limitation

In this paper, we proposed Curriculum and Structure-aware Optimal Transport (CSOT), a novel so-
lution to construct robust denoising and relabeling allocator that simultaneously considers the inter-
and intra-distribution structure of samples. Unlike current approaches, which rely solely on the
model’s predictions, CSOT considers the global and local structure of the sample distribution to
construct a robust denoising and relabeling allocator. During the training process, the allocator as-
signs reliable labels to a fraction of the samples with high confidence, ensuring both global discrim-
inability and local coherence. To efficiently solve CSOT, we developed a lightspeed computational
method that involves a scaling iteration within a generalized conditional gradient framework. Exten-
sive experiments on three benchmark datasets validate the efficacy of our proposed method. While
class-imbalance cases are not considered in this paper within the context of LNL, we believe that
our approach can be further extended for this purpose.
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