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Abstract

Mislabeled, duplicated, or biased data in real-world scenarios can lead to prolonged
training and even hinder model convergence. Traditional solutions prioritizing
easy or hard samples lack the flexibility to handle such a variety simultaneously.
Recent work has proposed a more reasonable data selection principle by examin-
ing the data’s impact on the model’s generalization loss. However, its practical
adoption relies on less principled approximations and additional holdout data. This
work solves these problems by leveraging a lightweight Bayesian treatment and
incorporating off-the-shelf zero-shot predictors built on large-scale pre-trained
models. The resulting algorithm is efficient and easy to implement. We perform
extensive empirical studies on challenging benchmarks with considerable data
noise and imbalance in the online batch selection scenario, and observe superior
training efficiency over competitive baselines. Notably, on the challenging Web-
Vision benchmark, our method can achieve similar predictive performance with
significantly fewer training iterations than leading data selection methods.

1 Introduction

The past year has witnessed significant breakthroughs in deep learning research and applications,
with Stable Diffusion [38], ChatGPT [32], and SAM [22] as representative examples. Practitioners
have realized that the quality of data used to fuel AI systems is critical in unlocking their full potential.
Unfortunately, real-world scenarios often present mislabeled, duplicated, or biased data. As a result,
it is paramount to develop methods that can prioritize valuable training data to enable more efficient
model training and even improved model convergence.

Data selection for accelerating the training of deep models is gaining increasing interest. Some
studies, such as curriculum learning, advocate prioritizing easy samples in the early training stages [1],
but these samples quickly become redundant once they have been learned, making continued training
on them a waste of time. On the other hand, online batch selection methods [26, 19, 17] prioritize
hard samples with high training loss or gradient norm to avoid duplicate training. Nevertheless, in
practice, the hardness of samples often arises from pathologies such as improper annotations, inherent
ambiguity, or unusual patterns, rendering it problematic to prioritize such samples [31].

The reducible hold-out loss selection (RHO-LOSS) approach [31] addresses these issues by quantify-
ing the usefulness of a sample based on its marginal influence on the model’s generalization loss,
forming a theoretically grounded and universal objective for data selection. However, the estimation
of this objective is non-trivial, and RHO-LOSS has to rely on less principled approximations for
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practical adoption. Besides, RHO-LOSS hinges on a considerable number of holdout data to train an
auxiliary validation model, which can be costly and should be performed repeatedly for new tasks.

This paper aims to bridge this gap to make the generalization loss-based data selection principle
more accessible to a broader audience. We establish a more reasonable approximation of the original
objective than RHO-LOSS while eliminating the need for holdout data. To achieve this, we derive a
lower bound of the objective to separate the posterior predictive defined on the training data from
that defined on the holdout data. Afterward, we propose to use off-the-shelf zero-shot predictors,
built upon large-scale pre-trained models [35, 41], as a proxy for the latter, since these models often
contain generally applicable information for solving specific downstream tasks.

We maintain a Bayesian treatment of the training model to ensure an accurate estimation of the
original objective. Bearing in mind that our original goal is to accelerate the training of a deterministic
model, we adopt the simple and effective Laplace approximation [29, 37, 8] for Bayesian inference.
It effortlessly converts point-estimate parameters to a Gaussian posterior. We further introduce
Kronecker-factored (KFAC) [30] and last-layer [23] approximations to accelerate the processing of
modern neural networks (NNs), resulting in an efficient and easy-to-implement algorithm.

We conduct comprehensive empirical studies on various benchmarks to evaluate the effectiveness of
our method. The experiments on standard image recognition tasks demonstrate that our approach can
outperform various baselines in aspects of training speed and final accuracy. This conclusion also
holds for learning with label noise and class imbalance. On the challenging WebVision [25] dataset,
which contains plenty of noisy labels and ambiguous images collected from the internet, our method
significantly reduces the number of training steps needed to reach the target accuracy and achieves up
to 19% higher final accuracy than prior arts (see Table 3). These results highlight the practical value
of our approach. In addition, we conduct informative ablation studies to gain a better understanding
of the behavior of our method.

2 Background

In this section, we briefly revisit the concept of online batch selection [26] and the data selection
principle defined with the model’s generalization loss in [31].

Consider training a θ-parameterized deep model fθ : X → Rk on a dataset D = {(xi, yi)}ni=1 using
stochastic gradient descent (SGD). The model likelihood is formally p(y|x, θ) = p(y|fθ(x)). At
each training step t, we can access a data batch Bt of size nB from D. In online batch selection, we
need to compute statistics of the samples in Bt and select only those that meet certain requirements
to update the model. This filtering process aims to remove samples that are deemed less valuable.

Let Dt−1 denote the set of data observed before t and (x′, y′) a sample from Bt. If we accept selecting
(x′, y′), the updated predictive distribution, in a Bayesian view, will be p(y|x,Dt−1, {(x′, y′)}) =
Ep(θ|Dt−1,{(x′,y′)})p(y|x, θ).2 The question arises how to estimate the quality of this distribution
to determine which sample (x′, y′) ∈ Bt should be selected. A natural tactic is to compare this
distribution to the ground truth data-generating distribution ṗ(x, y). That said, the typical KL
divergence can be introduced, and our goal becomes solving the following problem:

min
(x′,y′)∈Bt

Eṗ(x)

(
DKL

[
ṗ(y|x)∥p(y|x,Dt−1, {(x′, y′)})

])
= const.− Eṗ(x,y)

[
log p(y|x,Dt−1, {(x′, y′)})

]
,

(1)
where const. denotes a constant agnostic to the object to optimize. By applying Monte Carlo (MC)
estimation using extra holdout samples D∗ = {(x̃i, ỹi)}mi=1 from ṗ(x, y), we arrive at the following
optimization problem:

max
(x′,y′)∈Bt

1

m

m∑
i=1

[
log p(ỹi|x̃i,Dt−1, {(x′, y′)})

]
⇐⇒ max

(x′,y′)∈Bt

log p(D∗|Dt−1, {(x′, y′)}). (2)

This objective corresponds to the model’s generalization loss instead of the fitness of training data.

By Bayes’ rule, there is:

p(D∗|Dt−1, {(x′, y′)}) = p(y′|x′,D∗,Dt−1)p(x
′,D∗,Dt−1)

p(y′|x′,Dt−1)p(x′,Dt−1)
=

p(y′|x′,D∗,Dt−1)

p(y′|x′,Dt−1)
·p(D∗|Dt−1, x

′), (3)

2We assume selecting one single sample per time for simplicity. Multi-sample selection is viable.
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where the item p(D∗|Dt−1, x
′) actually equals to the constant p(D∗|Dt−1) because x′ alone cannot

incur model update. Plugging this back into Equation (2), we arrive at the final objective for data
selection:

max
(x,y)∈Bt

log p(y|x,D∗,Dt−1)− log p(y|x,Dt−1), (4)

where we omit constants and abuse (x, y) to represent (x′, y′) hereinafter if there is no misleading.

Although the above selection principle is theoretically sound and universally applicable, estimating it
accurately is challenging. In particular, it is difficult to estimate the posterior predictive distribution
defined with the combination of training and holdout data in a computationally efficient manner. To
address this issue, RHO-LOSS proposes approximating log p(y|x,D∗,Dt−1) with log p(y|x,D∗)
and approximating the posterior predictive with the point-estimate model’ predictions [31]. However,
these approximations compromise the method’s theoretical groundness, and access to holdout data can
often be infeasible in practice. Our approach overcomes these limitations by utilizing a lightweight
Bayesian treatment and incorporating off-the-shelf zero-shot predictors built on large-scale pre-trained
models, as detailed below.

3 Methodology

In this section, we demonstrate that the data selection principle discussed earlier can be lower-bounded
by more easily computable quantities. We then leverage these insights to develop a Bayesian data
selection approach to accelerating the training of deterministic deep models.

3.1 The Lower Bound

As previously discussed, we need to estimate two log-probabilities, log p(y|x,D∗,Dt−1) and
log p(y|x,Dt−1), for each sample in Bt to identify the most useful one and update the model
accordingly. However, as mentioned, evaluating the former is challenging. To address this issue, we
derive a lower bound that allows for a more feasible estimation.

We first unfold log p(y|x,D∗,Dt−1) as the combination of a posterior p(θ|D∗,Dt−1) and the model
likelihood p(y|x, θ), detailed below (we defer the derivation to Appendix):

log p(y|x,D∗,Dt−1) = log

ˆ
p(D∗|θ)p(θ|Dt−1)p(y|x, θ)dθ − log p(D∗|Dt−1). (5)

Then, by Jensen’s inequality, there is (derivation is deferred to Appendix)

log p(y|x,D∗,Dt−1) ≥ Ep(θ|Dt−1) log p(y|x, θ) + Ep(θ|Dt−1) log p(D
∗|θ)− log p(D∗|Dt−1).

(6)
Notably, the last two terms are independent of (x, y) and can be excluded from the optimization.

We can similarly derive another lower bound:

log p(y|x,D∗,Dt−1) = log

ˆ
p(Dt−1|θ)p(θ|D∗)p(y|x, θ)dθ − log p(Dt−1|D∗)

≥ Ep(θ|D∗) log p(y|x, θ) + Ep(θ|D∗) log p(Dt−1|θ)− log p(Dt−1|D∗),

(7)

where the last two terms are also agnostic to (x, y) and hence can be omitted.

Combining Equation (6) and Equation (7), there is

log p(y|x,D∗,Dt−1) ≥ αEp(θ|Dt−1) log p(y|x, θ) + (1− α)Ep(θ|D∗) log p(y|x, θ) + const., (8)

where α ∈ [0, 1] represents a trade-off coefficient. This way, we disentangle the posterior associated
with the training data Dt−1 from that associated with the holdout data D∗.

Rewriting p(y|x,Dt−1) as Ep(θ|Dt−1)p(y|x, θ), we can subsequently convert Equation (4) to the
following maximization problem:

max
(x,y)∈Bt

αEp(θ|Dt−1) log p(y|x, θ) + (1− α)Ep(θ|D∗) log p(y|x, θ)− logEp(θ|Dt−1)p(y|x, θ). (9)

The presented objective is intriguing for several reasons. Firstly, the first term and α times the third
term perform expectation and logarithm operations in reverse order, resulting in a quantity similar to

3



the uncertainty estimates in Bayesian deep learning [39] (nonetheless, our objective involves data
labels). Additionally, the third term helps to prevent the selection of redundant samples. And, the
second term prioritizes points with high semantic alignment with their annotations. These three
forces are integrated adaptively to accelerate model training across various stages.

3.2 Zero-shot Predictor as the Validation Model

Collecting extra holdout data to train an auxiliary validation model can be costly and should be
performed repeatedly for new tasks. To address this issue, we propose to use zero-shot predictors
built upon large-scale pre-trained models [35, 41] as a proxy for the validation model, based on
the observation that they usually exhibit promising transfer performance across a broad range of
downstream applications.

Formally, we make the following approximation:

Ep(θ|D∗) log p(y|x, θ) ≈ log p(y|f̃(x)), (10)

where f̃ : X → Rk denotes the zero-shot predictor used.

We can think of the pre-trained model as a universal validation model trained on an extensive dataset,
leading to the Bayesian posterior collapsing to a point estimate. Although its training data may not
precisely follow the data-generating distribution for the current task, they share fundamental patterns
with the data in our problem, making the above approximation reasonable. Notably, as shown in
Section 4, our trained model eventually performs much better than the zero-shot predictor.

3.3 Lightweight Bayesian Treatment of the Training Model

The first and third terms in Equation (9) raise the requirement of maintaining a Bayesian posterior
p(θ|Dt−1) during training. Due to the high nonlinearity of deep NNs, the analytical posterior is
intractable. By convention, we can introduce an approximate posterior q(θ|Dt−1) and tune it by
approximate Bayesian inference methods like MCMC [42, 5, 45], variational inference [2, 15, 28, 44,
21], Laplace approximation [29, 37], etc. Recalling that, despite relying on a Bayesian treatment, our
final goal is to accelerate and improve the training of a deterministic model, Laplace approximation is
well suited to our setting—it can convert point-estimate parameters to a Gaussian posterior effortlessly,
thus lifting the unnecessary burden of learning and maintaining a posterior explicitly. We clarify that,
technically, other Bayesian inference methods are also compatible with our approach.

Although Laplace approximation is typically used for maximum a posteriori estimation, it can be
effectively adapted to the online learning cases [36]. Specifically, consider an isotropic Gaussian
prior with precision τ0 over parameters θ. Let Dt−1 := b1 ∪ b2 ∪ · · · ∪ bt−1

3 denote all selected
training samples before time t. The parameters of our deterministic model at time t − 1, dubbed
as θt−1, are likely to approach a mode of the true posterior p(θ|Dt−1) in the presence of a proper
weight decay regularizer in stochastic optimization [10]. The online Laplace approximation then
deploys the following approximate posterior:

q(θ|Dt−1) = N (θt−1, H
−1
t−1), Ht−1 = τ0I +

t−1∑
i=1

( ∑
x,y∈bi

∂2[− log p(y|x, θ)]
∂θ2

∣∣∣
θ=θi

)
. (11)

The Gaussian covariance should be positive semi-definite, but as θt−1 cannot be guaranteed to
be exactly the posterior mode, we would better replace the Hessian matrix with the generalized
Gauss-Newton (GGN) matrix to avoid ill-posed approximation, resulting in:

q(θ|Dt−1) = N (θt−1, G
−1
t−1), Gt−1 = τ0I +

t−1∑
i=1

( ∑
x,y∈bi

Jθi(x)
⊤Λθi(x, y)Jθi(x)

)
, (12)

where Jθi(x) := ∇θfθ(x)|θ=θi and Λθi(x, y) := ∇2
f [− log p(y|f)]|f=fθi (x)

.

Practical acceleration. Modern neural networks usually contain millions of parameters, making
the matrix Gt−1 too large to fit into CPU/GPU memories. To address this, a common practice is to
sparsify the matrix using diagonal or Kronecker-factored (KFAC) approximations [30]. This work

3bi ⊂ Bi represents the set of selected samples at time step i.
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Algorithm 1 Bayesian data selection to accelerate the training of deterministic deep models.
1: Input: Number of iterations T , dataset D, prior precision τ0, number of effective data ne, batch size nB ,

number of selections nb, zero-shot predictor f̃ , deterministic model with parameters θ.
2: Intialize θ0, A0 ← 0, G0 ← 0;
3: for t in 1, . . . , T do
4: Draw a mini-batch Bt from D;
5: Vt−1 ←

√
neAt−1 +

√
τ0I , Ut−1 ←

√
neGt−1 +

√
τ0I;

6: Estimate the objective in Equation (16) for every sample in Bt and select the top-nb ones to form bt;
7: Perform back-propagation with

∑
x,y∈bt

log p(y|fθt−1(x));
8: Apply weight decay regularization and do gradient ascent to obtain θt;
9: Use the last-layer features and softmax gradients to update At and Gt with exponential moving average;

10: end for

prefers KFAC as it preserves the correlations between parameters within the same layers. Besides, a
recent surprising finding is that we can even apply Laplace approximation to only the last layer of a
deep NN, leaving the other parameters point-estimate, to conjoin efficiency and calibrated uncertainty
estimates [23, 8]. As a result, we consider combining last-layer and KFAC approximations to reduce
the burden caused by the Bayesian treatment, with the details presented below.

Let us decompose fθi as a feature extractor hθi and a linear layer with weights θ(l)i ∈ Rd×k, i.e.,
fθi(x) := hθi(x)

⊤θ
(l)
i . We adapt the GGN matrix associated with the last-layer weights θ(l)i derived

in [37, 23] to the following formula:

G
(l)
t−1 ≈ Vt−1 ⊗ Ut−1 := (

√
|Dt−1|At−1 +

√
τ0I)⊗ (

√
|Dt−1|Gt−1 +

√
τ0I), (13)

where ⊗ denotes the Kronecker product and

At−1 :=
1

|Dt−1|

t−1∑
i=1

∑
x,y∈bi

hθi(x)hθi(x)
⊤,

Gt−1 :=
1

|Dt−1|

t−1∑
i=1

∑
x,y∈bi

[∇f log p(y|f)|f=fθi
(x)][∇f log p(y|f)|f=fθi

(x)]
⊤.

(14)

Of note that the matrices At−1 ∈ Rd×d and Gt−1 ∈ Rk×k raise only minimal extra storage cost.
The approximate posterior can be formulated as a matrix-variate Gaussian [12]: q(θ(l)|Dt−1) =

MN (θ(l)|θ(l)t−1, U
−1
t−1, V

−1
t−1). Given the linear nature, it is straightforward to get the distribution over

the model output fx for input x (derivation is deferred to Appendix):

q(fx|Dt−1) = N
(
fθt−1

(x),
(
hθt−1(x)

⊤V −1
t−1hθt−1(x)

)
U−1
t−1

)
. (15)

The final data selection objective. With the above equation, the selection objective boils down to

max
(x,y)∈Bt

α
[ 1
S

S∑
s=1

log p(y|f (s)
x )

]
+ (1− α) log p(y|f̃(x))− log

[ 1
S

S∑
s=1

p(y|f (s)
x )

]
, (16)

where f
(s)
x ∼ q(fx|Dt−1), s = 1, . . . , S are MC samples. Compared to the non-last-layer Laplace

approximation, which involves sampling over the parameter space and performing MC integration,
the last-layer one enjoys a much faster evaluation procedure. It also enables the use of a large S. Our
method can also abandon the KFAC approximation when the linear head is small.

The algorithm. We present the training procedure in Algorithm 1. To avoid too large |Dt−1| and
hence too sharpened approximate posterior, we use a tunable hyper-parameter ne to replace |Dt−1|
in the computation of Vt−1 and Ut−1. For implemental simplicity, we use the exponential moving
average technique to update At and Gt. For models equipped with batch normalization layers [16],
we perform an extra forward propagation for the selected data bt to obtain proper batch statistics
for model update, following [31]. Our method takes a similar amount of time per iteration as [31].
The primary difference is that we use a zero-shot predictor based on pre-trained models to compute
the second term in Equation (16), whereas [31] uses a validation model. Computing the Gaussian
covariance in Equation (15), MC sampling, and updating At and Gt consume neglectable resources.
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Table 1: Epochs needed to reach a target test accuracy on clean and noisy data (final accuracy is
reported in parentheses). CIFAR-10*/100* denotes adding 10% symmetric label noise to the dataset.
Best performance is highlighted in bold. “-” indicates that the target accuracy was not reached. For
all methods, only half of the original training set is used for training. The target accuracies are set
following RHO-LOSS [31].

Method\Dataset CIFAR-10 CIFAR-10* CIFAR-100 CIFAR-100*

CLIP Acc 75.6% 75.6% 41.6% 41.6%
Target Acc 80.0% 87.5% 75.0% 85.0% 40.0% 52.5% 40.0% 47.5%
Train Loss 81 129 (90%) - - (28%) 138 - (42%) - - (4%)
Grad Norm - - (61%) - - (23%) 139 - (42%) - - (4%)
Grad Norm IS 57 139 (89%) 57 - (84%) 71 132 (55%) 94 142 (48%)
SVP - - (55%) - - (48%) - - (18%) - - (14%)
Irred Loss - - (60%) - - (62%) 93 - (43%) 89 - (43%)
Uniform 79 - (87%) 62 - (85%) 65 133 (54%) 79 116 (50%)
RHO-LOSS 39 65 (91%) 27 49 (91%) 48 77 (61%) 49 65 (60%)
Proposed 33 61 (91%) 25 47 (91%) 32 53 (63%) 39 53 (61%)

4 Experiment

We compare the proposed method to the prior state-of-the-art (SOTA) data selection methods on
various image classification benchmarks, including standard datasets (e.g., CIFAR-10 and CIFAR-
100 [24]), their variants with controllable degrees of label noise and class-imbalance, and a real-world,
large-scale, noisy, and imbalanced dataset, WebVision [25]. We also diagnose our selection strategy
through elaborate ablation studies.

Datasets. We first evaluate the proposed method on clean CIFAR-10/100 and noisy CIFAR-10/100
with 10% symmetric label noise. Furthermore, we experiment in the context of imbalanced datasets,
specifically CIFAR-10/100 datasets with varying degrees of class-imbalance ratio. Last, we investigate
a web-scraped and large-scale dataset – WebVision, which consists of over 2.5 million images in
1000 categories and suffers from severe label noise and class-imbalance issues. For a fair comparison
with RHO-LOSS [31], only half of the training set is used for model training.

Baselines. We compare the proposed method to a variety of baselines that define selection principles
with various metrics, including the (training) loss [20], gradient norm [19], and gradient norm with
importance sampling (gradient norm IS) [19]. We also compare to uniform sampling, Selection-via-
Proxy (SVP) [6] and the latest SOTA method, RHO-LOSS [31].

Implementation details. In experiments under label noise, we introduce 10% symmetric noise
caused by randomly flipping the ground-truth label to other labels. For the class-imbalance setting,
we consider the long-tailed imbalance with two levels of imbalance intensity (i.e., 10 and 100), where
an exponential decay on sample size is introduced across classes [3]. We use the same optimizer
(AdamW [27]) and hyperparameters (e.g., learning rate 0.001, weight decay of 0.01, nb = 32
and nb

nB
= 0.1) as RHO-LOSS. Unless specified otherwise, we use ResNet18 (RN18) [14] as the

deterministic model and specify the zero-shot predictor with CLIP-RN50. We select the trade-off
coefficient α from {0.1, 0.2, 0.3, 0.4} and the number of effective data ne from {100, 200, 500, 1000}.
In most cases, we set the prior precision τ0 to 1. We report average results over 3 random runs.

Evaluation. Following [31], we evaluate speedup by comparing the number of epochs required to
reach a given target test accuracy, which implicitly reflects the quality of the selection strategy.

4.1 Speedup on Clean Data and Noisy Data

We first empirically evaluate the proposed method on CIFAR-10 and CIFAR-100 with/without label
noise. Table 1 reports the results. We can observe that the proposed method achieves considerably
improved training speed compared to competing baselines in both scenarios with and without label
noise. This evidences the efficacy of our Bayesian selection method in filtering out redundant
and noisy data points in the training set. Despite leveraging extra holdout data, RHO-LOSS still
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Table 2: Epochs required to reach a target test accuracy on imbalanced CIFAR-10 and CIFAR-100
(final accuracy is reported in parentheses).

Dataset Imbalance Ratio Target Acc Uniform RHO-LOSS Proposed

CIFAR-10
10 60% 68 36 34

70% 98 (75%) 56 (80%) 52 (83%)

100 50% 81 50 44
60% 119 (56%) 87 (62%) 79 (68%)

CIFAR-100
10 20% 69 34 32

30% 110 (33%) 62 (39%) 58 (45%)

100 15% 70 43 41
20% - (19%) 71 (24%) 66 (28%)

Table 3: Epochs required to reach a target test accuracy on WebVision dataset (final accuracy is
reported in parentheses).

Dataset Validation set Target Acc Uniform RHO-LOSS Proposed

WebVision-100
WebVision 30% - 29 25

40% - (27%) 47 (42%) 40 (60%)

ILSVRC12 30% - 40 33
40% - (23%) - (37%) 50 (55%)

WebVision-200
WebVision 30% - 28 22

40% - (26%) 48 (42%) 36 (61%)

ILSVRC12 30% - 35 29
40% - (19%) - (39%) 46 (56%)

underperforms our approach, potentially due to the less reliable approximations. Surprisingly, the
superiority of our method is even more significant on the more challenging CIFAR-100. We also
point out that our method eventually reaches higher final accuracy than the zero-shot CLIP. In other
words, our method does not hinge on a performant zero-shot predictor.

4.2 Speedup on Class-imbalance Data

We further evaluate the proposed method on class-imbalanced data, a typical pattern in the real world
while probably raising non-trivial difficulties for model training [7, 3]. Specifically, we experiment
on the aforementioned imbalanced CIFAR-10 and CIFAR-100 using similar protocols to previous
studies. The test datasets remain unchanged. Given that RHO-LOSS is superior to other baselines, we
primarily compare with it in the following studies. We also add uniform sampling into comparison
due to its implementation simplicity. Table 2 presents the results.

As shown, the proposed method still consistently outperforms uniform sampling and RHO-LOSS. In
particular, the final accuracy achieved by our method is higher than RHO-LOSS. We also note that
the gain in training efficiency becomes more significant as the imbalance ratio increases. The failure
of RHO-LOSS is partially attributed to the less principled approximations. Another reason is that the
holdout data are still class-imbalanced, rendering the trained validation models biased.

4.3 Speedup on Large Web-scraped Data

Learning algorithms face significant challenges when dealing with noisy and imbalanced real-world
datasets. To evaluate our proposed method’s efficacy in addressing these challenges, we assess it on
a large-scale web-scraped dataset, WebVision. We defer the details of WebVision to the Appendix.
Since the dataset is large, comprising 2.4 million data points, we train classification models only on
the first 100/200 classes (known as WebVision-100/200) of the entire dataset, following [18, 4], for
an efficient evaluation. We test the trained models on the human-annotated WebVision validation set
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Figure 1: Properties of the data selected by our method and baselines on CIFAR-10 and CIFAR-100
with 10% label noise. Redundant points represent the data that have already been classified correctly.
The reported values are averaged over 150 epochs of model training and five random runs.
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ing pre-trained ViT-B/16 as the model backbone.
(WebVision-200; 1 epoch=344 iterations)

Figure 3: Training curves corresponding to using
zero-shot predictors defined with various CLIP
backbones. (CIFAR-100)

and the ILSVRC12 validation set [9]. We report the results in Table 3. We select 30% and 40% as
target accuracies according to the final accuracies of RHO-LOSS (∼40%) and our approach (∼60%).

Still, the proposed method outperforms uniform sampling and RHO-LOSS in aspects of both the
speed to reach the target accuracy and the final accuracy on both WebVision-100 and WebVision-200.
Notably, our method achieves up to 19% higher final accuracy than RHO-LOSS, suggesting the
superiority of our method in coping with real-world datasets. We also report results for our method
on the entire training set in the Appendix, which shows more significant speedups and higher final
accuracy due to more training data.

4.4 Analysis of the Properties of the Selected Data

In this section, we analyze the characteristics of the data selected by our method and compare it with
existing works. Figure 1a displays the proportion of selected data points with label noise, and it is
evident that data selected by our method has the lowest label noise. We also investigate whether our
method prioritizes redundant data, defined as those having already been correctly classified by the
training model [31]. As depicted in Figure 1b, both our method and RHO-LOSS select significantly
fewer redundant data points than uniform sampling, and our method is slightly better.

4.5 Ablation Studies

In this section, we conduct ablation studies on model architecture, zero-shot predictor, and some
critical hyper-parameters (e.g., α, ne).
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Table 5: The efficacy of a variant of our method (referred to as Proposed†) where the zero-shot
validation model is replaced by that used by RHO-LOSS [31]. Experiment on CIFAR-100.

RHO-LOSS Proposed† Proposed

Epochs to reach 40.0% test accuracy 48 30 32
Epochs to reach 52.5% test accuracy 77 52 53
Final accuracy 61% 63% 63%

(a) The trade-off coefficient α.
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(b) The number of effective data ne.
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(c) The temperature τ .

Figure 4: Ablation studies on some critical hyper-parameters including α, ne, and τ on CIFAR-100.

Model architecture. We test our method using the powerful Vision Transformer (ViT) [11] ar-
chitecture on WebVision-200. Specifically, we experiment with a ViT-B/16 model pre-trained
unsupervisedly by Masked Auto-encoder [13], considering that fine-tuning a pre-trained model is
preferred over training a model from scratch in practice. We provide the training curve of our method
in Figure 2, where uniform sampling is included for comparison. The huge performance gap between
our method and the baseline validates the efficacy of our method in this setting.

Zero-shot predictor. We next assess the impact of the zero-shot predictor on our method. We specify
the zero-shot predictor with various CLIP variants (e.g., RN50 and ViT-B/16) and draw the training
curves in Figure 3. As shown, although the zero-shot accuracy of the RN50 variant is significantly
lower than that of ViT-B/16, the speedup effect of the two backbones is similar. This finding suggests
the robustness of our method against the selection of the zero-shot predictor.

Table 4: Comparison of final accuracy (%) be-
tween the proposed method and the linear prob-
ing with CLIP and uniform sampling strategy.

Dataset CLIP linear probing Proposed

CIFAR-10 84.5 91.4
CIFAR-10* 84.1 91.3
CIFAR-100 58.5 63.3
CIFAR-100* 57.8 61.4

In the above experiments, we use CLIP-based zero-shot
predictors without further tuning. Here, we perform
linear probing using the CLIP models to demonstrate if
we can achieve good convergence trivially. We simply
adopt the uniform sampling strategy and report the
results in Table 4. We do not report convergence speed
because the baseline uses pre-trained weights while
our method trains models from scratch. As shown, our
method still bypasses the baseline with clear margins.

We replace the zero-shot predictor used in our method with the validation model in RHO-LOSS [31]
and present the corresponding results in Table 5. The comparison proves the superiority of our
method over RHO-LOSS. These results also reflect that our method is robust against the specification
of the validation model.

Hyper-parameters. We then analyze the effects of three crucial hyper-parameters, α, ne, and the
temperature τ used by the softmax operation in the CLIP zero-shot predictor. Figure 4a shows
training curves associated with various α. We see that too large α (i.e., lightening the second term in
Equation (9)) can lead to a significant drop in training speed and final performance, which emphasizes
the importance of the zero-shot predictor. Nevertheless, using only the zero-shot predictor (i.e.,
α = 0) is also suboptimal, leading to degraded final accuracy. Hence, we conclude that both terms in
the lower bound of the original data selection principle are beneficial, where the first term accounts
more for the later training stages while the second term accounts more for the earlier ones. Figure 4b
shows the ablations study on ne, and we witness the robustness of our method against ne. Figure 4c
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shows training curves corresponding to different τ . We observe that an appropriate temperature
boosts our method considerably.

Wall-clock time. We empirically observe that the per-epoch training time for Uniform, RHO-LOSS,
and our method on CIFAR-100 is 14s, 18s, and 21s, respectively. Namely, our approach has slightly
increased per-epoch time over RHO-LOSS. It arises from that we use a CLIP-RN50 zero-shot
predictor to compute the second term in Equation (16), whereas [31] uses a RN18 validation model.
In fact, this gap can be reduced by a simple implementation trick—pre-computing the CLIP-RN50
predictions for each sample in the training set before training.

As shown in Table 1, compared to RHO-LOSS, we can reduce the number of epochs required to
reach 40% test accuracy from 48 to 32 and 52.5% from 77 to 53. According to the per-epoch training
time, we achieve a 48 ∗ 18/32/21 ≈ 1.29 or 77 ∗ 18/53/21 ≈ 1.25 times practical acceleration.

5 Related Works

Extensive methods have been proposed to accelerate model training through techniques such as data
pruning, coreset selection, curriculum learning, online batch selection, etc. Data pruning explores
various metrics, such as EL2N score [33], forgetting score [40], and classification margin [34], to
measure individual differences among data points and retains only the hardest examples for model
training. However, data pruning still exhibits limitations when dealing with noisy labels, and some of
these metrics are computationally expensive. Coreset selection methods also partially address the
problem of accelerating model training. In particular, [43] contributes a data scoring mechanism that
is robust to the change of scenarios for coreset selection, and [46] makes an in-depth understanding
of the catastrophic accuracy drop issue of one-shot coreset selection and contributes a novel solution
to it. However, these methods lack the flexibility to prioritize samples with different properties at
various training stages. Curriculum learning, as advocated by [1], prioritizes easy points with low
label noise before uniformly training on all data points. While this strategy enhances convergence, it
fails to address the issue of skipping redundant points already learned.

Online batch selection methods [26, 19, 17] tackle the training acceleration problem by selecting
hard data identified by high loss or gradient norm. However, they also suffer from a common
drawback—high loss can be caused by label noise or ambiguous labels, so prioritizing such data can
result in a decline in predictive performance. Compared to the prior art, our method establishes a
Bayesian data selection metric and exploits zero-shot predictors to prioritize valuable training data
for addressing these issues.

6 Conclusion

This paper addresses the challenges posed by noisy and biased data in real-world scenarios. Our
main contribution is to make the generalization loss-based data selection principle more accessible to
accelerate the training of deep models. To achieve this, we first derive a lower bound of this objective
to improve its tractability. We then propose leveraging a Bayesian treatment and off-the-shelf zero-
shot predictors to estimate the data selection objective reliably. The resulting algorithm does not
require extra holdout data. Our extensive empirical studies demonstrate the superiority of our method
in accelerating model training over competitive baselines.

Limitation. Our method may fail when the zero-shot predictor performs poorly on specific tasks.
Future work could explore adapting the zero-shot predictor to a few-shot one using a few clean
validation data to address this limitation.
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A Proofs

A.1 Derivation of Equation (5)

log p(y|x,D∗,Dt−1) = log

ˆ
p(θ|D∗,Dt−1)p(y|x, θ)dθ

= log

ˆ
p(D∗|θ)p(θ|Dt−1)

p(D∗|Dt−1)
p(y|x, θ)dθ

= log

ˆ
p(D∗|θ)p(θ|Dt−1)p(y|x, θ)dθ − log p(D∗|Dt−1).

A.2 Derivation of Equation (6)

log p(y|x,D∗,Dt−1) = log

ˆ
p(D∗|θ)p(θ|Dt−1)p(y|x, θ)dθ − log p(D∗|Dt−1)

≥
ˆ

p(θ|Dt−1) log[p(D∗|θ)p(y|x, θ)]dθ − log p(D∗|Dt−1)

= Ep(θ|Dt−1) log p(D
∗|θ) + Ep(θ|Dt−1) log p(y|x, θ)− log p(D∗|Dt−1).

A.3 Derivation of Equation (15)

Given that the posterior of the weights of the last layer is q(θ(l)|Dt−1) = MN (θ(l)|θ(l)t−1, U
−1
t−1, V

−1
t−1)

and the input to the last layer is hθt−1(x), there is

q(fx|Dt−1) = MN
(
hθt−1(x)

⊤θ
(l)
t−1, U

−1
t−1, hθt−1(x)

⊤V −1
t−1hθt−1(x)

)
= N

(
fθt−1(x),

(
hθt−1(x)

⊤V −1
t−1hθt−1(x)

)
U−1
t−1

)
.

The second equation stems from that (hθt−1
(x)⊤V −1

t−1hθt−1
(x)) is a scalar.

B Experiment Details
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Figure 5: Number of images per category of the WebVison dataset [25].

B.1 Preprocessing

All images of each dataset are normalized and augmented by random horizontal flipping. For
CIFAR-10/100, we use the standard 32 × 32 random cropping after zero-padding with 4 pixels
on each side. In order to adapt to the input size of CLIP, we upsample images of CIFAR using
torch.nn.functional.interpolate in PyTorch. For WebVision, the images are initially resized to a
uniform size of 256. Subsequently, standard data augmentation techniques are applied, involving
the random cropping of patches with dimensions of 224 × 224 from each image, followed by the
application of horizontal random flipping.
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Table 6: Epochs required to reach a target test accuracy on the 100% WebVision training set (final
accuracy is reported in parentheses).

Dataset Validation set Target Acc 50% data 100% data

WebVision-100
WebVision 30% 25 12

40% 40 (60%) 22 (68%)

ILSVRC12 30% 33 18
40% 50 (55%) 27 (64%)

WebVision-200
WebVision 30% 22 11

40% 36 (61%) 18 (68%)

ILSVRC12 30% 29 16
40% 46 (56%) 22 (64%)

Table 7: The results of RHO-LOSS [31] using zero-shot predictor as the validation model on
CIFAR-100.

Method Target Acc Final Acc (%)
40.0% 52.5%

RHO-LOSS w/ zero-shot predictor (CLIP-RN50) 59 92 58
RHO-LOSS w/ zero-shot predictor (CLIP-ViT-B/16) 53 86 60
Proposed 32 53 63

B.2 Hyper-parameters The uning

We split the original training set into training and validation sets, where the latter remains clean and
balanced for hyper-parameters tuning. In fact, as shown in Figure 4, the trade-off coefficient α in
the selection objective is the primary factor that impacts the training curve and should be carefully
selected. In particular, we select it from {0.1, 0.2, 0.3, 0.4} using a small validation set (of size 500
on CIFAR). We reuse the selected α on WebVision-100 without tuning.

B.3 Network

For all experiments, ResNet18 models are trained from scratch using PyTorch 2.0.0. Notably, in
the case of CIFAR-10/100, we employ a downsampling layer with a small convolution with 3× 3
kernel. Additionally, the average pooling at the end of the network is removed. Following the set-up
of BatchNorm in [31], we compute the BatchNorm statistics on large batch Bt for data selection. For
model parameters update, we compute the statistics on the selected batch bt.

C More Results

Table 6 reports the results of our method on the entire training set of WebVision (as mentioned
in Section 4, we use only half of the training set for training in the main experiments for a fair
comparison with RHO-LOSS [31]). We see more significant speedups and higher final accuracy due
to more training data.

We establish an extra baseline that combines RHO-LOSS with zero-shot predictors. The corre-
sponding results based on our codebase are listed in Table 7. These indicate that the Bayesian
treatment introduced by our method plays an important role in accelerating and improving the model
convergence.
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